
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2014

Unveiling Hidden Values of Optimization Models
with Metaheuristic Approach
Ann Kuo
University of Pennsylvania, aja@wharton.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Library and Information Science Commons, and the Operational Research Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1334
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Kuo, Ann, "Unveiling Hidden Values of Optimization Models with Metaheuristic Approach" (2014). Publicly Accessible Penn
Dissertations. 1334.
http://repository.upenn.edu/edissertations/1334

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1334?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1334
mailto:libraryrepository@pobox.upenn.edu

Unveiling Hidden Values of Optimization Models with Metaheuristic
Approach

Abstract
Considering that the decision making process for constrained optimization problem is based on modeling,
there is always room for alternative solutions because there is usually a gap between the model and the real
problem it depicts. This study looks into the problem of finding such alternative solutions, the non-optimal
solutions of interest for constrained optimization models, the SoI problem. SoI problems subsume finding
feasible solutions of interest (FoIs) and infeasible solutions of interest (IoIs). In all cases, the interest
addressed is post-solution analysis in one form or another. Post-solution analysis of a constrained
optimization model occurs after the model has been solved and a good or optimal solution for it has been
found. At this point, sensitivity analysis and other questions of import for decision making come into play and
for this purpose the SoIs can be very valuable. An evolutionary computation approach (in particular, a
population-based metaheuristic) is proposed for solving the SoI problem and a systematic approach with a
feasible-infeasible- two-population genetic algorithm is demonstrated. In this study, the effectiveness of the
proposed approach on finding SoIs is demonstrated with generalized assignment problems and generalized
quadratic assignment problems. Also, the applications of the proposed approach on the multi-objective
optimization and robust-optimization issues are examined and illustrated with two-sided matching problems
and flowshop scheduling problems respectively.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Operations & Information Management

First Advisor
Steven O. Kimbrough

Keywords
Constrained Optimization, Deliberation Support, Genetic Algorithm, Metaheuristic, Post-Evaluation
Analysis

Subject Categories
Library and Information Science | Operational Research

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1334

http://repository.upenn.edu/edissertations/1334?utm_source=repository.upenn.edu%2Fedissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages

UNVEILING HIDDEN VALUES OF OPTIMIZATION MODELS WITH
METAHEURISTIC APPROACH

Ann Kuo

A DISSERTATION

in

Operations and Information Management

For the Graduate Group in Managerial Science and Applied Economics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2014

Supervisor of Dissertation

Steven O. Kimbrough, Professor, OPIM

Graduate Group Chairperson

Eric T. Bradlow, K.P. Chao Professor, Marketing, Statistics and Education

Dissertation Committee

Steven O. Kimbrough, Professor, OPIM

Monique Guignard-Spielberg, Professor, OPIM

Kartik Hosanager, Professor, OPIM

UNVEILING HIDDEN VALUES OF OPTIMIZATION MODELS WITH

METAHEURISTIC APPROACH

c© COPYRIGHT

2014

Ann Jane-Ahn Kuo

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

ACKNOWLEDGEMENT

I wish to express my deepest and sincere gratitude to my advisor Prof. Steven O. Kim-

brough. Completing this dissertation could not have been possible without his perpetual

encouragement, motivation, and support. His insights lead me to this intriguing study and

all his contribution of time and ideas make my Ph.D. experience fruitful and stimulating.

I am grateful to my dissertation committee members, Prof. Steven O. Kimbrough, Prof.

Monique Guignard-Spielberg, and Prof. Kartik Hosanager for their time, suggestions, valu-

able comments, and encouragement. I would also like to thank the University of Pennsylva-

nia for the financial support which gave me the precious opportunity and made my Ph.D.

work possible with the OPIM program.

It gives me great pleasure in acknowledging the help of Prof. David Harlan Wood; he is

always cheerful, enthusiastic, and willing to share his knowledge and experiences.

Finally, I would like to express my heartfelt gratitude, love, and admiration to my parents

Prof. T. S. Kuo and A. C. Kuo. I am immensely indebted to them for their upbringing,

nurture, unconditional love and endless support in all my pursuits.

iii

ABSTRACT

UNVEILING HIDDEN VALUES OF OPTIMIZATION MODELS WITH

METAHEURISTIC APPROACH

Ann Kuo

Steven O. Kimbrough

Considering that the decision making process for constrained optimization problem is based

on modeling, there is always room for alternative solutions because there is usually a gap

between the model and the real problem it depicts. This study looks into the problem

of finding such alternative solutions, the non-optimal solutions of interest for constrained

optimization models, the SoI problem. SoI problems subsume finding feasible solutions of

interest (FoIs) and infeasible solutions of interest (IoIs). In all cases, the interest addressed

is post-solution analysis in one form or another. Post-solution analysis of a constrained

optimization model occurs after the model has been solved and a good or optimal solution

for it has been found. At this point, sensitivity analysis and other questions of import

for decision making come into play and for this purpose the SoIs can be very valuable.

An evolutionary computation approach (in particular, a population-based metaheuristic) is

proposed for solving the SoI problem and a systematic approach with a feasible-infeasible-

two-population genetic algorithm is demonstrated. In this study, the effectiveness of the

proposed approach on finding SoIs is demonstrated with generalized assignment problems

and generalized quadratic assignment problems. Also, the applications of the proposed

approach on the multi-objective optimization and robust-optimization issues are examined

and illustrated with two-sided matching problems and flowshop scheduling problems respec-

tively.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iii

ABSTRACT . iv

LIST OF TABLES . ix

LIST OF ILLUSTRATIONS . xi

CHAPTER 1 : Supporting Deliberation for Optimization Problems with the Meta-

heuristic Approach . 1

1.1 Introduction . 1

1.2 Motivation and Related Work . 2

1.3 An Evolutionary Computation Based Approach - Genetic Algorithms (GAs) 12

1.4 Experiment Settings for Case Study on General Assignment Problems . . . 19

1.5 Comparison Between Penalty GA and FI-2Pop GA Results 24

1.6 Two Different Infeasible Solution Fitness Measures 28

1.7 Collecting the Solutions of Interest . 30

1.8 Using the Solutions of Interest . 35

1.9 Extended Experiments on the Generalized Quadratic Assignment Problem . 39

1.10 Summary and Discussion . 61

CHAPTER 2 : Considering Additional Objectives with the Metaheuristic Approach 64

2.1 Introduction . 64

2.2 Motivation and Related Work . 65

2.3 Evolutionary Matching for Stable Marriages Problem 75

2.4 Extended Matching Problems - Hospitals Residents Problem with Couples

(Couples Problem) . 78

v

2.5 Summary And Discussion . 88

CHAPTER 3 : Finding Robust Solutions with the Metaheuristic Approach 93

3.1 Introduction . 93

3.2 Motivation and Related Work . 93

3.3 Robust-under-Risk . 96

3.4 Robust-under-Uncertainty . 107

3.5 Summary and Discussion . 139

CHAPTER 4 : Summary . 142

APPENDIX . 147

BIBLIOGRAPHY . 152

vi

LIST OF TABLES

TABLE 1 : Information on Benchmark Generalized Assignment Problem Sets . 19

TABLE 2 : Categories of GA Performance Assessment 25

TABLE 3 : GAP11 & GAP12 FoIs: Count and quality of feasible solutions with

objective function values near the best known solutions 26

TABLE 4 : GAP11 & GAP12 IoIs: Count of infeasible solutions with objective

function values ≥ or > the known optimal values 27

TABLE 5 : Comparison for two infeasible solution fitness measures. GAP11 12

SoIs count and quality of feasible solutions with objective function

values near the best known solutions 30

TABLE 6 : Categories of SoI Heaps . 31

TABLE 7 : Two Optimal Solutions for GAP4-2 36

TABLE 8 : GAP4-2 Optimal & Near-Optimal Feasible Solutions; from FoI(Obj) 38

TABLE 9 : GAP4-2: Best found solution with job 25 assigned to machine 1 . . 38

TABLE 10 : GAP4-2 FoIs with large sums of slacks from FoI(Slacks|MinObj) 39

TABLE 11 : GAP4-2 IoIs with min constraint violations from IoI(SumV) 40

TABLE 12 : GAP4-2 IoIs Ranked by objective value 41

TABLE 13 : GQAP: Elloumi Instance Configurations 42

TABLE 14 : Elloumi c1003 Problem Set Solution of Interest (SoI) Findings . . . 48

TABLE 15 : Elloumi c1003 Problem Set IoI Information 49

TABLE 16 : GQAP: Near-Optimal Feasible Solutions Information 58

TABLE 17 : GQAP: Near/Optimal Feasible Solutions Truck Assignment 58

TABLE 18 : GQAP: Near-Optimal Infeasible Solutions Information 60

TABLE 19 : GQAP: Near Optimal Infeasible Solutions Truck Assignment . . . 60

TABLE 20 : 20x20 TPXOver Strongly Dominating Solution Counts, m04x06p50t100g2000 77

vii

TABLE 21 : 20x20 TPXOver 0.8, Mutation 0.3, One-Away Strongly Dominating

Solution Counts . 78

TABLE 22 : 40x40 Case1,2,6 GA TPXOver Strongly Dominating Opt Solution

Counts . 79

TABLE 23 : Biro Example 3 Preference Lists . 86

TABLE 24 : Candidate Solutions for Biro Example 3 Problem (m009x025p40t10g100) 88

TABLE 25 : Information on Benchmark Flowshop Problems 100

TABLE 26 : Wilcoxon test results for super-heap comparisons on benchmark

problem Taillard 1378 . 106

TABLE 27 : Taillard benchmark flowshop problem. 10 machines. 20 jobs. 1378

minimum makespan. 107

TABLE 28 : Parameter settings for fa1var experiments 124

TABLE 29 : fa1var , x value with 3 and 4 decimal place precision, search outcome

with various x value error sizes . 128

TABLE 30 : fb1var local optima x values vs. fitness values 129

TABLE 31 : Parameter settings for fb1var rejection level experiments 130

TABLE 32 : fb1var , recommended solution ranks and scores with different rejec-

tion level value. 131

TABLE 33 : Parameter settings for fb1var error size experiments 134

TABLE 34 : fb1var , error size experiment with three-decimal-place variable preci-

sion . 134

TABLE 35 : fb1var , RUP05
:RUP03

Ratio with Different Variable Precision 135

TABLE 36 : Parameter settings for fa1var error size experiments 137

TABLE 37 : fa2var , x value with 3 decimal place precision, search outcome with

various x value error sizes . 138

TABLE 38 : Parameter settings for fb2var error size experiments 138

TABLE 39 : fb2var , recommended solution counts with different σ values. . . . 139

viii

TABLE 40 : Test Case Information . 143

TABLE 41 : fb1var , error size experiment with different variable precision 147

TABLE 42 : Elloumi CTAP c2005De Test Case Configuration (3 Optimal Solu-

tions: 5435) . 149

TABLE 43 : Elloumi CTAP 2408Aa Test Case Configuration (a) (Optimal Solu-

tion: 5643) . 150

TABLE 44 : Elloumi CTAP 2408Aa Test Case Configuration (b) (Optimal Solu-

tion: 5643) . 151

ix

LIST OF ILLUSTRATIONS

FIGURE 1 : Genetic Algorithm Outline . 14

FIGURE 2 : Pseudocode for the Penalty GA 21

FIGURE 3 : Pseudocode for the FI-2Pop GA 23

FIGURE 4 : Pseudocode for Collecting Solutions 32

FIGURE 5 : GAP5-1 FoIs and IoIs Counts, 200 Trials 34

FIGURE 6 : Wrapped Right Shifting Nudging Example (when k = 1) 46

FIGURE 7 : Elloumi Test Problem 2005De Solutions of Interest (First Half Table) 51

FIGURE 8 : Elloumi Test Problem 2005De Solutions of Interest (Second Half

Table) . 52

FIGURE 9 : Elloumi Test Problem 2408Aa Solutions of Interest (First Half Table) 53

FIGURE 10 : Elloumi Test Problem 2408Aa Solutions of Interest (Second Half

Table) . 54

FIGURE 11 : Pseudocode for the deferred acceptance algorithm (DAA) for the

simple marriage matching problem, Xs proposing to Y s. 70

FIGURE 12 : One-away solutions compared to GS/DSS solutions, 40×40 case6,

see Table 22. GS/DAA in red ?. 79

FIGURE 13 : Candidate Solutions for Biro Example 3 with Different Paired Ob-

jectives . 89

FIGURE 14 : Makespan calculation procedure, for standard simple flowshop prob-

lems . 99

FIGURE 15 : Proposed robustness measure: robustness-under-uncertainty . . . 110

FIGURE 16 : Function fa1var with and without decision variable perturbation . 122

FIGURE 17 : Function fa1var Fitness Values vs X values 123

FIGURE 18 : fa1var with Zero Error, Top Solutions’ RU Scores and Fitness Values125

x

FIGURE 19 : fa1var with different size x error, Top Solutions’ RU Scores and

Fitness Values . 127

FIGURE 20 : Function fb1var Fitness Values vs x Values 129

FIGURE 21 : fb1var L = 0.90 σ = 0.01 Top 100 Solutions 132

FIGURE 22 : fb1var L = 0.75 σ = 0.01 Top 100 Solutions 133

xi

CHAPTER 1 : Supporting Deliberation for Optimization Problems with the

Metaheuristic Approach

1.1. Introduction

Many real-life optimization problems cannot be modeled adequately using linear program-

ming. Other techniques, such as integer programming and non-linear programming, are

typically used to solve these problems. However, these techniques provide limited views of

the solution space and have serious limitations dealing with the stochastic nature of the

constraints. In this chapter, we investigate the principles and techniques for providing a

systematic, thoroughgoing support for post-evaluation analysis of constrained optimization

models that are not (limited to) linear programming models. We introduce the Solutions

of Interest (SoI) problem, that of finding non-optimal solutions of interest for constrained

optimization models. SoI problems subsume finding feasible solutions of interest (FoI), and

infeasible solutions of interest (IoI)1 . In all cases, the interest addressed is post-solution

analysis in one form or another. Post-solution analysis (deliberation) of a constrained opti-

mization model occurs after the model has been solved and a good or optimal solution has

been found. At this point, sensitivity analysis and other questions of import for decision-

making, discussed in the chapter, come into play and for this purpose the SoIs can be of

considerable value. We present examples of two challenging classes of integer programming,

the generalized assignment problem (GAP) and the generalized quadratic assignment prob-

lem (GQAP). These examples demonstrate how we use SoIs to support deliberation and we

report on a systematic approach, using evolutionary computation, for obtaining both FoIs

and IoIs.

Structure of the chapter. Section 1.2 presents the constrained optimization problem,

post-solution deliberation, our motivation, and the related work. Section 1.3, describes

genetic algorithms, the evolutionary-computation-based approach we employ. Section 1.4
1Terminology: We shall also use SoI for solution of interest, plural, SoIs; similarly for FoI and IoI.

1

explores our scheme in the context of benchmark problems for the generalized assignment

problem (GAP). Section 1.5 reports the performance comparison of different types of GAs.

Section 1.6 compares the effect of two different fitness measures for infeasible solutions. In

section 1.7, we propose the SoI search procedure. Section 1.8 demonstrates the usefulness of

SoIs, section 1.9 further explores the proposed scheme in the context of benchmark problems

for the generalized quadratic assignment problem (GQAP), and section 1.10 contains our

concluding remarks.

1.2. Motivation and Related Work

The progress of a field of study can be achieved most fundamentally by advances in solving

or gaining better knowledge of the field’s outstanding problems. Yet, a field of study may

also advance when important new problems are identified and addressed usefully. The

contribution of the present chapter is of the second kind. In this chapter we characterize a

new, or at least under-investigated, problem pertaining to constrained optimization. We call

it the non-optimal s
¯
olutions o

¯
f i
¯
nterest (SoI) problem. We divide the SoI problem into two

related subproblems, the non-optimal f
¯
easible solutions o

¯
f i

¯
nterest (FoI) problem, and the

i
¯
nfeasible solutions o

¯
f i

¯
nterest (IoI) problem. Further, we demonstrate how evolutionary

computation may be used to address these problems, we identify a number of research

issues, and we present initial, baseline results on these issues. The subject may be framed

as follows.

1.2.1. Constrained Optimization Models (COModels)

The versatility of constrained optimization problems stems from the fact that for most prac-

tical problems resources are limited. This scarcity of resources leads to the enormous scope

of applications of constrained optimization models in business, management, healthcare,

engineering, and basic science. Two major points are worth mentioning here. First, models

are mathematical abstractions of the problems. Exactly how accurately the model depicts

the actual problem is one question. Second, optimization problems in reality often involve

2

soft constraints. Soft constraints, by virtue of being potentially changeable, imply potential

options—this further complicates modeling.

Having been distinguished from their actual optimization problems, the optimization models

present two very different challenges for supporting decision-makers. The first challenge is

the solution problem, which is about finding good, even optimal, solutions to a given model.

The second challenge is the post-solution deliberation problem (or in short, the deliberation

problem), which provides the decision-maker with useful information for making an informed

decision for the underlying problem based on the model at hand.

Solution Problem: the optimization problem is the problem of finding an optimal solution

to the model. An exactly optimal solution satisfies the constraints of the model and is one

where there is no other solution that has a superior objective function value and that also

satisfies the constraints. If a solution x is exactly optimal, we denote the exact optimal

solution by x∗ and its objective value by z∗. Oftentimes exact solution methods are not

available or not effective in finding exactly optimal solutions. Heuristics are then used to

solve the problem. If a solution x is the best known solution then we say it is heuristically

optimal; we denote it by x+ and its objective function value by z+.

Much attention has been given to the optimization problem for COModels, in both the

operations research (OR) and the heuristics communities. Consequently, the optimiza-

tion problem becomes central to the subfield of constrained optimization with evolutionary

computation (or more broadly, with metaheuristics). Constrained optimization with meta-

heuristics is a vibrant area; a great deal of progress on solving the optimization problem has

been made and is continuing to be made, as evidenced by the hundreds of papers published

each year investigating and describing use of evolutionary computation (and metaheuristics

generally) to solve COModels.

Deliberation Problem: compared to the optimization problem, however, the deliberation

problem has received little attention. Deliberation (post-solution analysis) takes place after

3

a constrained optimization model has been formulated, a solution or evaluation procedure

applied, and results therefrom obtained.

While we may specify the cost or profit function for the problem at hand, real-world data

used to evaluate it are rarely precise. Furthermore, the weights and different forms of

contributions involved are usually arbitrary. These complications diminish the meaning

that we try to attach to the “best solution” for our problem. Often, what we truly desire is

a “good solution”, which we can conclude on a time scale short enough so that the solution

can be used in the choice of appropriate action. Most of the time, a “good solution” is more

meaningful than a nominally-better “best solution”. To reach the conclusion of such “good

solution”, post-evaluation analysis is required. Before we further dive into the deliberation

problem, we first introduce the key element of the deliberation process: the non-optimal

solutions of interest, the SoIs.

1.2.2. The Solution of Interest (SoI) Problem

Pertaining to constrained optimization, we call the new (or at least under-investigated)

problem the non-optimal s
¯

olutions o
¯

f i
¯

nterest (SoI) problem. The SoI problem is about

finding non-optimal solutions of interest (SoIs) for constrained optimization models. Such

non-optimal solutions of interest could be either feasible or infeasible. We call the feasible

solutions of interest the FoIs and the infeasible solutions of interest the IoIs.

Roughly speaking, a COModel partitions its solutions into two classes: the feasibles, which

satisfy all constraints in the model, and the infeasibles, which each violate at least one con-

straint. Among the feasibles, what interests us—the FoIs (the non-optimal f
¯
easible solutions

o
¯
f i
¯
nterest)—are those feasible solutions that are superior in their objective function values

relative to z+ and that consume fewer resources than x+. We call the problem of finding

the feasibles of interest for a given COModel the FoI problem. Among the infeasibles, what

interests us—the IoIs (the i
¯
nfeasible solutions o

¯
f i

¯
nterest)—are those infeasible solutions

that are superior in their objective function values relative to z+ and that are close to being

4

feasible. We call the problem of finding the infeasibles of interest for a given COModel

the IoI problem. To sum it up, both the FoI problem and the IoI problem can be classed

under the more general SoI problem. We will be more precise in the sequel about the FoIs

and the IoIs. First, however, let us see why the SoI problem is interesting and potentially

important.

1.2.3. Deliberation Problem

At this stage of the modeling life-cycle a number of questions arise naturally, and for ap-

plications, most crucially. The deliberation problem (post-solution analysis), according

to Greenberg [1993a], “is [the] probing into the meaning of an optimal solution. This in-

cludes conventional questions of sensitivity, and it includes some additional analyses that

are unconventional in the sense that they go beyond textbook definitions.” Kimbrough and

Wood describe the deliberation problem as the assessment processes conducted after ob-

taining preliminary optimal or heuristically good solutions. Other terminologies used in the

literature in place of deliberation problem include: post-evaluation analysis, post-solution

analysis, post-optimality analysis and candle-lighting analysis. Nevertheless, the primary

goal of deliberation is “to reconsider assumptions made in the model in the light of infor-

mation generated while finding the good solutions as well as information not previously

detailed in the model (Kimbrough and D.H.Wood [2006]).”

The deliberation problem considers, at least in principle, actions that might be taken to

revise the model’s assumptions. These considerations are based on weighing solution results

along with knowledge not directly reflected in the model. As stated in Kimbrough et al.

[2009a], the deliberation problem arises once a good solution is to hand, call it x+ with value

z+, for a COModel [constrained optimization model]: Should the best available solution be

implemented exactly or should we re-consider the model? Are there profitable opportunities

to acquire additional resources and thereby relax one or more constraints? On the other

hand are there solutions available inferior to x+ in terms of z+, but which would consume

substantially less in terms of valuable resources? And so on for other deliberations.

5

The post-solution deliberation of COModels can being organized around three types of

questions: the what-if question, the why (and why-not) question, and the what-does-

it-take question. Descriptions and examples of each type of question are given as follows.

• With “what-if?” questions one asks about the consequences of changing one or multi-

ple parameter values. Sensitivity analysis falls into this category. Examples: What if

constraint 7 is tightened by 5%? What will be the new optimal solution and objective

value?

• With “why?” and “why-not?” questions one searches for reasoning to explain the

proposed solution. For example: Why was job a, instead of job b, assigned to a

certain processor in the optimal solution? At least part of the answer lies in finding

solutions in which job b is so assigned and then examining the consequences of such

assignment—e.g., a particular constraint being violated because of b consuming much

more of that resource. (See Greenberg [1993b] for a nuanced discussion of why-

questions in a classic OR setting.)

• Finally, with “what-does-it-take?” questions, one looks for potential solutions that can

achieve a newly set a goal, such as a higher value of z or freeing up a certain amount

of constrained resources. For example: given a maximization problem at optimality

z=635. What does it take—what does one need to do—in order to increase the z

value by at least 5 units?

From a different point of view, Branley et al. [1997] categorize the common deliberation

questions into two main types:

Sensitivity analysis questions:

• Do small changes in the model’s parameters have large effects on the objective function

value?

• What is the range of changes that will affect the accepted solution?

6

Option discovery questions:

• Are there advantageous opportunities to change the assumptions of the model? For

example:

– Would a change in the RHS of a constraint yield a significantly improved objective

value? If so, does the cost of changing the RHS lead to extra profit?

– Are there good solutions for which there are large quantity of certain resource

leftover? If so, can the slack RHS resource be profitably used for some other

purpose?

These are all questions of great practical import in the use of COModels and none of them

can be addressed with only the optimal solution on hand. These considerations put two

fundamental questions into play. The first is, “Why are the FoIs and IoIs (as characterized

above) interesting and useful to have?” Call this the motivation question. The second is,

“Given that we are interested in FoIs and IoIs, what are effective and comprehensive ways

of finding them?” Call this the technical question. We have already given a short answer

to the motivation question: FoIs and IoIs can be used to support, and are what we need to

support, post-solution analysis and deliberation with COModels (perhaps excluding linear

programming models). We can use the FoIs and IoIs to answer valuable what-if?, why?,

and what-does-it-take? questions.

Post-solution analysis has long been recognized in the operations research (OR) and man-

agement science community as an important and valuable aspect of applied modeling.

(See Greenberg [1993a,b,c, 1994] for a comprehensive discussion from the classical exact so-

lution, OR perspective.) Classical OR (exactly optimal solutions) methods for post-solution

analysis are most developed for linear programming models. Although there is important

work for integer programming models (see Geoffrion and Nauss [1977] and Greenberg [1997]

for reviews), the results tend to be very model-type-specific and of limited scope. Moreover,

these methods do not generally apply when the primary solution method is a metaheuris-

7

tic, as it often is and must be in practice. Therefore, we wish to discuss the deliberation

problem, particularly about how metaheuristics may be used effectively to support the de-

liberation (post-solution analysis), which complements, and in no way conflicts with, the

optimization problem or its methods of solution. What follows in the next section begins

to address both of the motivation and the technical questions.

1.2.4. Complexity of the Problems

The COModels that we are concerned with, e.g., integer programming models (linear or

not), mix-integer programming models (linear or not), are all NP-hard as optimization

problems, and in practice will often (but not always, this is not necessary, as we shall see

shortly) be approached with heuristic solvers. One approach to obtaining FoIs and IoIs is

to alter the COModel’s parameters systematically in the neighborhood of the boundary and

re-solve the model. To see the problem with this approach, consider only the right-hand-side

values of the constraints in a small model, one having just five constraints. Assume we are

interested in infeasibles that are within 5 units of violation on each constraint and feasibles

that have slack of at most five on each constraint. This implies (5 + 5 + 1)5 = 161, 051

different models that would have to be solved. If we are interested in ±10 units on each

side of constraints, we get 215 = 4, 084, 101 different models to solve. If we start considering

other parameters in the model, the problem becomes more complex. Even if the COModel

can be solved very quickly by an exact optimization solver, these kinds of numbers are

overwhelming.

Clearly, except for very small problems, it will not be computationally feasible to sweep out

the FoIs and IoIs by resolving the problem systematically. In general, there are no known

methods to generate FoIs and IoIs from a solution (or solutions) obtained by other means.2

Without a fast (polynomial) method of generating the FoIs and IoIs, our natural approach
2There are special cases (linear programming and changes of basis, and some work in mixed integer

programming Greenberg [1997]) but they are model-specific and are not responsive to a pre-defined feasible
or infeasible region of interest (e.g., infeasible solutions within 5 units of the constraint boundary). Of
course, no potentially useful method should be dismissed; these and similar methods merit investigation in
the present context of deliberation support and the problem of populating the FoIs and IoIs.

8

is to sample them efficiently, which leads us to metaheuristics, particularly population-

based varieties, since in the process of solving a COModel, population-based metaheuristics

sample the solution space in an intelligent and biased fashion. Their biases seek regions

of better performance. These regions are typically on or near the boundary of the feasible

region (otherwise the constraints are moot). These solutions near the feasible-infeasible

boundary also typically turn out to be the FoIs and IoIs.

In the rest of this chapter, we demonstrate how one can utilize the population-based meta-

heuristic, genetic algorithm (GA), to effectively collect SoIs and support deliberation for

standard benchmark instances of the generalized assignment problem (GAP) and the gen-

eralized quadratic assignment problem (GQAP). We have accumulated a substantial body

of data, much too large for full discussion in a thesis chapter; what we describe here is

representative of our body of results. Before presenting our results, we briefly describe the

GAP at the end of this section. Because the genetic algorithm (GA)—the metaheuristic we

have employed to generate our results—is a common approach for the topics of next two

chapters, we will describe GA in greater detail in an individual section, Section 1.3.

1.2.5. Generalized Assignment Problem (GAP)

The GAP is a widely-studied combinatorial optimization problem. Given m agents (or

processors) and n tasks (or jobs), the goal is to find the maximum-profit assignment of

each task to exactly one agent, subject to the capacity of each agent. The GAP can be

formulated as follows. Let I = {1, ...,m} index the set of agents and J = {1, ..., n} index

the set of jobs. The decision variables xij are set to 1 if job j is assigned to agent i, 0

otherwise.

9

max
xij

z(P,A, b) =
∑
i∈I

∑
j∈J

pijxij (1.1)

subject to :
∑
i∈I

xij = 1 ∀ j ∈ J (1.2)

∑
j∈J

aijxij ≤ bi ∀ i ∈ I, xij ∈ {0, 1} (1.3)

The constraints, including the integrality condition on the variables, state that each job

is assigned to exactly one agent, and that the capacities of the agents are not exceeded

(Kellerer et al. [2004], Martello and Toth [1990]). Matrices P and A and vector b with

elements pij , aij , and bi are the parameters of the model. Each inequality in expression (3)

is said to represent a constraint (on the corresponding agent) and the bis are the right-hand

side (RHS) values.

The GAP is known to be an NP-hard problem that is important in practice and that is

prototypical of difficult optimization problems. Exact approaches to solve GAP include

branch-and-price (Savelsbergh [1997]), and branch-and-bound (Nauss [2003]) while heuris-

tic approaches include tabu search (Diaz and Fernandez [2001]), and path relinking with

ejection chains (Yagiura et al. [2006]).

In solving a GAP we find an (either exactly or heuristically) optimal decision variable

setting, x+, with corresponding objective value z+ = z(P,A, b). We then consider the

solutions and objective values of the problem under modification of the parameters P, A,

and b. As we have seen, it is not practical to alter the parameters and resolve the model,

given the scale necessary to do so. Our thought is to use population-based metaheuristics,

and evolutionary computation particularly, to populate the SoIs as a by-product of solving

the model. We will illustrate further details in section 1.4 where the experiments are

recorded.

10

1.2.6. Generalized Quadratic Assignment Problem (GQAP)

The GQAP is not only a generalization of the quadratic assignment problem (QAP) but also

a generalization of the GAP. Categorized as the facilities location problem, the generalized

quadratic assignment problem is considered to be one of the most difficult combinatorial

optimization problems. It models the following real-life case:

There are a set of m weighted facilities and a set of n capacitated locations (sites).

For each pair of facilities, the traffic/flow (e.g., the amount of supplies transported

between the two facilities) is specified. For each pair of locations, the distance

between the two locations is specified. For each pair of facility and location, the

cost of assigning a facility to a location is specified. The unit traffic cost is given.

The goal is to find the minimum-cost assignment of each facility to exactly one

location, subject to the location capacities.

To define the problem, we use the following notation:

• M : a set of facilities. Let I, J = {1, ...,m} index the set of facilities.

• N : a set of locations (sites). Let H, K = {1, ..., n} index the set of sites.

• xik: the decision variables xik are set to 1 if facility i is assigned to site k, 0 otherwise.

• wi: the weight (or space requirement) of facility i.

• qk: the capacity of site k.

• eik: the cost of installing (assigning) facility i at (to) site k.

• tij : the traffic intensity from facility i to j.

• dkh: the distance between location k and h, dkh = dhk.

• u: the unit travel cost per unit distance and per unit flow volume.

11

The GQAP is formulated as follows:

min
xik

m∑
i=1

n∑
k=1

eikxik + u
m∑
i=1

m∑
j=1

n∑
k=1

n∑
h=1

tijdkhxikxjh (1.4)

subject to :
∑
k∈N

xik = 1 ∀ i ∈M, (1.5)

∑
i∈M

wixik ≤ qk ∀ k ∈ N, (1.6)

xik ∈ {0, 1} ∀i ∈ N, ∀k ∈M. (1.7)

The constraints, including the integrality condition on the variables, state that each facility

is assigned to exactly one location, and that the capacity of each location is not exceeded.

Matrices E, T, D, and vector W and Q with elements eik, tij , dij , wi, and qk are the

parameters of the model. Matrix X with element xik is the decision variable.

1.3. An Evolutionary Computation Based Approach - Genetic Algorithms (GAs)

1.3.1. Genetic Algorithm Overview

First introduced by John Holland in 1975, genetic algorithm (GA) is the origin of the now

flourishing field called Evolutionary Computing. Known as Neo-Darwinism, the property

of adaptation is often described by the equation:

Adaptation = V ariation+Heredity + Selection.

Variation, which refers to how individuals can differ from each other in a population, is

crucial since evolution operates on the entire species, not on an individual. By definition,

variation can be expressed only in terms of multiple individuals; thus, parallelism and spa-

12

tial multiplicity are essential ingredients in the algorithm of evolution. Meanwhile, heredity

is a form of temporal persistence. The children inherit traits from their parents in discrete

chunks of information (e.g., the famous experiments of Mendel’s pea plants); the traits can

be iteratively passed down a time line from ancestors to descendants. Thus, we have both

parallelism and iteration as fundamental pieces of the biological equation for adaptation.

Mimicking biological adaptation, genetic algorithms work with populations of solutions (the

parallelism) and attempt to guide the search toward improvement, using a “survival of the

fittest” principle (more properly, one should say “survival of the reproducers”, since “sur-

vival of the fittest” actually equals to “survival of the survivors,” in our implementations,

Flake [1998]). The quality of each solution is measured by a fitness function, which is usu-

ally equivalent to the objective function of the optimization problem. The search proceeds

through a number of generations (the iteration) with each individual contributing to the

next generation in proportion to its fitness. To imitate the nature selection “survival of

the fittest”, one can select the mating candidates randomly, using a weighted probability

function to reflect actual fitness values, scaled values, or simply the rank of fitness val-

ues. The selected mating candidates then go through the reproduction stage and generate

the offspring. The evolution continues as the offspring replaces the parent generation and

produces the new offspring. A simplified genetic algorithm is outlined in Figure 1.

Other than Holland’s pivotal publication (Holland [1998]), Reeves also gives a compre-

hensive introduction of GA (Glover and Kochenberger [2003]). We briefly list the basic

operations for a GA as follows:

• Solution Presentation: Among many possible presentations, in a GA, a potential

solution to a problem can be represented as a string of numbers that serve as arguments

to an evaluation function.

• Population Initialization: Typically, the initial population in a GA consists of ran-

domly generated solutions (not necessarily feasible ones). It is also common to ini-

tialize the population with given solutions.

13

• Initialize the population of solutions, P, with size N.

• Repeat for a certain number of iterations (the given number of generations):

– Create an empty population P’.

– Evaluate the fitness of every individual in the current population P.

– Repeat until P’ reaches size N:

1. Select two individuals from P based on some fitness criterion.

2. The selected two individuals mate and produce offspring.

3. The offspring mutate with a certain probability.

4. Add the two newly generated individuals (the offspring) to P’.

– Let P now be equal to P’

Figure 1: Genetic Algorithm Outline

• Fitness Evaluation: For every generation, fitness evaluation is performed on each

solution. This is commonly the most expensive operation and is recognized as the

standard point of comparison for different methods.

• Candidate Selection: The selection scheme primarily determines the convergence char-

acteristic of GAs (Estivill-Castro [1996]) and is often cited as the main reason in cases

where premature convergence halts the success of a genetic algorithm. Various meth-

ods have been proposed to select the mating candidates (e.g., Rank-based selection,

local selection, truncation selection, tournament selection, Roulette wheel selection,

and etc.), but the selection is always done on the basis of the individual’s fitness value.

• Generation Perturbation: There are many different ways for perturbation to the next

generation members. The simplest means are mutation and crossover.

– Mutation: Mutation operation is commonly considered as a background operator

for GAs. It is mainly used to recover desirable genes that have been accidentally

deleted from the population. It is part of the lore for GAs that low mutation

rates lead to efficient search of solution space, while high rates result in diffusion

14

of search effort and premature extinction of favorable schemata (gene pattern)

in the population. Tate and Smith [1993] point out that this conservative strat-

egy is based primarily on empirical findings using simple string encodings over

low cardinality alphabets. The particular features of simple string encoding,

which make high mutation undesirable, are absent in many more complex GA

implementations.

– Crossover: Built on the Building Block Hypothesis (BBH), which states that

GAs work by discovering, emphasizing and recombining low-order schemata in

high-quality strings in a parallel manner, the crossover operator is extensively

explored. The commonly used crossover operators include single-point crossover,

multi-point crossover (Syswerda [1989], Jong and Spears [1992]), and uniform

crossover (Spears [1992]).

• Stopping Condition: The termination condition of the evolution process. Common

terminating conditions include:

– Fixed number of generations or a pre-set computation time is reached.

– A pre-set fitness value is reached by the fittest individual.

– The fitness has reached a plateau such that successive iterations no longer pro-

duce better results.

GAs have been applied successfully to a wide range of problems. Examples of interesting

applications include: R.J. Bauer [1994] and J.Shoaf and J.A.Foster [1998] discover attrac-

tive investment strategies with GAs, D.O. Boyer and Perez [2001] use GA as an alternative

to least squares estimation for non-linear model parameter estimation, and Pfeiffer [2007]

proposes to solve combinatorial auction problems with GAs. For earlier publications, Alan-

der [1995], an indexed bibliography compiled and maintained by Alander, reports over 3000

GA publications between 1957 and 1995 (books, proceedings, journal articles, and Ph.D.

15

dissertations).

1.3.2. Genetic Algorithms for Constrained optimization Problems

Even though GAs have been used successfully as metaheuristics for optimizations, feasibil-

ity constraints on optimization problems pose special difficulties for GAs, primarily because

mutation and crossover operators are blind to feasibility considerations. The common treat-

ments for constraint problem can be categorized into four major groups:

• Repairing strategy: Feasibility is restored for infeasible solutions via some repair op-

erator. It has been proven effective for certain constrained optimization problems.

However, sometimes the strategy increases the complexity of the problem.

• Operator modifying strategy: To maintain the feasibility of solutions, the genetic

operators are modified based on the requirement of the problem at hand.

• Rejection strategy: Only feasible solutions are considered during the search process.

If, at any stage, there is no feasible solution, this strategy fails to work.

• Penalty function strategy: The infeasible solutions are penalized proportionally to

the size of the constraint violations with a penalty parameter. The tuning of the

magnitude of penalty term is critical.

Among these strategies, penalty function strategies are the most commonly used and are

proven to be very effective. However, it is difficult to balance the objective function against

the degree of constraint violation such that neither is dominant. Although many researchers

use adaptive variation of penalty parameters and penalty functions, the general conclusion

is that these variations are specific to a problem and cannot be generalized. Consequently,

other alternative penalty-free approaches have been suggested. Deb and Agarwal [1999]

propose a penalty-parameter-free penalty GA that uses the penalty function to pressure

the selection toward feasible region while maintaining diversity among the feasible solutions

by avoiding comparison between two solutions that are far away from each other. Coello

16

and Montes [2002] offer a dominance-based selection scheme to incorporate constraints

into the fitness function and avoid using penalty function. A good review of the penalty-

based methods in GAs for handling constraints is given by Yeniay [2005]. Considerable

attention has been paid to treating constraints in constrained optimization problems but

no consensus method has emerged. For excellent reviews on constraint handling see Coello

[2002], Michalewicz and Fogel [2000], Michalewicz [1995, 1996]. A dedicated Web site by

Coello is available (Coello [2008], last updated Dec. 2008).

1.3.3. Feasible-Infeasible Two Population GA (FI-2Pop GA)

In addition to the lack of a forthcoming major rule on defining the proper penalty, there

is another more fundamental problem on combining the evaluations for objective function

and constraint violations. In constrained optimization, a GA will drive the population of

solutions to the neighborhood of the effective Pareto frontier. With a penalty function,

infeasible solutions are heavily penalized, leading to likely loss of useful genetic material

that places the solutions near the frontier (Kimbrough et al. [2002b]).

Intuitively, if one can separate the measuring of performance and feasibility (e.g., by evalu-

ating feasible solutions with only objective function while measuring the infeasible solutions

by its distance to the feasible domain), there may be better chance to find optimal solutions

that are located on the boundary between feasible and infeasible spaces.

The FI-2Pop GA is the principled response with such approach (Kimbrough et al. [2002c]).

Kimbrough et al. [2008] investigate the behavior of the FI-2Pop GA both theoretically and

empirically. The authors also prove that The No Free Lunch (Wolpert and Marcready

[1997]) results do not apply to constrained problem classes involving “fixed constraints”.

Considering a setting with fixed constraints is not unreasonable since many real world

problems have constraints that reflect domain structure. The FI-2Pop GA there by escapes

the NFL implications. Whether FI-2Pop GA performs better or worse than random search

for a fixed constraint problem set is unknown, on average. So far it has been shown as

17

a credible option for solving constrained optimization problems involving fixed constraints

such as knapsack problems (Branley et al. [1997], Kimbrough et al. [2002b, 2004, 2002a]) and

other problems described by Michalewicz [1996] and GAMS World (GAMSWorld [2013]).

With the FI-2Pop GA, the population is divided into two groups: the feasible solutions,

which do not violate any constraint, and the infeasible solutions, which violate at least one

of the constraints. The ordinary objective values are calculated for the feasible solutions and

assigned as their fitness scores; meanwhile, the infeasible solutions are measured with regard

to their distance to the boundary of feasible region. In the selection stage, solutions are

compared only with other solutions in its own group. A selected individual then mates with

another candidate of the same group to generate offspring. The generated offspring solutions

will be kept in two separate pools according to their feasibility. The old groups (both

feasible and infeasible) will be replaced with their corresponding new offspring collections.

The evaluation–selection–reproduction process repeats with the new generation. An outline

of our version of the FI-2Pop GA is available in the experiment section Figure 3.

1.3.4. GA for GAP

Much work in the field of GAs has also been devoted to the GAP. Some proposed GAs

are described in the following paragraph. Working with the Minimum GAPs, Chu and

Beasley [1997] offer a GA with problem-specific heuristic operator which involves two local

improvement steps. After the regular crossover for reproducing offspring individuals, the GA

attempts to improve the feasibility and the cost with the heuristic operator. The problem

specific GA performs very well with the Beasley OR-Library test sets (Beasley [2009]).

Wilson [1993] develops a GA that tries to genetically restore feasibility to a set of near-

optimal infeasible solutions. The restoring process continues until one feasible solution is

obtained and then improved upon by a process of local searches. The proposed GA generates

near-optimal solution rapidly, although not as fast as some older heuristic approaches.

Feltl and Raidl [2004] propose a hybrid GA with a modified selection and replacement

scheme for handling infeasible solutions and a heuristic mutation operator. Compared to

18

the commercial general purpose branch-and-cut system CPLEX, the results indicate that

CPLEX is able to handle relatively large size problems (e.g., problems with 80 constraints

and 100 decision variables), although the proposed GA outperforms CPLEX on the largest

test instance (80 constraints and 400 decision variables). Another hybrid GA, the Guided

GA (GGA), is proposed by Lau and Tsang [1998]. A combination of GA and Guided Local

Search, the GGA uses extra weighting operation to identify which genes in a chromosome

are more susceptible to being changed during cross-over and mutation. GGA also performs

very well with the Beasley OR-Library test sets.

1.4. Experiment Settings for Case Study on General Assignment Problems

1.4.1. Test Problem Settings

To evaluate the performance of two GAs on providing deliberation information, we solve

a set of 21 benchmark GAPs which range from instances with 8 agents and 24 jobs to 10

agents and 60 jobs. The 21 problems belong to 5 different problem sets. All problems are

publicly available via the internet at the Beasley OR-Library (Beasley [2009]). The basic

characteristics of the five problem sets are described in Table 1.

Problem Set Name # Agents # Tasks Optimal Value Range
GAP5 8 24 558-568
GAP9 10 30 706-723
GAP10 10 40 947-963
GAP11 10 50 1139-1195
GAP12 10 60 1433-1451

Table 1: Information on Benchmark Generalized Assignment Problem Sets

1.4.2. The Solution Representation

In this case study, all solutions are presented as a string of integers. The ith number in

the solution string indicates the ID of an agent who is assigned to process the ith task.

Such solution representation automatically fulfills the requirement that every job must

be assigned to exactly one agent. To illustrate this representation, consider the GAP5 1

19

scenario. GAP5 1 has 8 agents and 24 tasks. The agents have identifiers numbered from 1

to 8. There are 24 numbers on the solution string. A solution string may look like following:

7 4 3 2 6 1 3 6 8 4 2 1 6 4 8 7 7 1 4 2 3 6

This solution should be interpreted as follows:

• task 2, task 10, task 15 and task 20 are assigned to agent 4

• task 3, task 7 and task 23 are assigned to agent 3

• the only task assigned to agent 5 is task 22

• · · ·

1.4.3. The GA Implementations

Two different GAs, the Penalty GA and the Feasible-Infeasible Two Population (FI-2Pop)

GA are implemented to solve the benchmark GAPs. For the Penalty GA, during the fitness

evaluation, a penalty is calculated in proportion to its Euclidian distance to the boundary of

feasible region. The fitness score is assigned as a net score after subtracting the penalty from

its original objective value. The selection process is executed based on comparing fitness

score over pairs of solutions randomly drawn from the whole population. The winners of

the selection stage will join the reproduction phase. The newly generated offspring are then

collected as the next generation. The evaluation–selection–reproduction process repeats

with new generation. Figure 2 presents the outline of the Penalty GA.

With FI-2Pop GA, the population is divided into two groups - the feasible solutions, and

the infeasible solutions. The objective values are calculated for the feasible solutions and

assigned as their fitness scores; meanwhile the negative value of the Euclidian distance to

the boundary of feasible region is calculated as the fitness scores of the infeasible solutions.

In the selection stage, solutions are compared only with other solutions in its group. To

20

• Randomly initialize a population of solutions, P, with population size N.

• GenerationCount = 0.

• while (GenerationCount < maxGenerations):

– GenerationCount = GenerationCount + 1;

– P’ ←− []

– Evaluate the fitness of every individual in the current population P:

Evaluate the individual’s feasibility first.

∗ If individual is feasible: Fitness score = objective value.

∗ If individual is infeasible: Penalty is calculated according to the penalty

function and the distance between the evaluated individual and the bound-

ary of feasible region. i.e. Fitness score = objective value - penalty.

– Repeat until P’ reaches size N:

1. Select two individuals from P based on some fitness criterion.

2. The selected two individuals mate and produce offspring.

3. The offspring mutate with a certain probability.

4. Add the two newly generated individuals (the offspring) to P’.

– P = P’.

Figure 2: Pseudocode for the Penalty GA

21

give equal weight on both populations, half of the child population will be produced by the

feasible solution pairs while the other half will be produced by the infeasible solution pairs.

A selected candidate mates with only candidate from its group (e.g., feasible candidate

mates with feasible candidate). The offspring are collected as the new generation. The

evaluation-selection–reproduction process then repeats with the new generation. Figure 3

presents the outline of our FI-2Pop GA.

The GA Operators

The operators implemented in this study include single-point crossover, uniform random

mutation and tournament-2 selection.

• Single-Point Crossover: A crossover point is randomly selected. The two parent so-

lutions exchange the part of solution string from that point to the end. This process

produces two offspring solutions. An example with GAP5 1 solution strings is given

below.

p1 : 7 4 3 2 6 1 3 6 8 4 2 2 1 | 5 4 8 7 7 1 4 2 5 3 6

p2 : 2 2 2 2 4 5 2 2 4 4 8 8 8 | 8 8 8 8 8 3 3 3 3 3 3

Resulting offspring:

c1: 7 4 3 2 6 1 3 6 8 4 2 2 1 | 8 8 8 8 8 3 3 3 3 3 3

c2: 2 2 2 2 4 5 2 2 4 4 8 8 8 | 5 4 8 7 7 1 4 2 5 3 6

• Uniform Random Mutation: for the uniform random mutation, every number in the

solution string could change with a given probability. An example with GAP5 1

solution string is given below:

p: 7 4 3 2 6 1 3 6 8 4 2 2 1 | 5 4 8 7 7 1 4 2 5 3 6

After 3-point mutation:

p: 7 4 3 2 6 1 3 6 5 4 2 2 1 | 5 4 8 7 7 1 7 4 5 3 6

• Tournament-2 Selection: two individuals are randomly selected from the population.

Their fitness scores are then compared. The individual with higher fitness score wins

22

• Randomly initialize a population of solutions, P, with population size N.

• GenerationCount = 0.

• while (GenerationCount < maxGenerations):

– GenerationCount = GenerationCount + 1;

– P’ ←− []

– Evaluate the fitness of every individual in the current population P:

Evaluate the individual’s feasibility first.

∗ If individual is feasible:

Fitness score = objective value.

∗ If individual is infeasible:

Fitness score = negative Euclidian distance to the boundary of feasible

region.

– Repeat step 1-4 until P’ reaches size N
2 :

1. Select two individuals from feasible group of P based on some fitness crite-

rion.

2. The selected two individuals mate and produce offspring.

3. The offspring mutate with a certain probability.

4. Add the two newly generated individuals (the offspring) to P’.

– Repeat step 5-8 until P’ reaches size N

5. Select two individuals from infeasible group of P based on some fitness

criterion.

6. The selected two individuals mate and produce offspring.

7. The offspring mutate with a certain probability.

8. Add the two newly generated individuals (the offspring) to P’.

– P = P’.

Figure 3: Pseudocode for the FI-2Pop GA

23

and become the mating candidate.

• The Composition of New Generation: all individuals from the original population

are discarded after enough number of offspring individuals is reproduced. The new

population consists of only the newly generated solutions.

1.4.4. The GA Parameter Setting

For both the Penalty GA and the FI-2Pop GA, the common GA parameters—population

size, crossover and mutation rates—are selected via factorial experiments. Population sizes

of 50 and other sizes ranging from 100 to 1000 with an increment of 100 were tested to find

the most efficient value in terms of reaching a desirable level of average maximum objective

value. The combination of crossover and mutation rates is chosen via factorial experiments.

Possible combinations among crossover rates 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 together with

mutation rates 0.01, 0.03, 0.05, 0.07, and 0.09 are investigated. Individual rate combination

is tested with 5000 generation in each run. Fifteen independent runs are performed for

each test. The crossover-mutation rate combination resulting in the highest average best

objective value and lowest variance of the best objective value is identified for Penalty GA

and FI-2Pop GA respectively.

After tuning, we set the crossover rate at 0.7 and the mutation rate at 0.03 for the FI-2Pop

GA; for the Penalty GA, we used 0.7 and 0.01 respectively. Population size was 500, run

length was 5,000 generations, and each problem is tested with 12 replications. For each

problem, a set of solutions are collected from the last 500 of 5,000 generations. The code

is written in MATLAB. In the Penalty GA, the penalty assessed for an infeasible solution

was 3 × the sum of the constraint violations.

1.5. Comparison Between Penalty GA and FI-2Pop GA Results

For assessing the performance of the GAs, we answer the following five questions with the

solution collections generated by Penalty GA and FI-2Pop GA, respectively. In addition

24

Feasible Solutions Infeasible Solutions
Single Constraint A B

Constraints Collectively C D

Table 2: Categories of GA Performance Assessment

to examining the best feasible solution provided by both GAs, we examine the collected

solutions for the following four categories of questions (Table 2):

• Question Type A: With regard to each constraint, find the count and quality of feasible

solutions with objective values close to the best known solution. To investigate the

impact on objective value brought by varying single constraint, the constraints are

tightened one-at-a-time by 5%. On quality, we look at feasible solutions with 99%,

99.5%, and 99.6% of the optimal value. The number of solutions that meet the target

optimal value levels are tallied.

• Question Type B: With regard to each constraint, find the count and quality of infea-

sible solutions near to feasibility. To investigate the impact on objective value brought

by varying single constraint, the constraints are relaxed one-at-a-time by 5%. The

impact on objective value brought by relaxing constraints one-at-a-time by 10% is

also investigated.

• Question Type C: Find the count and quality of feasible solution with objective values

close to the best known solution. We examine the number of feasible solutions with

an objective value greater than or equal to 99.5%, 99.6%, and 99.7% of the known

optimal values.

• Question Type D: Find the count and quality of infeasible solutions with objective

function equal to better than the best known value.

As a sample of the data we collect with regard to the four types of questions, Table 3 reports

on what we call feasible solutions of interest (FoIs): feasible solutions whose objective values

are near to that of the best known solution, x+, which in this case is the optimal solution.

25

≥ 99%z∗ ≥ 99.5%z∗ ≥ 99.6%z∗ ≥ 99.7%z∗

Problem 2Pop Penalty 2Pop Penalty 2Pop Penalty 2Pop Penalty
GAP11 1 224 652 0 53 0 25 0 11
GAP11 2 538 952 29 40 21 10 7 5
GAP11 3 89843 62582 13824 9940 6525 5185 2200 2017
GAP11 4 530 294 19 4 7 0 2 0
GAP11 5 351 332 1 1 1 0 1 0
GAP12 1 2564 7280 192 285 37 14 8 0
GAP12 2 1805 4497 74 260 16 63 5 21
GAP12 3 2009 7271 321 169 127 30 66 4
GAP12 4 15834 30811 1540 362 586 3 309 0
GAP12 5 2593 3741 146 67 36 2 12 0

Table 3: GAP11 & GAP12 FoIs: Count and quality of feasible solutions with objective
function values near the best known solutions

Comparing the number of found solutions with objective values of 99% or higher than the

known optimum, both GAs find many solutions for this difficult problem, but the Penalty

GA outperforms the FI-2Pop GA at the 99% level. Going beyond 99%, however, the FI-

2Pop GA generally outperforms the Penalty GA. Looking on the infeasible side, Table 4

reports on the infeasible solutions of interest (IoIs): infeasible solutions whose objective

values are equal to or better than x+. We see that the FI-2Pop GA is dominant, except on

GAP11 1 and perhaps on GAP12 2.

From our preliminary experiments for comparing the Penalty GA and FI-2Pop GA, the

followings are our observations:

• For 18 of the 21 test problems, both GAs provide the best feasible solution with

objective value reaching 99.5% (or higher) of the known problem optimal values.

Although it is not the goal of this study to provide optimal solutions with GAs, it

gives a sense about FI-2Pop GA and Penalty GAs performance with regard to finding

the optimal solutions.

• For type A questions, with regard to each constraint, the impact on objective value

brought by tightening single constraint: as the target objective value goes higher, the

26

≥ z∗ > z∗

Problem z∗ 2Pop Penalty 2Pop Penalty
GAP11 1 1139 13 133 3 82
GAP11 2 1178 182 100 140 35
GAP11 3 1195 1039 829 204 194
GAP11 4 1171 202 24 201 18
GAP11 5 1171 20 4 11 1
GAP12 1 1451 8 0 1 0
GAP12 2 1449 3 5 0 0
GAP12 3 1433 37 2 3 0
GAP12 4 1447 21 0 5 0
GAP12 5 1446 131 0 41 0

Table 4: GAP11 & GAP12 IoIs: Count of infeasible solutions with objective function values
≥ or > the known optimal values

FI-2Pop GA performs much better than the penalty GA. Based on a Wilcoxon signed

rank test with continuity correction, the p-value = 0.0001437 for the target objective

value at 99.6% of the known optimal value.

• For type B questions—with regard to each constraint, find the impact on objective

value brought by varying single constraint, the constraints are relaxed one-at-a-time

by X%. Penalty GA perform better than the FI-2Pop GA at the 5% relaxation level.

But as the relaxation level rises, the difference is less clear between the two GAs.

• For type C questions, find the count and quality of feasible solution with objective

values close to the best known solution, we examine the number of feasible solutions

with an objective value greater than or equal to 99.5%, 99.6%, and 99.7% of the known

optimal values. We found that as the objective value rises, FI-2Pop GA performs much

better (although it has a hole with problem GAP9 1 and GAP12 12).

• For type D questions, find the count and quality of infeasible solutions with objective

function equal to better than the best known value, the results show that the number

of infeasible solutions provided by both GAs dwindles as the problem size grows.

Interestingly, when dealing with the bigger sized problem set GAP12 (with 10 agents

27

and 60 tasks), the Penalty GA provides almost nothing while FI-2Pop GA still offers

plenty of information.

As we expected, as a meliorizing population-based metaheuristic, a GA tends to produce

many solutions with similarly high fitness values (providing of course that they exist and can

be found). It is just these good but non-optimal solutions that, we observe, constitute the

FoIs. What about the infeasible side and the IoIs? Here we have to be concerned that stan-

dard penalty function approaches to handling infeasible solutions will not very comprehen-

sively explore the infeasible region(s) near the feasible-infeasible boundary (or boundaries).

In the extreme case, amounting to a ‘death penalty’ for infeasible solutions, there will be

comparatively few solutions found and they will not be parents for subsequent explorations.

This worry has received some empirical confirmation (Kimbrough et al. [2009b]). Based

on our observations, we continue our explorations using the feasible-infeasible 2-population

(FI-2Pop) GA for the rest of the experiments.

1.6. Two Different Infeasible Solution Fitness Measures

With the two-population GA, we take the objective value as the measure of a feasible

solution’s fitness score because we want to focus our search in the area(s) around the optimal

solution(s). For the measure of the infeasible solution’s fitness, there are several candidates

which interest us, e.g., the sum of total constraint violations for the given infeasible solution,

the maximum amount of violation among all constraint violations for the given infeasible

solution, the Euclidean distance to the feasibility boundary of the given infeasible solution,

and so on. The Euclidean distance comes as our first choice, since conceptually one would

like to get infeasible solutions which are ‘close’ to the feasibility boundary. On second

thought, it could also be interesting if one tries to minimize the largest distance on any

single dimension between the specified solution and the feasibility boundary. To compare

the effect of different fitness measures for the infeasible population, we solve five sets of

GAPs with both fitness measures—the Euclidean distance and the maximum violation.

28

Given I = {1, ...,m} index the set of m agents, si presents the slack for agenti, and nsi

presents the negative slack, we consider two different measurements for the fitness of infea-

sible solution during the feasible-infeasible two-population GA searching:

• Euclidean Distance: to take the ‘ordinary’ distance between an infeasible solution and

the feasibility boundary as its fitness value.

fitnessE.Dist = −

√√√√ m∑
i=1

ns2
i ; nsi =

 0 if si ≥ 0

si if si < 0

• Max Violation: to take the maximum violation of all constraints of an infeasible

solution as its fitness value.

fitnessMax.V = min
i∈I

si

As an example, we report part of the findings with regard to the FoI counts in Table 5. We

set the two-population GA with following parameter values: population size=500, number of

generations=5000, trials=12, xover=0.7, mutation=0.03, heapsize=1000, feasible-threshold

(feasTHD)=0, infeasible-threshold (infeasTHD)=5. No seeding for the randomly initialized

population.

Table 5 shows the comparison of feasible solution of interest (FOI) counts for the two test

sets with largest problem sizes (GAP 11 & 12). In terms of FOI counts, when requiring the

objective value to reach at least 99.5% of the known optimal (say 99.5%, 99.6%, and 99.7%),

neither measure clearly dominates the other. But in terms of the best found objective value,

the Euclidean distance measure does slightly better (5 cases better, 2 cases worse, 3 cases

tie). Test results for the other smaller problem size GAP sets are consistent with the one

shown in Table 5 in the sense that when looking at the result problem set by problem set,

neither measure clearly dominates the other for FOI counts of objective values at 99.5%-

99.7% level. For the IOI counting, the solutions are counted based on wether their Euclidean

29

FOI Counts Best Found
≥ 99%z∗ ≥ 99.5%z∗ ≥ 99.6%z∗ ≥ 99.7%z∗ Obj.Val.

GAPID E. Max E. Max E. Max E. Max E. Max
11 1 405 807 3 3 2 1 1 0 1136 1135
11 2 918 1000 49 17 16 3 3 3 1176 1176
11 3 1000 385 130 2 50 0 7 0 1192 1190
11 4 348 665 8 22 1 4 1 1 1169 1168
11 5 843 1000 3 36 1 15 0 3 1167 1168
12 1 1000 1000 874 556 175 57 43 7 1448 1447
12 2 1000 1000 799 898 112 188 32 48 1447 1447
12 3 1000 1000 120 224 1 23 0 7 1428 1430
12 4 1000 1000 1000 47 347 0 158 0 1444 1441
12 5 1000 1000 1000 1000 268 424 59 168 1444 1444

Case Counts
E. Max E. Max E. Max E. Max E. Max

Better 1 4 4 4 5 5 4 4 5 2
Tie 5 2 0 2 3

Table 5: Comparison for two infeasible solution fitness measures. GAP11 12 SoIs count and
quality of feasible solutions with objective function values near the best known solutions

distance to the feasibility boundary are within a certain given range. The overall test result

(including test problem sets GAP 5, 9, 10, 11, and 12) indicates a weak trend that Euclidean

distance measure does slightly better when the searched solutions are required to be very

close to the feasibility boundary (either FoI or IoI). We use the Euclidean distance as the

infeasible solution fitness measure for the rest of our experiments. In any case, we see

potential improvement on the quality of provided information by collecting SoIs obtained

with both measures. It is definitely worth further investigation with regard to different type

of optimization problems.

1.7. Collecting the Solutions of Interest

Having given the reason on using FI-2Pop GA to search the potential solutions, we now

illustrate the procedure of how we collect the solutions of interest (SoIs).

In terms of data structures, we use multiple heaps to record the encountered SoIs. A heap

is basically a priority queue which can hold a pre-defined maximum number of solutions.

Let’s call the process of solving a given problem a ‘run’. In a single run, the problem to be

30

solved is fixed per our definition of a ‘run’, e.g., a particular GAP, and we repeat the GA

searching process multiple times. Each individual GA searching process, defined as a ‘trial’,

starts with a new randomly initialized population. With each randomized initialization, the

population evolve through the pre-defined number of generations and complete a trial. A

‘run’ consists with a pre-defined number of trials.

A heap is set to be empty at the beginning of a run and is maintained throughout the run.

At the end of a run, it contains the best solutions found over all trials in the run, by the

specific criteria attached with the heap. Multiple heaps can be used in a run according to

the number of types of SoIs the decision maker is interested in. Since the SoIs collecting is

basically a solution logging process, it does not affect the actual search process of the GA.

The solution collecting process is outlined as the pseudocode in Figure 4.

In our experiments, we set up four separate heaps to collect the four types of SoIs we care

about. The four heaps are described as follows and categorized in Table 6.

Feasible Solutions of Interest Infeasible Solutions of Interest
(FoIs) (IoIs)

Simple Selections FoI(Obj) IoI(SumV)
Conditional Selection FoI(Slacks | MinObj) IoI(Obj | MaxDist)

Table 6: Categories of SoI Heaps

All heaps come with the size parameter, MaxHeapSize, which sets the maximum number

of solutions a heap can hold. We set the MaxHeapSize to 2000 solutions for our benchmark

GAP experiments. Each heap holds a set of SoIs, which belong to the same category. The

detailed description of our four heap categories are as follows:

• Heap FoI(Obj): records the best feasible solutions, with objective function value as

the evaluation criterion.

• Heap FoI(Slacks | MinObj): records the best feasible solutions whose objective func-

tion values are no less than the specified MinObj value. The evaluation criterion is

the sum of the slacks in the constraints. The MinObj is normally set at 997.5% of z+.

31

Procedure for Collecting SoIs:

1. Specify HashAttribute, Condition Attribute and MaxHeapSize

2. Specify CandidateSolutions

3. Initialize Heap. Fill up the Heap with MaxHeapSize fake solutions with poor scores

on HashAttribute.

4. Heap = UpdateHeap(Heap, CandidateSolutions, HashAttribute, ConditionAt-

tribute)

===

Function: UpdateHeap(Heap, CandidateSolutions, HashAttribute, ConditionAttribute)

{

• While (CandidateSolutions 6= [])

– CurrentCandidate = CandidateSolutions(1)

– CandidateSolutions = CandidateSolutions(2:end)

– If (CurrentCandidate satisfies ConditionAttribute) and

(CurrentCandidate /∈ Heap) and

(HashAttribute of CurrentCandidate �

HashAttribute of the Heap Solution which has the worst HashAttribute value)

then

∗ Delete the Heap Solution with worst HashAttribute Value

∗ Insert Current Candidate into Heap

• Return Heap

}

Figure 4: Pseudocode for Collecting Solutions

32

Recalling Figure 1.1 formula (3), the sum of the slacks for any given feasible solution

is
∑

i∈I(bi −
∑

j∈J aijxij).

• Heap IoI(SumV): records the best infeasible solutions with the sum of constraint

violations as evaluation criterion. With the ‘best’ infeasible, we mean the infeasible

solutions that have lowest sum of violations, which indicate the solutions that are clos-

est to feasibility. Recalling Figure 1.1 formula (3) the sum of the constraint violations

for any given infeasible solution is
∑

i∈I min{0, (bi −
∑

j∈J aijxij)}.

• Heap IoI(Obj | MaxDist): records the best infeasible solutions with objective function

value as evaluation criterion, provided that their sum of constraint violations is no

greater than the given value MaxDist. The value MaxDist is typically set at 5 for our

benchmark GAPs. With the ‘best’ infeasible, we mean the infeasible solutions that

have the highest objective function value and are near the feasible region (within the

given distance MaxDist).

Other search-related information with regard to each recorded solution is also logged in the

heap. Such information includes:

• feTrial: the first encounter trial ID-records the ID of the first trial which the corre-

sponding solution is first found and logged on the heap.

• feGeneration: the first encounter generation ID-records the ID of the first generation

which the corresponding solution is first found and logged on the heap in the specified

trial.

With the collected SoIs at hand, many questions arise. For example:

• How can we determine whether we have collected ‘enough’ SoIs or reasonably so?

• Given that after the pre-defined number of trials, should our heaps be not filled with

MaxHeapSize SoIs, or should we settle for fewer SoIs? Since we could still use the

information at hand to identify areas of interest, will we be better off to follow up

33

with focused efforts to further search the specific area?

• Are some SoIs typically harder to find than others?

We may be able to get some insight with the help of the search related information which

we collected. Take our GAP5 1 FoI(Obj) heap as an example. Figure 5 shows the number

of new entries in the FoI(Obj) heap and IoI(Obj|MaxDist) heap during each of the 200

trials. For the IoI(Obj|MaxDist) heap, there is a trend of dwindling on the number of new

entries as the search approaching the end of 200 trials; while it is not so apparent on the

diminishing number of new entries on the FoI(Obj) heap searching process. To get a sense

of whether we have collected ‘enough’ SoIs, a little modeling is helpful.

Figure 5: GAP5-1 FoIs and IoIs Counts, 200 Trials

Let us say that a heap is complete if it is filled with MaxHeapSize SoIs with the best

evaluation values provided that they satisfy the given condition(s). Since our SoI collecting

procedure never deletes any SoI that is recorded before the heap is entirely filled, we can

thus expect that over multiple trials, the heap will move towards completion. Let us assume

that it takes equal amount of effort to find each of the solutions collected in the heap, and

34

assume that MaxHeapSize is 1000, our GA on average finds 10 of the 1000 SoIs per trial.

The probability that a given SoI is not found in n independent trials is (1− 0.01)n = 0.99n.

If we are expecting to have the heap with 90% completion, then we need 1 − 0.99n = 0.9

or n = ln0.1/ln0.99 n > 229. In other words, suppose a solution of interest is only be

found in 1 in 100 trials, and we want a 90% chance of finding it. Then we need to have at

least 229 trials of randomly initialized searching process.

The results reported here with respect to GAP5-1 is similar to what we have found with

other problems in the Beasley GAP test suite (Beasley [2009]). Broadly speaking, there are

a surprisingly large number of SoIs (both feasible and infeasible). This implies important

opportunities that are not currently well exploited for supporting post-solution deliberation.

1.8. Using the Solutions of Interest

To test our approach, we build our deliberation support system that searches the solutions of

interest with FI-2Pop GA and gathers four types of SoIs with prioritized solution collecting

procedure. Extensive runs are carried out under various settings, on the Beasley OR-

Library GAP sets (Beasley [2009]). In this section, we report our findings for the GAP

set 4 problem 2 (c530-2) as a representative example of our experiments. GAP4-2 is a

problem with 5 machines, 30 jobs, and its known optimal objective value is 644. The main

purpose of this section is to demonstrate how having the solutions of interest at hand may

actually contribute to improved decision-making. We will illustrate why the SoIs could be

interesting by examining five types of solutions that interest us: (1) the solution(s) solving

the given problem to optimality, (2) the feasible solutions which are near-optimal, (3) the

feasible solutions that have objective value no worse than a given threshold and spare more

units of certain resources, (4) the infeasible solutions that only require minimum amount of

extra resources to become feasible, and (5) the infeasible solutions that have high objective

function value but are not overly infeasible (within a tolerable distance to the feasible

boundary).

35

0 1 2 3 4 5 6 7 8 9
0 - 3 3 5 1 2 1 4 1 4
1 2 3 2 1 4 4 5 2 2 5
2 3 4 5 3 5 3 1 4 1 5
3 2 - - - - - - - - -

(a) Optimal Solution # 1

0 1 2 3 4 5 6 7 8 9
0 - 3 3 5 1 2 1 3 1 4
1 2 3 2 1 4 5 5 2 4 5
2 3 4 5 3 4 2 1 4 1 5
3 2 - - - - - - - - -

(b) Optimal Solution # 2

Table 7: Two Optimal Solutions for GAP4-2

1.8.1. Optimal Solutions

Using the deliberation system, we found not only one but two solutions with the known op-

timal objective value of 644. Table 7 shows the two optimal solutions found. The differences

are shown in red (assignments for job 7, 15, 18, 24, and 25). We note that (i) conventional

solvers will typically find just one optimal solution and (ii) there is generally real value in

knowing more than one. For example, one optimal solution to the model may be preferable

to another because the underlying problem has changed or has relevant aspects that are

not captured in the model.

1.8.2. Near-Optimal Feasible Solutions

Given that the known optimal objective value is 644, our deliberation support system

provides eight other feasible solutions with objective value 643. Although there is one unit

short on the objective value, these eight solutions spare more units of certain resources.

To compare the slacks on resources among the optimal/near-optimal solutions, we display

them in terms of resource usage in Table 8. Should a resource be able to be used in other

more profitable ways (e.g., resource 4, R4, which corresponds to the constraint whose RHS

value is b4), the decision-maker may be interested in other alternative solution (e.g., solution

number 3, which spares 11 units of resource 4). The sampling results also show that we have

fewer opportunities for redeploying resource 3 and resource 5. Since solution #6 spares 5

units of resource 5, it may be a tempting solution should the decision-maker consider the

spared resource 5 worth more than the 0.002% reduction on objective value. Solution #8

with objective value 643 may be preferred in a stochastic world, since it has slack of at least

36

1 unit on every resource while neither of the optimal solutions have this property.

Since the sampled SoIs in the heaps can be ranked according to either their objective values,

the sum of slacks, or the slack on a certain resource, it is helpful when the decision-maker

tries to answer the what-if question involving changing availability for one or more resources.

For example, both of the current optimal solutions have slack 2 on resource 1. If for any

reason, one needs solution which can spare at least 5 units of resource 1, solution #1 and

#6 will both meet such requirement with a reduction of less than 0.002% on objective value

from the optimality. By carefully examining the near-optimal solutions, we also find relevant

information on other types of deliberation question. For example, Table 7 shows that, in

the two optimal solutions, job 25 is assigned to machine 3 and machine 2 respectively. Why

not assign task 25 to machine 1? What will happen if job 25 is assigned to machine 1?

The near-optimal solution #4 listed in Table 8 actually has task 25 assigned to machine

1, with an objective value 643. We conclude that if task 25 is assigned to machine 1, the

best solution we have is with objective value 643. Table 9 details the task assignments of

solution #4.

1.8.3. High Slacks Feasible Solutions

The second type of FoIs are the feasible solutions with high slack sum given that their

objective values are higher than a specific threshold. Table 10 displays the sampled solutions

with high slack sum ranked according to their objective values. Depending on the actual

economic opportunities, solution #1, 2, and 3, which have slack sums no less than 36, with

their objective value above 97.6% of the optimal value 644, may provide significant savings

on resources from either of the optimal solutions and might be a good bargain as well.

1.8.4. Nearly-Feasible Solutions

To improve the objective value beyond the current optimal value, the decision maker may

be interested in identifying the achievable improvement with minimal additional resources,

given that extra resources are hard to get. The nearly-feasible solutions of the IoIs provide

37

Obj.Val. R1 R2 R3 R4 R5
0 644 2 1 1 2 0
0 644 2 5 0 1 1
1 643 5 4 1 3 0
2 643 0 2 1 0 0
3 643 0 4 1 11 0
4 643 2 1 1 3 0
5 643 0 1 0 7 0
6 643 5 4 0 1 5
7 643 2 1 0 4 0
8 643 2 5 1 4 1
9 642 0 4 3 12 1
10 642 9 0 0 0 2
11 641 0 8 0 1 3
12 640 7 1 1 0 0
13 640 5 4 7 2 0
14 640 0 1 4 0 9
15 640 10 4 1 0 0

Table 8: GAP4-2 Optimal & Near-Optimal Feasible Solutions; from FoI(Obj)

0 1 2 3 4 5 6 7 8 9
0 - 3 3 5 1 2 3 4 1 4
1 2 4 2 1 4 5 5 2 2 5
2 3 4 3 3 5 1 1 4 1 5
3 2 - - - - - - - - -

Table 9: GAP4-2: Best found solution with job 25 assigned to machine 1

such information. The solutions recorded in the IoI(SumV) heap are indeed the infeasible

solutions which have the shortest distance to the feasible boundary. Since such search

focuses on solutions with minimal constraint violation, the sampled nearly-feasible solutions

tend to be one distance unit away from being feasible. Our approach with the FI-2Pop GA

typically finds a rich collection of one-away infeasible solutions. Table 11 lists three infeasible

solutions which are one unit short of either resource 3 or resource 4. Should the required

resource is obtained, one will be able to achieve the higher new optimal objective value 648

(instead of the known optimal value 644).

38

Obj.Val. Slack Sum R1 R2 R3 R4 R5
0 644 6 2 1 1 2 0
0 644 9 2 5 0 1 1
1 629 37 0 28 3 5 1
2 629 36 0 8 10 17 1
3 629 36 20 5 0 4 7
4 628 39 15 15 3 5 1
5 627 38 0 21 10 4 3
6 626 42 0 8 16 17 1
7 626 40 5 28 6 0 1
8 626 40 15 8 10 4 3
9 626 40 15 8 3 5 9
10 626 39 15 9 3 11 1
11 626 39 20 8 7 4 0
12 626 39 0 8 9 22 0
13 625 42 20 15 6 0 1
14 625 41 0 1 3 29 8

Table 10: GAP4-2 FoIs with large sums of slacks from FoI(Slacks|MinObj)

1.8.5. High Objective Value Infeasible Solutions

Another common deliberation focus is how to best allocate the extra resources in order to

achieve the new optimal objective value, given that there is limited extra budget available.

The solutions recorded in the IoI(Obj|MaxDist) heap are the infeasible solutions with high

objective values, provided they are not too far away from being feasible. The ‘not too far

away’ is specified during the search with a given constraint violation threshold (5 distance

unit in our example). Table 12 shows such solutions found by our deliberation system,

ranked on the expected objective values.

1.9. Extended Experiments on the Generalized Quadratic Assignment Problem

Since the generalized quadratic assignment problem remains very difficult for CPLEX and

other standard OR solvers, it is an attractive class of problem to test our metaheuristic

approach. To further demonstrate the effectiveness of our proposed approach, we apply

the Deliberation Decision Support System (DDSS)3 on three sets of generalized quadratic
3DDSS is our application developed using MATLAB, based on the proposed approach.

39

Distance to Objective
Boundary×-1 Value R1 R2 R3 R4 R5

1 -1 648 5 4 0 -1 0
2 -1 648 2 1 0 -1 0
3 -1 648 0 4 -1 0 1
4 -1 645 8 1 1 -1 0
5 -1 645 0 4 1 -1 5
6 -1 644 0 4 10 -1 0
7 -1 644 0 2 4 -1 0
8 -1 643 5 -1 0 0 0
9 -1 640 -1 9 0 9 0
10 -1 639 0 8 -1 10 1
11 -1 638 5 -1 0 11 3
12 -1 637 5 1 0 16 -1
13 -1 637 16 1 0 2 -1
14 -1 636 -1 7 4 1 0
15 -1 635 5 18 1 -1 1
16 -1 635 5 8 14 -1 1

Table 11: GAP4-2 IoIs with min constraint violations from IoI(SumV)

assignment problems (GQAP). The first two sets of problems consist of three different

sizes of bench mark problems from Elloumi’s web site. The third problem set contains

one medium size crossdock assignment problem. We will describe the Elloumi’s benchmark

problems first and discuss the details about crossdock problem in the later part of this

section (1.9.5).

We select twenty four problem instances with known optimal values from Elloumi’s web site

dedicated to the Constrained Task Assignment Problem (CTAP, Elloumi [2014]). Coming

under the class of generalized quadratic assignment problem, Elloumi’s CTAP instances are

all about the module allocation problem (MAP of distributed computing systems design

for VLSI). In the CTAP, a set of program modules (or tasks) is to be executed by a set

of processors, subject to both execution and inter-module communication costs. Assuming

that each processor has limited memory and the communication links are identical (the

communication costs of pairs of modules are said to be uniform since they are independent

from the processors and they are symmetric). The goal is to find a suitable assignment

40

of program modules to processors which minimizes the overall cost without exceeding any

processor’s memory capacity limit.

To define the problem, we use the following notation:

• M : a set of program modules. Let I, J = {1, ...,m} index the set of modules.

• N : a set of processors. Let H, K = {1, ..., n} index the set of processors.

• xik: the decision variable xik is set to 1 if module i is assigned to processor k, 0

otherwise.

• ri: the memory requirement of module i.

• qk: the limited memory of processor k.

• eik: the execution cost of module i on processor k.

• cij : the communication cost occurring when modules i and j are assigned to different

processors; cij = cji.

Distance to Objective
Boundary×-1 Value R1 R2 R3 R4 R5

1 -4.1231 652 -2 4 -2 -3 0
2 -2.8284 651 -2 4 0 -2 1
3 -2.8284 651 -2 -2 0 5 2
4 -5 650 -0 4 0 1 -5
5 -5 650 2 -5 1 0 1
6 -2.8284 650 -2 4 0 -2 1
7 -3.4641 650 -2 4 0 -2 -2
8 -3.6056 650 -3 -2 0 1 0
9 -4.2426 650 -3 1 1 -3 0

Table 12: GAP4-2 IoIs Ranked by objective value

41

The CMAP is formulated as follows:

min
xik

m−1∑
i=1

m∑
j=i+1

cik +
m∑
i=1

n∑
k=1

eikxik −
m−1∑
i=1

m∑
j=i+1

n∑
k=1

cijxikxjk (1.8)

subject to :
∑
k∈N

xik = 1 ∀ i ∈M, (1.9)

∑
i∈M

rixik ≤ qk ∀ k ∈ N, (1.10)

xik ∈ {0, 1} ∀i ∈M, ∀k ∈ N. (1.11)

The constraints, including the integrality condition on the variables, state that each program

module is assigned to exactly one processor, and that the memory capacity of each processor

is not exceeded.

Matrices E, C, and vectors R and Q with elements eik, cij , ri, and qk are the parameters

of the model. Matrix X with element xik is the decision variable.

A total of eight types of Elloumi’s CTAP instances are generated with four different con-

figurations. For each configuration, two classes of instances are generated: a class with a

complete communication cost matrix C (instance naming started with ‘c’), and a second

class where the non-zero elements of C is of 50%. The instance configurations are listed

in Table 13. Our twenty four selected instances cover six of the eight provided types (i.e.

type cA, A, cB, cC ,C, and cD). Since Elloumi’s web site provides optimum values only for

the 20 smaller cases (10 × 3), we obtain the optimum values of the other four larger cases

(20× 5 and 24× 8) from Hahn et al. [2008].

Configuration A Configuration B Configuration C Configuration D
execution cost [0,100] [0,10] [0,100] 0

communication cost [0,100] [0,100] [0,10] [0,100]

Table 13: GQAP: Elloumi Instance Configurations

42

1.9.1. GA Solution Representation

Following our GAP solution convention, solutions for CTAP are also represented as a string

of integers. The ith number in the solution string indicates the ID of a processor which is

assigned to perform the ith program module. To illustrate this presentation, consider the

scenario which has twenty-four program modules and eight processors. The processors have

identifier numbered from 1 to 8. There are twenty-four integers on the solution string, each

integer is in the range of [1..8]. A solution string may look like following:

7 4 3 2 6 1 3 6 8 4 2 1 6 4 8 7 7 1 4 2 3 6

1.9.2. The Local-Path Crossover Operator

During preliminary GQAP benchmark testing (and consistent with prior studies), we find

that path crossover (originally developed by Glover [1994]) works better than the regular

crossover and the order crossover in terms of finding solutions which achieve close to known

optimal objective values. However, the resulting solutions are not satisfactory, since the

found FoIs are high valued suboptimal for the minimization problems and the found IoIs

are still quite far away from the feasibility boundaries.

Unlike prior related studies which tried to improve GAs to solve GQAP, we take neither

the route of adding periodic local optimization (Ahuja et al. [2000]) nor the route adding

post-optimization Tabu search (Cordeau et al. [2006]). Our approach, however, is to keep

the two population GA as simple as possible and aiming on improving its effectiveness by

changing the genetic crossover operator since it is the most crucial part of a successful

genetic algorithm.

Inspired by Drezner’s ‘merging process’ (Drezner [2003]) and Glover’s ‘path relink’ (Glover

and Laguna [2000]), we developed a new crossover operator and call it the ‘local path

crossover’. The ‘local path crossover’ consists of three processing phases. These phases are

43

described in detail as follows:

Given that there are m tasks need to be processed by n processors, our solution represen-

tation is a chromosome of m integers x1x2 · · ·xm, xi ∈ [1 · · ·m]. The value of xi indicates

the processor’s ID which task i is assigned to.

• Identifying the Common Genes: Let the chromosomes of parent1, parent2, and their

children be represented by x1 x2 x3 · · ·xn, y1 y2 y3 · · · yn, and z1 z2 z3 · · · zn. Similar

to path relink, the children inherit any genes common to both parents; that is, if

xc = yc for some c ∈ {1 · · ·n}, then zc = xc = yc.

• Nudging: Starting from left to right, we examine the chromosomes corresponding to

parent1 and parent2. If the alleles at the current position being looked at are the same

, we move to the next position; otherwise, we try to make both parents be one more

gene alike to their partners respectively. In order to bring one parent to be one-gene

closer to the other, we take the following steps:

For k = 1 to m:

1. Assuming that the current position being looked at are position k, with the kth

task’s assignment value (xk).

2. Taking parent1 (x1 x2 x3 · · ·xn) as the example solution, parent2 as the base

solution. Duplicate the chromosome of the base solution (parent2), let’s call the

new copy temp. (temp = z1 z2 z3 · · · zn).

3. In temp, find the first position p such that zp = xk.

4. Bring zp to the kth position of temp by a sequence of either wrapped right

shifting or wrapped left shifting, skipping all the common genes identified in the

identification process—just leave them where they are. The wrapped shifting is

done with only the segment between position p and k. Such modification tries to

preserve base solution (parent2) pattern in temp as much as possible since our

44

goal is just to move base solution one-gene closer to example solution (parent1).

5. Record the resulting child2k.

6. Switch the roles of parent1 and parent2 and repeat steps 2-4; i.e., now taking

parent2 as the example solution and having parent1 as the base solution. Repeat

steps 2-4 with the goal of bring parent1 to be one-gene closer to parent2. Record

the resulted child as child1k.

At the end of the nudging process, we collect a set of 2m children—m child1ks and

m child2ks.

Figure 6 illustrates the nudging process with wrapped right shift step by step.

• Selection: we select two solutions from the pool which combines the 2m children with

the 2 parents base on the following rules:

– If every solution in the pool is feasible, pick feasible solutions with the best and

the worst objective values.

– If every solution in the pool is infeasible, pick infeasible solutions with the best

and the worst fitness values.

– If the pool contains both feasible and infeasible solutions, pick the best feasible

and the best infeasible solutions.

After the identification, nudging, and selection processes, two children chromosomes are

generated and added into the new generation. By identification, we keep the common

pattern which the two winners (of two tournament-2 selections) both possess. With nudging,

we build the promising common pattern one step further at a time in a greedy manner. With

the selection scheme, we keep both the best and the worst solutions in either feasible or

infeasible groups to maintain the diversity of the whole population. Also, by keeping the

best of both feasible and infeasible solutions, we lead the GA searching toward the boundary

45

Step0: Starting nudging process with k=1.

Step1: Identify the common genes.

parent 1: 5 2 3 4 1 7 6
parent 2: 2 1 3 4 6 5 7

Step2: Taking parent2 as the base solution,
make a copy of it as temp.

Step3: Find the first position in temp
where zp equals parent1(k = 1) → x1 = 5.
⇒ p=6.

parent 1: 5̂ 2 3 4 1 7 6
temp: 2 1 3 4 6 5̂ 7

Step4: We care about only the segment between
position 1 and 6 & we skip the common genes.
So, do a wrapped right shift without
touching p7 -- shift every zi one position
to the right, ignore common genes z3, z4 and
z7; since z6 is the last element, it wrapped
around and got squeezed to position 1.

Step5: Record it as child21.

child21 : 5̂ 2 3 4 1 6 7

Step6-8:Taking parent1 as the base solution, repeat
Step2-4. Now, the segment p2p1 is smaller.
Do wrapped left shift. Record it as child11.

temp: 5 2̈ 3 4 1 7 6
parent 2: 2̈ 1 3 4 6 5 7

By the end of k=1 nudging process, we have two
children child11 & child21 originated from parent1 &
parent2.

parent 1: 5̂ 2 3 4 1 7 6 child11 : 2̈ 5 3 4 1 7 6
parent 2: 2̈ 1 3 4 6 5 7 child21 : 5̂ 2 3 4 1 6 7

Figure 6: Wrapped Right Shifting Nudging Example (when k = 1)

46

which divides the feasible and infeasible areas.

Our experiment results show that the local path crossover is very effective. Without the

help of additional periodic local optimization nor the post-optimization searching, our two

population GA with the new crossover scheme finds the known optimum solutions for the

GQAP benchmark problems.

1.9.3. Elloumi c1003 Test Cases

For the twenty 10 × 3 ‘c’ type instances, the 2PopGA parameters are set as follows: pop-

ulation size: 50, generations: 100, trials: 10, crossover rate: 0.3, and mutation rate: 0.02.

Solution selection parameter settings are as follows: feasible/infeasible solution heap size:

100, feasible threshold: 0, infeasible threshold: 5. Our deliberation decision support system

(DDSS) solves all twenty problems to optimality. It also finds solutions of interest (SoIs)

for all twenty problems. A summary of the offered SoI counts is listed in Table 14.

On the infeasible solution of interest (IoI) side, we show the number of one-resource-away

solutions, and the number of infeasible solutions which are less than or equal to three-

resource-units away. Since the CMAP instances all have constraints with regard to the

same resource (memory), we list the percentage increment for every additional unit memory

required vs. original total capacity. On the feasible solution of interest (FoI) side, we list

the number of offered solutions which have objective values no worse than 5% and 10%

of the known optimal values. E.g., for instance c1003Aa, we found one infeasible solution

which requires only one extra unit of memory in order to become feasible (column 2). That

one unit of extra memory equals to 1.19% of the original total capacity (column 3). There

are other eight infeasible solutions which are within three unit of memory shortage (column

4). As for suboptimal feasible solutions, there are 15 solutions which achieve no worse

than 1.05 times of the known optimal value (column 5), and 48 other feasible solutions

achieve no worse than 1.10 times of the known optimal value (column 6). The objective

value improvement made with an additional unit of resource for the six instances with one-

47

resource-away IoIs is listed in Table 15. E.g., for instance c1003Dc, the DDSS offers 18

infeasible solution of interest which are just one unit resource away from being feasible.

The potential objective value improvement ranges from 2.03% to 12.03% with the eighteen

offered IoIs. To be more specific, by adding an extra unit of memory to processor 3, one

can achieve 12% of improvement on the objective value (see the black triangle indicator on

Table 15, first row for instance ‘c1003Dc’).

IoI Counts FoI Counts
1-R-away R increase % ≤ 3 -R-away 1.05*opt.val. 1.10*opt.val.

c1003Aa 1 1.19 8 15 48
c1003Ab 0 1.54 3 2 5
c1003Ac 0 1.27 0 6 42
c1003Ad 0 0.96 0 0 20
c1003Ae 0 0.93 1 0 2
c1003Ba 0 1.37 0 6 24
c1003Bb 0 1 4 7 14
c1003Bc 3 1.85 17 6 18
c1003Bd 0 1.19 2 3 15
c1003Be 0 1.04 3 1 1
c1003Ca 4 1.37 7 16 63
c1003Cb 1 1 1 10 72
c1003Cc 1 1.85 5 9 41
c1003Cd 0 1.19 0 4 20
c1003Ce 0 1.04 0 3 17
c1003Da 0 1.14 0 0 2
c1003Db 0 2 0 4 8
c1003Dc 18 1.14 41 7 34
c1003Dd 0 1.47 1 3 5
c1003De 0 0.88 7 4 22

Table 14: Elloumi c1003 Problem Set Solution of Interest (SoI) Findings

1.9.4. Larger Elloumi Test Cases

Four other larger size Elloumi CMAP test problems with known optimum values were all

solved to optimality. Among the four cases, we display the findings of cases c2005De and

2408Aa since they are considered ‘very hard to solve’ (with solution space 9.5 × 1013 and

4.7× 1021 respectively). See appendix Table 42 for problem c2005De configurations, Table

43 and Table 44 for problem 2408Aa configurations.

48

Instance Opt.Val. IoI Obj.Val. Improvement R1 R2 R3
c1003Aa 1616 1537 4.89 -1 0 21

c1003Bc 1154
1087 5.81 -1 5 1
1121 2.86 -1 6 0
1133 1.82 -1 6 0

c1003Ca 455

441 3.08 1 12 -1
445 2.20 4 9 -1
451 0.88 2 11 -1
454 0.22 10 3 -1

c1003Cb 467 457 2.14 -1 19 24
c1003Cc 475 468 1.47 5 -1 1

c1003Dc

I 1082 12.03 0 26 -1

1230

1096 10.89 10 16 -1
1096 10.89 18 8 -1
1099 10.65 10 16 -1
1099 10.65 18 8 -1
1103 10.32 0 26 -1
1105 10.16 -1 26 0
1106 10.08 18 8 -1
1106 10.08 10 16 -1
1106 10.08 20 6 -1
1106 10.08 8 18 -1
1144 6.99 10 16 -1
1170 4.88 20 6 -1
1170 4.88 8 18 -1
1200 2.44 0 26 -1
1204 2.11 0 26 -1
1204 2.11 -1 26 0
1205 2.03 0 26 -1

Table 15: Elloumi c1003 Problem Set IoI Information

• c2005De (optimal value 5435): for instance c2005De, GA parameters are set as follows:

population size: 200, generation: 1000, trial: 10, crossover rate: 0.3, and mutation

rate: 0.035. Solution selection parameter settings are unchanged: feasible/infeasible

solution heap size: 100, feasible threshold: 0, infeasible threshold: 5.

Our deliberation support system finds all three optimal solutions and offers many

other solutions of interest. In Table 7 and Table 8, we display the top SoIs according

to the achieved objective value in their resource usage mode. On the IoI side, we see

that, with solution #1, one can reduce 72 (1.34%) of the total cost by acquiring one

extra unit of memory for processor 1 and processor 5 respectively. By obtaining two

additional unit of memory for processor 5 (solution #2), one can improve the total

49

cost by 102 points (from 5435 down to 5333, which is a 1.88% improvement). If extra

3 units of memory for processor 5 is available (solution #9), then one can further

bring down the total cost to 5258 (3.26% improvement).

• 2408Aa (optimal value 5643): for instance 2408Aa, GA parameters are set as follows:

population size: 200, generation: 6000, trial: 10, crossover rate: 0.3, and mutation

rate: 0.04. Solution selection parameter settings are unchanged: feasible/infeasible

solution heap size: 100, feasible threshold: 0, infeasible threshold: 5. Again, on top

of finding the optimal solution, the DDSS offers plenty of SOIs.

Feasible solution alternatives: Table 9 and Table 10 list ten alternative feasible so-

lutions which achieve top objective values ranging within 0.05% - 0.27% suboptimal

(obj.val. 5646-5658). Solution #2 takes a objective value deduction of 3 but it holds

11 units of slacks for resource 6. Solution #4 takes an objective value deduction of

5 but holds 7 units of slacks for resource 5. Solution #7 has an even lower objec-

tive value of 5657 but holds 8 units of slacks for resource 1. These solutions may be

desirable in the cases when difference resource leftovers can be used in other more

profitable ways.

Infeasible solution alternatives: GAs offer many infeasible alternative solutions. In

Table 9 and Table 10, we list part of the solution collection for demonstration. In

the case of potential budget increase for one extra unit of memory, there are eighteen

offered IOIs which achieve a reduction between 0.82% and 2.23% on the total cost (IoI

#1-18, objective value 5597-5517). By adding one extra unit of memory for processor

4, solution #1 can reduce the total cost by more than 2%. By offering the same extra

unit of memory for processor 4, solution #13 not only bring down the total by more

than 1% but can also offer a high amount of memory slacks on processor 6. If we can

add two extra units of memory for processor 4, then selecting solution #21can improve

the total cost by more than 2.6% is achievable. By adding 2, 1, and 3 extra units of

memory for processor 2, 3, and 4 respectively, solution #32 can reach objective value

50

5323, which is a 5.67% improvement over the optimal solution of 5643.

Figure 7: Elloumi Test Problem 2005De Solutions of Interest (First Half Table)

51

Figure 8: Elloumi Test Problem 2005De Solutions of Interest (Second Half Table)

1.9.5. A Medium Size Crossdock Assignment Problem

One of the practical areas where a DDSS can successfully be applied is Supply Chain Man-

agement, more specifically in the product distribution process. Traditionally warehouses,

in carefully selected geographical hubs, are used to distribute products shipments from the

production facilities to end users. In the late 1980s, Walmart and P&G came up with an

52

Figure 9: Elloumi Test Problem 2408Aa Solutions of Interest (First Half Table)

innovative idea to adapt cross-docking operations (which were first pioneered in the US

trucking industry in the 1930s) in order to streamline the supply chain from point of origin

to point of sale. Cross-docking is a logistics technique and practice of unloading product

shipments from incoming trucks or rail cars and loading them directly into outbound trucks

or rail cars with little or no storage in between. Shipments typically spend less than twenty-

four hours in a cross-dock, sometimes less than an hour (John J. Bartholdi and Gue [2004]).

Retail cross-docking reduces operational costs by eliminating the need of high-maintenance

53

Figure 10: Elloumi Test Problem 2408Aa Solutions of Interest (Second Half Table)

cost warehouses and replacing them by product shipment exchange points, or Cross-Docking

hubs.

This section demonstrates how the DDSS is applied to a real-life medium size cross-docking

case. The following sections describe the given case, the application, and the findings in

details.

54

• There are thirty trucks, T1 to T15 are inbound and T16 to T30 are outbound.

• There are twelve doors in the crossdock. Six on each side. D1 to D6 on one side for

incoming truck and D7 to D12 on the other side for outgoing trucks.

• The flows from incoming trucks to outgoing trucks are specified in matrix F .

• The distance between each pair of inbound and outbound doors are known, D.

• For each truck, the volume of goods contained, either to be unloaded at an inbound

door or loaded at an outbound door, is specified as vector V .

• For every door, the total volume of goods that can be unloaded or loaded during a

shift is given as vector Q.

• Each truck must be assigned to one door.

• No installation fee for this crossdock.

The goal is to find the minimum-cost assignment of each truck to exactly one door, subject

to the door capacity.

To define the problem, we use the following notation:

• M : a set of trucks. Let I, J = {1, ...,m} index the set of trucks.

• N : a set of doors. Let H, K = {1, ..., n} index the set of doors.

• xik: the decision variables xik are set to 1 if truck i is assigned to door k, 0 otherwise.

• vi: the volume to be loaded/unloaded of truck i.

• qk: the capacity of door k for handling loading/unloading during a shift.

• dkh: the distance between door k and h, dkh = dhk.

• fij : the flow from incoming truck i to outgoing truck j.

55

The Crossdock problem is formulated as follows:

min
xik

m
2∑
i=1

m∑
j= m

2
+1

n
2∑

k=1

n∑
h= n

2
+1

fijdkhxikxjh (1.12)

subject to :
∑
k∈N

xik = 1 ∀ i ∈M, (1.13)

∑
i∈M

vixik ≤ qk ∀ k ∈ N, (1.14)

xik ∈ {0, 1} ∀i ∈ N, ∀k ∈M. (1.15)

The constraints, including the integrality condition on the variables, state that each truck

is assigned to exactly one door, and that the volume limit of each door is not exceeded.

Matrices F and D and vector V and Q with elements fij , dkh, vi, and qk are the parameters

of the model. Matrix X with element xik is the decision variable.

Solution Representation, GA Operators for Crossdock Problem, and Experi-

ment Setups

Our solution representation for the crossdock problem is similar to that of the CTAP ex-

cept that one needs to distinguish the inbound/outbound trucks/doors since the crossdock

problem has the constraint which allows only inbound trucks to be assigned to inbound

doors (and only outbound trucks assigned to outbound doors). Given that there are a set

of m trucks and a set of n doors, let x = x1x2 · · ·xm−1xm be a solution for the crossdock

problem. Let I = { 1, · · · , m′ } index the inbound trucks and I = { m′+1, · · · , m} index

the outbound trucks. Let K = { 1, · · · , n′ } index the inbound doors and K = { n′+1,

· · · , n} index the outbound doors. For our GA to comply with the inbound/outbound

assignment requirements, we modify three of its operators:

56

• Random Initialization: for a solution string, the first m′ entries are randomly assigned

with numbers ranging between [1..n′] while the rest m - m′ entries are randomly

assigned with numbers ranging between [n′ + 1 .. n].

• Mutation Operator: for a solution string x, for any entry xi ∈ x to mutate, the

changed value ranges between [1..n′] if i ≤ m′; or range between [n′ + 1 .. n] if

i ≥ m′ + 1.

• Crossover Operator: for a solution string x, should a crossover to happen at the ith

position of the string, a local-path crossover will take place for only the substring

consisted with x’s first m′ entries if i ≤ m′; or the local-path crossover will take place

for only the substring consisted with x’s m′ + 1th to mth entries otherwise.

The constraint of assigning inbound (outbound) truck only to inbound (outbound) door

is enforced with the above operator modifications. The solution representation and its

correspondingly tailored GA operators reduces the size of solution space to 630(≈ 2.21 ×

1023).

In order to speed up the search process, we seed the initialization population with the

top three feasible solutions found during our parameter tuning process. For the given

medium size crossdock problem, the GA parameter setting is as follows: population size:300,

generations:3000, trials:10, crossover:0.3, mutation:0.04, feasible/infeasible heap size:100,

feasible threshold:0, infeasible threshold:20 (<0.5% of total volume limit).

Experiment Results

The DDSS solves this problem to the known optimal 13567. The found optimal solution

utilizes only ten of the twelve doors. Table 17 shows that the optimal solution doesn’t need

inbound door #6 and outbound door #12. Seven other suboptimal solutions achieve less

than 0.001% of total cost increase while offering different spared loading/unloading volume

arrangement across different doors.

57

Resource Usage
Inbound Door Outbound Door

SID Fitness Obj.Val. subOpt% D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
O 13567 13567 0 6 52 14 44 16 340 80 14 6 29 3 340
1 13568 13568 -0.0074 6 52 14 44 16 340 80 14 6 18 14 340
2 13571 13571 -0.0295 93 44 14 56 15 250 180 29 2 3 3 255
3 13571 13571 -0.0295 250 15 56 14 44 93 255 3 3 2 29 180
4 13574 13574 -0.0516 37 21 14 44 16 340 80 14 6 29 3 340
5 13575 13575 -0.0590 37 21 14 44 16 340 80 14 6 18 14 340
6 13580 13580 -0.0958 93 44 14 56 96 169 180 29 2 3 3 255

Table 16: GQAP: Near-Optimal Feasible Solutions Information

Inbound Trucks

SID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
O 3 1 1 5 4 2 1 5 2 2 4 3 1 5 5
1 3 1 1 5 4 2 1 5 2 2 4 3 1 5 5
2 3 6 5 1 2 4 5 1 4 5 2 3 4 5 1
3 4 1 2 6 5 3 2 6 3 2 5 4 3 2 6
4 3 1 1 5 4 2 2 5 2 1 4 3 1 5 5
5 3 1 1 5 4 2 2 5 2 1 4 3 1 5 5
6 3 6 6 1 2 4 5 1 4 5 2 3 4 5 1

Outbound Trucks

SID T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30
O 9 10 10 9 8 7 11 7 7 9 9 10 11 11 8
1 9 11 11 9 8 7 11 7 7 9 9 10 10 11 8
2 9 7 8 9 11 12 7 10 11 8 10 9 8 11 10
3 10 12 11 10 8 7 12 9 8 11 9 10 11 8 9
4 9 10 10 9 8 7 11 7 7 9 9 10 11 11 8
5 9 11 11 9 8 7 11 7 7 9 9 10 10 11 8
6 9 7 8 9 11 12 7 10 11 8 10 9 8 11 10

Table 17: GQAP: Near/Optimal Feasible Solutions Truck Assignment

58

Seven infeasible solutions of interest are listed in Table 19. One can reduce the total cost by

8 points if additional 12 units of unloading volume (a 3.5% volume increase of door #2, a

0.3% of total volume of this crossdock) is available for inbound door #2. It is also achievable

to further reduce the total cost by 26 points if 7 and 12 extra unloading volumes can be

handled for inbound door # 1 and #2 respectively (solution#3) . Solution #7 achieves 29

points deduction on the total cost by increasing 25 loading volume at door #2 (a 0.61%

increase on total volume).

59

Resource Usage
Inbound Door Outbound Door

SID Fitness Obj.Val. OV Imp% D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
1 12 13559 0.0590 70 -12 14 44 16 340 80 14 6 29 3 340
2 12 13560 0.0516 70 -12 14 44 16 340 80 14 6 18 14 340
3 13.892 13541 0.1916 -7 -12 14 44 93 340 18 14 6 29 65 340
4 13.892 13542 0.1843 -7 -12 14 44 93 340 18 14 6 18 76 340
5 13.892 13555 0.0885 -7 -12 14 44 107 326 18 14 6 29 65 340
6 13.892 13556 0.0811 -7 -12 14 30 107 340 18 14 6 18 76 340
7 25 13538 0.2138 6 -25 14 44 93 340 18 14 6 29 65 340

Table 18: GQAP: Near-Optimal Infeasible Solutions Information

Inbound Trucks
SID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

1 3 1 1 5 4 2 1 5 2 2 4 3 2 5 5
2 3 1 1 5 4 2 1 5 2 2 4 3 2 5 5
3 3 1 1 5 4 2 1 5 2 2 4 3 2 1 5
4 3 1 1 5 4 2 1 5 2 2 4 3 2 1 5
5 3 1 1 6 4 2 1 5 2 2 4 3 2 1 5
6 3 1 1 4 4 2 1 5 2 2 4 3 2 1 5
7 3 1 1 5 4 2 1 5 2 2 4 3 1 2 5

Outbound Trucks
SID T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30

1 9 10 10 9 8 7 11 7 7 9 9 10 11 11 8
2 9 11 11 9 8 7 11 7 7 9 9 10 10 11 8
3 9 10 10 9 8 7 11 7 7 9 9 10 11 7 8
4 9 11 11 9 8 7 11 7 7 9 9 10 10 7 8
5 9 10 10 9 8 7 11 7 7 9 9 10 11 7 8
6 9 11 11 9 8 7 11 7 7 9 9 10 10 7 8
7 9 10 10 9 8 7 11 7 7 9 9 10 11 7 8

Table 19: GQAP: Near Optimal Infeasible Solutions Truck Assignment

60

1.10. Summary and Discussion

To summarize this chapter:

• With regard to the post-solution deliberation / analysis, we introduce the Solutions

of Interest (SoI) problem, i.e., that of finding non-optimal solutions of interest for

solving constrained optimization problems. We further identify the two subproblems,

the problem of finding feasible solutions of interest (FoIs) and the problem of finding

infeasible solutions of interest (IoIs), and illustrate the importance of the SoI problem

for the study of constrained optimization by metaheuristics, including particularly

evolutionary computations.

• For finding the SoIs, we choose genetic algorithms (GA) as our searching method due

to their population-based ameliorating characteristic. In the preliminary study, we

compare two common GA approaches: the penalty GA and the multi-population GA.

We find that Two Population GA (FI-2Pop GA) performs better on sampling various

SoIs than the Penalty GA does. (Our experience with penalty GAs suggests that they

are not very good at finding IoIs, which is hardly surprising.)

• We propose the prioritized solution collecting procedure and identify four types of

non-optimal solutions of interest (SoIs):

– For the feasible solutions of interest (FoIs), we have the following two solution

types:

∗ Near-Optimal Solutions - the FoI(Obj)s: feasible solutions with objective

values close to the known optimal value.

∗ High-slack Solutions - the FoI(Slacks|MinObj)s: feasible solutions with

high amount of slack sum on the constrained resources, given that their

objective values are no worse than the specified threshold.

– For the infeasible solutions of interest (IoIs), we have the following two solution

61

types:

∗ Near-Feasible Solution - the IoI(SumV)s: infeasible solutions that are very

close to the feasibility boundary.

∗ High-Objective-Value Solution - the IoI(Obj| MaxDist)s: infeasible solu-

tions that promise high objective values, provided that they are not too far

away (within a specified distance) from the feasibility boundary.

• We demonstrate the usefulness of the SoIs (FoIs and IoIs) for post-solution deliberation

with a prototypical problem, the Beasley OR-Library GAP4-2. Based on extensive test

runs on different problems, we believe that these reported results are representative.

• We demonstrate the effectiveness of the proposed approach on finding SoIs with not

only GAPs but also GQAPs.

• We observe that the two population GA display a gradual, noisy leveling off in finding

new SoIs throughout the multiple trials. As expected, the required computational

effort for getting the SoIs is typically larger than if we simply look for the optimal

solution. Our approach can serve as a benchmark for other methods.

Clearly, very much additional research is called for on the SoI problem. Our aim in this

chapter is to motivate and frame such prospective research. For future research, besides ex-

ploring other kinds of models and gaining practical experience, we see a number of especially

important agenda items:

1. Based on our experience, the FI-2Pop GA is a credible approach to finding SoIs. Other

approaches that work as well or better must be sought and investigated.

2. There is no reason to limit the SoIs searching process with a single method. Multiple

heuristics might be employed. Hyperheuristics (Burke et al. [2003]), for example, offer

a framework for selecting, combining, generating, or adapting multiple heuristics (or

components of such heuristics) to obtain the Sols.

62

3. Searches that focus on regions of interest may provide the decision maker with a

more complete inventory of available options. Interpolation, neighborhood search,

simulated annealing, etc., among the initial SoIs (found by whatever methods) may

well be effective to accomplish such a task.

4. Other SoIs collecting procedures should be explored. Our current proposal cate-

gorizes the SoIs into four types and searches different type of solutions separately.

Perhaps different SoI categorization or some kind of combined, weighted search would

be preferable, i.e., to integrate the degree of infeasibility into the objective function

(which can be implemented with Guided Local Search (Voudouris and Tsang [2003]),

in which different features of infeasibility are treated as penalty terms that augment

the objective function).

5. In our searches, we used two heaps each for the feasibles and the infeasibles, one

heap for each “objective” (fitness value, slack value). Perhaps a combined, weighted

search would suffice or be preferable, i.e., to construct a heap that integrates the

degree of infeasibility into the objective function. One way to implement this search

is via Guided Local Search (Voudouris and Tsang [2003]), in which different features

of infeasibility are treated as penalty terms that augment the objective function.

63

CHAPTER 2 : Considering Additional Objectives with the Metaheuristic Approach

2.1. Introduction

In this chapter, we propose and explore the heuristic approach for multi-objective opti-

mization, in the context of two variants of two-sided matching problems—Stable Marriage

Problems and Couples Problems.

Widely encountered in practice, the two-sided matching problem involves two disjoint sets

of agents who have preferences over possible matchings between members of opposite sets;

and the objective is to find a ‘good’ match. The Stable Marriage Problem is prototypical

of two-sided matching problems. In the standard form, variants of the well-known Gale-

Shapley deferred acceptance algorithm (GS/DAA) are used to find stable matches. Using

an evolutionary heuristic, the Stable Marriage Problem is investigated as a multi-objective

problem, considering social welfare, equity (or fairness), and regret in addition to stability

as important aspects of any proposed match. This study finds that the evolutionary heuris-

tic is a reliable approach to discover matches that are Pareto superior to those found by

the GS/DAA procedure. Ramifications of this finding are briefly explored, including the

question of whether stability in a matching is often strictly required.

Structure of the chapter. Section 2.2 provides an overview of the stable marriage match-

ing problem, its variants, and the widely known algorithms which have been used for many

years in practice for finding a stable matching. Section 2.3 presents the proposed evolution-

ary computation approach and study its performance with the stable marriage problem.

Section 2.4 describes a generalized version of Stable Marriage Problems, the Couples Prob-

lems, and examines the applicability of the proposed approach in settings for the more

generalized matching problem. Finally, Section 2.5 contains concluding remarks.

64

2.2. Motivation and Related Work

In the usual case, markets are distributed, with buyers and sellers mostly on their own to

find each other and to negotiate terms of trade, however, distributed markets may fail in

one way or another. A common response is to create a centralized market organized by

a third party whose responsibility is to set the conditions of trade, for example the price,

based on the bids and asks from the buyers and sellers. Many electricity markets are orga-

nized in this way. For example, the deregulated electricity producers offer supply schedules

to a third party, often called the independent systems operator or ISO, who aggregates

the supply schedules, observes the market demand, and sets the price of electricity (for a

given period of time). Another common example is clearing houses between international

telecommunication operators for roaming tariffs and settlements.

The market concept is more general than just settling financial transactions or exchanging

goods between buyer and seller. The admission processes for Boston public schools and New

York City high schools and the hospital internship programs are also examples of centralized

clearinghouse. No matter whether it is about the electricity/telecommunication markets,

school admissions, or physician appointments, these cases are all examples of the two-sided

matching problem, the problem which is the subject of this chapter.

In a two-sided matching problem (Roth and Sotomayor [1990]), we are given two sets (sides,

X and Y) of individuals and asked to form pairs consisting of one member from each set.

Common examples dealt with in practice include pairing students with schools, men with

women, workers with employers and so on. Different matching problems come with different

requirements on the agent sets (X and Y) and the matching µ (or M). For example, for

a simple marriage problem, the number of members in both sets are required to be the

same and each member of X must be paired with exactly one member of Y . On the other

hand, for a college admissions problem, one set of the agents, X (the student), is much

larger than the other, Y (the school), and each member of X can be paired with at most

one member of Y (a student attends only one school) while a member of Y can be paired

65

with multiple members of X (a school accepts a certain quota of students). Roth [2008]

notes that the two-sided matching models are often natural for representing markets, in

which agents need to be paired up. As many of the decentralized or free markets experience

failure and unsatisfactory performance such as unraveling (e.g., offers to students are made

earlier and earlier), congestion (e.g., offerers don’t have enough time to make new offers

after prior offers are rejected), and participants’ disruptive strategic behavior, a growing

number of those markets are replaced by the centralized ones, in which a coordinating

agency undertakes periodic matching between two sides of a specific market. Some examples

include NRMP (National Resident Matching Program, NRMP) of US, CARMS (Canadian

Resident Matching Scheme, CaRMS) of Canada, SFAS (Scottish Foundation Allocation

Scheme1,Irving) of Scotland, and JRMP (Japan Resident Matching Program, JRMP) of

Japan (see Roth [2008], Iwama and Miyazaki [2008]). In these markets, typically, the

individual doctors submit their rankings of hospitals, the hospitals submit their rankings of

doctors, and a third party organization undertakes matching doctors with hospitals.

A presumption in matching problems (as distinguished from assignment problems, which

are treated in operations research and employ non-strategic decision making) is that the

participating agents on both sides have preferences and interests of their own and all agents

have the capacities to act based on their own interests. Consequently, matches are typically

evaluated in terms of stability; a match is said to be stable if there is no unmatched pair of

individuals who would prefer to be matched to each other than to stay with their current

partners. In other words, in a stable match, for any specific x which is not paired with a

specific y, either such x prefers its own partner to such y or such y prefers its own partner

to such x. Requiring matches to be stable in the first place will prevent reformation among

pairs and its attendant costs.

While stability is desired, there are other aspects of a matching which should also be empha-

sized. Kojima [2012] establishes the impossibilities for affirmative action under any stable
1Before 2006, the allocation was to Pre-Registration House Officer posts, or PRHOs, the scheme was

known as SPA – Scottish PRHO Allocations.

66

matching mechanism, such as those used in the admission processes for Boston and New

York City high schools. Nakamura et al. [1995] use a genetic algorithm to find gender-

unbiased solutions for the stable marriage problem. Two-sided matching problems, and the

stable marriage problem in particular, have received exploratory investigation as dual ob-

jective problems in Fuku et al. [2006], Vien and Chung [2006], Axtell and Kimbrough [2008].

Dasgupta et al. [2008], Deb [2001], Coello Coello et al. [2007] offer useful findings pertaining

to multi-objective evolutionary algorithms generally. Aldershof and Carducci [1999] report

optimistically on application of a genetic algorithm to two-sided matching problems, but

the problems they examine are smaller than the 20×20 problems discussed here, so they

do not address scaling issues. Vien et al. [2007] propose an innovative use of ant colony

optimization for the stable marriage problem. These prior studies lead us to believe that

population-based metaheuristics are very promising for two-sided matching problems seen

as multi-objective problems.

The point of departure for this chapter is the observation that two-sided matches can be

evaluated, and for many applications should be evaluated, according to multiple objectives,

particularly stability, equity, social welfare, etc. Given that one would consider designing or

even centralizing a matching market (as is widely done in practice), the question arises of

how best to provide the market operators and users with match options that map the Pareto

frontier (as well as possible) in at least these three objectives. In what follows we explore

an evolutionary computation approach to this goal. We demonstrate our approaches with

two different two-sided matching problems, the stable marriage problem and the couples

problem. The results are then compared with what can be produced by the standard

approach, the deferred acceptance algorithm of Gale and Shapley [1962]. Before discussing

the experiment results, some background information is first presented.

2.2.1. Matching – Simple (Stable) Marriages Problem

In a two-sided matching problem, as discussed earlier but here with more detail, we are

given two finite and disjoint sets (sides) of agents, X and Y , each of whom has complete

67

and transitive preferences over the individuals in the other set. The objective is to find a

matching, µ, consisting of a decision, “in or out?”, for each pair (x, y), x ∈ X, y ∈ Y . It is

helpful to view a matching, µ, as represented by a matrix, M , of size |X| ×|Y |, based upon

arbitrary orderings of X and Y . The element mij of M equals 1, if xi ∈ X is matched with

yj ∈ Y ; otherwise the element is 0. Thus the element mij of M represents the pair (xi, yj).

Matchings pair up agents from X and Y . The following is the requirements of the simple

marriage problem, a prototypical two-sided matching problem (Gusfield and Irving [1989],

McVitie and Wilson [1971a,b], Iwama and Miyazaki [2008]).

About the agents: The two finite and disjoint sets of agents are X = {x1, x2, · · · , xn} of

women, and Y = {y1, y2, · · · , yn} of men. The number of agents in both sets is required to

be the same, i.e. |X| = |Y | = n.

About the preferences: Each woman has preferences over the men, and each man has

preferences over the women. The preferences of each woman (man) is presented by an

ordered list, p(x) (p(y)), on the set Y (X). That is, a woman x’s (man y’s)preferences

could be of the form p(x) = y1, y2, · · · , yn (p(y) = x1, x2, · · · , xn), indicating that her (his)

first choice is to be married to man y1 (woman x1), her (his) second choice is to be married

to man y2 (woman x2), etc. We write x �y x′ to mean y prefers x to x′, and y �x y′ to mean

x prefers y to y′. The preferences are transitive, strict, and complete. By saying transitive,

we mean that if y1 �x y2 and y2 �x y3, then y1 �x y3. By saying strict, we mean that an

agent is not indifferent between any two acceptable alternatives. By saying complete, we

mean that every man y ∈ Y is an acceptable alternative for every woman x ∈ X, and vice

versa.

About the matching: Every participating agent prefers marrying someone from the

opposite gender set to remaining single. Therefore, for any valid matching, each woman

(or member of X) must be paired (or matched) with exactly one man (or member of

Y), and vice versa. In terms of the matching matrix M , this means that there is one

‘1’ in each row and one ‘1’ in each column. M is thus an n × n permutation matrix

and the number of possible valid matchings is n!. Let P be the set of preference lists, i.e.,

68

P = {p(x1), · · · , p(xn), p(y1), · · · , p(yn)} (or Pi,i∈X∪Y), one list for each participating agent.

We can now refer to a simple marriage market M as a tuple (X,Y, Pi,i∈X∪Y).

2.2.2. Deferred Acceptance Algorithm

The deferred acceptance algorithm (DAA) was first published in a paper by Gale and

Shapley [1962], although the procedure was discovered and used independently before. As

described by Roth [2008], ‘the algorithm works by having agents on one side of the market

make proposals (offers or applications) to agents on the other, in order of preference. Those

who receive more proposals than they can accept reject their least preferred, but do not

immediately accept those they do not reject; instead, they hold them without commitment,

and acceptances are deferred until the end of the algorithm. In the meantime, agents who

have been rejected make new proposals, which lead to new rejections (including proposals

that were held at an earlier period but are less preferred than a new proposal), until there

are no rejected agents who wish to make further proposals. At this point all proposals that

are being held are finally accepted, to produce a matching’. The pseudocode of DAA is

presented in Figure 11.

DAA has some key properties worth highlighting. First, as proved by Gale and Shapley,

under the special assumptions they made (e.g., preference ranking by agents, etc., which

for the purpose of discussion we retain), the stable marriage problem and the admissions

problem (see above) have stable matches and the DAA will find one and will find one quickly

(O(n2)). Second, the DAA is asymmetric. One side proposes, the other disposes. Focusing

now on the marriage problem, if the men propose, they obtain a stable match that is male

optimal in the sense that no man in this match strictly prefers (does better in) any other

stable match. Conversely, the match is female pessimal in the sense that no woman is worse

off in any other stable match. Vise versa, if the women propose, it produces the stable

matching which is the best for women and the worst for men (Gale and Shapley [1962],

Gusfield and Irving [1989], Knuth [1997]).

69

1. Assume: |X| = |Y | = n.

2. Each x ∈ X ranks each y ∈ Y , and each y ∈ Y ranks each x ∈ X.

3. Matched ←− ∅, Unmatched ←− ∅.

4. For each y, string.y ←− [].

5. Each x ∈ X proposes to its most-preferred y, appending x to string.y.

6. Each y with length(string.y) >1 (i.e., with more than one proposal), retains in the
string its most preferred member of the string, and removes the rest, adding them to
Unmatched.

7. Do while Unmatched 6= 0:

(a) Each x ∈ Unmatched proposes to its most-preferred y, among the Y s that have
not already rejected x, appending x to string.y.

(b) Unmatched←− ∅.

(c) Each y with length(string.y) >1 (i.e., with more than one proposeal), retains
in the string its own most preferred member of the string, and removes the rest,
adding them to Unmatched.

8. For each x remaining on some string.y, (x, y) is added to Matched.

9. Stop. Each x is matched to a distinct y, who has x as the sole member of its string.
This is recorded in Matched.

Figure 11: Pseudocode for the deferred acceptance algorithm (DAA) for the simple marriage
matching problem, Xs proposing to Y s.

Although here we consider it only in the context of the marriage problem, this asymmetry

is a general characteristic of the DAA in its various forms. It raises the important question

of whether better matches exist and can be found. To this end, we want to look at stable

matches that may be preferable to the matches found by the DAA. As stated above, we

want to examine both social welfare and equity. Further, it is natural to raise the question

of multiple objectives in the context of nearly-stable matches, by which we mean matches

with relatively few unstable pairs. Decision makers, including agents participating in a

centralized market, may quite reasonably want to exchange some stability for improvements

in, say, social welfare or equity. We note that in many cases it may be practically difficult, or

made practically difficult by the operator of the centralized market, for members of matched

couples to undertake swaps, regardless of their preferences.

70

For any given problem, these issues could be neatly resolved by finding all of the stable

solutions and comparing them with respect to equity, social welfare, and whatever other

measures of performance are relevant. Predictably, however, this is an intractable problem.

Irving and Leather [1986] have shown that the maximum number of stable matches for the

simple marriage matching problem grows exponentially in n (see also Gusfield and Irving

[1989], Halldorsson et al. [2007]). Further, they provide a lower bound on the maximum by

problem size. Remarkably, the lower bound is 104,310,534,400 for a problem as small as n

= 32 (Irving and Leather [1986]). Further, they establish that the problem of determining

the number of stable matches is #P-complete. These are, of course, extreme-case results.

But very little is known about average cases. So we are left to rely upon heuristics, and we

shall for the remainder of this chapter.

2.2.3. Matching With Couples – Hospital Residents Problem with Couples

There are other variations of two-sided matching problems common in everyday life (see

Irving [1994], Iwama et al. [1999], Fleiner et al. [2007], Cechlarova and Fleiner [2005], Irving

and Manlove [2002], Cechlarova and Ferkova [2004], Irving and Scot [2007], Echenique and

Yenmez [2007]). A large and growing number of centralized markets apply the two-sided

matching model, e.g., Roth [2008] lists over 40 labor markets, mostly in medical fields. Let’s

take the US National Resident Matching program (NRMP) as an example. As the twentieth-

century American labor market transformed, there was increased labor force participation

of married women leading to a growing number of two-career households. When a couple

looked for two jobs, they were faced the coordination problem not only with each other but

also with their prospective employers. In the 1950s, in response to persistent failures of

decentralized means to organize the market in a timely and orderly way, the NRMP was

established as a centralized labor market for medical school graduates in the US seeking their

first employment (Roth [1990]). The original NRMP worked well for individual students

but not for couples. Couples who desired residency positions geographically near to each

other were forced to not use the centralized service and be matched under a special couples

71

algorithm which may not have reflected the couple’s true preferences. As the participation

rates declined, NRMP modified its algorithm in 1983 to allow couples to submit preferences

over pairs of residency positions (hence the Hospitals Residents Problem with couples is

also known as ‘the Couples Problem’). Unfortunately, many of the appealing mathematical

results for the stable matching problem are not extended to the couples problem. Aldershof

and Carducci [1996] summarizes the differences between the marriage problem and the

couples problem as follows:

• Gale and Shapley’s algorithm shows that there is always a stable matching for any

preference list of the marriage problem. But there are instances of the couples problem

that do not have a stable matching (Roth [1984]).

• For marriage problem, there is always a stable matching M that is hospital (student)

optimal in the sense that every hospital (student) is at least as well off under M as

it is under any other stable matching (Gale and Shapley [1962]). On the other hand,

even if an instance of the couples problem has a stable matching, it may not have a

hospital optimal or student optimal stable matching.

• Consider an instance of the couples problem in which the preference lists are not

complete. There may be stable matchings which leave different numbers of positions

unfilled.

Aldershof and Carducci illustrate the second and third points with a couples problem in-

stance in which there are two couples and four residency positions. It shows that the

improvement of usefulness of the NRMP to couples comes at the cost of some uncertainty

in the results; particularly the possibility of different stable matchings yielding different sets

of positions filled and of students assigned. Klaus et al. [2007] further report two problems

that raise concern for the modified NRMP algorithm (which accommodates the couples

problem):

• the new NRMP algorithm may not find an existing stable matching.

72

• the new NRMP algorithm is not strategy-proof, it may be manipulated by couples

acting as singles.

After the crisis in confidence in 1990s, related organizations advocated reconsideration of

the algorithm (also see Williams [1995], Peranson and Randlett [1995]) and the Board of

Directors of NRMP commissioned the design of a new algorithm. The Roth-Peranson al-

gorithm was introduced in 1998 to accommodate couples and other complications. The

Roth-Peranson algorithm conceptual design is detailed in Roth and Peranson [1999]. When

going beyond the simple matching problem, the optimal stable matches do not exist in gen-

eral. The most concerned issues are related to the order in which applicants and programs

are processed. Experiments are conducted and it is shown that:

• The sequencing differences do not cause substantial or predictable changes in the

match result (e.g., applicants or programs selected first do not necessarily do better

than their counterparts selected later).

• The sequence of processing does affect the likelihood that an algorithm will produce

a stable matching (e.g., introduce couple last reduces the potential difficulty to find a

stable matching without changing the prospects of couples or single applicants in the

match).

In a later section, we will show how heuristics can help on searching for stable matches with

an example couples problem.

2.2.4. Optimization Criteria for Matching

As mentioned previously, we note that in many cases it may be practically difficult, or

made practically difficult by the operator of the centralized market, for members of matched

couples to undertake swaps, regardless of their preferences. The difficulty of taking on a

swap leads us to question the heightened importance of solution stability in the standard

two-sided matching problem. What are the other objectives the decision makers should care

73

about? In the case of ‘nearly-stable’ matching, by which we mean matches with relatively

few unstable pairs, what are the other qualities of a solution that the decision maker may

be willing to exchange for at the cost of some stability? Here, on top of solution stability,

we will consider three other commonly addressed criteria (Iwama and Miyazaki [2008]): the

fairness between the two matching sides, and the welfare and regret of the all participating

agents .

Given that our two finite and disjoint sets of agents are X and Y - with number of agents

nX and nY respectively, and a matching M = (X,Y). Let xi ∈ X, yj ∈ Y , and rxi(yj) be

the rank of yj on xi’s preference list. Since the most preferred candidate ranks 1, the lower

rank number indicates the higher preference. Let’s keep the assumption that nX = nY for

now (otherwise, the welfare and fairness definitions won’t be valid if nX 6= nY).

• Stability: We define the stability of a solution as the number of unstable (blocking)

pairs in a solution M . Let (x1, y1), (x2, y2) be a pair of matched agents. The pair

is said to be unstable if x1 prefers being matched with y2 instead of y1 meanwhile y2

prefers being matched with x1 than with x2. i.e. rx1(y1) � rx1(y2) and ry2(x2) �

ry2(x1). The same argument holds if x2 prefers y1 over y2 while y1 prefers x2 over x1;

i.e. rx2(y2) � rx2(y1) and ry1(x1) � ry1(x2).

• Welfare: We measure the welfare of a solution by the average rank of that each agent

is matched with, via summing the respective preference ranks of the matched agents;

i.e.,

Welfare =

∑
xi∈(X,Y) rxi(yj) +

∑
yj∈(X,Y) ryj (xi)

nX + nY

The lower welfare value indicates the better solution.

• Fairness: Fairness can be measured as the inequality in welfare distribution; i.e.,

Fairness = |∗|
∑

xi∈(X,Y) rxi(yj)

nX
−
∑

yj∈(X,Y) ryjr(xi)

nY

74

High fairness score reflects a high inequality between the two matched sides. The lower

fairness value indicates a more equal welfare distribution. A fairness score closer to 0

indicates a better solution.

• Regret: Regret is commonly measured as the largest rank value among all matched

agents; i.e.,

Regret = max
(xi,yj)∈(X,Y)

max{rxi(yj), ryj (xi)}

We define the regret score as the average value of the larger rank of each matched

pair; i.e.,

Regret =

∑
xi,yj∈(X,Y) max{rxi(yj), ryj (xi)}

|M |

Higher regret score reflects a higher dissatisfaction among the less happy agents in

the matched pairs. The lower regret score indicates less grumbling agents in a better

solution.

2.3. Evolutionary Matching for Stable Marriages Problem

We developed a genetic algorithm based system, called Stable Matching GA, that sam-

ples the solution space of the simple marriage matching problem. Solutions are presented

as permutations of 1· · · n. After parameter tuning for best performance, we choose a

mutation rate of 0.4, a two-point crossover rate of 0.6, a population size of 50, runs of

2,000 generations, and 100 repetitions (or trials) per problem. Mutation was effected by

randomly choosing alleles at two loci and swapping them, thereby maintaining a valid solu-

tion, as a permutation. We used order crossover, OX, as our two point crossover operator

(Michalewicz [1996] page 217, Goldberg [1989] page 174). The fitness of a given solution is

its number of unstable pairs. The lower the fitness value, the better a solution is and the

higher chance it has for participating in the reproduction process. For a given population,

one generation of solutions goes through three processes: fitness evaluation, selection (we

used tournament-2), and reproduction (with mutation and crossover as described above).

The evolution stops after a specified number of generations are reached. We ran the GA

75

seeking to minimize the number of unstable pairs in the match solutions.

2.3.1. Stable Matches

Here we report with regard to the stable matches found by the GA for these 25 random

20×20 problems, and we compare the GA’s solutions with the DAA solutions for these

problems. The results are summarized in Table 20. Here, in Table 20, the column labeled

Case is for the 25 random 20×20 random problem instances; “D(DorE) 1G.S. Soln” means

the count of strictly dominant (better than the DAA (Gale-Shapley) solutions on the two

dimensions of fairness and social welfare) or (in parentheses) the count of weakly dominant

(at least as good as the DAA solution)– for at least one of the solutions (and there may be

only one). “D(DorE) 2G.S.Sol” means the count of strictly dominant (better than the DAA

on the two dimensions of fairness and social welfare) or (in parentheses) the count of weakly

dominant (at least as good as the DAA solutions) –f or both DAA solutions (although there

may be only one). So the form X(Y)/Z means X solutions strictly dominating, Y solutions

weakly dominating, and Z solutions found by the GA overall. (All of these solutions are

stable solutions.) Finally, Found G.S.Soln/#GS with the form X/Y means of the Y DAA

solutions (from Gale-Shapley), X of them were found by the GA.

To summarize, Table 20 shows:

• In 18 of 24 cases, the GA found at least one stable solution that strictly dominates

both of the GS/DAA solutions. (In case 20, there is only one GS/DAA solution.)

• Excluding case 20 with only one GS/DAA solution, in 23 of 23 cases the GA found

one or more stable solution that strictly dominates one of the two GS/DSS solutions.

Our study thus shows promising results on using a GA to search for favorable matching

schemes. In terms of searching for stable match schemes, the GA found either strictly

better or at least equally good solutions compared to the Deferred Acceptance algorithm

results with regard to fairness and social welfare. When stability is not the only objective,

76

GAs provide many other dominant solutions. Depending on how different objectives are

weighted, sometimes a minimum number of unstable pairs may be a cheap price to pay for

the improvement on other objectives (for example, higher individual satisfaction or greater

assignment fairness). The key point of our finding is about the GA’s capability of providing

decision makers with information about the otherwise unseen alternatives.

Test Case D(DorE) 1G.S.Soln / TC D(DorE) 2G.S.Soln / TC Found G.S.Soln/ #GS
1 9(10) / 10 4(5) / 10 2/2
2 6(8) / 8 5(5) / 8 2/2
3 4 (5)/ 6 0(1) / 6 2/2
4 7(8) / 8 3(4) / 8 2/2
5 3(5) / 6 3(3) / 6 2/2
6 4(5) / 6 1(2) / 6 2/2
7 10(11) / 11 9(10) / 11 2/2
8 5(6) / 6 1(2) / 6 2/2
9 4(5) / 6 0(2) / 6 2/2
10 6(7) / 7 2(4) / 7 2/2
11 9(11) / 12 2(4) / 12 2/2
12 4(5) / 6 1(3) / 6 2/2
13 8(9) / 9 4(5) / 9 2/2
14 1(3) / 4 0(1) / 4 2/2
15 4(5) / 6 1(2) / 6 2/2
16 4(5) / 5 1(2) / 5 2/2
17 5 (7)/ 7 3(3) / 7 2/2
18 10(11) / 11 2(4) / 11 2/ 2
19 4(6) / 6 4(4) / 6 2/2
20 0(1) / 1 0(1) / 1 1/1
21 8(10) / 10 7(8) / 10 2/2
22 4(5) / 5 2(3) / 5 2/2
23 1(3) / 3 0(1) / 3 2/2
24 2(3) / 6 0(1) / 6 2/2
25 5(6) / 6 1(2) / 6 2/2

Table 20: 20x20 TPXOver Strongly Dominating Solution Counts, m04x06p50t100g2000

2.3.2. Nearly-Stable Matches

A stable match is one in which there are no pairs of matched couples that are mutually

unstable. A nearly-stable match is one in which there are few pairs of matched couples that

are mutually unstable. In a one-away match there is only one pair of matched couples that

is mutually unstable. We emphasize that in such a one-away match there is no guarantee

that swapping the unstable pair of couples will produce a stable match. The new couples

77

resulting from the swap may be unstable with many other couples and unraveling may well

be possible [14]. Our GA typically was able to find many one-away solutions and many of

these were Pareto superior to the GS/DAA solutions. See Table 21 and Figure 2.3.2 for a

graphical presentation.

Test Case D1GS/TC D2GS/TC
1 121 / 128 31 / 128
2 100 / 143 88 / 143
3 31 / 140 1 / 140
4 78 / 97 49 / 97
5 49 / 96 39 / 96
6 28 / 83 7 / 83
7 113 / 124 75 / 124
8 53 / 67 15 / 67
9 61 / 94 9 / 94
10 78 / 110 14 / 110
11 75 / 154 20 / 154
12 10 / 97 7 / 97
13 82 / 106 18 / 106
14 27 / 65 12 / 65
15 73 / 134 7 / 134
16 56 / 87 14 / 87
17 72 / 87 56 / 87
18 52 / 89 11 / 89
19 43 / 84 27 / 84
20 1 / 38 1 / 38
21 124 / 148 109 / 148
22 64 / 82 35 / 82
23 11 / 61 1 / 61
24 20 / 96 8 / 96
25 76 / 107 8 / 107

Table 21: 20x20 TPXOver 0.8, Mutation 0.3, One-Away Strongly Dominating Solution
Counts

2.4. Extended Matching Problems - Hospitals Residents Problem with Couples (Cou-

ples Problem)

In the study of comparison between the stable marriage problem and the hospitals residents

problem (a.k.a the couples problem) mentioned earlier, Aldershof and Carducci [1996] pro-

78

Figure 12: One-away solutions compared to GS/DSS solutions, 40×40 case6, see Table 22.
GS/DAA in red ?.

Test Case D1GS/TC D2GS/TC
1 6 / 8 4 / 8
2 19 / 20 8 / 20
6 13 / 16 6 / 16

Table 22: 40x40 Case1,2,6 GA TPXOver Strongly Dominating Opt Solution Counts

vide an example which shows the possibility of different stable matchings yielding different

sets of positions filled and of students assigned for a couples problem. Motivated by SFAS2’s

decision to accommodate couples on 2009, Biro et al. [2011] illustrate how the SFAS algo-

rithm, which is very similar to NRMP (Roth-Peranson) algorithm3) is unable to find an

existing stable matching for a Hospitals Residents problem with 8 students, 8 positions and

three pairs of couples. The proposed GAs solve both Aldershof’s and Biro’s Hospitals Res-

idents (couples) problems to stable solutions. Before sharing the results of Biro’s example,

we present the model of the Couples Problem and the definition of Biro’s problem.
2Scottish Foundation Allocation Scheme’s (SFAS) is the Scottish equivalent of the NRMP.
3With the main distinction that agents, i.e., single applicants or couples, are introduced into the market

one at a time, and after each such introduction, the resulting sequence of application, rejections, withdrawals,
etc. is allowed to continue until stability is achieved before the next agent is introduced.

79

2.4.1. Model of Hospitals Residents Problem with Couples (Couples Problem)

Like all two-sided matching problems, the Couples Problem (Hospitals Residents Problem

with Couples) consists of two finite and disjoint sets of agents, H and D, each of whom has

complete and transitive preferences over the individuals in the other set. The follows are

definitions of different components in a matching:

About hospitals:

• Let H be the set of hospitals participating in the matching.

• Let ∅ be the option of being unmatched. Define H̃ = H ∪ ∅. The existence of options

outside of H indicates the possible pairing of an agent to nothing (‘unmatched’).

About doctors (residents):

• Let S be the set of single doctors.

• Let C be the set of couples of doctors. Let c = (fm, sm) be any couple in the set C,

where fm denote the first member of couple c and sm denote the second member of

couple c. (fmc, smc) refers to the members of a specific couple c. Let FM be the set

of first members that form couples, i.e., FM = {fm|(fm, sm) ∈ C for some sm}.

Let SM be the set of second members that form couples, i.e., SM = {sm|(fm, sm) ∈

C for some fm}.

• Then we have the set of doctors participating the matching as D = S ∪ FM ∪ SM .

About preferences:

• Single Doctor Preference: each single doctor s ∈ S has a preference relation Ps over

H̃. Let h, h′ ∈ H̃. Preferences are assumed to be strict, i.e., if hPsh′ and h′Psh, then

h = h′. We say doctor s prefers h to h′ if hPsh′ and h 6= h′. We say that hospital h

is acceptable to single doctor s if hPS∅.

80

• Couple Doctor Preference: each couple c ∈ C has a preference relation Pc over H̃ ×

H̃, pairs of hospitals (and possibly being unmatched). Preferences are assumed to

be strict, as for single doctor preference. We consider the pair of hospitals (h, h′)

acceptable to couple c if (h, h′)Pc(∅, ∅). We say that hospital h is listed by Pc if

∃h′ ∈ H̃ s.t. either (h, h′)Pc(∅, ∅) or (h′, h)Pc(∅, ∅).

• Hospital Preference: each hospital h ∈ H has a preference relation over all possible

subsets of doctors, 2D. Hospital preferences are assumed to be strict. Let κh be a

positive number. We say that the hospital preference relation �h is responsive with

capacity κh if it ranks a doctor independently of her/his colleagues and prefers being

‘unmatched’ to any set of doctors exceeding capacity κh. Let Ph be the corresponding

preference list of hospital h, which is the preference relation over individual doctors

and ∅. We say hospital h prefers doctor d to d′ if dPhd′ and d 6= d′. We say that

doctor d is acceptable to hospital h if dPh∅. Let �H= (�h)h∈H .

Now a matching market M can be referred to as a tuple (H,S,C, (�h)h∈H , (Pi)i∈S∪C). A

matching µ of the given matching market M is a function defined on the set H̃ ∪ S ∪C. µ

specifies which doctors are paired to which hospitals (if any) such that µ(h) ⊆ D ∀ h ∈ H,

µ(s) ∈ H̃ ∀ s ∈ S , and µ(c) ∈ H̃ × H̃ ∀ c ∈ C where

• µ(s) = h if and only if s ∈ µ(h) and

• µ(c) = (h, h′) if and only if fmc ∈ µ(h) and smc ∈ µ(h′)

In order to define the stability of a matching µ for a given M , (H,S,C, (�h)h∈H , (Pi)i∈S∪C),

we should first examine the hospital choices over acceptable sets of doctors. For any set

D′ ⊆ D ∪ C, let Chh(D′) be the choice of hospital h given D′ such that

• Chh(D′) ∈ A (D′),

• Chh(D′) �h D′′ for all D′′ ∈ A (D′),

81

where

A (D′) = {D′′ ⊆ D|∀ s ∈ S, if s ∈ D′′ then s ∈ D′,

∀ c ∈ C, if {fmc, smc} ⊆ D′′ , then{fmc, smc} ⊆ D′,

if fmc ∈ D′′ and smc /∈ D′′, then fmc ∈ D′,

if fmc /∈ D′′ and smc ∈ D′′ , then smc ∈ D′}.

Per the definition, A (D′) is the collection of sets of doctors available for a hospital to

employ when a set of doctors (D′) is applying to it. This definition differentiates the

applications by individual couple members and the ones by couples as a whole. For example,

if (fm, sm) ∈ D′∩C but fm /∈ D′ and sm /∈ D′, then the hospital is acceptable to the couple

if and only if both members of the couple are employed together. Whereas if (fm, sm) /∈ D′

but {fm, sm} ⊆ D′, then the couple is happy to have one member matched to the hospital

but not both.

The choice Chh(D′) is the most preferred subset of doctors among those in D′ such that

each couple is either matched or not matched to the hospital together if they apply as a

couple. Since there is no couple for the simple matching problem, the set A (D′) is simply

the set of subsets of D′. Therefore, the choice Chh(D′) is the subset of D′ that is most

preferred by h (see Roth and Sotomayor [1990] for example).

Given that the choice Chh(D′) is the most preferred subset of doctors among those in D′

which accommodates the couple applicants, we now list the possible cases where coalitions

block a matching:

• A pair of one single doctor s ∈ S and one hospital h ∈ H blocks a matching µ if s

prefers h to her/his currently paired hospital µ(s) and the hospital h prefers s to its

currently paired doctor µ(h), i.e., if:

– hPsµ(s) and

82

– s ∈ Chh(µ(h) ∪ s)

• A coalition of a couple c ∈ C and two distinct hospitals {h, h′} ∈ H̃ blocks a matching

µ if the couple c prefers the pair of hospital (h, h′) to its currently paired hospitals

µ(c) and hospital h and h′ prefer the first and second member of c respectively, i.e. if:

– (h, h′)Pcµ(c),

– fmc ∈ Chh(µ(h) ∪ fmc), and

– smc ∈ Chh(µ(h′) ∪ smc).

• A pair of one couple c ∈ C and one hospital h ∈ H blocks a matching µ if c prefers h

to its currently paired hospital(s) µ(c) and h prefers both member of c to its currently

paired doctors, i.e., if:

– (h, h)Pcµ(c) and

– {fmc, smc} ⊆ Chh(µ(h) ∪ c).

Besides the forming of blocking coalitions, it is also necessary to consider the possibility

of participating agent(s) unilaterally rejecting a matching µ. A matching µ is said to be

individually rational if no participating agent can be better off by unilaterally rejecting its

currently paired partner.

Finally, a matching µ is deemed stable if there is no blocking of µ and it is individually

rational.

2.4.2. Example Problem: the Special Hospitals Residents Problem with Couples (SHRC)

The example instance of SHRC consists of a set of residents (or applicants), a set of pro-

grammes (or hospitals), and a set of couples. Each of the agents (residents and programmes)

has complete and transitive preferences over the individuals in the other set. Relationships

among the participating agents (residents and programmes) are described as follows:

83

• About the participating agents:

– All participating agents belong to the set A. A participating agent can be either

a resident or a programme.

– Each programme p offers a fixed number c(p) of places, the capacity of the

programme.

– Each couple consists of a pair of distinct applicants.

– No applicant can be in more than one couple.

– An applicant is either linked or single, depending on whether or not the applicant

is a member of a couple.

– Each of applicant a and b is the partner of the other if a and b form a couple.

i.e., couple(a, b)⇒ partner(a) = b ∧ partner(b) = a.

• About the preferences:

– Each applicant has a strictly ordered preference list containing a subset of the

programmes (incomplete preference). i.e., ∀ a ∈ A, ∃ PrefLista.

– A programme that appears on the preference of an applicant a is said to be

acceptable to a.

– Applicant a is siad to prefer programme p to programme q if p precedes q in

a’s preference list. i.e., if p ≺PrefLista q (or ranka(p) < ranka(q)), then

preferencea(p) > preferencea(q).

– A pair programmes that appears on the joint preference list of couple(a,b) is said

to be acceptable to that couple.

– A couple(a,b) prefers a programme pair (p,q) to a programme pair (r,s) if (p,q)

precedes (r,s) on (a,b)’s joint preference list, i.e., if (p, q) ≺PrefListab
(r, s), then

84

preferenceab(p, q) > preferenceab(r, s).

– Each applicant a has a numerical score s(a). Applicant a is superior to applicant

b if s(a) > s(b). All applicant scores are distinct.

– The preference list of a programme is derived directly from the applicant scores.

All programmes share the master preference list which consists of scores of all

applicants.

• About a matching M : a matching M is a set of applicant-programme pairs satisfying

the following conditions:

– each applicant a appears in at most one applicant-programme pair.

– either a couple(a,b) can be assigned to an acceptable pair of programmes (p, q)

for (a, b) in M or there is no pair in M containing a or b.

– the number of pairs in M containing the program p is at most c(p).

The actual layout of the example problem is as follows: there are eight programmes,

p1 · · · p8, each with just one open position. There are eight applicants (residents) a1 · · · a8,

comprising three couples (a1, a5), (a2, a4), (a6, a8) together with two single applicants a3

and a7. The applicants are numbered in decreasing order of score (a1 highest, a8 lowest),

and the individual and joint preference lists are as listed in Table 23.

2.4.3. Evolutionary Matching for SHRC

We modify the Stable Matching GA used for the simple marriage matching problem earlier.

Major changes made are:

• Solution presentation: we use a position-based solution presentation. Each locus

presents an open position (hospital). The number assigned to a given locus indicates

the ID of the applicant (resident) who is matched with the given position. Solutions are

presented as permutations of 1, · · · n, where n is the total number of applicants, with

85

Programmes
Applicants Top Choice Second Choice Third Choice

a1 p1 p3

a2 p4 p1 p3

a3 p1 p5

a4 p5 p2 p7

a5 p2 p6

a6 p6

a7 p6 p8

a8 p8

(a1, a5) (p1, p2) (p3, p6)
(a2, a4) (p4, p5) (p1, p2) (p3, p7)
(a6, a8) (p6, p8)

Table 23: Biro Example 3 Preference Lists

a certain probability that each locus be reassigned to 0 for indicating the unassigned

situation for the incomplete preference, e.g., a solution (2 4 1 0 3 5 0 7) shows that

applicant 2 (resident 2) is assigned to position 1 while no one is assigned to position

4.

• Mutation and crossover operators are modified to accommodate the ‘unassigned’ (0)

situation of a position. There could be zero, one, or multiple positions to be ‘unas-

signed’ in a given solution.

• Instability calculation: the fitness of a solution is still based on the instability of the

solution, but the calculation of instability is modified in order to reflect the possible

‘unassigned’ status of an agent. The incomplete preference list indicates the possibility

that a participating agent prefers to be matched to no one (unassigned) when no

candidate on her/his/its preference list is available. Similarly, the hospital could prefer

not to take in any resident if no one on its preference list is available. We introduce

the utility score for the participating agents (applicants and positions) based on their

preferences. The utility score of a position p for applicant a in the pairing (a, p) is

defined as the distance between the lowest ranking and the ranking of position p on

applicant a’s preference list, i.e., Ua(p) = maxp∈PrefListaranka(p) − ranka(p). For

86

agent a the utility score 0 is assigned for pairing with no one, i.e., (a, ‘unassigned′).

Pairing of agent a with any unacceptable agent from the other side generates a negative

utility score. The instability between a pair of agents from different sides is decided

by the potential improvement on the utility score of any of the member in the pair.

• Fitness evaluation: when a solution contains unacceptable pairing(s), a penalty is

imposed for the occurrence of unacceptable pairing. The penalty reduces the fitness

of the solution.

• Social welfare calculation: in order to taking into account the possible ‘unacceptable’

and ‘unassigned’ pairings, the social welfare calculation is modified to base on the

utility score instead of the original preference rankings. The most preferred assignment

gains the highest utility score while the ‘unassigned’ status gains zero utility score and

the ‘unacceptable’ pairing gains negative utility score.

2.4.4. Experiment Results

The sequencing of applicants during the processing is an important matter for Roth-

Peranson sequential couples algorithm (SCA), which is used by NRMP. Many applications

use its variants and face the same problem: it could reach a certain matching and then

cycle for the unsolvable sub-instance induced by some subset of applicants. For the given

example, the SCA fails to converge to the awkward unique stable matching solution

M = {(a1, p3), (a2, p1), (a3, p5), (a4, p2), (a5, p6), (a7, p8)}

Nevertheless, as we expected, this is not an issue for GA. Parameters of the modified GA

are set as follows: population size = 40, generation = 100, trial count = 10, mutation rate

= 0.09, crossover rate = 0.25. All possible solutions with stability count less or equal to

two are found by the modified Stable Marriage GA and listed in Table 24.

In Figure 13, we plot the candidate solutions with regard to three different pairs of objec-

tives, social welfare vs. equity, social welfare vs. regret, and regret vs. equity. For both

criteria ‘equity’ and ‘regret’, the lower the value the better a solution is. On the other hand,

87

Objectives Combination
Sum-Regret Sum-Diff Reg-Diff

SID Instability Solntion SumAvg DiffAvg RegretAvg Dom. Soln Pareto Frontier Soln

1 0 2 4 1 0 3 5 0 7 19.2 5 16.9 v v
2 1 1 5 2 0 3 0 4 7 19.2 7.33 17.6
3 1 1 5 2 0 3 6 4 8 25.56 10 16.11 v v v
4 1 2 4 1 0 3 5 0 0 15.45 4 18.18 v v
5 2 1 5 0 2 4 0 0 7 17.27 6.8 17.91
6 2 1 5 0 2 4 6 0 8 22.8 10 16.6
7 2 1 5 2 0 3 7 4 0 20 8.67 17.6
8 2 3 0 1 2 4 5 0 7 21.6 6.67 16.2 v v

Table 24: Candidate Solutions for Biro Example 3 Problem (m009x025p40t10g100)

for the criterion ‘social welfare’, the higher the value the better a solution is. To make it

easier on reading the graphics, when presenting the social welfare of a solution, we plot the

candidate solutions with the difference between the maximum possible social welfare score

and the social welfare score of the given solution. By doing so, the smaller the difference,

the better the solution is.

Three groups of candidate solutions, in terms of solution stability, are shown in Figure 13.

The red star indicates the one and only stable solution, which is the solution with a zero

instability count. The red circles indicate the solutions with instability count that equals

one, and the blue squares indicate the solutions with instability count that equals two.

We identify the same four solutions (#1, #3, #4, #8) which form the Pareto Frontier for

two pairs of objectives: ‘social welfare vs equity’ and ‘regret vs equity’. From the plot of

objective pair ‘social welfare’ vs. ‘regret’, we see the candidate solutions are more or less

along the same trend line, with the solution #3 dominates the others. Moving along the

Pareto Frontier, we have the examples of possible trading off among different objectives

with different candidate solutions.

2.5. Summary And Discussion

The stable marriage problem is prototypical of the two-sided matching problem in which

agents who have preferences, interests and capacities to act on their own are paired up or

matched. Standardly, ‘stability’ is the major concern when trying to match the partici-

pating agents, and variants of the well-known Gale-Shapley deferred acceptance algorithm

88

(a) Objectives: Social Welfare & Fairness

(b) Objectives: Social Welfare & Regret

(c) Objectives: Regret & Fairness

Figure 13: Candidate Solutions for Biro Example 3 with Different Paired Objectives

89

(GS/DAA) are used to find stable matches. In this chapter, we question the emphasis on

absolute stability for a matching problem, we discuss the two key properties of GS/DAA,

and we investigate the stable marriage matching problem as a multi-objective problem via

the evolutionary computation approach. We state the rationale and summarize our findings

as follows:

• Conventionally, matches are evaluated in terms of ‘stability’. A match is said to be

stable if there is no pair of matched agents in it containing individuals who prefer to

be matched to each other but are not. The concern for an unstable matching solutions

is that the unstable pair will abandon the current assigned partners, break at least

one other pair of partnership, in order to form new pairs according to the agents’

preference. Therefore, requiring matches to be stable in the first place will prevent

breakup and reformation among pairs and its attendant costs. But, in reality, we

note that in many cases it may be practically difficult (or made practically difficult by

the operator of the centralized market) for members of matched couple to undertake

swaps, regardless of their preferences. To be more specific, when the number of

unstable pairs is small but non-zero, there will in many cases be no realistic means

for the pairs to find each other and unravel the matching. This gives the decision

maker some leeway with regard to a solution’s stability and raises the issue that social

welfare, equity, and whatever other measures of performance are relevant should be

taken into consideration too, since decision makers, including agents participating

in a centralized market, may quite reasonably want to exchange some stability for

improvements in, say, social welfare or equity. This makes a strong case for insisting

that two-sided matching be viewed as a multi-objective problem.

• Under the special assumptions, the stable marriage problem and the admission prob-

lem have stable matches and the DAA can find one and will find one quickly. Unfortu-

nately, when going beyond the simple matching problem, the optimal stable matches

do not exist in general. It has been shown that, with the further generalized matching

90

problems, the DAA approach and its likes fail to find the existing stable solutions.

• Asymmetry is a general characteristic of the DAA style approaches. In the DAA

process, one side of agents proposes, the other disposes. Focusing now on the marriage

problem, if the men propose, they obtain a stable match that is male optimal in the

sense that no man in this match strictly prefers (does better in) any other stable match.

Conversely, the match is female pessimal in the sense that no woman is worse off in

any other stable match. And vice versa if the women propose. It raises the important

question in terms of both equity and social welfare, whether better matches exist and

can be found via other methods.

• With the two-population GA approach, we show that:

– Typically in simple marriage matching problems there are stable matches that

are Pareto superior to the deferred acceptance matches, in regard to equity and

social welfare (as we have characterized them).

– Also there are many nearly-stable matches that are superior to the deferred

acceptance style matches (stable solutions) on equity and/or social welfare.

– For the more generalized matching problem, GA offers the existing stable solution

which the DAA style approaches fail to find.

These make a strong case for one to look well beyond the GS/DAA style solutions.

Particularly, heuristic alternatives to to deferred acceptance may well be able to offer

practical improvements and complements to deferred acceptance in the centralized

markets

• Scale is an important issue. As the problem size exceeds 50, the GA generally con-

tinues to perform well, but this needs more extensive testing. We note that these

findings apply to the randomly-generated test problems we have used. In these prob-

lems, preferences are uncorrelated. Actual applications may be different (think of the

91

marriage market). When preferences are identical there will be only one stable match

and, generally, the number of stable matches will decline with increasing correlation

of preferences. The effects on nearly-stable matches are not known to us; empirically

they remain abundant.

92

CHAPTER 3 : Finding Robust Solutions with the Metaheuristic Approach

3.1. Introduction

In this chapter, we propose and explore, in the context of benchmark problems for flowshop

scheduling, a risk-based concept of robustness for optimization problems. This risk-based

concept is in distinction to the uncertainty-based concept employed in the field known as

robust optimization. Most importantly, our approach provides probabilistic support for the

decision-maker with potential solutions that are not otherwise readily available. To further

examine the risk-based robust optimization approach, we propose a new uncertainty-based

scheme that shares the same core procedure of our risk-based approach. We demonstrate

the new scheme by solving different one- and two-variable functions with broad and sharp

peaks.

Structure of the chapter. In Section 2.2, we present the different approaches for ro-

bust optimization from the literature, and we present the motivation for our study. In

Section 3.3, we propose the risk-based approach and explore our scheme in the context of

benchmark problems for flowshop scheduling. To answer the question raised from our ex-

periment results, we suggest a new uncertainty-based scheme and examine it with different

test functions in Section 3.4. Finally, Section 3.5 contains our concluding remarks.

3.2. Motivation and Related Work

Many optimization research efforts are built upon the hypothesis of perfect information, i.e.,

accurate values for the system parameters and exact knowledge of the random variables.

Assuming that the input data are precisely known and equal to some nominal values, these

studies develop models and offer effective methods to solve different NP-hard optimiza-

tion problems. While these proposed approaches work well for the deterministic (nominal)

versions of the studied problems, they often do not take data uncertainty into account.

Without knowing the influence of data uncertainties on the quality and feasibility of the

93

model, it is unclear how these proposed methods will perform when we apply them to

solve the same optimization problems with less-than-perfect information, which we tend to

have for most real-life problems. The so-called ‘optimal solutions’ found for the nominal

problems may no longer be satisfactory. Regarding solution quality, we are concerned that

the ‘optimal solutions’ may not perform equally well when the data takes values different

than the nominal ones. Regarding solution feasibility, we worry that the ‘optimal solutions’

may become infeasible even if the nominal data are only slightly perturbed in realization,

especially when the data uncertainty is associated with critical constraints. The need to

design solution approaches that are immune to data uncertainty prompts and results in the

vibrant research field of robust optimization.

To put it simply, something is robust if it performs well under varying conditions. Wagner’s

characterization is representative and applies to any system: “A biological system is robust

if it continues to function in the face of perturbations” [Wagner, 2005, p.1], although often

we will want to add “well” after “function” (see also Kirschner and Gerhart [1998]). As

noisy, incomplete or erroneous data exist everywhere, the general notion of robustness is

apt for and useful in many fields, including biology, engineering, finance, and management

science. Numerous studies give examples of the need of robustness in searching for problem

solutions (Morgenstern [1963], Goldfarb and Iyengar [2003], Bertsimas and Thiele [2006b]).

The concepts of robustness and robust design optimization have been developed indepen-

dently mainly in the fields of operations research and engineering design. In engineering

design, the early attempts to account for design uncertainties in the framework of quality

engineering are due to Taguchi’s three-stage robust design methodology (Taguchi [1984,

1986]). In operations research, the linear model that constructs a feasible solution for all

data belonging in a convex set was first proposed by Soyster [1973] and further developed

by Falk [1976] and Singh [1982]. The notion of robust optimization gained focus in OR after

the publication of Mulvey et al. [1995]. Arguing that the optimization-based system on the

whole fails to address risk aversion as specified in classical decision theory, Bai et al. [1997]

94

suggest that a concave utility function should be incorporated in a model for risk-averse

decision-making . Exploring robustness as performance in the worst-case condition(s), a

large literature characterizes a robust solution to an optimization problem as one that is

optimal in the worst case, and then seeks effective methods for discovering such solutions

(see Ghaoui and Lebret [1997], Bai et al. [1997], Ben-Tal and Nemirovski [1998, 2000, 2002],

Beyer and Sendhoff [2007]). Examining the over-conservativeness issue, Bertsimas and Sim

[2004], Bertsimas and Thiele [2006a] propose approaches that flexibly adjust the level of

conservatism and protect against violation on constraints deterministically .

Also known as maximin (maximizing the minimum possible return), “worst-case optimal”

is the solution principle for games of pure conflict. Maximin is arguably often a reasonable

principle to invoke when decision-making occurs under uncertainty, that is, when it is not

possible or credible to assign probability distributions to the relevant conditions. This

observation suggests the possibility of defining a robust-under-risk notion of robustness,

one that is appropriate for situations in which probability distributions are available for

relevant aspects of the context. The main aim of this chapter is to explore this suggestion.

Before going into the details of our setup, however, other related work must be mentioned.

Scheduling problems generally (Cheng et al. [1996, 1999], Pinedo [2008]) and flowshop prob-

lems in particular have long been addressed, and addressed successfully, with evolutionary

algorithms (Hart et al. [2005], Hejazi and Saghafian. [2005], Reeves [1995]). For the most

part, the focus has been on finding heuristically optimal solutions, rather than robust so-

lutions, however robustness may be defined. Exceptions are Herrmann [1999] and Jensen

[2003] (see also comment in Beyer and Sendhoff [2007]). Herrmann’s work assumes a mini-

max (worst-case-optimal) notion of robustness. Using what is now called a teacher-learner

coevolution framework, Herrmann (Ficici [2008]) evolves two populations together, one of

scenarios (parameterizations of the optimization problem, the “teachers” in modern par-

lance) and one of the solutions (the “learners”). Heuristically, evolution of the teachers

finds the most unfavorable scenarios and evolution of the learners finds the best solutions

95

for the worst-case scenarios. Jensen defines (as a heuristic) the robustness of a solution S

to be the weighted average makespan of solutions in the neighborhood of S, then uses a

genetic algorithm to find robust solutions so characterized. Both of these approaches are

quite different from ours. In future work it will be important to compare and contrast the

results of all three methods.

3.3. Robust-under-Risk

We propose a robustness-under-risk score, RR, based on four elements: the problem or model

(M), the solution (S), the perturbation regime (P), and the level of certainty (L, 0 < L < 1).

The robustness of a solution S to model M under perturbation regime P with the level of

certainty L is denoted as RR(S,M,P, L). Our proposal is to measure the robustness of a

solution (to a model, · · ·) as the best objective value for which the probability is at least

L that the solution will match or improve on it. A robust solution is a solution whose

robustness-under-risk score is optimal, that is, better than or equal to the robustness-

under-risk scores of all other solutions. In what follows, we explore how these quantities

can be estimated by collecting high-quality solutions that appear during the normal runs

of evolutionary computation.

3.3.1. Description of the Proposed Approach

Assuming that we are solving a minimization problem and using perturbation regime P to

represent the ambient risk, then we can estimate the robustness of a solution S as follows:

1. Using P , generate a sample of perturbed problems, PSample.

2. Obtain the objective function value of solution S on each member of the sample set

PSample.

3. Sort the objective values so obtained in ascending order (more generally from best to

worst).

4. Estimate the robustness of S at level L to be the objective function value of S at the

96

Lth decile of the sample PSample. (Objective function values above the Lth decile

are all inferior to every value at or below the Lth decile.)

Note that so conceived, the robustness score of a given solution by itself tells us nothing

about whether the solution is optimal or even good with respect to robustness. To evaluate

a solution in this regard we must somehow compare it to other solutions and their robustness

scores. Our proposal is to obtain heuristically a sample of high-quality solutions (which we

call the solutions of interest, or SoIs, for this problem, see Kimbrough et al. [2010]) and to

estimate robust solutions as best available in the SoIs.

This method brings us to the question of how to discover robust solutions to an optimization

problem. Given our proposed robustness measure, an obvious approach would be as follows:

1. Using P , generate a large sample of perturbed problems, PSample.

2. Solve each problem in PSample to optimality. The collection of optimal solutions con-

stitutes the SoIs, the solutions of interest, from which comparatively robust solutions

are to be sought.

3. Using P , generate a new large sample of perturbed problems, PSample′.

4. Obtain the objective function value of each solution in SoIs for each member of the

sample PSample′.

5. Sort the objective values so obtained in ascending order (more generally from best to

worst).

6. Estimate the robustness of S ∈ SoIs at level L to be the objective function value at

the Lth decile of the sample PSample′. Evaluate every member of SoIs in this way.

7. Designate as robust any member of SoIs with a best estimated robustness score.

We would find this a potentially reasonable procedure except for step (2). While the matter

certainly deserves empirical investigation, the computational cost will often be prohibitive.

97

Further, there would seem to be little reason a priori for an optimal solution to one per-

turbed problem to be robust for another perturbation.

We explore a different approach, one that we think needs to be investigated in any case.

In this approach to the discovery problem, we make use of the fact that in evolutionary

computation (as well as other metaheuristics) large numbers of solutions are considered

during runs of the algorithm(s). We thus propose to replace step (2) with step (2’):

2’. For each problem in PSample, obtain a sample of distinct high-quality solutions. The

union of these solutions constitutes the SoIs, the solutions of interest, from which compar-

atively robust solution are to be sought.

In what follows we report on a series of experiments in finding robust solutions to flowshop

scheduling problems using the general approach discussed. We begin in the next section

with a precise description of our setup.

3.3.2. Experimental Setup for Robustness-Under-Risk

Flowshop GA

In a flowshop problem we are given m machines and n jobs to be scheduled for processing

one at a time on the machines. We are also given a processing time array: Processing(i, j)

= processing time of job j on machine i. The problem is to find a schedule (a permutation

of the jobs) with the minimal makespan (time to complete all jobs). The measure of perfor-

mance (fitness) for a solution is its makespan. For further details on flowshop problems, see

Pinedo [2008] and other references cited above. Figure 14 gives the algorithm in pseudocode

for calculating makespans.

In our study, we experimented with fourteen flowshop scheduling problems that are by

now standard benchmarks: ISHardest (Ignall and Schrage [1965]), Car1, Car2, Car3, and

Car4 (Carlier [1978]), and Txxxx (Taillard). Table 25 lists the problem sizes and in the

fourth column, shows how close our rather conventional genetic algorithm came to optimally

98

1. Given:
(a) m machines; n jobs;
(b) Decisionn×1, a permutation vector of job IDs, 1 · · · n;
(c) Processingm×n, array of processing times, Processing(i, j) = processing

time of job j on machine i;
(d) Startm×n, array of starting times, Start(i, j) = starting time of the jth

job from Decision (Decision(j)) on machine i, initialized to 0;
(e) Completionm×n, array of completion times, Completion(i, j) = comple-

tion time of the jth job from Decision (Decision(j)) on machine i, ini-
tialized to 0;

(f) Availabilitym×1, array of next availability times for machines,
Availability(i) = next available starting time for machine i, initialized to
0;

2. For j = 1 to n:
(a) For i = 1 to m:

i. Start(i, j) = Availability(i)
ii. Completion(i, j) = Start(i, j) + Processing(i,Decision(j))
iii. Availability(i) = Completion(i, j)

3. Makespan = Completion(m,n)

Figure 14: Makespan calculation procedure, for standard simple flowshop problems

solving the problems.

Solution Representation

For the flowshop benchmark problems, we use the job-based representation. This is perhaps

the most natural representation of a schedule. The chromosome is a string of job IDs.

Different job ID permutations present different solutions. The string length depends on the

total number of jobs (n) to be completed. For example, for problem ISHardest, which is a

problem with 3 machines and 10 jobs, a chromosome for ISHardest may look like (3 7 8 5

4 2 6 10 1 9).

99

Test Problem # Machines # Jobs ObjValDelta
ISHardest 3 10 0%

Car1 5 11 0%
Car2 4 13 0%
Car3 5 12 0%
Car4 4 14 0%

T1378 10 20 <0.073%
T1397 10 20 <0.073%
T1484 10 20 <0.135%
T1496 10 20 <0.869%
T1538 10 20 <0.520%
T1582 10 20 <0.127%
T1591 10 20 <0.440%
T1593 10 20 <0.252%
T1659 10 20 <0.724%

Table 25: Information on Benchmark Flowshop Problems

Population Initialization

Given population size (popSize), we first create a population of popSize chromosomes,

where each chromosome is a random permutation of n job IDs (i.e., number 1 · · ·n).

Evaluation function

The makespan calculation procedure will serve as the evaluation function since the measure

of performance (fitness) for a solution is its makespan.

Genetic operators

Two classical genetic operators, mutation and crossover, are used during the alteration

phase of our genetic algorithm:

• mutation: randomly picking two jobs on a solution and swapping them. The mutation

rate is the probability that one pair of jobs is swapped within a chromosome. For

100

example, a solution for ISHardest problem may be

(3 7 8 5 4 2 6 10 1 9).

The resulted chromosome after a mutation happened on the 3rd and 6th jobs will be

(3 7 2 5 4 8 6 10 1 9).

• crossover: we use order crossover, OX, as our crossover operator [Michalewicz, 1995,

p.217]. OX builds offspring by choosing a subsequence of jobs from one parent chro-

mosome and preserving the relative order of the rest jobs from the other parent. For

example, assume that the cut points are randomly selected after the 3rd and 6th gene

(and marked by “|”), the following two sample chromosomes

p1 = (1 2 3 | 4 5 6 | 7 8 9 10) and

p2 = (4 5 2| 1 8 7 | 6 9 3 10)

would produce the offspring in the following way:

1. The subsequence of jobs will be copied into offspring:

o1 = (x x x | 4 5 6 | x x x x) and

o2 = (x x x | 1 8 7 | x x x x).

2. starting from the second cut point of one parent, the jobs from the other parent

are copied in the same order, omitting symbols already present. When reaching

the end of the chromosome, we continue from the first place of the chromosome.

The sequence of the jobs in p2 from the second cut point (starting from the 7th

job) is

6 9 3 10 4 5 2 1 8 7

101

3. after removal of the jobs 4, 5, and 6, which are already in the first offspring o1,

we get

9 3 10 2 1 8 7

4. the resulted sequence is placed in o1, starting form the second cut point:

→ o1 = (x x x | 4 5 6 | 9 3 10 2)

→ o1 = (1 8 7 | 4 5 6 | 9 3 10 2)

5. Similarly we get the second offspring o2:

o2 = (4 5 6 | 1 8 7 | 9 10 2 3)

Creating a new generation

Two more operators, selection and elimination, are used together with mutation and

crossover during the alteration phase of our genetic algorithm:

• selection: using tournament-2 selection, two parent solutions are selected as mating

candidates. Tournament-2 selection is implemented by randomly selecting two indi-

viduals from the current population, the individual with higher fitness value is the

winner and will be used for the mating process. To generate one pair of candidate

solutions, we need to perform tournament-2 selection twice.

• mating (mutation and crossover): for a pair of candidate solutions, each solution goes

through mutation (with the given mutation probability pm) individually first. The

candidates are then mated (cross-overed) with a given crossover probability, px.

• elimination: The two parent candidates may or may not actually mutate or mate

(crossover). In the case that no actual mating happens, the mutated parents (in

some cases the parents may not even be mutated because crossover is not performed

universally) will be kept in a temporary pool. In the case that the mating event

actually happens, the two generated children solutions will be kept in the temporary

102

pool. Together with the two original parent candidates, there are a total of four

solutions in the temporary pool. The two solutions with lower fitness values will be

eliminated.

• building the new generation: the survivors of the elimination process (the two solutions

with higher fitness values) will be added into the next generation population.

The selection, mating, elimination, and building the new generation processes are repeated

till we collect popSize, n, solutions for the new generation.

Solution Sampling

There are two conditions under which we used the GA to explore the solution space for

each problem. Condition one is the “perturbed scenario”(PS), and condition two is “base

scenario” (BS). Under the base scenario, the GA was directed to find good solutions to the

original problem. Under the perturbed scenario, the elements in the processing times array,

Processingm×n, were randomly subject to change, producing a perturbed processing times

array PProcessingm×n:

PProcessing(i, j) =

 N(0, f × Processing(i, j)) + Processing(i, j) if N(0, f × Processing(i, j)) > 0,

P rocessing(i, j) otherwise;

where N(µ, σ) is a normal random deviate with mean µ and standard deviation σ, and

f is the perturbation factor, which we set to 0.1. (Our results were not sensitive to the

perturbation factor value of 0.1)

Phase I of our experiments proceeds as follows for a given flowshop problem:

1. For the PS, we randomly create Npert = 100 perturbed processing time arrays:

PProcessing1, · · · , PProcessingn.

103

2. Initialize the perturbed solutions of interest, PSoIs1, · · · , PSoIsn, as empty heaps,

each with maximum size of h = 300.

3. For each of the n perturbed processing times arrays we conduct r = 20 independent

runs of the standard GA, saving the NtopSoln unique best solutions over the r runs in

the associated PSoIsk heap. (In a seperate data structure we record how many times

a solution in the heap is encountered.) The individual PSoIskare then combined into

PSoISH(perturbed solutions of interest super-heap) by taking their union.

An analogous process is followed for the BS, except that the original processing time array

is used throughout. This results in USoISH(unperturbed solutions of interest super-heap),

as a result of r runs conducted n times on the original problem. This completes phase I -

collecting the solutions of interest.

In Phase II, for a given problem, we generate 100 new perturbed processing time arrays,

each for f = 0.1, 0.25, 0.5, 0.75, 1, 1.25, and 1.5. We evaluate every member of PSoISH

and USoISH with every new perturbed processing times array. We then compare the

performances of the two super-heaps, PSoISH and USoISH.

Parameters

For the benchmark problems, we use the following parameters:

• pop size: population size, pop size = 100

• pm: probability of mutation, pm = 0.1

• px: probability of crossover, px = 0.5

• g : number of generation, g = 500

• t: number of trial, t = 10. Each trial starts with one randomly initialized population,

and evolves through g generations.

104

• NtopSoln: number of recorded top solutions for each solved problem, NtopSoln = 300

• Npert: number of perturbed problems, Npert = 100

• f : perturbation factor, percentage of the original processing times used as the stan-

dard deviation of the assumed normal distribution for the environment noise to be

added on the original processing times. f ranges between 0.1 and 1.5.

These values were arrived at by a mild tuning exercise on a sample of the test problems

and then confirmed by tests on the remaining problems. The tuning is only approximate.

3.3.3. Experiment Results for Robustness-Under-Risk

We present our results by first discussing a representative problem among our 14 bench-

mark cases: the Taillard benchmark problem with 10 machines, 20 jobs, and best-known

makespan of 1378. The results come in two forms: first, we compare the two super-heaps

overall by assessing all of the solutions for each of the seven levels of f . (In the case of

Taillard 1378, there were 29,993 distinct solutions in PSoISH and 29,948 in USoISH.)

Then, for each of the 100 problems at each level, we compare the objective function pairs

for the robust solution in each heap, using a Wilcoxon test with the null hypothesis of

no difference between the two solutions. Table 26 shows our results for the Taillard 1378

problem. The null hypothesis is only rejected for one level of f and the BS super-heap is

even better. Considering the Bonferroni issues, with our seven tests and a significance level

of 0.05, the probability of observing at least one significant result by chance is:

Pr(∃ significant result) = 1− Pr(no significant results)

= 1− (1− 0.95)7

= 0.30166

Taking the Bonferroni correction will set the significance cut-off at 0.05/7 = 0.00714286.

With the new cut-off, Pr(∃ significant result) ≈ 0.0489, which is just under our desired

105

0.05 level. Therefore, we do not claim that there is evidence that the BS actually produces

significantly better solutions. The key point overall is that the solutions for the two scenarios

are broadly equivalent in terms of performance.

f p-value reject null? z-value
0.10 0.0094951 1 2.3457
0.25 0.15384 0 1.0201
0.50 0.63981 0 -0.35796
0.75 0.53456 0 -0.086741
1.00 0.50439 0 -0.010995
1.25 0.52776 0 -0.069637
1.50 0.54862 0 -0.12217

Table 26: Wilcoxon test results for super-heap comparisons on benchmark problem Taillard
1378

In the second form of our results, we obtain for each of the two super-heaps the estimated

robust solutions at each level of f and for deciles L = 0.99, 0.95, 0.90, 0.85, and 0.80. Table

27 presents the results for the Taillard 1378 problem. Remarkably, the two super-heaps,

and hence the two distinct GA approaches (perturbed and unperturbed), give very similar

results. Again, we see that the BS solutions at f = 0.1 come out better at most values of L

than the PS solutions, even though the PS solutions were produced from processing arrays

generated identically.

As for the other 13 benchmark problems, our results are essentially in line with those for

Taillard 1378. It is remarkable that there is so little difference with respect to robustness

in the solutions in our two super-heaps. The best solutions found by the GA on the unper-

turbed problem are as good as, or perhaps better than, the best solutions found by the GA

when trained on perturbed problems generated by the same process as the comparison test

problems. This is not because the perturbations do not affect the makespans. As the entries

in Table 27 (and in the corresponding tables for the other problems) show, makespans actu-

ally increase with increasing perturbations. A GA is (at least sometimes) itself a procedure

for finding robust solutions.

106

Scenario PSize L = 1.00 L = 0.99 L = 0.95 L = 0.90 L = 0.85 L = 0.80
PS 0.10 1491.8 1489.2 1479.9 1471.9 1469.1 1466.9
BS 0.10 1492.1 1484.1 1472.6 1463.0 1460.2 1456.6
PS 0.25 1654.8 1645.2 1629.2 1624.1 1612.6 1608.1
BS 0.25 1652.0 1646.5 1629.7 1617.5 1611.8 1602.6
PS 0.50 1971.7 1958.3 1918.0 1884.7 1866.7 1858.8
BS 0.50 1971.7 1954.5 1909.3 1887.1 1869.3 1858.7
PS 0.75 2261.7 2244.5 2196.5 2167.3 2142.6 2120.7
BS 0.75 2263.7 2246.6 2204.8 2168.4 2139.4 2113.3
PS 1.00 2519.0 2512.5 2456.7 2399.7 2381.7 2357.8
BS 1.00 2522.9 2505.8 2448.9 2409.1 2369.9 2360.3
PS 1.25 2832.2 2824.0 2769.8 2715.6 2683.2 2647.7
BS 1.25 2824.4 2810.9 2759.5 2712.0 2673.9 2644.7
PS 1.50 3140.0 3119.2 3072.9 2998.4 2953.5 2914.5
BS 1.50 3192.7 3142.7 3065.2 3012.8 2936.8 2899.6

Table 27: Taillard benchmark flowshop problem. 10 machines. 20 jobs. 1378 minimum
makespan.

3.4. Robust-under-Uncertainty

To answer the question raised from our previous experiment results, about whether GA

itself is a procedure for finding robust solutions, we further propose a robustness-under-

uncertainty score, RU , based on five elements: the problem or model (M), the solution

(S), the perturbation regime (P), the Level of rejection on suboptimal solutions (L) (e.g.,

rejection level L = 0.90 means to accept only the solutions with top 10% objective values),

and the sampling frequency (F) (0 < F). The robustness of a solution S to model M

under perturbation regime P with a given rejection level L and sampling frequency F is

denoted as RU (S,M,P, L, F). Our proposal is to measure the robustness of a solution (to a

model, · · ·), as the number of perturbed cases in which the solution (S) appears to be one

of the solutions of interest for that specific case. Given our proposed robustness measure,

an obvious approach would be as follows:

1. Using P , generate a large sample of perturbed problems, PSample, F = size(PSample).

2. Solve each problem in PSample to optimality.

107

3. With the same rejection level (L), for each problem in PSample, maintain an inde-

pendent set of acceptable solutions , ASoIsi, i = 1 · · · size(PSample). The collection

of solutions from every ASoIsi constitutes the SoIs, the solutions of interest, from

which comparatively robust solutions are to be sought.

4. For each solution in SoIs, tally the number of independent sets ASoIsi in which the

solution appears. Estimate the robustness score of S ∈ SoIs at acceptance level L as

the independent set ASoIsi count.

Since “perturbation sampling” is the key point of our proposed approach, we will look at

perturbation from a slightly different angle in order to simplify the process and focus on

the effect of “perturbation sampling”.

In evolution theory, the organism’s physical properties directly determine its chances of

survival and reproductive output. The inherited genes (the genotype) cause a trait, and a

physical property (the phenotype) is the observable expression of the genes. While an or-

ganism’s gene is a major influencing factor in the development of its corresponding physical

property, there are other factors that could also influence the development of its phenotypic

features. The level of phenotypic plasticity describes the strength of environmental influ-

ence on the particular phenotype that develops. During the development of its phenotype,

a chromosome could interact with the environment and the resulting phenotype may vary.

We consider such interaction between a chromosome and its environment as a perturbation

of the development process, e.g., abnormal weather condition, individual nutritional imbal-

ance, etc. The individuals with the “best” genes but that are sensitive to the environmental

perturbation may not survive, since the resulting physical properties reduce their fitness.

On the contrary, the individuals who have “good” genes and are robust to the perturbation

have a better chance of survival in a noisy environment.

To take the existence of environmental noise into consideration, Fitzpatrick, Miller, et al.

discuss different approaches for calculating the fitness values (see Fitzpatrick and Grefen-

108

stette [1988], Miller and Goldberg [1996]). These studies treat the environment noise by

adding it to the fitness function. That is, if x = (x1, x2, · · · , xm) is a phenotypic vector, with

fitness evaluation function f and noise δ, the fitness of individual x will be f(x)+δ. On the

other hand, since the perturbation can be seen as the interaction between the chromosome

and its environment during the development of its phenotypic feature, we can shift the noise

into the genotype-phenotype development process by adding the noise ∆ = (δ1, δ2, · · · , δm)

directly to the phenotypic vector x. In this case, the fitness evaluation of x becomes f(x+∆)

and the solutions thus determined are expected to be more robust against the perturbations.

3.4.1. Description of the Proposed Approach

After shifting the noise from the problem parameters to the decision variables, we take the

similar steps to generate high quality candidate solutions, as we have done previously. A

sample of noise DSample = (∆1,∆2, · · · ,∆k) is generated. For each random noise ∆i, the

problem P is solved to optimality by using f(x+ ∆i) as its fitness evaluation function. The

solutions of interest (SoIs) are collected in a corresponding heap SoIsHeapi, i = 1 · · · k.

While taking the collection (union) of the k heaps, for each of the candidate solution in

the final collection, we also keep track of the number of heaps in which the corresponding

solution appears. The frequency of a solution’s appearance in the different heaps is taken

as its robustness-under-uncertainty score for this problem. Again, the robustness score of a

given solution by itself tells us nothing about whether the solution is optimal or even good

with respect to robustness. To evaluate a solution in this regard, we must somehow compare

it to other solutions and their robustness scores. Our proposal is to obtain heuristically a

sample of high-quality solutions (the SoIs) and to estimate robust solutions as the best

available in the SoIs. The pseudocode for finding robust solutions with robustness-under-

uncertainty measurement is described as in Fig. 15.

109

for dsample count = 1..k :

{ Randomly generate ∆dsample count;

Randomly initialized population Popgen count = {x1, x2, · · · , xpopSize};
for gen count = 1 : numGen :

{ fori = 1..popSize :

{ yi = xi + ∆dsample count;

take f(yi) as the fitness value of xi;
}
Select Popgen count+1 from Popgen count based on f(yi);
Apply genetic operators to each individuals in the population;
Keep the top n solutions in SoIsHeapdsample count;

}
}
Candidate solution set (SoIs) =

all distinct solutions in all k SolsHeapdsample count;

∀ s ∈ SoIs :

heapCounts =
the number ofdifferent SoIsHeapdsample count where s appears;

Take heapCounts as RU (robustness-under-uncertainty score) for solution s.

Figure 15: Proposed robustness measure: robustness-under-uncertainty

3.4.2. Mathematical Model

The theoretical foundations of genetic algorithms rely on a binary string representation of

solutions and on the notion of a schema. In this section, we will describe the simple mathe-

matical model of our approach following the formula of Michalewicz [1995] and Tsutsui and

Ghosh [1997].

First, without losing any generality, we can assume maximization problems only. Consider

the schema theorem of the simple GA using a proportional payoff selection scheme and a

single-point crossover. With the binary string representation, a schema is built by introduc-

ing the don’t care symbol (*) into the alphabet of genes. A schema is a template presenting

110

a subset of the search space; it represents all strings which match it on all positions other

than ‘*’. For example, the schema, Se = (11 * * 0) matches four strings {(1 1 0 0 0), (1 1

0 1 0), (1 1 1 0 0), (1 1 1 1 0)}.

Considering S as a schema of a solution presentation with binary string of length m, the

following is a list of basic elements in our formulation:

• o(S): order of the schema S - the number of 0 and 1 (fixed) positions present in the

schema. E.g., o(Se) = 3.

• pm: probability of mutation.

• psm(S): probability of schema survival at mutation, psm(S) = (1 − pm)o(S). Since

pm � 1, then psm(S) ≈ 1− s(S) ∗ pm.

• δ(S): defining length of the schema S – the distance between the first and the last

fixed string positions. E.g., δ(Se) = 4.

• pc: probability of crossover.

• psc(S): probability of schema survival at crossover, psc(S) ≥ 1− pc ∗ δ(S)
m−1 .

• t: the time period.

• f : the fitness evaluation function, for string xi, its fitness value is f(xi).

• P (t): the population at time t, P (t) = {x1, x2, · · · , xpopsize}.

• ftotal(t): the total fitness of the whole population at time t, ftotal(t) =
∑popsize

1 f(xi).

• favg(t): the average fitness of the population at the time t, favg(t) = ftotal(t)/popsize.

• f(S, t): the fitness of schema S at time t; assume there are p strings {xi1 , xi2 , · · · , xip}

in the population matched by a schema S at the time t, then f(S, t) =
∑p

j=1 f(xij)/p.

• ξ(S, t): the number of strings matched by schema s at time t.

111

• ξ(S, t+ 1) = ξ(S, t) ∗ f(S, t)/favg(t).

Now, let’s examine the long-term effect. Assume that the fitness of schema S remains above

average by ε% (i.e., f(S, t) = favg(t) + ε ∗ favg(t)), then ξ(S, t) = ξ(S, 0)(1 + ε)t and we see

that a schema S with an “above average” fitness level has an increasing number of strings

in the next generation via the selection operation.

Combining the effects of selection, crossover, and mutation, we have the reproductive schema

growth equation as follows:

ξ(S, t+ 1) ≥ ξ(S, t) ∗ f(S, t)/favg(t) ∗
[
1− pc ∗

δ(S)
m− 1

− o(S) ∗ pm
]

Let us assume the population size N is large. When N → ∞, the average fitness of the

individuals in P (t) can be described as:

favg(t) =
N∑
i=1

f(xi)/N =
∫
x
f(x) · p(x, t)dx (3.1)

where p(x, t) provides the distribution of x in the population. Similarly, the fitness of

schema S at time t can be described as:

f(S, t) =
∫
x
f(x) · p(x, S, t)dx (3.2)

where p(x, S, t) provides the distribution of x in schema S in the population.

Since the fitness is evaluated in the form f(x + ∆) in our proposed approach, the corre-

sponding reproductive schema growth equation will be:

ξ(S, t+ 1) ≥ ξ(S, t) ∗ fe(S, t)/feavg(t) ∗
[
1− pc ∗

δ(S)
m− 1

− o(S) ∗ pm
]

Assuming that xi and ∆i are mutually independent, q(∆) is the continuous density function

112

of ∆i having defined mean value, then the effective average fitness feavg of the population

can be obtained as:

feavg(t) =
N∑
i=1

f(xi + ∆i)/N

=
∫
x

∫ ∞
−∞

f(x+ ∆) · p(x, t) · q(∆) d∆dx

=
∫
x

[∫ ∞
−∞

f(x+ ∆) · q(∆) d∆

]
· p(x, t) dx

=
∫
x
fe(x) · p(x, t)dx (3.3)

where

fe(x) ≡
∫ ∞
−∞

f(x+ ∆) · q(∆) d∆.

Similarly, fe(S, t) can be described as:

fe(S, t) =
∫
x
fe(x) · p(x, S, t)dx (3.4)

To put it in short, the above four equations give us the following information:

• for the original simple GA,

– (3.1) calculates the average fitness of the whole population at the given time t,

– (3.2) calculates the fitness of schema S at given time t,

• for the proposed GA (with perturbation),

– (3.3) calculates the effective average fitness when consider the random noise,

– (3.4) calculate the effective fitness of schema S when consider the random noise.

Comparing (3.1) with (3.3), and (3.2) with (3.4), we can confirm that fe(x) corresponds

to f(x) and we may conclude, for N → ∞, that the average number of instances of each

113

schema in the proposed GA approach increases or decreases depending on fe(x) instead of

f(x). We call fe(x) the effective evaluation function of f(x) for the proposed GA approach.

As we can see, fe(x) equals to the expected value of f(x) over x+ ∆. Assuming that q(∆)

is symmetric, i.e. q(∆) = q(−∆), then fe(x) can be rewritten as:

F e(x) =
∫ ∞
−∞

q(x− y) · f(y) dy (3.5)

Thus, the effective evaluation function for the proposed GA approach can be formulated.

In practice, the population size is finite. Should the population being sufficiently large (the

sufficiency depends on the distribution of the noise), the effective fitness evaluation may

bear approximate characteristics as indicated in (3.5).

3.4.3. Experimental Setup for Robustness-Under-Uncertainty

Without the loss of generality, we assume a maximization problem only. The following

two multi-variable functions are adapted and modified for testing the proposed robust GA

approach. Function fa (see Branke [1998] for the original function) is an n-dimensional

discontinuous function with a sharp highest peak at xi = 1 (∀ i, i = 1 · · ·n) with a local

maximum value local optsharp, and a broad lowest peak at xi = −1 (∀ i, i = 1 · · ·n) with

a local maximum value local optbroad, respectively. The local maximum value at the broad

hill is designed to be 90% of the local maximum value at the sharp peak.

(P) max fa(x) :

fa(x) =
n∑
i=1

g(xi),

where g(xi) =

 −(xi + 1)2 + 1.17 : −2 ≤ xi < 0

1.3 ∗ 11−8|xi−1| : 0 ≤ xi < 2

Function fb (see Tsutsui and Ghosh [1997] for the original function) is an n-dimensional

function with 5n unequal peaks in the range 0 ≤ xi ≤ 1 (i = 1 · · ·n). Function fb is defined

114

as follows:

(P) max fb(x) :

fb(x) =
n∑
i=1

g(xi),

where g(xi) =

 (e−2ln2(
xi−0.1

0.8
)2 + xi

1.5)| sin(5πxi)|0.5 : 0.4 < xi ≤ 0.6

(e−2ln2(
xi−0.1

0.8
)2 + xi

1.5) sin6(5πxi) : otherwise

In the following experiments, we reduce both n-variable functions to single variable functions

because it is easier to observe the fitness landscape with a two-dimensional plot. We will

re-iterate the simplified function definitions and show their corresponding fitness landscape

plots in later sections, which detail the experiment results.

In the following eight sub-sections, we first illustrate the basics of our Robust GA to the

given maximization problem: our solution representation, initialization, evaluation, genetic

operators, selection process, ranking process, and parameter settings. For these simple

optimization problems, we follow the guideline of Michalewicz [1995] for the solution rep-

resentation and genetic operators; details are given in sections 3.4.3 - 3.4.3. The new

generation creation process and ranking process are described in section 3.4.3 and 3.4.3. In

section 3.4.3, we describe the common parameters. Experiment results are shown in the

following section, 3.4.4.

Solution Representation

For our simple maximization problems for functions fa & fb, we use binary vectors as

chromosomes to represent real values of the variable x. The required variable precision

decides the length of the vectors. Assume that we prefer the precision to be three places

after the decimal point. Taking our test function fa1var as an example, the domain of the

variable x is [-2..2]. The precision requirement implies that the domain should be divided

into at least 4 * 1000 equal size ranges. This means that 12 bits are required to form our

115

binary vector (chromosome):

2048 = 211 < 4000 < 212 = 4096.

It takes two steps to map a binary string < b11b10 · · · b1b0 > into a real number x from the

range [-2..2]:

step1: convert the binary string < b11b10 · · · b1b0 > from base 2 to base 10:

(< b11b10 · · · b1b0 >)2 = (
11∑
i=0

bi ∗ 2i)10 = x′

step2: find a corresponding real number x:

x = −2 + x′ ∗ 4
212 − 1

,

where -2 is the lower boundary of the domain and 4 is the length of the domain.

For example, the chromosome x′ = (100010110111) should be first converted from the base

2 to base 10:

x′ = (100010110111)2 = 2231;

and since

x = −2 + 2231 ∗ 4
4095

= 0.1792,

we know that chromosome x′ represents the number 0.1792.

Of course, the chromosomes (000000000000) and (111111111111) represent the lower bound

and upper bound of the domain, -2 and 2, respectively. Since our desired precision is three

places after the decimal, there is always a gap, δ, on how closely we can represent the actual

target real number. For example, the closest number we can represent for the real number

116

x = 1.0 is 0.9998 (with fitness value 1.297, instead of fa1var(xlopt2 = 1) = 1.3).

Initial population

Given population size (popSize) n, a population of n chromosomes are created, where each

chromosome is a binary vector of 12 bits (numBits = 12). We randomly initialize all 12

bits (prob(1) = prob(0) = 0.5).

Evaluation function

Here, the evaluation function eval for binary vectors v is simply our test function. Using

test function fa1var as an example:

eval(v) = fa1var

where the real number x is represented by the chromosome v. As in standard genetic al-

gorithm, the evaluation function plays the role of the environment, rating each individual

solution in terms of its fitness with regard to the given problem. For example, three chro-

mosomes with their corresponding real numbers:

v1 = (1000 1011 0111) , x1 = 0.1792

v2 = (1011 1111 1111) , x2 = 1

v3 = (0011 1111 1111) , x3 = −1

Consequently, with the evaluation function fa1var , their respective fitness values are as fol-

lows:

eval(v1) = fa1var(x1) = 0.0137

eval(v2) = fa1var(x2) = 1.3

eval(v3) = fa1var(x3) = 1

117

If our objective is to find the maximum value for the given problem, it is clear that v2(x2)

is the best chromosome (solution) of the three, since it has the highest value in terms of

the evaluation function fa1var . Again, due to the three-decimal-place precision, there is a

gap, δ = 0.0002, between our representation and the actual target real number. Hence

the best solution in the experiment could only be fa1var(0.9998) = 1.29675, instead of

fa1var(1.0) = 1.3.

Genetic Operators

Two classical genetic operators, mutation and crossover, are used during the alteration

phase of our genetic algorithm:

• mutation: with a probability equal to the mutation rate, altering one or more genes

(bits) in a chromosome. The mutation rate is the probability of mutation for each

single bit in the chromosome. Therefore, given a mutation rate 0.01, chromosome

length 20, population size 20, we expected 4 bits to mutate in each generation. Assume

that a mutation happens on the ninth gene of the previously mentioned chromosome

v1. Since the ninth bit in v1 is a 0, it would be flipped to 1. Thus the chromosome v1

after the mutation would be:

v′1 = (1000 1011 1111)

The mutated chromosome represents the value x′1 = -0.8132 and its objective function

value fa1var(x′1) = 0.9651. This means that this particular mutation resulted in a

significant increase of the fitness value of the original chromosome, v1.

On the other hand, if the third gene of v1 is selected for a mutation, since the fifth

bit in v1 is 1, it would be flipped into 0. Thus the chromosome v1 after the mutation

would be:

v′′1 = (1000 0011 0111)

118

The mutated chromosome represent the value x′′1 = 0.0620 and its objective value

fa1var(x′′1) = 0.0072, a decrease of the fitness value that was originally fa1var(x1) =

0.1792.

• crossover: two parent chromosomes with a selected exchange point (for instance, after

the fourth gene), each parent keeps the first segment (from bit 1 up to the bit right

before the exchange point, or bit 4 in our example) of its own chromosome, and

concatenate with the partner’s second segment (the bit right after the exchange point

up to the end of the chromosome, which here would be bit 5 to bit 12). Let us

illustrate the crossover operator on the two boundary chromosomes, assuming that

the crossover point was randomly selected after the second gene:

vlb = (00 | 00 0000 0000),

vub = (11 | 11 1111 1111).

The two resulting offsprings are:

v′lb = (0011 1111 1111) and

v′ub =(1100 0000 0000).

These offsprings evaluate to:

eval(v′lb) = fa1var(−1.0007) = 1.0 and

eval(v′ub) = fa1var(+1.0007) = 1.2947.

Comparing to the parents which evaluate to:

eval(vlb) = fa1var(2) = 0.0051 and

eval(vub) = fa1var(−2) = 0.

Both offsprings have better evaluations than their parents.

Creation of New Generation

Three more operators, elitism, selection and elimination, are used together with mutation

and crossover during the alteration phase of our genetic algorithm:

• elitism: for the existing population, the top four solutions are selected and added into

119

the next generation population first.

• selection: using tournament-2 selection, two parent solutions are selected as mating

candidates. Tournament-2 selection is implemented by randomly selecting two indi-

viduals from the current population. The individual with the higher fitness value is

then considered the winner and used for the next process (mating). For generating

one pair of candidate solutions, we need to perform the tournament-2 selection twice.

• mating: for a pair of candidate solutions, each solution goes through mutation indi-

vidually first (with the given mutation probability pm). The candidates then undergo

crossover with a given crossover probability, px.

• elimination: The two parent candidates may or may not actually mutate or undergo

crossover. In the case that no actual mating takes place, the mutated parents (which

in some cases may not be mutated) are kept in a temporary pool. Should the crossover

event actually happen, the two generated children solutions are kept in the temporary

pool. Together with the two original parent candidates, there are four solutions in the

temporary pool. The two solutions with lower fitness values are eliminated.

• building the new generation: the survivors of the elimination process (the two solutions

with higher fitness values) are added into the next generation population.

Elitism is done once to secure the spots in the next generation for the best four solutions

known in current population. The selection, mating, elimination, and building the new gen-

eration processes are repeated until we collect popSize, n, solutions for the new generation.

Solution Sampling and Collection

We simulate the noisy environment by perturbing the decision variable. Let us define

“solving one perturbed problem” as solving a problem with one version of perturbed decision

variable. With the knowledge about uncertainty of a given problem’s decision variable,

we generate a set of sample noise ∆s, DSample. For each member ∆i ∈ DSample, we

120

solve the problem with a perturbed decision variable to its optimality. Since the intuition

of our approach is “searching for the most popular solution”, we record the NtopSoln

best solutions for each perturbation with its corresponding log. After all Npert perturbed

problems are solved, a final tally is taken for all solutions that have ever shown up in

any of the individual Npert logs. The solutions appearing most frequently are considered

the “most popular” solutions. Using the number of perturbed cases in which a particular

solution appears as the solution’s performance measure, a “more popular” solution will score

higher in our ranking system. Should two solutions have the same appearing frequency (for

instance, solution x1 and solution x2 both appear in 68 perturbed cases), the decision-maker

can always consider the other information such as their fitness values with regard to the

objective function in the non-perturbed case.

Parameters

The following is a list of common GA parameters used for our test function fa1var and fb1var :

• pop size: population size,

• lensoln: solution length - the number of bits in the binary string solution representa-

tion. The variable value precision is decided by the solution length.

• pm: probability of mutation,

• px: probability of crossover,

• g: number of generations,

• t: number of trials, each trial starts with one randomly initialized population, and

evolves through g generations,

• L: rejection level - the minimum acceptable sub-optimality of solutions (e.g., L = 0.75

indicates rejecting the lower 75% solutions, viz., accepting only the solutions with

third quartile fitness values).

121

• NtopSoln: number of recorded top solutions for each perturbed problem, NtopSoln =

(1-L)*size(solution space).

• Npert: number of perturbed problems,

• σ: the standard deviation of the normally distributed error caused by the environ-

mental noise. For example, with x range [-2, 2], sigma = 0.01 equivalent to 0.25%

error in x domain.

3.4.4. Experiment Results for Robustness-Under-Uncertainty

Having shifted our view point to the effect of environmental noise on the genotype—

phenotype mapping, we now focus on the possible error of our decision variable in the

objective function f(x). The expected error δ on the decision variable causes the function

shift in the horizontal direction, presented by f ′(x) (i.e. f ′(x) = f(x+ δ)). Let us assume

that the estimated error, δ, is normally distributed with mean zero and standard deviation

σ, i.e. δ ∼ N (0, σ2). The relationship of f(x) and f ′(x) is shown in Figure 16.

Figure 16: Function fa1var with and without decision variable perturbation

122

(a) Function fa1var (b) Top 5% solutions of function fa1var

Figure 17: Function fa1var Fitness Values vs X values

Test Function fa1var

The simplified function fa1var is defined as:

fa1var(x) =

 −(x+ 1)2 + 1.17 : −2 ≤ x < 0

1.3 ∗ 11−8|x−1| : 0 ≤ x < 2

The fitness values of the solutions to function fa1var are plotted in Figure 17(a). The top

5% solutions’ x values and their fitness values are shown in Figure 17(b).

Given the parameter settings as shown in Table 28, assume that we are interested in all

solutions with top 1.25% fitness values (L = 0.9875), which equals to the top 50 solutions

since fa1var ’s domain size is 4000 with three-decimal-place precision. We observe the solu-

tions recommended by our robust GA approach in the following four scenarios: (1) with no

uncertainty of the knowledge about our decision variable, (2) with a possible 0.25% domain

range error (σ = 0.01), (3) with a possible 1.25% domain range error (σ = 0.05), and (4)

with a possible 2.5% domain range error (σ = 0.1).

fa1var Experiment Results:

123

Fixed Value Parameters Non-Fixed Value Parameters
parameter value parameter
popsize 20
lensoln 10 σ:
pm 0.15 0
px 0.3 0.01
g 150 0.05
t 10 0.1

Npert 100
L (NtopSoln) 0.9875(50)

Table 28: Parameter settings for fa1var experiments

1. Zero Uncertainty: with the simple GA, the best solutions are found all around x = 1

with disproportionate high frequency as expected, see Figure 18(a). The objective

values ranging from the global maximum 1.2983 (the maximum objective value one

can actually get for the given problem with required x value precision to three decimal

places) to 1.2673 (at x = 1.0046): see Figure 18(b). With our proposed approach, the

top 46 recommended solutions all have robustness score equal to 100, including ten

solutions aroundx = 1 and the rest around x = −1. As shown in Figure 18(c), the

top 50 recommended solutions are considered more or less equally good. The fitness

values of the top 50 recommended solutions are shown in Figure 18(d).

2. With a 0.25% error: given that the estimated standard deviation is 0.01 (0.25% of

the x domain size), our robust GA approach highly recommends the solutions around

x = −1. Figure 19(a) shows the recommended solutions with the corresponding

robustness-under-uncertainty scores, RU , for the case of perturbation with σ = 0.01.

Figure 19(b) shows that all top 30 recommended solutions gathered around x = −1

neighborhood.

3. With an 1.25% error: given that the estimated error standard deviation is 0.05 (1.25%

of the x domain size), the recommended solutions further cluster around x = −1.

Figure 19(c) shows the recommended solutions with their robustness scores for the

case of perturbation with σ = 0.05. Figure 19(d) shows that all top 100 recommended

124

(a) Top 10 Solns Sampling Frequency (b) Top 10 Solns Fitness Values

(c) Top 50 Solns RU Scores (d) Top 50 Solns Fitness Values

Figure 18: fa1var with Zero Error, Top Solutions’ RU Scores and Fitness Values

125

solutions gathered around x = −1 neighborhood. Further examining the collected

solution, we find that all top 147 recommended solutions belong to the x = −1

neighborhood.

4. With a 2.5% error: given that the estimated error standard deviation is 0.1 (2.5% of

the x domain size), the recommended solutions concentrate around the x = −1 area as

expected. Figure 19(e) shows the recommended solutions with their robustness scores

for the case of perturbation with σ = 0.1. Figure 19(f) shows that all top 150 rec-

ommended solutions gather around the x = −1 neighborhood. Further examination

reveals that all top 194 recommended solutions belong to the x = −1 neighborhood.

Table 29 shows the search outcome with both x variable precision set at three and four

decimal places. Column 1 indicates the estimated error size of x value, and Column 2

shows that around the x = −1 neighborhood, the best found solution’s rank and RU score.

The rank of a given solution x indicates how many other solutions have higher fitness

values than its own. The RU score of a given solution x is the number of perturbations in

which the solutions appears in the corresponding perturbation’s SoIs set. Column 3 shows

similar information for solutions around the x = 1 neighborhood. Column 4 is the ratio
RUPeak−1

RUPeak+1
. Since the proposed approach is based on the appearance frequency, we believe

the ratio between RU s of the top solutions in different neighborhood is more meaningful

than the actual score value. Table 29 shows that the experiment results for the x variable

with precision of four decimal places are in line with the results for setting the x variable

precision to three decimal places. As the estimated error of x increases, more and more

top recommended solutions gather around the broader peak at x = −1, while solutions

around the sharp peak (x = 1) are pushed down on the recommendation list gradually. The

emphasis of the top solutions around the broader peak (x = −1) can be seen as the RU

ratio increasing as the error size increases.

126

(a) σ=0.01, Top 100 Solns RU Score (b) σ=0.01, Top 30 Solns Fitness Value

(c) σ=0.05, Top 100 Solns Robustness Score (d) σ=0.05, Top 100 Solns Fitness Value

(e) σ=0.1, Top 150 Solns Robustness Score (f) σ=0.1, Top 150 Solns Fitness Value

Figure 19: fa1var with different size x error, Top Solutions’ RU Scores and Fitness Values

127

Ranks (Rk) & Scores (RU) of Top Solutions
in the Neighborhood of:

σ value Peak -1 Peak +1 RU Ratio
x variable precision: three decimal places

0 Rk : 1, RU=100 Rk : 1, RU=100 1
0.01 Rk: 1, RU=97 Rk: 40 , RU=49 1.9796
0.05 Rk: 1, RU=33 Rk: 123, RU=15 2.2
0.1 Rk: 1, RU=21 Rk: 195, RU=8 2.6250

x variable precision: four decimal places
0 Rk : 1, RU=100 Rk : 1, RU=100 1
0.001 Rk: 1, RU=100 Rk: 1 , RU=100 1
0.005 Rk: 1, RU=100 Rk: 128, RU=73 1.3699
0.01 Rk: 1, RU=92 Rk: 177, RU=41 2.2439
0.05 Rk: 1, RU=34 Rk: 495, RU=13 2.6154
0.1 Rk: 1, RU=24 Rk: 752, RU=9 2.6667

Table 29: fa1var , x value with 3 and 4 decimal place precision, search outcome with various
x value error sizes

Test Function fb1var

The simplified function fb1var is defined as follows:

fb1var(x) =

 (e−2ln2(x−0.1
0.8

)2 + x
1.5)| sin(5πx)|0.5 : 0.4 < x ≤ 0.6

(e−2ln2(x−0.1
0.8

)2 + x
1.5) sin6(5πx) : otherwise

Given that the variable x can take values from a domain [0,1], the simplified function fb1var

is a function with five peaks locating at (around) x = 0.1, 0.3, 0.5, 0.7, 0.9, respectively. The

fitness values of the solutions to function fb1var is plotted in Figure 20 (a). Assuming that

three-decimal-place precision is desired, by ranking the solutions with their corresponding

fitness values we know that the top 250 solutions cover all five local optima in fb1var .

Suppose precision with either three or four decimal places for the variables’ value is desired.

With binary string solution representation, we list the local optima, ranking of each local

optimum, and their corresponding x values for function fb1var in Table 30. Again, the

ranking of a given solution x indicates how many other solutions have higher RU score

than its own. This information is useful for monitoring the performance of our proposed

128

(a) Function fb1var (b) fb1var Top 250 Solutions

Figure 20: Function fb1var Fitness Values vs x Values

approach.

3 Decimal Place Precision 4 Decimal Place Precision
local opt. x value fit. val. rank neighborhood x value fit. val. rank
lopt1 0.1 1.0667 16 peak01 0.1002 - 0.1006 1.0668 158
lopt2 0.3 1.1170 1 peak03 0.2997 - 0.3001 1.1170 1
lopt3 0.5 1.0404 32 peak05 0.4945 - 0.4968 1.0419 308
lopt4 0.7 0.9252 144 peak07 0.6996 0.92572 1432
lopt5 0.9 0.8500 202 peak09 0.8998, 0.8999 0.85001 2009

Table 30: fb1var local optima x values vs. fitness values

To understand how some factors influence our search outcome, we consider the following

three parameters:

1. Rejection Level L: the unwillingness to settle on solution that has fitness value lower

than a certain level, e.g., with L= 0.95, one accepts only solutions with top 5% fitness

values in the candidate pool and rejects the remaining 95% of solutions. Lower L value

indicates acceptance of solution with lower fitness value in exchange for higher robust-

ness, i.e., with L=0.9, one accepts the top 10% of solutions, while with L=0.75, one

is willing to consider all the solutions with top 25% of fitness values in the alternative

solution pool.

129

2. Estimated Error Size σ: assuming the estimated error is normally distributed with

mean at 0 and unknown standard deviation σ. One could set the estimated error size

proportional to the size of the decision variable domain.

3. Solution Length lensoln: the number of bits for the binary string solution represen-

tation. lensoln decides the precision of variable value. Meanwhile, the precision of

variable value influences the number of potential solutions in a fixed range of variable

domain.

First, we look at the effect of different rejection levels L. Given three-decimal-place precision

for x’s value, the experiment parameter settings are listed in Table 31.

Fixed Value Parameters Non-Fixed Value Parameters
parameter value parameter
popsize 20 L (NtopSoln):
pm 0.15 0.95(50)
px 0.3 0.90(100)
g 150 0.85(150)
t 10 0.80 (200)

Npert 100 0.75 (250)
σ 0.01

lensoln 10

Table 31: Parameter settings for fb1var rejection level experiments

Assuming the estimated error size is 0.05, 5% of the x domain ([0,1]). By varying the

rejection level from 0.95 to 0.70, we increase the number of SoIs, which we keep tracking

throughout the one hundred perturbations. Table 32 lists the experiment results with

different rejection levels. Details about each column are as follows:

• column 1, L: the rejection level, which ranges between [0.95, 0.75]. The rejection level

determines the number of solutions of interest (SoIs) that we keep track throughout all

perturbations. A high rejection level means tracking fewer solutions of a perturbation

during the process (i.e., L=0.95 indicates tracking only the solutions with top 5%

fitness values in each perturbation’s SoIs set).

130

• column 2 to 6, Peak0X: shows the rank (Rk) and score (RU) of the best solution

around the three peaks at x = 0.5, 0.3, 0.1, 0.7, and 0.9.

• column 7, N : the number of SoIs that are tracked through each perturbation. N is

decided by L and variable value precision (lensoln).

Rank Distribution of Top Ranked Solutions in the Neighborhood of:
L Peak 05 Peak 03 Peak 01 Peak 07 Peak 09 N

.95 Rk:14,RU =57 Rk: 1,RU =66 Rk:36,RU =46 Not Found Not Found 50

.90 Rk: 1,RU =100 Rk:38,RU =79 Rk:61,RU =69 Not Found Not Found 100

.85 Rk: 1,RU =100 Rk:55,RU =93 Rk:73,RU =86 Rk:251,UR=8 Not Found 150

.80 Rk: 1,RU =100 Rk:69,RU =93 Rk:77,RU =91 Rk:226,RU =35 Rk:351,RU =5 200

.75 Rk: 1,RU =100 Rk:64,RU =96 Rk:90,RU =93 Rk:138,RU =81 Rk:194,RU =66 250

Table 32: fb1var , recommended solution ranks and scores with different rejection level value.

The effect of changing rejection level: At the 0.95 rejection level, only solutions with

the top 5% fitness values of each perturbation are tracked through the process. As a result,

solutions around (and including) local optimum lopt3 (at x = 0.5) have a lower chance of

being in the tracked SoIs group. The unwillingness to settle for lower fitness values reflects

the outcome that recommends solutions around peak03, slightly over the solutions around

peak05. Table 32 row L=0.95 shows that the top 13 recommended solutions are around

Peak03, with top RU=66, followed by solutions around Peak05, with top RU=57.

After lowering the rejection level to 0.90, the top 37 recommended solutions are all located

around the peak x = 0.5 (Figure 21). Further lowering the rejection level did not change

the pattern that solutions around peak x = 0.5 are always in the top recommended solution

group, while solutions around other peaks are gradually pushed down the recommendation

list. Figure 22 shows that there are fewer solutions around Peak03 and Peak01 in the top

100 recommended solutions when one is willing to accept lower fitness value in exchange

for solution robustness. The pattern of recommended solutions shifting toward the broader

peak as estimated error increases is in line with our results of test problem fa1var .

More importantly, the results in Table 32 show that the proposed approach finds solutions

around all local optima as long as the local optimum’s fitness value is acceptable to the

131

(a) Solutions X Values vs RU Scores (b) Solutions X Values vs Fitness Values

Figure 21: fb1var L = 0.90 σ = 0.01 Top 100 Solutions

decision-maker. For example, Table 30 (row 6, column 4) indicates that lopt4’s ranking is

144. Naturally, given the L value set on either 0.95 or 0.9, one considers only the sampled

solutions with fitness values among either the top 50 or the top 100. Therefore, the sug-

gested approach recommended no solution around Peak07 and Peak09, the two peaks with

low-fitness-value local optima. On the other hand, when the rejection level is lowered to

0.85 or 0.80, our approach does find solutions around Peak07 and Peak09, correspondingly.

To verify that such findings are not random luck, we repeat the experiment with x variable

precision set at four decimal places; the results are in line with our experiment of lower x

variable precision. Table 30 (row six and row seven, column eight) indicates that the best

solution around Peak07 is ranked 1432, while the best solution around Peak09 is ranked

2009. Four-decimal precision of an x variable value produces a total of ten thousand candi-

date solutions. Even with zero perturbation, the proposed approach finds solutions around

Peak07 with rejection level set at 0.9 (one tracks only the top 1000 sampled solutions). Our

approach also finds solutions around Peak09 with rejection level set at 0.85. This finding

confirms the efficiency of the suggested Robust GA on finding solutions around all local

optima, which have fitness values within the acceptance level.

Next, we look at the effect of different estimated error sizes and variable precisions. Keeping

132

(a) Solutions X Values vs RU Scores (b) Solutions X Values vs Fitness Values

Figure 22: fb1var L = 0.75 σ = 0.01 Top 100 Solutions

all GA related parameters unchanged, we set the rejection level at 0.90 (accepting only the

top 10% solutions). Experiment parameter settings are listed in Table 33. Since increasing

the variable precision also means extending the search space to a certain extent, we examine

the effect of error size on the search outcome with variable precision of three, four, and five

decimal places. For each peak at different x values (i.e., x = 0.5, 0.3, 0.1,..., etc.), we

record the RU value of the best solution found around it respectively. Table 34 shows the

test results with variable precision of three decimal places. For complete test results, see

Appendix Table 41. In Table 34, column 2, 3, and 4 record the best solution’s rank and RU

score found around peaks at x = 0.5, 0.3, and 0.1. We find that, with three-decimal-place

precision for variable x, given error size σ = 0.001, our approach ranks 62 solutions around

Peak05, Peak03, and Peak01 equally well, all with RU=100. As the error size increased, the

solutions around Peak05 start to win over the ones around other peaks. Given error size

0.0075 (Table 34 row 7 column 3), we see the best solution is still found around Peak05,

while the second best solution is found around Peak3: it is ranked 33th with RU=91 (rank

33 indicates that there are 32 solutions around Peak05 that are considered better than it).

While there are a total of five peaks in the x domain [0,1] for test function fb1var , our

proposed GA performs as expected in finding high quality solutions with regard to both

133

Fixed Value Parameters Non-Fixed Value Parameters
parameter value parameter
popsize 20 σ:
pm 0.15 0.001
px 0.3 0.005
g 150 0.01
t 10 0.025

Npert 100 0.05
L 0.9 0.075

lensoln 10, 14, 17 0.1

Table 33: Parameter settings for fb1var error size experiments

Rank Distribution of Top Ranked Solutions in the Neighborhood of: Ratio of Top

100 Solutions

σ value Peak 0.5 Peak 0.3 Peak 0.1 P05:P03:P01

0.001 28 solutions RU=100 21 solutions RU=100 13 solutions RU=100 55 : 25 : 20
0.0025 34 solutions RU=100 13 solutions RU=100 7 solutions RU=100 55 : 25 : 20
0.005 Rk: 1, RU=100 Rk: 28, RU=99 Rk: 43 RU=97 54 : 26 : 20
0.0075 Rk: 1, RU=100 Rk: 33, RU=91 Rk: 51 RU=81 55 : 25 : 20
0.01 Rk: 1, RU=100 Rk: 35, RU=84 Rk: 55 RU=71 55 : 27 : 18
0.025 Rk: 1, RU=78 Rk: 62, RU=45 Rk: 98, RU=35 74 : 25 : 1
0.05 Rk: 1, RU=45 Rk: 83, RU=28 Rk: 128, RU=25 100 : 0 : 0
0.075 Rk: 1, RU=40 Rk: 58, RU=27 Not in top 100 solns 78 : 22 : 0
0.1 Rk: 1, RU=30 Rk: 32, RU=25 Not in top 100 solns 70 : 30 : 0

Table 34: fb1var , error size experiment with three-decimal-place variable precision

134

fitness value and solution robustness. The test results show that all top recommended

solutions are around Peak05 (high robustness) and Peak03 (high fitness value). Therefore,

we focus on the recommended solutions around Peak05 and Peak03. Again, since the RU

score is a “popular vote count”, the ratio of RU s of top solutions around different peaks is

more meaningful than the face value of RU itself. Table 35 shows the relevant information

extracted from the test results.

3 Decimal Place Precision 4 Decimal Place Precision 5 Decimal Place Precision

σ RUP05 RUP03 RRUP05P03
RUP05 RUP03 RRUP05P03

RUP05 RUP03 RRUP05P03

0.001 100 100 1.0000 99 100 0.9900 85 85 1.0000

0.0025 100 100 1.0000 95 98 0.9694 81 79 1.0253

0.005 100 99 1.0101 98 94 1.0426 78 68 1.1471

0.0075 100 91 1.0989 94 81 1.1605 76 61 1.2459

0.01 100 84 1.1905 92 70 1.3143 76 47 1.6170

0.025 78 45 1.7333 63 38 1.6579 58 32 1.8125

0.05 45 28 1.6071 43 24 1.7917 34 20 1.7000

0.075 40 27 1.4815 31 19 1.6316 33 19 1.7368

0.1 30 25 1.2000 26 26 1.0000 23 17 1.3529

Table 35: fb1var , RUP05
:RUP03

Ratio with Different Variable Precision

The effect of changing error size: we find that with small error size (σ <0.0025, 0.25%

of x domain), solutions around the peak at x = 0.3 (Peak03) slightly win over solutions

around the peak at x = 0.5 (Peak05). It indicates that small shifting on the very top of

the peak does not affect the fitness value much, so the solutions around sharper peak at

x = 0.3 are equally recommended as the solutions around the broader peak at x = 0.5. As

the error size increased, the robustness of solutions around Peak05 weights more, and the

ratio of Peak05 top solution’s RU to Peak03 top solution’s RU increases from around 1 to

over 1.5. For example, in Table 35 column 7, the RRUP05P03
value increases as the error size

rises from 0.001 to 0.025. Notably, RRUP05P03
value decreases as error size increased over

0.05 (σ >0.05, 5% of x domain). Because the test problem fb1var has a half-peak width of

0.1, σ > 0.05 indicates a greater chance that the shifting of x value will cause the solution

to move into its neighboring peaks. As a result of over-shifting variable x, the RU ratio

between top solutions around Peak05 and Peak03 decreases, and the recommendation is

less definitive.

135

The effect of increasing variable precision: we examine the ratio of top solutions’

RU s at Peak05 and Peak03. Table 35 lists the RU s of the best solutions around Peak05

and Peak03 with different error size (σ), grouped by the variable value precision. Column

1 specifies the error size σ, ranging from 0.001 to 0.05. Column 2, 3, and 4 are the results

of an experiment with x variable of three-decimal-place precision. Column 2 records a RU

score of the best solution found around Peak05, while Column 3 records RU score of the best

solution found around Peak03. Column 4 shows the ratio, RRUP05P03
, of the top solutions’

RU scores, where RRUP05P03
=

RUPeak05
RUPeak03

. Column 5, 6, and 7, and Column 8, 9, and 10

present similar information for experiments with x variable of four- and five-decimal-place

precision.

As shown in Table 35, for a given error size, RRUP05P03
seems to follow the trend of increasing

its value as the precision decimal place increases. Therefore, our null hypothesis of interest

here is that of zero shift (θ) in RRUP05P03
value due to the increasing variable precision:

H0 : θ = 0

versus

H1 : θ > 0

Using Wilcoxon one-sided upper-tail test, we examine the following three comparisons:

• Increasing variable precision from 3 decimal places to 4 decimal places.

• Increasing variable precision from 4 decimal places to 5 decimal places.

• Increasing variable precision from 3 decimal places to 5 decimal places.

We find that neither increasing variable precision from three to four decimal places nor

increasing variable precision from four to five decimal places leads to any statistically sig-

nificant shift in RRUP05P03
values (p-value is 0.234 and 0.148 respectively). But we do find

significant increase in RRUP05P03
values in the case of increasing precision from three to five

136

decimal places (p-value = 0.016). The increasing of RRUP05P03
value indicates the solu-

tion robustness (Peak05) is weighted more than the solution fitness value (Peak03) as the

variable precision increases.

3.4.5. Multi-Variable Optimization Problem

In this section we extend our single-variable optimization problems to two-variable cases

and examine the performance of our robust GA.

Function fa2var

The function fa2var is defined as:

f2var(x) =
2∑
i=1

g(xi),

where g(xi) =

 −(xi + 1)2 + 1.235 : −2 ≤ xi < 0

1.3 ∗ 11−8|xi−1| : 0 ≤ xi < 2

Experiment parameter settings are listed in Table 36

Fixed Value Parameters Non-Fixed Value Parameters
parameter value parameter
popsize 100 σ:
pm 0.07 0
px 0.25 0.01
g 400 0.05
t 10 0.1

Npert 100
L 0.9975

lensoln 12

Table 36: Parameter settings for fa1var error size experiments

By tracking only the top 0.25% of sampled solution, the proposed robust GA performs

similarly as it does with single-variable problems. We see greater preference for solutions

around the broader peak as the top recommended solutions shifted from Peak(+1,+1) to

137

Peak(-1, -1) while the estimated error size increases. The search results are shown in Table

37.

Ranks (Rk) & Scores (RU) of Top Solutions
in the Neighborhood of:

σ value Peak(-1, -1) Peak (+1, +1) RU Ratio
x variable precision: three decimal places

0 Rk : 857, RU=15 Rk : 10, RU=67 0.2239
0.01 Rk: 1, RU=20 Rk: 15 , RU=14 1.4286
0.05 Rk: 1, RU=12 Rk: 112, RU=5 2.4
0.1 Rk: 1, RU=7 Rk: 10, RU=5 1.4

Table 37: fa2var , x value with 3 decimal place precision, search outcome with various x
value error sizes

Function fb2var

The function fb2var is defined as:

fb2var(x) =
2∑
i=1

g(xi),

where g(xi) =

 (e−2ln2(
xi−0.1

0.8
)2 + xi

1.5)| sin(5πxi)|0.5 : 0.4 < xi ≤ 0.6

(e−2ln2(
xi−0.1

0.8
)2 + xi

1.5) sin6(5πxi) : otherwise

Experiment parameter settings are listed in Table 36

Fixed Value Parameters Non-Fixed Value Parameters
parameter value parameter
popsize 100 σ:
pm 0.07 0
px 0.25 0.01
g 400 0.025
t 10 0.05

Npert 100
L 0.999

lensoln 12

Table 38: Parameter settings for fb2var error size experiments

138

The experiment results of two-variable test problem fb1var are shown in Table 39. The

performance of the proposed robust GA is in line with the results of solving the single-

variable problem fb1var . We find that small size (or zero) error results in a higher amount

of recommended solutions from the Peak33 (x1 = 0.3, x2 = 0.3) neighborhood. As the

error size increases, more recommended solutions are from the Peak55 (x1 = 0.5, x2 = 0.5)

neighborhood, while solutions around Peak33 are less favored.

However, when the error size is relatively large (at 0.05, which is 50% of the peak half

width), we see the similar effect as in the single variable test problem fb1var , where the

recommendation validity decreases as the error size is large enough to push the x variable

from a certain peak into one of its neighboring peaks. With two variables, we see the

solutions in the Peak55 neighborhood decreases, while the solution counts in its neighbor

peaks increases (here the neighbor peaks are Peak33 at x1 = 0.3, x2 = 0.3 and Peak35s,

which includes both the peak at x1 = 0.3, x2 = 0.5, and the peak at x1 = 0.5, x2 = 0.3).

of Top Ranked Solutions in the Neighborhood of:
σ Peak 33 Peak 31 Peak 35 Peak 11 Peak 15 Peak 55
0 51 7 327 1 79 528
0.01 29 4 263 3 69 612
0.025 7 3 79 2 31 877
0.05 43 19 144 2 89 675

Table 39: fb2var , recommended solution counts with different σ values.

3.5. Summary and Discussion

We have proposed and explored, in the context of benchmark problems for flowshop schedul-

ing, a risk-based concept of robustness for optimization problems. This risk-based concept

is distinguishable from the uncertainty-based concept employed in the field of robust opti-

mization. Implementation of our concept requires problem solution methods that sample

the solution space intelligently and that produce large numbers of distinct sample points.

With these solutions in hand, their robustness scores are easily obtained and heuristically

robust solutions found.

139

We used a conventional genetic algorithm to search for robust solutions, and collected high-

quality solutions in a heap during the search process. In our (risk-based sense) approach,

the results show little difference with respect to robustness in the recommended solutions

for the base and the perturbed scenarios. The best solutions found by the GA on the

unperturbed problem are as good as the best solutions found by the GA when trained on

perturbed problems generated by the same process as the comparison test problems. A GA

could itself be a procedure for finding robust solutions.

To answer the question, we adopt the same core procedure of the proposed approach to

search risk-based robust solutions and modify the solution-collecting process. The modi-

fication re-directs the proposed approach to searching uncertainty-based robust solutions.

For all test problems, with or without the training on perturbed problem, the top solutions

found by the GA consist of all local optima (or the near local optima) with fitness values

superior to the decision maker’s acceptance threshold. The inclusion of all acceptable local

optima (near-optima) in the top recommended solution set demonstrates that a GA is itself

a procedure for finding robust solutions in either risk- or uncertainty-based sense for all our

test problems.

We also examine the possible factors that may affect the performance of proposed GA. Ex-

periment results show that the variable precision, the estimated error size, and the decision-

maker’s willingness to accept sub-optimal fitness values in exchange for solution robustness

all directly influence the search result. We find that training with moderate perturbation

improves the GA’s efficiency of identifying robust solutions in terms of reducing the number

of tracked solutions during the solution collecting process. Proper variable precision also

has a similar effect on the GA’s search.

By extending the test problems from single-variable to two-variable problems, the effec-

tiveness of GAs in searching for robust solution is accentuated by the reduction on solution

tracking. For example, for fb1var , one needs to track the top 5% solutions if solutions around

all top three local optimum are desired. When solving problem fb2var , the GA performs

140

equally well by tracking only the top 0.1% solutions in the two-variable case. Considering

that the GA used in our experiments is a rather standard GA with minimum tuning, we

believe GA could be highly efficient in providing useful information with regard to searching

robust solutions for the optimization problems.

While a GA is surely appropriate for this context, it would seem that any population-based

metaheuristic might be used in this way. Systematic investigation of effective means to find

robust solutions (in our risk-based sense) has not yet been undertaken. It will be interesting

to see whether heuristics for finding optimal solutions perform well as heuristics for finding

robust solutions, and vice versa.

141

CHAPTER 4 : Summary

Conventionally, when given a real life constrained optimization problem, one builds a model

for the actual problem first. While trying to find an optimal solution to the model, one

should keep in mind the fact that a model is just a model, there will always be a gap

between a model and the problem it depicts. The gap between the model and the depicted

problem originates from the fact that constraints not based in logic often have coefficient

values which are somewhat arbitrarily chosen, and these constraints are adjustable in a

certain degree if the objective value can be reasonably improved. Therefore, in the decision

making process which is based on modeling, one should remember that there should always

be room for alternative solutions.

This study expands the focus beyond just ‘getting the optimal solution’ when solving a con-

strained optimization problem to ‘finding alternative solutions’ for decision making. Given

an optimization model, one can define a set of solutions of interest (SoIs) which if well

sampled would be valuable for supporting the deliberation. While exact methods do not

typically offer much information about the solutions of interest, this study explores the ap-

plication of population-based metaheuristics (genetic algorithms, to be more specific) on the

challenging task of finding SoIs for the given constrained optimization model with test cases

cover five different classes of combinatorial optimization problems. Chapter one elaborates

on 1.) why expanding the focus of just finding the optimal solution to include the SoIs

for a given constrained optimization problem is valuable, and 2) how metaheuristics can

be applied for the task of finding SoIs. Chapters two and three explore two different direc-

tions on applying the concept of SoI and how to find them – with regard to multi-objective

optimization and to solution robustness. The more detailed summaries of this study are

described in the rest of this concluding chapter. Table 40 lists the basic information on the

test problems used in this study.

Chapter One: Supporting Deliberation for Optimization Problems with the

142

Chapter Problem
Class

Test Case Task Agent Solution Space

Chapter 1

Generalized
Assignment
Problem

Beasley OR Lib
GAP4 x 5

30 5 9.31 ×1020

Beasley OR Lib
GAP5 x 5

24 8 4.72 ×1021

Beasley OR Lib
GAP9 x 5

30 10 1030

Beasley OR Lib
GAP10 x 5

40 10 1040

Beasley OR Lib
GAP11 x 5

50 10 1050

Beasley OR Lib
GAP12 x 5

60 10 1060

Generalized
Quadratic
Assignment
Problem

Elloumi
c1003(A,B,C,D)
x 5

10 3 5.90 ×104

Elloumi 2005Aa 20 5 9.54 ×1013

Elloumi c2005De 20 5 9.54 ×1013

Elloumi
2408(Aa,Ca)

24 8 4.72 ×1021

Crossdock 30 12 2.21 ×1023

Chapter 2
Stable Mar-
riage Prob-
lem

Randomly Gener-
ated x 25

20 20 2.43 ×1018

Couples
Problem

Biro 8 8 1.68 ×107

Chapter 3
Flowshop
Problem

ISHardest 10 3 3.63 ×106

Car1 10 3 3.63 ×106

Car2 11 5 3.99 ×107

Car3 13 4 6.23 ×109

Car4 12 5 4.79 ×108

Taillard x 9 20 10 2.43 ×1018

Table 40: Test Case Information

143

Population Based Metaheuristic Approach

To put it simply, solutions of interest can be divided into two categories, the feasible so-

lutions of interest (FoI) and the infeasible solutions of interest (IoI). The FoI consists of

feasible solutions which are suboptimal but with attractive resource usage distributions.

The IoI consists of infeasible solutions with better objective values but with small viola-

tion(s) on resource constraints. While it is always possible to obtain information about

shadow prices, reduced costs, etc. for linear programming problems, there is not much in-

formation one can gather with the traditional approaches when dealing with problems other

than LPs. With thirty generalized assignment benchmark problems (solution space ranging

between 1020 and 1060), the feasible-infeasible two-population genetic algorithm (FI-2Pop

GA) was shown for the problems studied to be very effective in finding the optimal and

near-optimal solutions; and the idea about collecting SoIs from the sampled solutions along

the process of searching optimal solution has proven to be effective. The proposed approach

is further tested with twenty-five generalized quadratic assignment problems and has consis-

tently proven effective in providing SoIs. The provided SoIs offer useful insight information

which is otherwise normally unavailable to decision makers.

Chapter Two: Considering Additional Objectives with the Population Based

Metaheuristic Approach

Conventionally, stability is used as the sole objective in finding matching solutions for the

simple marriage problem and the DAA style approach is the standard way for finding stable

matches. While stability is a desired characteristic for obvious reasons, absolute stability

is not necessarily required in real-life matching problems since in many cases it is quite

difficult for the unsatisfied agent to break away from its current partner and to find itself

a better mate. This gives decision makers some leeway in considering other objectives of

the matching at the cost of slight instability. Given three other possible objectives such

as, social welfare, fairness, and regret, the proposed approach is tested with twenty-five

randomly generated simple marriage problems and has shown effective in providing multiple

Pareto optimal solutions (either stable or with minimum instability) which dominate (or

144

strongly dominate) the DAA solution(s) when treating the simple marriage matching as

multi-objective problem with regard to the three aforementioned aspects. The proposed

approach is further tested with a generalized marriage problem, the couples problem, and

has proven to be equally effective in offering SoIs, on top of finding the existing stable

solution which the DAA style methods fail to find.

Chapter Three: Finding Robust Solutions with the Population Based Meta-

heuristic Approach

In this chapter, a risk-based concept of robustness for optimization problems is proposed

and explored in the context of flowshop scheduling problems. This risk-based concept is

in distinction to, and complements, the uncertainty-based concept employed in the field

of robust optimization. The following approach is proposed for obtaining the risk-based

robust solution:

1. based on the original given problem, use the given perturbation regime to generate a

set of perturbed problems;

2. solve every perturbed problem to optimality, and the collection of optimal solutions

constitutes the SoIs;

3. based on the original given problem, using the same perturbation regime to generate

a new large set of perturbed problems;

4. evaluate every SoI in the collection with each newly generated perturbed problem;

5. sort the objective values so obtained from best to worst;

6. estimate the robustness of every SoI at level L to be the objective value at the Lth

decile of the newly perturbed sample set; and

7. at each level L, designate as robust any SoI with a best robustness score.

With fourteen benchmark flowshop scheduling problems, the proposed approach has shown

145

effective on providing risk-based robust solutions for the tested problems. Interestingly,

the best solutions found by the GA on the unperturbed problem are as good as the best

solutions found by the GA when trained on perturbed problems. Further examinations are

carried out with simple one- and two- dimension functions, and the proposed approach has

shown that GA is itself a procedure for finding risk-based robust solutions for all tested

functions.

Summary

Given an optimization problem, finding the exact optimal solution is always desired, but

if the exact solution is not available, heuristically produced solutions are usually accept-

able. This study expands the focus beyond the conventional goal of ‘getting the optimal

solution’ to ‘finding the alternative solutions’ for supporting deliberation. By defining the

solution of interest (SoI) and sampling them effectively, one can unveil the model’s hid-

den information which is unavailable otherwise. With ninety-five test cases covering five

combinatorial optimization problem classes (generalized assignment problem, generalized

quadratic assignment problem, stable marriage problem, couples problem, and flowshop

scheduling problem), this study demonstrates how the proposed systematic approach could

not only transform the way in which optimization models are used in practice but also

empower users by making information for supporting deliberation readily available. While

effectively sampling the solutions of interest is challenging, population-based metaheuristics

(specifically, two-population genetic algorithm) has proven to perform well in all test cases.

Such results serve as a good starting point for further research on supporting deliberation

in decision making process. The findings of this study suggest a direction and delineate

a new area of optimization research that is worth more exploration. And we can foresee

that more and more inspiring findings will be discovered so as to refine and improve the

metaheuristics approach and bring them to a wider application.

146

APPENDIX

Table 41 contains the test results about the combined effect of different estimated error

sizes and variable precisions on solution searching.

Rank Distribution of Top Ranked Solutions in the Neighborhood of: Ratio of Top
100/1000 Solu-
tions

Variable Value with 3 Decimal Place Precision

σ
value

Peak 0.5 Peak 0.3 Peak 0.1 P05 : P03 : P01

0.001 28 solutions RU =100 21 solutions RU =100 13 solutions RU =100 55 : 25 : 20

0.0025 34 solutions RU =100 13 solutions RU =100 7 solutions RU =100 55 : 25 : 20

0.005 Rk: 1, RU =100 Rk: 28, RU =99 Rk: 43 RU =97 54 : 26 : 20

0.0075 Rk: 1, RU =100 Rk: 33, RU =91 Rk: 51 RU =81 55 : 25 : 20

0.01 Rk: 1, RU =100 Rk: 35, RU =84 Rk: 55 RU =71 55 : 27 : 18

0.025 Rk: 1, RU =78 Rk: 62, RU =45 Rk: 98, RU =35 74 : 25 : 1

0.05 Rk: 1, RU =45 Rk: 83, RU =28 Rk: 128, RU =25 100 : 0 : 0

0.075 Rk: 1, RU =40 Rk: 58, RU =27 Not in top 100 solns 78 : 22 : 0

0.1 Rk: 1, RU =30 Rk: 32, RU =25 Not in top 100 solns 70 : 30 : 0

Variable Value with 4 Decimal Place Precision

σ
value

Peak 0.5 Peak 0.3 Peak 0.1 P05 : P03 : P01

0.001 Rk: 9, RU =99 Rk: 1, RU =100 Rk: 348, RU =81 495 : 329 : 176

0.0025 Rk: 30, RU =95 Rk: 1 RU =98 Rk: 503, RU =70 508 : 338 : 154

0.005 Rk: 1 RU =98 Rk: 5, RU = 94 Rk: 586 RU =64 539 : 351 : 110

0.0075 Rk: 1 RU =94 Rk: 40, RU = 81 Rk: 726 RU =53 565 : 377 : 58

0.01 Rk: 1, RU =92 Rk: 151, RU =70 Rk: 857, RU =46 625 : 374 : 1

0.025 Rk: 1 RU =63 Rk: 409 RU =38 Not in top 1000 solns 771 : 229 : 0

0.05 Rk: 1 RU = 43 Rk: 603, RU =24 Not in top 1000 solns 913 : 87 : 0

0.075 Rk: 1, RU =39 Rk: 328, RU =25 Not in top 1000 solns 878 : 122 : 0

0.1 Rk: 1, RU =23 Rk: 5, RU =21 Not in top 1000 solns 737 : 263 : 0

Variable Value with 5 Decimal Place Precision

σ
value

Peak 0.5 Peak 0.3 Peak 0.1 P05 : P03 : P01

0.001 Rk : 1, RU =85 Rk : 1, RU =85 Rank 968, RU =45 403 : 594 : 3

0.0025 Rk: 1, RU =81 Rk:2 , RU =79 Not in top 1000 solns 347 : 653 : 0

0.005 Rk: 1, RU =78 Rk: 8 , RU = 68 Not in top 1000 solns 460 : 540: 0

0.0075 Rk: 1, RU =76 Rk: 19, RU =61 Not in top 1000 solns 531 : 469 : 0

0.01 Rk: 1, RU =76 Rk: 116 , RU =47 Not in top 1000 solns 658 : 342 : 0

0.025 Rk: 1, RU =58 Rk: 290, RU =32 Not in top 1000 solns 915 : 85 : 0

0.05 Rk: 1, RU =34 Rk: 176, RU =20 Not in top 1000 solns 978 : 22 : 0

0.075 Rk: 1, RU =33 Rk: 127, RU =19 Rk: 999, RU =13 845 : 154 : 1

0.1 Rk: 1, RU =23 Rk: 32, RU =17 Rk: 672, RU =12 817 : 159 : 3

Table 41: fb1var , error size experiment with different variable precision

147

Table 42 contains the configuration information of Elloumi Constrained Task Assignment

Problem (CTAP) c2005De. Tables 43 and 44 contain the configuration information of

Elloumi CTAP 2408Aa. Both CTAP c2005De and CTAP 2408Aa are used as benchmark

problems for testing the proposed approach on solving GQAPs and the test results are

displayed in section 1.9.4. Contents of each configuration table are described as follows:

• Site Capacity Limit Table: specifies the capacity limit of each site.

• Facility Capacity Required Table: specifies the required capacity by each facility.

• Installment Cost Table: specifies the cost for installing a given facility to a given site.

Problem c2005De has no installment cost.

• Communication Cost Table: specifies the cost for communication between a pair of

facilities if they are not installed at the same site.

148

1 2 3 4 5

34 32 32 31 40

(a) Site Capacity Limit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 3 5 6 3 4 7 2 6 8 9 2 8 2 8 7 3 6 2 10

(b) Facility Capacity Required

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 50 93 50 41 75 59 20 37 76 68 17 53 57 38 64 24 20 70 28

2 0 0 25 24 7 52 72 37 98 76 28 26 49 22 76 6 56 54 66 9

3 0 0 0 17 80 49 64 81 86 15 7 30 35 79 35 65 83 85 42 36

4 0 0 0 0 78 35 8 29 74 10 16 58 100 34 29 96 78 90 68 24

5 0 0 0 0 0 22 74 36 50 18 14 54 69 43 90 18 58 75 70 69

6 0 0 0 0 0 0 79 40 77 84 94 77 95 18 60 7 79 66 78 62

7 0 0 0 0 0 0 0 33 21 9 95 56 81 1 88 14 61 80 40 25

8 0 0 0 0 0 0 0 0 38 93 10 82 29 87 62 55 10 9 4 59

9 0 0 0 0 0 0 0 0 0 5 21 63 73 66 41 78 83 12 40 68

10 0 0 0 0 0 0 0 0 0 0 94 23 1 20 58 85 77 2 22 9

11 0 0 0 0 0 0 0 0 0 0 0 82 23 68 25 56 52 24 90 94

12 0 0 0 0 0 0 0 0 0 0 0 0 59 36 70 76 66 48 93 46

13 0 0 0 0 0 0 0 0 0 0 0 0 0 96 52 9 54 10 3 54

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 26 58 52 81 30

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 55 89 97 91

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 88 95 37

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 19 69

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 37

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47

(c) Communication Cost: Facility-1 x Facility

Table 42: Elloumi CTAP c2005De Test Case Configuration (3 Optimal Solutions: 5435)

149

1 2 3 4 5 6 7 8

29 30 26 33 11 18 3 9

(a) Site Capacity Limit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

7 1 9 1 7 5 9 7 9 7 1 5 7 3 4 5 6 2 4 7 4 6 7 10

(b) Facility Capacity Required

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 31 94 17 83 34 2 72 89 7 70 76 24 80 41 80 0 70 68 75 93 69 98 46 2

2 27 44 2 42 86 80 62 8 38 60 25 37 32 91 50 53 2 55 25 25 35 55 95 8

3 43 35 94 35 18 78 75 59 31 89 40 30 69 97 48 44 44 76 5 75 11 35 19 15

4 67 99 49 13 62 14 46 24 32 60 59 60 10 77 75 23 61 5 47 93 48 20 13 28

5 22 68 51 62 78 83 42 79 97 74 41 91 38 8 54 12 49 68 0 50 96 61 47 9

6 47 65 34 99 94 95 27 23 23 50 42 3 41 31 58 89 3 89 85 68 85 35 49 33

7 91 92 90 56 1 17 57 26 6 54 10 66 8 71 24 33 16 97 42 3 1 44 1 20

8 77 22 46 86 74 88 69 77 21 18 30 0 99 72 21 82 20 46 58 36 2 99 0 48

(c) Installment Cost: Site x Facility

Table 43: Elloumi CTAP 2408Aa Test Case Configuration (a) (Optimal Solution: 5643)

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 0 0 40 0 16 0 39 0 0 0 0 89 11 5 13 0 0 0 90 0 9 0 46

2 0 0 0 22 0 0 28 28 43 0 44 87 0 55 71 91 0 0 0 0 7 0 61 10

3 0 0 0 0 45 88 0 0 0 43 37 0 0 93 97 99 77 0 39 0 40 0 0 62

4 0 0 0 0 16 0 51 0 0 83 97 95 0 37 88 0 0 49 0 61 0 0 43 78

5 0 0 0 0 0 0 100 90 0 0 47 38 15 0 0 78 4 0 0 0 0 19 35 0

6 0 0 0 0 0 0 0 40 1 0 18 0 0 0 0 0 75 58 0 70 94 0 75 0

7 0 0 0 0 0 0 0 0 44 97 0 0 65 59 0 0 38 9 58 0 66 64 44 0

8 0 0 0 0 0 0 0 0 0 0 30 0 0 36 52 0 0 0 71 0 0 61 0 0

9 0 0 0 0 0 0 0 0 0 0 0 16 76 37 91 27 96 0 0 89 12 90 11 90

10 0 0 0 0 0 0 0 0 0 0 42 57 0 81 0 0 0 92 65 99 0 24 57 0

11 0 0 0 0 0 0 0 0 0 0 0 17 97 0 0 28 95 65 0 0 87 0 20 13

12 0 0 0 0 0 0 0 0 0 0 0 0 83 0 38 0 55 0 0 74 0 0 45 77

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 52 0 33 34 63 94

14 0 52 0 69 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92 98 0 72 0 60 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 7 63 0 0 86 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 60 64 0 77 0 0

18 0 63 0 53 57

19 0

20 58 79

21 0 6 55 0

22 0 49 0

23 0 27

(a) Communication Cost: (Facility-1) x Facility

Table 44: Elloumi CTAP 2408Aa Test Case Configuration (b) (Optimal Solution: 5643)

151

BIBLIOGRAPHY

R. K. Ahuja, J. B. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic
assignment problem. Computers and Operations Research, 27:917–934, 2000.

J. T. Alander. An indexed bibliography of genetic algorithms: Years 1957-1993, volume II
of Practical Handbook of GENETIC ALGORITHMS. New Frontiers, Cambridge, Mas-
sachusetts, 1995. ISBN 0-262-08213-6 (hc) / ISBN 0- 262-58111-6 (pbk.).

B. Aldershof and O. M. Carducci. Stable matching with couples. Discrete Applied Mathe-
matics, 68:203–207, 1996.

B. Aldershof and O. M. Carducci. Stable marriage and genetic algorithms: A fertile union.
Journal of Heuristics, 5:29–46, 1999.

R. L. Axtell and S. O. Kimbrough. How much social welfare should be sacrificed in the
pursuit of stability? In Proceedings of the 2008 World Congress on Social Simulation
(WCSS-08), 2008.

D. Bai, T. Carpenter, and J. Mulvey. Making a case for robust optimization models.
Management Science, 43(7):895–907, 1997. Publisher: INFORMS.

J. E. Beasley. Or-library. World Wide Web, Accessed July 27, 2009. http://people.
brunel.ac.uk/~mastjjb/jeb/info.html, 2009.

A. Ben-Tal and A. Nemirovski. Robust solutions to uncertain programs. Operations Re-
search Letter, 25:1–13, 1998.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contam-
inated with uncertain data. Mathematical Programming, 88:411–424, 2000.

A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and applications. Math-
ematical Programming, 92:453–482, 2002.

D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,
Jan-Feb 2004.

D. Bertsimas and A. Thiele. Robust and data-driven optimization; modern decision-making
under uncertainty. Tutorials in Operations Research, INFORMS, 2006a.

D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory. Operations
Research, 54(1):150–168, 2006b.

H.-G. Beyer and B. Sendhoff. Robust optimization - a comprehensive survey. Computer
Methods in Applied Mechanics and Engineering, 196:3190–3218, 2007.

P. Biro, R. W. Irving, and I. Schlotter. Stable matching with couples - an empirical study.
Journal of Experimental Algorithmics, 16, 2011. Article No.:1.2.

152

J. Branke. Creating robust solutions by means of evolutionary algorithms. Parallel Problem
Solving from Nature V. LNCS, 1498:119–128, 1998.

B. Branley, R. Fradin, S. Kimbrough, and T. Shafer. On heuristic mapping of decision
surfaces for post-evaluation analysis. In R. H. J. Sprague, editor, Proceedings of the
Thirtieth Annual Hawaii International Conference on System Sciences, Los Alamitos,
CA, 1997. IEEE Press.

E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Shulenburg. An emerging direc-
tion in modern search technology. In F. Glover and G. Kochengerger, editors, Handbook
of Metaheuristics, volume II, page 457474. Kluwer, Cambridge, Massachusetts, 2003.

J. Carlier. Ordonnancements a contraintes disjonctives. R.A.I.R.O. Recherche Operationelle
/ Operations Research, 12:333–351, 1978.

CaRMS. Canadian resident matching service. http://www.carms.ca/. Last access, Mar. 1,
2014.

K. Cechlarova and S. Ferkova. The stable crews problem. Discrete Appl. Math., 140(1–3):
1–17, 2004.

K. Cechlarova and T. Fleiner. On a generalization of the stable roommates problem. ACM
Transactions on Algorithms, 1(1):143–156, July 2005.

R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling problems
using genetic algorithms - part i. Computers and Industrial Engineering, 30(4):983–997,
1996.

R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling problems
using genetic algorithms - part ii. Computers and Industrial Engineering, 36(2):343–364,
1999.

P. Chu and J. Beasley. A genetic algorithm for the generalized assignment problem. Com-
puters and Operations Research, 24(1):17–23, 1997.

C. Coello. Theoretical and numerical constraint handling techniques used with evolutionary
algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics
and Engineering, 191:1245–1287, 2002.

C. Coello. List of references on constraint-handling techniques used with evolutionary
algorithms. http://www.cs.cinvestav.mx/~constraint/ (Accessed Mar. 1st, 2013),
2008.

C. Coello and E. Montes. Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193–
203, July 2002.

153

C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer science + Business Media LLC, New York,
NY, 2 edition, 2007.

J.-F. Cordeau, M. Gaudioso, G. Laporte, and L. Moccia. A memetic heuristic for the
generalized quadratic assignment problem. INFORMS Journal on Computing, 18(4):
433–443, 2006.

D. Dasgupta, G. Hernandez, D. Garrett, P. K. Vejandla, A. Kaushal, R. Yerneni, and
J. Simien. A comparison of multiobjective evolutionary algorithms with informed initial-
ization and Kuhn-Munkres algorithms for the sailor assignment problem. In Proceedings
of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation,
pages 2129–2134, New York, NY, USA, 2008. ACM.

K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and
Sons, LTD, Chichester, UK, 2001.

K. Deb and S. Agarwal. A niched-penalty approach for constraint handling in genetic
algorithms. In Proceedings of the ICANNGA, Portoroz, Slovenia, 1999. Morgan Kaufmann
Publishers Inc.

J. Diaz and E. Fernandez. A tabu search heuristic for the generalized assignment problem.
European Journal of Operational Research, 132:2238, 2001.

C. M. D.O. Boyer and J. Perez. Algorithm with crossover based on confidence intervals as an
alternative to least squares estimation for nonlinear models. MIC 2001, 4th Metaheuristics
International Conference, 2001.

Z. Drezner. A new genetic algorithm for the quadratic assignment problem. INFORMS
Journal on Computing, 15(3):320–330, 2003.

K. Echenique and M. B. Yenmez. A solution to matching with preferences over colleagues.
Games and Economic Behavior, 59(1):46–71, 2007.

S. Elloumi. Tapsite. World Wide Web, Accessed Feb 27, 2014.
cedric.cnam.fr/oc/TAP/TAP.html, 2014.

V. Estivill-Castro. The role of selection in genetic algorithms. In F. Glover and
G. Kochengerger, editors, Technical Report Queensland University of Technology Faculty
of Information Technology, volume 4-96. Queensland University of Technology, Cam-
bridge, Massachusetts, 1996. ISBN 1402072635.

J. E. Falk. Exact solutions of inexact linear programs. Operations Research, 24(4):783–787,
1976. published by INFORMS.

H. Feltl and G. Raidl. An improved hybrid genetic algorithm for the generalized assignment
problem. In Proceedings of the ACM Symposium on Applied Computing (SAC04), pages
990–995, New York, NY, USA, 2004. ACM. ISBN:1–58113–812–1.

154

S. G. Ficici. Multiobjective optimization and coevolution. In J. Knowles, D. Corne, and
K. Edb, editors, Multiobjective Problem Solving from Nature: From Concepts to Applica-
tions, Natural Computing, pages 31–52. Springer, Berlin, Germany, 2008.

J. M. Fitzpatrick and J. J. Grefenstette. Genetic algorithms in noisy environments. Machine
Learning, 3:101–120, 1988.

G. W. Flake. The Computational Beauty of Nature. A Bradford Book. The MIT Press,
Cambridge, Massachusetts, 1998. ISBN-13 978-0-262-06200-8 (hc.) / 978-0-262- 56127-3
(pbk.).

T. Fleiner, R. W. Irving, and D. F. Manlove. Efficient algorithms for generalized stable
marriage and roommates problems. Theoretical Computer Science archive, 381(1–3):
162–176, Aug. 2007.

T. Fuku, A. Namatame, and T. Kaizouji. Collective efficiency in two-sided matching. In
P. Mathieu, B. Beaufils, and O. Brandouy, editors, Artificial Economics; Agent-Based
Methods in Finance, Game Theory and Their Applications, Lecture Notes in Economics
and Mathematical Systems, pages 115–126. Springer-Verlag, Berlin, Germany, 2006.

D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, Jan. 1962.

GAMSWorld. Gams world. global world. Web site
http://www.gamsworld.org/global/index.htm (Accessed Dec. 16, 2013), 2013.

A. M. Geoffrion and R. Nauss. Parametric and postoptimality analysis in integer linear
programming. Management Science, 23(5):453–466, January 1977.

L. E. Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain
data matrices. SIAM Journal on Matrix Analysis and Applications, 18:1035–1064, 1997.

F. Glover. Genetic algorithms and scatter search: unsuspected potentials. Statistics and
Computing, 4:131–140, 1994.

F. Glover and M. Laguna. Fundamentals of scatter search and path relinking. Control and
Cybernetics, 29(3):653–684, 2000.

F. W. Glover and G. A. Kochenberger, editors. Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science. Springer, Cambridge, Mas-
sachusetts, 2003. ISBN 1402072635.

D. E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-
Wesley Publishing Company, Inc., Reading,MA, 1989.

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics of Operations
Research, 28(1):1–38, February 2003.

155

H. J. Greenberg. How to analyze the results of linear programspart 1: Preliminaries.
Interfaces, 23(4):56–67, July–August 1993a.

H. J. Greenberg. How to analyze the results of linear programspart 2: Price interpretation.
Interfaces, 23(5):97–114, September–October 1993b.

H. J. Greenberg. How to analyze the results of linear programspart 3: Infeasibility diagnosis.
Interfaces, 23(6):120–139, November–December 1993c.

H. J. Greenberg. How to analyze the results of linear programspart 1: Forcing substructures.
Interfaces, 24(1):121–130, January–February 1994.

H. J. Greenberg. An Annotated Bibliography for Post-Solution Analysis in Mixed Integer
Programming and Combinatorial Optimization, volume 108 of UCD/CCM report. Uni-
versity of Colorado at Denver, Center for Computational Mathematics, 1997.

D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge, MA, 1989. ISBN 978-0262515528.

P. M. Hahn, B.-J. Kim, M. Guignard, J. M. Smith, and Y.-R. Zhu. An algorithm for the gen-
eralized quadratic assignment problem. Computational Optimization and Applications,
40(3):351–372, 2008.

M. M. Halldorsson, K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation
results for the stable marriage problem. ACM Transactions on Algorithms, 3(30), July
2007.

E. Hart, P. Ross, and D. Corne. Evolutionary scheduling: A review. Genetic Programming
and Evolvable Machines, 6(2):191–220, 2005.

S. R. Hejazi and S. Saghafian. Slowshop-scheduling problems with makespan criterion: A
review. international journal of production research. International Journal of Production
Research, 43(14):2895–2929, July 2005.

J. W. Herrmann. A genetic algorithm for minimax optimization problems. In Proceedings
of the Congress on Evolutionary Comptation, volume 2, pages 1099–1103. IEEE, 1999.

J. H. Holland. Adaptation in Natural and Artificial Systems. A Bradford Book. The MIT
Press, Cambridge, Massachusetts, 1998. ISBN 0-262-08213-6 (hc) / ISBN 0- 262-58111-6
(pbk.).

E. Ignall and L. E. Schrage. Application of the branch-and-bound technique to some flow-
shop problems. Operations Research, 13:400–412, 1965.

R. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48:261–272,
1994.

156

R. Irving. Scottish prho allocations. http://www.dcs.gla.ac.uk/~rwi/SPA.html. Last
access, Mar. 1, 2014.

R. Irving and D. Manlove. The stable roommates problem with ties. Journal of Algorithm,
43(1):85–105, 2002.

R. W. Irving and P. Leather. The complexity of counting stable marriages. Society for
industrial and Applied Mathematics (SIAM) Journal of Computation, 15(3), Aug. 1986.

R. W. Irving and S. Scot. The stable fixtures problem - a many-to-many extension of stable
roommates. Discrete Applied Mathematics, 155:2118–2129, 2007.

K. Iwama and S. Miyazaki. A survey of the stable marriage problem and its variants.
In Proceedings of International Conference on Informatics Education and Research for
Knowledge-Circulating Society (ICSK 2008), 10662 Los Vaqueros Circle, P.O. Box 3014,
Los Alamitos, CA 90720, 2008. IEEE Computer Society. ISBN 0-7695-3128-8.

K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incomplete lists
and ties. Proceedings of ICALP 1999, the 26th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science, Prague, Czech Repub-
lic, 1644:443–452, July 1999.

M. T. Jensen. Generating robust and flexible job shop schedules using genetic algorithms.
IEEE Transactions on Evolutionary Computation, 7(3):275–288, June 2003.

I. John J. Bartholdi and K. R. Gue. The best shape for a crossdock. INFORMS Trans-
portation Science, 38(2):235–244, May 2004. Article No.:1.2.

K. Jong and W. Spears. A formal Analysis of the Role of Multi-point Crossover in Genetic
Algorithms, volume 5 of Annals of Mathematics and Artificial Intelligence. Springer,
Netherlands, 1992. pp.1–26.

JRMP. Japan residency matching program. http://www.carms.ca/. Last access, Mar. 1,
2014. Site temporarily out of service and scheduled to resume from Mar. 17, 2014.

J.Shoaf and J.A.Foster. The efficient set ga for stock portfolios. In The IEEE International
Conference on Evolutionary Computation Proceedings, 1998.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, 2004.

S. Kimbrough and D.H.Wood. On how solution populations can guide revision of model
parameters. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2006), Seattle, WA, USA, 2006. ACM. July 8-12, 2006; Late breaking papers.

S. Kimbrough, M. Lu, and D. Wood. Exploring the evolutionary details of a feasible-
infeasible two-population ga. In Proceedings of the 8th International Conference on Par-
allel Problem Solving from Nature (PPSN VIII), pages 415–421, Birmingham, UK, 2002a.
Morgan Kaufmann. 18-22 September, 2004.

157

S. Kimbrough, M. Lu, D. Wood, and D. Wu. Exploring a two-market genetic algorithm. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002),
pages 415–421, San Francisco, CA, 2002b. Morgan Kaufmann.

S. Kimbrough, M. Lu, D. Wood, and D. Wu. Exploring a two-population genetic algorithm.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003),
pages 1148–1159, , Berlin, Germany, 2002c. Springer. LNCS, vol2723.

S. Kimbrough, M. Lu, and S. Safavi. Exploring a financial product model with a two-
population genetic algorithm. In Proceedings of the 2004 Congress on Evolutionary Com-
putation, pages 855–862, Piscataway, NJ,, 2004. IEEE Neural Network Society, IEEE
Service Center. ISBN 0-7803-8515-2.

S. Kimbrough, G. Koehler, M. Lu, and D. Wood. On a feasible-infeasible two-population
genetic algorithm for constrained optimization: Distance tracing and no free lunch. Eu-
ropean Journal of Operational Research, 190:310–327, 2008.

S. Kimbrough, A. Kuo, H. Lau, Lindawati, and D. Wood. On using genetic algorithms
to support post-solution deliberation in the generalized assignment problem. MIC 2009:
The VIII METAHEURISTICS INTERNATIONAL CONFERENCE, conference CD, July
2009a. 13–16 July 2009.

S. O. Kimbrough, A. Kuo, H. C. Lau, Lindawati, and D. H. Wood. On using genetic
algorithms to support post-solution deliberation in the generalized assignment problem.
MIC2009, The VIII Metaheuristics International Conference, 2009b. 2009, July 13–16,
Hamburg, Germany.

S. O. Kimbrough, A. Kuo, and H. C. Lau. Effective heuristic methods for finding non-
optimal solutions of interest in constrained optimization models. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2010). ACM, 2010.

M. Kirschner and J. Gerhart. Evolvability. In Proceedings of the National Academy of
Sciences of the United States of America, volume 95, pages 8420–8427. PNAS, 1998.
number 15.

B. Klaus, F. Klijn, and J. Masso. Some things couples always wanted to know about stable
matchings (but were afraid to ask). Review of Economic Design, 11(3):175–184, Nov
2007.

D. E. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems: An Intro-
duction to the Mathematical Analysis of Algorithms, volume 10 of CRM Proceedings and
Lecture Notes, Centre de Recherches Mathématiques Université de Montréal. American
Mathematical Society, Providence, RI, 1997. Originally published as Knuth1976.

F. Kojima. School choice: Impssibilities for affirmative action. Games and Economic
Behavior, 75:685–693, 2012.

158

T. Lau and E. Tsang. The guided genetic algorithm and its application to the general-
ized assignment problem. Tenth IEEE International Conference on Tools with Artificial
Intelligence, Nov 1998. 1998,10-12, Nov. pp.336-343.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, New York, NY, 1990.

D. G. McVitie and L. B. Wilson. The stable marriage problem. Communications of the
ACM archive, 14(7):486–490, July 1971a.

D. G. McVitie and L. B. Wilson. Algorithm 411: Three procedures for the stable marriage
problem. Communications of the ACM archive, 14(7):491–492, July 1971b.

Z. Michalewicz. A survey of constraint handling techniques in evolutionary computation
methods. In Proceedings of the 4th Annual Conference on Evolutionary Programming,
pages 135–155, Cambridge, MA, 1995. MIT Press.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutaion Programs, volume II
of Practical Handbook of GENETIC ALGORITHMS. Springer, Berlin, Germany, third
edition, 1996. ISBN 0-262-08213-6 (hc) / ISBN 0- 262-58111-6 (pbk.).

Z. Michalewicz and D. Fogel. How to Solve It: Modern Heuristics, volume II of Practical
Handbook of GENETIC ALGORITHMS. Springer, Berlin, Germany, 2000. ISBN 0-262-
08213-6 (hc) / ISBN 0- 262-58111-6 (pbk.).

B. L. Miller and D. E. Goldberg. Genetic algorithms, selection scheme, and the varying
effect of noise. Evolutionary Computation, 4(2):113–131, 1996.

O. Morgenstern. On the Accuracy of Economic Observations. Princeton University Press,
Princeton, New Jersey, 1963.

J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-scale systems.
Operations Research, 43(2):264–281, Mar-Apr 1995.

M. Nakamura, K. Onaga, S. Kyan, and M. Silva. Genetic algorithm for sex-fair stable
marriage problem. In Circuits and Systems, ISCAS ’95., IEEE International Symposium
on, volume 1, pages 509–512, Apr 1995.

R. Nauss. Solving the generalized assignment problem: An optimizing and heuristic ap-
proach. Informs Journal on Computing, 15:249266, 2003.

NRMP. National resident matching program. http://www.nrmp.org/. Last access, Mar.
1, 2014.

E. Peranson and R. R. Randlett. The nrmp matching algorithm revisited: Theory versus
practice. Acdemic Medicine, 70(6):477–484, June 1995.

159

J. Pfeiffer. Combinatorial Auctions and Knapsack Problems - An Analysis of Optimization
Methods, volume II. VDM Verlag Dr. Mueller e.K., LaVergne, Tennessee, USA, 2007.
ISBN 978-3-8364-5006-5.

M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, Berlin, Germany, 3
edition, 2008.

C. R. Reeves. A genetic algorithm for flowshop sequencing. Computers and Operations
Research, 22(1):5–13, 1995.

J. R.J. Bauer. Genetic Algorithms and Investment Strategies, volume II of Practical Hand-
book of GENETIC ALGORITHMS. John Wiley & Sons, Inc., 1994. ISBN 0-471-57679-4.

A. E. Roth. The evolution of the labor market for medical interns and residents: A case
study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

A. E. Roth. New physicians: A natural experiment in market organization. Science, 250:
1524–1528, 1990.

A. E. Roth. Deferred acceptance algorithms: History, theory, practice, and open questions.
International Journal of Game Theory, 36:537–569, 2008. DOI 10.1007/s00182-008-0117-
6.

A. E. Roth and E. Peranson. The redesign of the matching market for american physicians:
Some engineering aspects of economic design. American Economic Review, 89(4):748–780,
September 1999.

A. E. Roth and M. A. Sotomayor. Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis. Econometric Society Monographs. Cambridge University Press,
Cambridge, UK, 1990.

M. Savelsbergh. A branch-and-price algorithm for the generalized assignment problem.
Operations Research, 45:831841, 1997.

C. Singh. Convex programming with set-inclusive constraints and its applications to gen-
eralized linear and fractional programming. Journal of Optimization Theory and Appli-
cations, 38(1):33–42, 1982.

A. L. Soyster. Convex programming with set-inclusive constraints and applications to
inexact linear programming. Operations Research, 21(5):1154–1157, 1973. published by
INFORMS.

W. Spears. Adapting crossover in a genetic algorithm. Naval Research Laboratory AI
Center Report AIC-92-025, 1992. Washington, DC.

G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer, editor, Proceedings
of the third International Conference in Genetic Algorithms, San Francisco, CA, USA,
1989. ACM, Morgan Kaufmann Publishers Inc.

160

G. Taguchi. Quality Engineering through Design Optimization. Kraus International Publi-
cations, 1984.

G. Taguchi. Introduction to Quality Engineering. Kraus International Publications, 1986.

E. Taillard. Eric taillard’s page. http://mistic.heig-vd.ch/taillard/problemes.dir/
ordonnancement.dir/ordonnancement.html. Access 20130701.

D. Tate and A. Smith. Expected allele coverage and the role of mutation in genetic al-
gorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms,
1993.

S. Tsutsui and A. Ghosh. Genetic algorithms with a robust solution searching scheme.
IEEE Transactions on Evolutionary Computation, 1(3):201–208, September 1997.

N. A. Vien and T. C. Chung. Multiobjective fitness functions for stable marriage problem
using genetic algorithm. SICE-ICASE, International Joint Conference, October 2006.

N. A. Vien, N. H. Viet, H. Kim, S. Lee, and T. Chung. Ant colony based algorithm for
stable marriage problem. In K. Elleithy, editor, Advances and Innovations in Systems
Computing Sciences and Software Engineering, pages 457–461. Springer, Cordrecht, The
Netherlands, 2007. ISBN 978-1-4020-6263-6 (HB), 978-1-4020-6264-3 (e-book).

C. Voudouris and E. P. Tsang. Guided local search. In F. Glover and G. Kochengerger,
editors, Handbook of Metaheuristics, pages 185–218. Kluwer, Cambridge, Massachusetts,
2003.

A. Wagner. Robustness and Evolvability in Living Systems. Princeton Studies in Complexity.
Princeton University Press, Princeton, NJ, 2005.

K. J. Williams. A reexamination of the nrmp matching algorithm. Acdemic Medicine, 70
(6):470–476, June 1995.

J. Wilson. A genetic algorithm for the generalised assignment problem. Journal of the
Operational Research Society, 48:804–809, July–August 1993.

D. Wolpert and W. Marcready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1), April 1997.

M. Yagiura, T. T. Ibaraki, and F. Glover. A path relinking approach with ejection chains
for the generalized assignment problem. European Journal of Operational Research, 169:
548569, 2006.

O. Yeniay. Penalty function methods for constrained optimization with genetic algorithms.
Mathematical and Computational Applications, 10(1):45–56, 2005.

161

	University of Pennsylvania
	ScholarlyCommons
	1-1-2014

	Unveiling Hidden Values of Optimization Models with Metaheuristic Approach
	Ann Kuo
	Recommended Citation

	Unveiling Hidden Values of Optimization Models with Metaheuristic Approach
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	tmp.1447707996.pdf.4pyU4

