11 research outputs found

    Evaluation of flow shop scheduling heuristics

    Get PDF

    Application of Branch and Bound Technique for 3-Stage Flow Shop Scheduling Problem with Transportation Time

    Get PDF
    This paper provides a branch and bound technique to solve the three stage flow shop scheduling problem including transportation time. Algorithm is given to find optimal or near optimal sequence, minimizing the total elapsed time. This approach is very simple and easy to understand and, also provide an important tool for decision makers to design a schedule for three stage flow-shop scheduling problems. The method is clarified with the help of numerical illustration. Copyright © www.iiste.org Keywords: Flow shop scheduling, Branch and Bound, Transportation time, Optimal sequenc

    Improving healthcare supply chains and decision making in the management of pharmaceuticals

    Get PDF
    The rising cost of quality healthcare is becoming an increasing concern. A significant part of healthcare cost is the pharmaceutical supply component. Improving healthcare supply chains is critical not only because of the financial magnitude but also because it impacts so many people. Efforts such as this project are essential in understanding the current operations of healthcare pharmacy systems and in offering decision support tools to managers struggling to make the best use of organizational resources. The purpose of this study is to address the objectives of a local hospital that exhibits typical problems in pharmacy supply chain management. We analyze the pharmacy supply network structure and the different, often conflicting goals in the decisions of the various stakeholders. We develop quantitative models useful in optimizing supply chain management and inventory management practices. We provide decision support tools that improve operational, tactical, and strategic decision making in the pharmacy supply chain and inventory management of pharmaceuticals. On one hand, advanced computerized technology that manages pharmaceutical dispensation and automates the ordering process offers considerable progress to support pharmacy product distribution. On the other hand, the available information is not utilized to help the managers in making the appropriate decisions and control the supply chain management. Quantitative methods are presented that provide simplified, practical solutions to pharmacy objectives and serve as decision support tools. For operational inventory decisions we provide the min and max par levels (reorder point and order up to level) that control the automated ordering system for pharmaceuticals. These parameters are based on two near-optimal allocation policies of cycle stock and safety stock under storage space constraint. For the tactical decision we demonstrate the influence of varying inventory holding cost rates on setting the optimal reorder point and order quantity for items. We present a strategic decision support tool to analyze the tradeoffs among the refill workload, the emergency workload, and the variety of drugs offered. We reveal the relationship of these tradeoffs to the three key performance indicators at a local care unit: the expected number of daily refills, the service level, and the storage space utilization

    Unveiling Hidden Values of Optimization Models with Metaheuristic Approach

    Get PDF
    Considering that the decision making process for constrained optimization problem is based on modeling, there is always room for alternative solutions because there is usually a gap between the model and the real problem it depicts. This study looks into the problem of finding such alternative solutions, the non-optimal solutions of interest for constrained optimization models, the SoI problem. SoI problems subsume finding feasible solutions of interest (FoIs) and infeasible solutions of interest (IoIs). In all cases, the interest addressed is post-solution analysis in one form or another. Post-solution analysis of a constrained optimization model occurs after the model has been solved and a good or optimal solution for it has been found. At this point, sensitivity analysis and other questions of import for decision making come into play and for this purpose the SoIs can be very valuable. An evolutionary computation approach (in particular, a population-based metaheuristic) is proposed for solving the SoI problem and a systematic approach with a feasible-infeasible- two-population genetic algorithm is demonstrated. In this study, the effectiveness of the proposed approach on finding SoIs is demonstrated with generalized assignment problems and generalized quadratic assignment problems. Also, the applications of the proposed approach on the multi-objective optimization and robust-optimization issues are examined and illustrated with two-sided matching problems and flowshop scheduling problems respectively

    Service Inventory Management : Solution techniques for inventory systems without backorders

    Get PDF
    Koole, G.M. [Promotor]Vis, I.F.A. [Copromotor

    Accountants\u27 index. Twenty-second supplement, January-December 1973

    Get PDF
    https://egrove.olemiss.edu/aicpa_accind/1024/thumbnail.jp

    Accountants\u27 index. Twenty-fourth supplement, January-December 1975

    Get PDF
    https://egrove.olemiss.edu/aicpa_accind/1026/thumbnail.jp
    corecore