13,384 research outputs found

    Challenges in using cryptography - End-user and developer perspectives

    Get PDF
    "Encryption is hard for everyone" is a prominent result of the security and privacy research to date. Email users struggle to encrypt their email, and institutions fail to roll out secure communication via email. Messaging users fail to understand through which most secure channel to send their most sensitive messages, and developers struggle with implementing cryptography securely. To better understand how to support actors along the pipeline of developing, implementing, deploying, and using cryptography effectively, I leverage the human factor to understand their challenges and needs, as well as opportunities for support. To support research in better understanding developers, I created a tool to remotely conduct developer studies, specifically with the goal of better understanding the implementation of cryptography. The tool was successfully used for several published developers studies. To understand the institutional rollout of cryptography, I analyzed the email history of the past 27 years at Leibniz University Hannover and measured the usage of email encryption, finding that email encryption and signing is hardly used even in an institution with its own certificate authority. Furthermore, the usage of multiple email clients posed a significant challenge for users when using S/MIME and PGP. To better understand and support end users, I conducted several studies with different text disclosures, icons, and animations to find out if users can be convinced to communicate via their secure messengers instead of switching to insecure alternatives. I found that users notice texts and animations, but their security perception did not change much between texts and visuals, as long as any information about encryption is shown. In this dissertation, I investigated how to support researchers in conducting research with developers; I established that usability is one of the major factors in allowing developers to implement the functions of cryptographic libraries securely; I conducted the first large scale analysis of encrypted email, finding that, again, usability challenges can hamper adoption; finally, I established that the encryption of a channel can be effectively communicated to end users. In order to roll out secure use of cryptography to the masses, adoption needs to be usable on many levels. Developers need to be able to securely implement cryptography, and user communication needs to be either encrypted by default, and users need to be able to easily understand which communication' encryption protects them from whom. I hope that, with this dissertation, I show that, with supporting humans along the pipeline of cryptography, better security can be achieved for all

    Human Factors in Secure Software Development

    Get PDF
    While security research has made significant progress in the development of theoretically secure methods, software and algorithms, software still comes with many possible exploits, many of those using the human factor. The human factor is often called ``the weakest link'' in software security. To solve this, human factors research in security and privacy focus on the users of technology and consider their security needs. The research then asks how technology can serve users while minimizing risks and empowering them to retain control over their own data. However, these concepts have to be implemented by developers whose security errors may proliferate to all of their software's users. For example, software that stores data in an insecure way, does not secure network traffic correctly, or otherwise fails to adhere to secure programming best practices puts all of the software's users at risk. It is therefore critical that software developers implement security correctly. However, in addition to security rarely being a primary concern while producing software, developers may also not have extensive awareness, knowledge, training or experience in secure development. A lack of focus on usability in libraries, documentation, and tools that they have to use for security-critical components may exacerbate the problem by blowing up the investment of time and effort needed to "get security right". This dissertation's focus is how to support developers throughout the process of implementing software securely. This research aims to understand developers' use of resources, their mindsets as they develop, and how their background impacts code security outcomes. Qualitative, quantitative and mixed methods were employed online and in the laboratory, and large scale datasets were analyzed to conduct this research. This research found that the information sources developers use can contribute to code (in)security: copying and pasting code from online forums leads to achieving functional code quickly compared to using official documentation resources, but may introduce vulnerable code. We also compared the usability of cryptographic APIs, finding that poor usability, unsafe (possibly obsolete) defaults and unhelpful documentation also lead to insecure code. On the flip side, well-thought out documentation and abstraction levels can help improve an API's usability and may contribute to secure API usage. We found that developer experience can contribute to better security outcomes, and that studying students in lieu of professional developers can produce meaningful insights into developers' experiences with secure programming. We found that there is a multitude of online secure development advice, but that these advice sources are incomplete and may be insufficient for developers to retrieve help, which may cause them to choose un-vetted and potentially insecure resources. This dissertation supports that (a) secure development is subject to human factor challenges and (b) security can be improved by addressing these challenges and supporting developers. The work presented in this dissertation has been seminal in establishing human factors in secure development research within the security and privacy community and has advanced the dialogue about the rigorous use of empirical methods in security and privacy research. In these research projects, we repeatedly found that usability issues of security and privacy mechanisms, development practices, and operation routines are what leads to the majority of security and privacy failures that affect millions of end users

    Software Development Analytics in Practice: A Systematic Literature Review

    Full text link
    Context:Software Development Analytics is a research area concerned with providing insights to improve product deliveries and processes. Many types of studies, data sources and mining methods have been used for that purpose. Objective:This systematic literature review aims at providing an aggregate view of the relevant studies on Software Development Analytics in the past decade (2010-2019), with an emphasis on its application in practical settings. Method:Definition and execution of a search string upon several digital libraries, followed by a quality assessment criteria to identify the most relevant papers. On those, we extracted a set of characteristics (study type, data source, study perspective, development life-cycle activities covered, stakeholders, mining methods, and analytics scope) and classified their impact against a taxonomy. Results:Source code repositories, experimental case studies, and developers are the most common data sources, study types, and stakeholders, respectively. Product and project managers are also often present, but less than expected. Mining methods are evolving rapidly and that is reflected in the long list identified. Descriptive statistics are the most usual method followed by correlation analysis. Being software development an important process in every organization, it was unexpected to find that process mining was present in only one study. Most contributions to the software development life cycle were given in the quality dimension. Time management and costs control were lightly debated. The analysis of security aspects suggests it is an increasing topic of concern for practitioners. Risk management contributions are scarce. Conclusions:There is a wide improvement margin for software development analytics in practice. For instance, mining and analyzing the activities performed by software developers in their actual workbench, the IDE

    Security, Performance and Energy Trade-offs of Hardware-assisted Memory Protection Mechanisms

    Full text link
    The deployment of large-scale distributed systems, e.g., publish-subscribe platforms, that operate over sensitive data using the infrastructure of public cloud providers, is nowadays heavily hindered by the surging lack of trust toward the cloud operators. Although purely software-based solutions exist to protect the confidentiality of data and the processing itself, such as homomorphic encryption schemes, their performance is far from being practical under real-world workloads. The performance trade-offs of two novel hardware-assisted memory protection mechanisms, namely AMD SEV and Intel SGX - currently available on the market to tackle this problem, are described in this practical experience. Specifically, we implement and evaluate a publish/subscribe use-case and evaluate the impact of the memory protection mechanisms and the resulting performance. This paper reports on the experience gained while building this system, in particular when having to cope with the technical limitations imposed by SEV and SGX. Several trade-offs that provide valuable insights in terms of latency, throughput, processing time and energy requirements are exhibited by means of micro- and macro-benchmarks.Comment: European Commission Project: LEGaTO - Low Energy Toolset for Heterogeneous Computing (EC-H2020-780681

    Maps of Lessons Learnt in Requirements Engineering

    Get PDF
    Both researchers and practitioners have emphasized the importance of learning from past experiences and its consequential impact on project time, cost, and quality. However, from the survey we conducted of requirements engineering (RE) practitioners, over 70\% of the respondents stated that they seldom use RE lessons in the RE process, though 85\% of these would use such lessons if readily available. Our observation, however, is that RE lessons are scattered, mainly implicitly, in the literature and practice, which obviously, does not help the situation. We, therefore, present ``maps” of RE lessons which would highlight weak (dark) and strong (bright) areas of RE (and hence RE theories). Such maps would thus be: (a) a driver for research to ``light up” the darker areas of RE and (b) a guide for practice to benefit from the brighter areas. To achieve this goal, we populated the maps with over 200 RE lessons elicited from literature and practice using a systematic literature review and survey. The results show that approximately 80\% of the elicited lessons are implicit and that approximately 70\% of the lessons deal with the elicitation, analysis, and specification RE phases only. The RE Lesson Maps, elicited lessons, and the results from populating the maps provide novel scientific groundings for lessons learnt in RE as this topic has not yet been systematically studied in the field
    • …
    corecore