984 research outputs found

    The FO^2 alternation hierarchy is decidable

    Get PDF
    We consider the two-variable fragment FO^2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Th\'erien and Wilke have shown that it is decidable whether a given regular language is definable in FO^2[<]. From a practical point of view, as shown by Weis, FO^2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO^2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO^2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Th\'erien, and Vollmer

    Subshifts, MSO Logic, and Collapsing Hierarchies

    Full text link
    We use monadic second-order logic to define two-dimensional subshifts, or sets of colorings of the infinite plane. We present a natural family of quantifier alternation hierarchies, and show that they all collapse to the third level. In particular, this solves an open problem of [Jeandel & Theyssier 2013]. The results are in stark contrast with picture languages, where such hierarchies are usually infinite.Comment: 12 pages, 5 figures. To appear in conference proceedings of TCS 2014, published by Springe

    Languages of Dot-depth One over Infinite Words

    Full text link
    Over finite words, languages of dot-depth one are expressively complete for alternation-free first-order logic. This fragment is also known as the Boolean closure of existential first-order logic. Here, the atomic formulas comprise order, successor, minimum, and maximum predicates. Knast (1983) has shown that it is decidable whether a language has dot-depth one. We extend Knast's result to infinite words. In particular, we describe the class of languages definable in alternation-free first-order logic over infinite words, and we give an effective characterization of this fragment. This characterization has two components. The first component is identical to Knast's algebraic property for finite words and the second component is a topological property, namely being a Boolean combination of Cantor sets. As an intermediate step we consider finite and infinite words simultaneously. We then obtain the results for infinite words as well as for finite words as special cases. In particular, we give a new proof of Knast's Theorem on languages of dot-depth one over finite words.Comment: Presented at LICS 201

    On FO2 quantifier alternation over words

    Full text link
    We show that each level of the quantifier alternation hierarchy within FO^2[<] -- the 2-variable fragment of the first order logic of order on words -- is a variety of languages. We then use the notion of condensed rankers, a refinement of the rankers defined by Weis and Immerman, to produce a decidable hierarchy of varieties which is interwoven with the quantifier alternation hierarchy -- and conjecturally equal to it. It follows that the latter hierarchy is decidable within one unit: given a formula alpha in FO^2[<], one can effectively compute an integer m such that alpha is equivalent to a formula with at most m+1 alternating blocks of quantifiers, but not to a formula with only m-1 blocks. This is a much more precise result than what is known about the quantifier alternation hierarchy within FO[<], where no decidability result is known beyond the very first levels

    Going higher in the First-order Quantifier Alternation Hierarchy on Words

    Full text link
    We investigate the quantifier alternation hierarchy in first-order logic on finite words. Levels in this hierarchy are defined by counting the number of quantifier alternations in formulas. We prove that one can decide membership of a regular language to the levels BΣ2\mathcal{B}\Sigma_2 (boolean combination of formulas having only 1 alternation) and Σ3\Sigma_3 (formulas having only 2 alternations beginning with an existential block). Our proof works by considering a deeper problem, called separation, which, once solved for lower levels, allows us to solve membership for higher levels

    From algebra to logic: there and back again -- the story of a hierarchy

    Full text link
    This is an extended survey of the results concerning a hierarchy of languages that is tightly connected with the quantifier alternation hierarchy within the two-variable fragment of first order logic of the linear order.Comment: Developments in Language Theory 2014, Ekaterinburg : Russian Federation (2014
    corecore