
Human Factors in Secure Software
Development

Dissertation
zur Erlangung des Doktorgrades der

Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

(Hochschulkennziffer 1180)
vorgelegt von

YASEMIN ACAR
geboren in Hannover

Hannover, 2021



Vom Fachbereich Mathematik und Informatik der
Philipps-Universität Marburg als Dissertation am
29.03.2021 angenommen.

Erstgutachter: Prof. Dr. Bernd Freisleben

Zweitgutachterin: Prof. Michelle L. Mazurek, PhD

Tag der mündlichen Prüfung: 29.03.2021



Erklärung

Ich versichere, dass ich meine Dissertation

„Human Factors in Secure Software Development“

selbstständig und ohne fremde Hilfe angefertigt, mich dabei keinen anderen als den
von mir ausdrücklich bezeichneten Quellen und Hilfen bedient und alle vollständig
oder sinngemäß übernommenen Zitate als solche gekennzeichnet habe. Die Disser-
tation wurde in der vorliegenden oder einer ähnlichen Form noch bei keiner anderen
in- oder ausländischen Hochschule anlässlich eines Promotionsgesuchs eingereicht
und hat noch keinen anderen Prüfungszwecken gedient.

(Ort/Datum) (Unterschrift mit Vor- und Zuname)





Summary

While security research has made significant progress in the development of theo-
retically secure methods, software and algorithms, software still comes with many
possible exploits, many of those using the human factor. The human factor is often
called “the weakest link” in software security. To solve this, human factors research
in security and privacy focus on the users of technology and consider their security
needs. The research then asks how technology can serve users while minimizing
risks and empowering them to retain control over their own data. However, these
concepts have to be implemented by developers whose security errors may prolif-
erate to all of their software’s users. For example, software that stores data in an
insecure way, does not secure network traffic correctly, or otherwise fails to adhere
to secure programming best practices puts all of the software’s users at risk. It is
therefore critical that software developers implement security correctly. However,
in addition to security rarely being a primary concern while producing software, de-
velopers may also not have extensive awareness, knowledge, training or experience
in secure development. A lack of focus on usability in libraries, documentation, and
tools that they have to use for security-critical components may exacerbate the prob-
lem by blowing up the investment of time and effort needed to “get security right”.
This dissertation’s focus is how to support developers throughout the process of
implementing software securely.

This research aims to understand developers’ use of resources, their mindsets as
they develop, and how their background impacts code security outcomes. Qualita-
tive, quantitative and mixed methods were employed online and in the laboratory,
and large scale datasets were analyzed to conduct this research.

This research found that the information sources developers use can contribute
to code (in)security: copying and pasting code from online forums leads to achiev-
ing functional code quickly compared to using official documentation resources, but
may introduce vulnerable code. We also compared the usability of cryptographic
APIs, finding that poor usability, unsafe (possibly obsolete) defaults and unhelp-
ful documentation also lead to insecure code. On the flip side, well-thought out
documentation and abstraction levels can help improve an API’s usability and may
contribute to secure API usage. We found that developer experience can contribute
to better security outcomes, and that studying students in lieu of professional de-
velopers can produce meaningful insights into developers’ experiences with secure
programming. We found that there is a multitude of online secure development
advice, but that these advice sources are incomplete and may be insufficient for de-
velopers to retrieve help, which may cause them to choose un-vetted and potentially
insecure resources.

This dissertation supports that (a) secure development is subject to human fac-
tor challenges and (b) security can be improved by addressing these challenges and
supporting developers. The work presented in this dissertation has been seminal
in establishing human factors in secure development research within the security
and privacy community and has advanced the dialogue about the rigorous use of
empirical methods in security and privacy research. In these research projects, we



repeatedly found that usability issues of security and privacy mechanisms, develop-
ment practices, and operation routines are what leads to the majority of security and
privacy failures that affect millions of end users.



Zusammenfassung

Obwohl in der IT-Sicherheitsforschung signifikante Fortschritte in der Erforschung
und Entwicklung theoretisch sicherer Methoden, Software und Algorithmen ge-
macht wurden, ist Software in der Praxis oft von Sicherheitsschwachstellen betrof-
fen. Darunter ist der „Faktor Mensch“ ein häufiger Angriffspunkt, der oftmals auch
als „schwächstes Glied“ in der Softwaresicherheit bezeichnet wird. Um diese Pro-
blematik anzugehen, beschäftigt sich die Forschung im Bereich „Faktor Mensch in
der Sicherheits- und Privatssphäreforschung“ mit Nutzer:innen von Technologien,
sowie mit ihren Ansprüchen an IT-Sicherheit. Die Forschung erörtert, auf welche
Weise Technologien Nutzer:innen unterstützen können, während Risiken minimiert
werden und Nutzer:innen die Kontrolle über ihre Daten behalten.

Die in der Forschung entwickelten Sicherheitslösungen sollen von Entwickler:innen
umgesetzt werden, deren sicherheitskritische Programmierfehler sich auf alle Nut-
zer:innen der entwickelten Software übertragen. Beispielsweise setzt Software, in
welcher Daten unsicher gespeichert, Netzwerkverbindungen unsicher aufgebaut oder
andere Standards der sicheren Softwareentwicklung nicht eingehalten werden, alle
ihre Nutzer:innen Sicherheitsrisiken aus. Daher ist es von entscheidender Wichtig-
keit, dass Entwickler:innen Softwaresicherheit korrekt implementieren. Die Sicher-
heit steht bei Entwickler:innen jedoch selten im primären Fokus. Außerdem fehlen
ihnen häufig Bewusstsein, Wissen, Ausbildung und Erfahrung im Bereich der si-
cheren Softwareentwicklung. Mangelnde Benutzbarkeit von Softwarebibliotheken,
-dokumentationen und unterstützenden Tools, die für sicherheitskritische Entwick-
lung genutzt werden, kann das Problem verschlimmern, da sie die für sichere Soft-
wareentwicklung notwendige Zeit und Arbeit vervielfachen.

Diese Dissertation befasst sich mit der Frage, wie Entwickler:innen im Prozess
der sicheren Softwareentwicklung unterstützt werden können.

Ziel dieser Forschung ist es, zu verstehen, wie Entwickler:innen Ressourcen nut-
zen, um (sicher) zu entwickeln, und wie ihre Haltungen und Denkweisen sowie ihr
Hintergrund und ihre Erfahrungen die Softwaresicherheit beeinflussen. Um diese
Forschung durchzuführen, wurden qualitative, quantitative und gemischte Metho-
den online und im Labor angewandt sowie große Datensätze untersucht.

Ergebnis dieser Forschung ist, dass die Informationsquellen, die Entwickler:innen
während des Programmierens benutzen, zu Sicherheit und Schwachstellen im Pro-
grammcode beitragen können. Verglichen mit der Nutzung offizieller Dokumenta-
tion, begünstigt das Kopieren und Einfügen von Codefragmenten aus Internetfo-
ren zwar die schnellere Programmierung funktionierenden Codes, führt jedoch häu-
fig zu Schwachstellen. Ebenso zeigen wir, dass schlechte Benutzbarkeit, unsichere,
möglicherweise veraltete Standardwerte sowie wenig hilfreiche Dokumentationen
kryptographischer Bibliotheken zu unsicherem Programmcode beitragen. Erfreuli-
cherweise unterstützen gut durchdachte Dokumentationen und Abstraktionslevel
die Benutzbarkeit von Softwarebibliotheken, und somit auch ihre sichere Benut-
zung. Außerdem zeigen wir, dass Studien, die Informatikstudent:innen anstelle von
Entwickler:innen als Proband:innen nutzen, aussagekräftige Forschungsergebnisse



über das Verhalten von Entwickler:innen im Prozess der sicheren Softwareentwick-
lung liefern können. Weiterhin zeigten unsere Untersuchungen, dass es online ei-
ne breite Fächerung an Ratschlägen für die sichere Softwareentwicklung zu finden
gibt, dass diese Informationsquellen jedoch häufig unvollständig sind und als ef-
fektive Hilfestellung für die sichere Softwareentwicklung ungeeignet sein können.
Dieses kann Entwicker:innen dazu verleiten, inoffizielle, nicht überprüfte und daher
potentiell unsichere Informationsquellen zur Unterstützung heranzuziehen.

Diese Dissertation belegt, dass (a) sichere Softwareentwicklung den Herausfor-
derungen des „Faktors Mensch“ unterliegt und dass (b) Softwaresicherheit verbes-
sert werden kann, indem diese Herausforderungen adressiert und Entwickler:innen
unterstützt werden. Die Forschungsarbeit, die in dieser Dissertation vorgestellt wird,
war maßgeblich daran beteiligt, den Forschungsbereich „Faktor Mensch in der Soft-
waresicherheit“ in der Sicherheits- und Privatsphäreforschung zu etablieren und
hat den wissenschaftlichen Diskurs über den rigorosen Einsatz empirischer Metho-
den in der Sicherheits- und Privatsphäreforschung vorangetrieben. In diesen For-
schungsprojekten wurde wiederholt festgestellt, dass Benutzbarkeitsprobleme von
Sicherheits- und Privatsphäremechanismen sowie von Entwicklungsprozessen und
-verhaltensweisen zum Großteil der Sicherheits- und Privatssphäreprobleme führen,
die Millionen von Nutzer:innen betreffen.



Foreword

The research in this dissertation was made possible by the support of my advisors,
mentors, co-authors, colleagues, friends and family.
I am grateful to my family for getting me excited about reading and math early, set-
ting me on a hopefully lifelong path of learning. I dedicate this dissertation to my
kind and brilliant sister. Anything I can do, you can do, too.
I would like to thank Bernd Freisleben for shepherding this dissertation across the
finish line; Michelle L. Mazurek for advising, collaborating, mentoring, and sharing
R scripts, coffee, sushi and salads with me; Sascha Fahl, for everything; Matthew
Smith, for introducing me to this research; Simson L. Garfinkel, for mentoring, col-
laborating, lunch, coffee, team workouts, and urging me to finish this dissertation
today; Angela Sasse for encouragement, many great discussions, and paving the
way; Christian Stransky, for sharing the joys and horrors of many late nights and
deadlines, as well as for latex formatting and tech support, both within and out-
side of the scope of this dissertation (I guess you can always re-use our bibliogra-
phy?); my colleagues and collaborators Dominik Wermke, Nicolas Huaman, Marten
Oltrogge, Sabrina Amft, Niklas Busch, Harjot Kaur, Johanna Schrader, Lea Gröber,
Alex Krause, Peter Leo Gorski, Karoline Busse, Sven Bugiel, and others for many fun
and productive hours; Andreas Fahl, Lara Acar, Elisabeth Stelling, Sarah Schrader
and Jan Brockmann for proofreading (all remaining typos and incorrectly-placed
commas are mine alone); my gracious and kind hosts at NIST for a lovely research
visit, including Julie Haney and Mary Theofanos; friends and awesome researchers
in the SOUPS community, who emailed me and cheered me up at the best and worst
times, including Mary Ellen Zurko; awesome people in the Security and Human
Behavior community, who helped expand my horizon; collaborators and friends,
including Brad Reaves and Adam Aviv, who have supported, discussed and en-
couraged in many ways.





List of Abbreviations

ACM Association for Computing Machinery
AIC Akaike Information Criterion
AOSP Android Open Source Project
API Application Programming Interface
App Application
CBC Cipher Block Chaining
CD Compact Disk
CFB Cipher Feedback
CFG Control Flow Graph
CTR Counter Mode
CLMM Cumulative Linked Mixed Models
CPU Central Processing Unit
DOM Document Object Model
DRM Digital Rights Management
ECB Electronic Code Book
HCI Human Computer Interaction
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
ICC Inter Component Communication
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IPC Inter Process Communication
IRM Inlined Reference Monitoring
JSON JavaScript Object Notation
MITMA Man In The Middle Attack
NDK Native Development Kit
NIST National Institute of Standards and Technology
OS Operating System
OWASP Open Web Application Security Project
PGP Pretty Good Privacy
Q&A Question & Answer
ROM Read Only Memory
SDK Software Development Kit
SELinux Security Enhanced Linux
SO Stack Overflow
SQL Structured Query Language
SSL Ssecure Socket Layer
SUS System Usability Scale
TLS Ttransport Layer Security
UI User Interface
UID Unique Identifier
URL Uniform Resource Locator
USB Universal Serial Bus



UX User Experience
VPN Virtual Private Network
XML Extensible Markup Language



Contents

Erklärung iii

Summary v

Zusammenfassung vii

Foreword ix

1 Introduction 1
1.1 Lessons Learned from Studying Usable Security for End Users . . . . . 2

1.1.1 You Are Not Your User . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Security Is A Secondary Concern . . . . . . . . . . . . . . . . . . 3
1.1.3 More is Not Always Better . . . . . . . . . . . . . . . . . . . . . 3

1.2 A Research Agenda for Usable Security for Developers . . . . . . . . . 3
1.2.1 Methodology and Ecological Validity . . . . . . . . . . . . . . . 4
1.2.2 Understanding Developers’ Motivations, Attitudes, and Knowl-

edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Investigating the Status Quo . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Improving the Status Quo . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Related and Concurrent Work . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Systematization of Android Security Research 17
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Problem and Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Android/Appified Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Ecosystem Overview . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Involved Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Global Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Systematization of Research Areas in Appified Ecosystems . . . . . . . 28
2.4.1 Permission Evolution . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Permission Revolution . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Webification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Programming-induced Leaks . . . . . . . . . . . . . . . . . . . . 38
2.4.5 Software Distribution . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.6 Vendor Customization/Fragmentation . . . . . . . . . . . . . . 42
2.4.7 Software Update Mechanism . . . . . . . . . . . . . . . . . . . . 43

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



3 On the Impact of Information Sources on Code Security 47
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Survey of Android Developers . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Android Developer Study . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Conditions and Study Setup . . . . . . . . . . . . . . . . . . . . 55
3.4.3 The Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Exit Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.5 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . 57

3.5 Lab Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 Functional Correctness Results . . . . . . . . . . . . . . . . . . . 60
3.5.3 Security Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.4 Use of Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Quality of Stack Overflow Responses . . . . . . . . . . . . . . . . . . . . 67
3.6.1 Classification Methodology . . . . . . . . . . . . . . . . . . . . . 67
3.6.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Programming Task Validity . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Comparing the Usability of Cryptographic APIs 75
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Language Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.2 Cryptographic Library Identification . . . . . . . . . . . . . . . . 79
4.3.3 Recruitment and Framing . . . . . . . . . . . . . . . . . . . . . . 81
4.3.4 Experimental Infrastructure . . . . . . . . . . . . . . . . . . . . . 81
4.3.5 Task Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.6 Python Cryptographic Libraries we Included . . . . . . . . . . . 83
4.3.7 Exit Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.8 Evaluating Participant Solutions . . . . . . . . . . . . . . . . . . 85
4.3.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Regression models . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.3 Dropouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.4 Functionality results . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.5 Security results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.6 Participant opinions . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.7 Examining individual tasks . . . . . . . . . . . . . . . . . . . . . 96

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



5 Exploring a GitHub Sample for Security Developer Studies 101
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Language Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.3 Experimental Infrastructure . . . . . . . . . . . . . . . . . . . . . 105
5.3.4 Exit Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.5 Task Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.6 Evaluating Participant Solutions . . . . . . . . . . . . . . . . . . 109
5.3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1 Statistical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 A Survey of Security Advice for Software Developers 121
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Selecting Online Resources . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3 Evaluating Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.2 Content Organization . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3 Covered Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions and Future Work 129

A Appendix: Android Documentation Study 135
A.1 Exit Survey Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B Appendix: Cryptographic APIs Study 137
B.1 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C Appendix: GitHub Study 141
C.1 Exit Survey Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2 GitHub Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.3 Installed Python libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Bibliography 147

Curriculum Vitae 169





1

Chapter 1

Introduction

This dissertation is based on six of my previous publications, all of which were written with
me as the main author. This introduction is updated, expanded and adapted from a compre-
hensive overview and research agenda, previously published as the conference paper “You are
not your developer, either: A research agenda for usable security and privacy research beyond
end users” at 2016 IEEE Cybersecurity Development. This paper was a joint effort with my
advising and supervising co-authors Sascha Fahl and Michelle L. Mazurek; we jointly re-
viewed the literature, developed future research directions and co-wrote the paper; therefore,
this chapter uses the academic “we”.
While security researchers have developed methods and tools that should improve
software security, data breaches and exploits are becoming more frequent, with both
personal and corporate data being breached [171]. Even though security research
has advanced cryptographic algorithms, access control and memory-safe applica-
tions that have been shown to offer provably strong, maybe even perfect security,
and should be able to deliver protection from most of these attacks, the rate of cy-
ber attacks continues to increase [232]. This huge gap between strong theoretical
security offered by security mechanisms and low actual security in practice can par-
tially be explained by a lack of consideration of human factors when developing
these solutions. Security mechanisms may be hard to use, may be interfering with
users’ priorities, or may make unrealistic assumptions about users’ security knowl-
edge. The security and privacy community has worked on improving the usability
of security tools and interfaces created for end users for more than 20 years.

Encrypted messaging is one interesting example: while asymmetric encryption
dates back to the 1970s [68, 209] and PGP [297] was introduced in 1991, few people
encrypt their emails. This is despite strong incentives like present day nation-state
surveillance in industrialized and digitalized countries. However, even with strong
incentives, like present day nation-state surveillance, almost no one uses end-to-end
email encryption. However, since a widely used messaging application started end-
to-end encrypting their messages by default at no additional effort for users, a large
number of encrypted messages are now sent daily [11].

Whitten and Tygar’s seminal 1999 paper analyzed email encryption as a usabil-
ity problem [272], helping to establish a new research field, the usable security and
privacy community. This community has since identified human and social science
factors, such as economics, cognitive biases, access and structure of information as
well as mindsets, as major contributors to users failing to effectively use existing se-
curity and privacy mechanisms. The usable security and privacy community aims
to understand how considering human factors can better protect users’ security and
privacy; this is done by improving the usability of existing security mechanisms and
offering guidelines for designing new mechanisms that are usable from the start.
Within the usable security and privacy community, topics that have been heavily



2 Chapter 1. Introduction

researched include email encryption [83, 98, 212, 213, 224, 272], passwords and alter-
native authentication mechanisms [33, 81, 117, 137, 157, 236], security-relevant user
interactions such as warning messages and security indicators [10, 37, 92, 219, 241,
269], and privacy controld and behaviors [7, 8, 14, 58, 208].

While progress has been made in improving end users’ adherence and some-
times even comprehension of security-critical issues, a key constituency has thus far
been understudied: Software developers make security and privacy decisions that
have a huge impact on end-user (and therefore overall ecosystem) security, and they
suffer from similar comprehension and adherence problems to end users. Although
usable security and privacy research focusing on developers is still in an early stage,
preliminary results illustrate a common theme: Developers are regular users of se-
curity and privacy mechanisms (e.g., security APIs, protocols, and tools), but are by
no means security experts [22, 85]. We argue for a systematic approach to studying
developers within the security ecosystem. While developer-usability studies target-
ing specific security tools and APIs are becoming more common [35, 280, 285], topics
are fragmented and quality research norms have not yet been firmly established. We
argue for systematizing future research on usable security 1 for developers, includ-
ing working to validate promising research methods and identifying key areas of
focus.

1.1 Lessons Learned from Studying Usable Security for End
Users

We briefly discuss key lessons learned from more than 20 years of research into us-
able security for end users, and how these lessons can apply in the developer space.

1.1.1 You Are Not Your User

Plentiful research has demonstrated that unusable end-user security tools and in-
terfaces frequently arise when the developers of these tools make unfounded as-
sumptions about what the intended users know and understand. Examples include
everything from encryption tools that expect users to understand the difference be-
tween encryption and signing [272], to browser warnings and app permission de-
scriptions that use too much security jargon [241], to expecting users to understand
the importance of software updates [80, 156, 175, 254]. In each of these cases, security
experts have expected end users to know and care about security, perhaps because
of assumed similarity bias, in which people often assume that everyone is similar to
themselves and the people they know [123].

This lesson applies even more strongly when considering security tools and APIs
used by developers. Because developers by definition have some level of technical
expertise, it is easy for security experts to mistakenly believe that developer-users
also understand security, or that expert tools need not be designed with usability in
mind. It seems likely this fallacy is at the root of unusable cryptography APIs, as
well as difficult-to-interpret outputs from bug-finding tools.

In the case of end users, these problems have been mitigated somewhat by re-
minding tool developers to consider the different needs and attitudes of end users,

1For simplicity, throughout this paper we refer to security and privacy as security. We find that
privacy-preserving or -enhancing behavior often requires the use of secure mechanisms, while good
security practice often protects privacy. The research techniques and approaches we discuss generally
apply well for both.



1.2. A Research Agenda for Usable Security for Developers 3

and by explicitly evaluating usability rather than making assumptions about what
is usable [207, 269]. We believe similar solutions can be helpful when building se-
curity tools for developers; we discuss potential targets for usability evaluation in
Section 1.2.3.

1.1.2 Security Is A Secondary Concern

The usable-security field has firmly established that security is a secondary concern
for end users; when it gets in the way of a user’s primary goal, security becomes
an annoyance to be worked around or ignored. As examples, end users adopt inse-
cure password practices when requirements become too onerous [9, 288] and ignore
security icons and warnings when they are motivated to proceed to their goal [144,
219].

This concept applies equally to developers, who have priorities—functional cor-
rectness, time to market, maintainability, economics, compliance with other corpo-
rate policies—that sometimes appear to conflict with security and are often more
salient [270]. For end users, the usable-security community frequently recommends
taking users out of the loop as much as possible [61], such as by making updates
automatic, choosing secure defaults, and forcing browsers to use HTTPS. When re-
moving the user from the loop is infeasible, the community has often emphasized
opinionated design, also called nudging or soft paternalism, which encourages users to
make more secure choices even if they do not entirely understand the situation. For
example, browser certificate warnings are designed to discourage click-through [86].
We discuss ideas for applying these approaches to developers in Section 1.2.4.

1.1.3 More is Not Always Better

A third key lesson from usable security for end users is that simply adding more
and more security advice and recommendations is not a viable solution. Piling on
advice can overwhelm users and lead them to give up on taking any steps to im-
prove security; similarly, encountering too many warnings that don’t lead to actual
harms causes habituation and disengagement. While the usable-security commu-
nity continues to struggle with this problem, recently researchers are acknowledg-
ing the overabundance of unhelpful advice and even advocating rollback of some
overzealous policies, such as password expiration [52, 60, 121]. This overabundance
of security advice has shifted the problem for end users to choosing which informa-
tion sources they trust or rely on the most [206].

Related issues are beginning to be seen in the advocacy of secure development;
for example, the proliferation of new, sometimes incompatible, encryption libraries
claiming both security and usability with little or no empirical evaluation. While
the end-user security community has not identified any comprehensive solution to
this problem, we encourage the developer security community to bear in mind that
simply asking developers to do more and more in the name of security is unlikely to
help and may even exacerbate the problem.

1.2 A Research Agenda for Usable Security for Developers

We believe that thus far, usable security for developers has been a critically under-
investigated area. Recently, the topic has begun to receive more attention, and we
expect that in the near future many researchers will address it. In this section, we



4 Chapter 1. Introduction

lay out a high-level research agenda covering what we believe are the most impor-
tant needs in this area. We organize our suggestions into four areas to investigate:
how best to conduct usable security research with developers; how developers think
about security in the context of their needs and priorities; how usable current secu-
rity tools and APIs are and where they fall short; and how to build more usable tools
and paradigms in the future.

1.2.1 Methodology and Ecological Validity

One major concern with studying usable security for developers is ecological valid-
ity: whether or not the circumstances of a study accurately reflect the real world [124].
While this is a challenge for most user studies, it’s especially challenging when tar-
geting usable security for developers, for several reasons. Because security is a sec-
ondary concern, asking users about it directly may not effectively reflect realistic
circumstances, in which developers may not be thinking about security or in which
other priorities may outweigh security concerns. In addition, recruiting professional
developers to study can be challenging: depending on the researcher’s geographical
area, there may not be many developers locally available, and those who are may
be too busy to attend studies. The hourly rates these highly specialized people are
typically paid will often exceed the researcher’s available budget. Finally, real-life
development tasks are complicated and may be difficult to simulate in a study envi-
ronment.

To address this challenge, we need methodological research investigating how
to study developers’ security behavior. One critical question is whether and in
what circumstances computer science students, who are often studied out of con-
venience, can effectively substitute for professional developers. In our work ex-
amining how information resources impact developers’ decision making, we asked
both students and professionals to complete four time-limited, security-related pro-
gramming tasks. We found that professionals outperformed students in functional
correctness, but were no more secure [4] (Chapter 3 in this dissertation). While this
result is intriguing, further investigation is needed. Is this result reproducible with
other security tasks and environments? What constitutes a professional? How do
professionals from big and small companies differ, and how do they compare to
graduate and undergraduate students from different universities? Are lab studies
necessary, or can online studies be useful? To answer these questions, controlled
comparison studies are needed; Chapter 5 includes one such study, focused on re-
cruitment from one online open source platform [6].

Researchers should also investigate what kind of study tasks work best for evalu-
ating security tools and behaviors; to do this, researchers should aim to compare con-
trolled studies with field observations. We have previously applied similar methods
to evaluate ecological validity for password studies [81, 157], while other researchers
have addressed ecological validity, e.g., for studies of security indicators [219]. We
can also learn from the software engineering community’s work investigating de-
velopers and their tools and behaviors in non-security domains [44, 72, 220, 239].



1.2. A Research Agenda for Usable Security for Developers 5

Key research questions:

• Which recruitment strategies provide representative samples of real-world
developers efficiently?

• Which study and task designs are most appropriate to measure developers’
motivations, attitudes and knowledge?

1.2.2 Understanding Developers’ Motivations, Attitudes, and Knowledge

In a landmark 1999 article, Adams and Sasse challenged the conventional wisdom
that users reject security behaviors—in this case password policies—due primar-
ily to laziness or carelessness [9]. Instead, they argued, misbehavior stemmed pri-
marily from misunderstandings, competing priorities, and challenging interfaces. A
similar consensus is starting to emerge with respect to developers’ security behav-
iors: although historically developers have been seen as “experts” in contrast to less
knowledgeable end users, many (most) developers are not experts in security, and
make errors through misunderstandings and difficult-to-use interfaces. In addition,
developers have priorities—such as adding functionality, optimizing the end-user
experience, reducing time-to-market, and reducing development costs—that often
appear to be in conflict with best security practices. Before we can develop better
tools, interfaces, and educational interventions to promote secure development, we
must investigate what developers understand about security and how they view
secure development in the context of their overall goals.

Acquiring this understanding can be approached in several ways. We can use
qualitative interviews and quantitative surveys to ask developers directly about
their security knowledge, attitudes, and decision-making processes. This parallels
Adams and Sasse’s work [9], as well as many subsequent papers evaluating end-user
security attitudes and behaviors [54, 206, 228, 254, 267]. Balebako et al. used this ap-
proach to investigate how mobile app developers make privacy-relevant decisions,
finding that lack of awareness and lack of resources contribute to poor privacy deci-
sions [22]. In the same study, the authors report on some use of third-party security
tools considered more secure than homemade implementations. We expect that a
similar study focused explicitly on security attitudes and behaviors would find re-
lated barriers and more in-depth analysis of why and how third-party security tools
are and are not used.

While studies in which participants are asked explicitly about their attitudes and
behaviors provide valuable data and important context, self-reporting is inherently
limited by human recall and by well-known psychological biases [134, 252]. To get
a complete picture, therefore, we must supplement these findings with measure-
ments of actual behavior. This can be obtained via in-situ observational studies (e.g.,
following developers to design meetings, observing their work in progress, etc.),
and by field or diary studies in which developers report on their security-relevant
decisions as they make them. This might include observing decisions like which li-
braries to use, what security threat model is appropriate, and whether to use, e.g.,
bug-finding or fuzzing tools. While these studies can be complicated, expensive,
and time-consuming, they provide rich data with strong validity that often cannot
be obtained any other way.



6 Chapter 1. Introduction

Key research questions:

• What motivates developers to use secure mechanisms and concepts, and
how can we use this to improve the status quo?

• What prevents developers from adhering to secure recommendations, and
how can we counter this?

• Which information sources do developers turn to and trust, and how can we
use this to improve security?

• Where do developers lack knowledge, and how can we either provide them
with secure information sources or secure their software without requiring
security education?

1.2.3 Investigating the Status Quo

In addition to understanding developers’ knowledge and attitudes, we must inves-
tigate how existing APIs, documentation, and tools encourage or discourage good
security behaviors. By identifying which tools work well and which fail, and why,
we can improve existing tools and build new ones that are more likely to be effective.

Existing tools and APIs can be evaluated via field and measurement studies that
capture security behaviors, implementations, and mistakes across a broad swathe of
software. For example, several studies have examined the use of TLS and cryptogra-
phy more generally in mobile apps and identified common pitfalls and errors [70, 85,
99, 205]. We propose further measurements, such as examining how insecure code
propagates on GitHub, or studying how popularity of different security libraries
correlates with common errors. These kinds of measurements can potentially be ex-
tended by contacting involved developers for follow-up interviews concerning how
libraries were chosen or how errors were made.

While field measurements provide a valuable large-scale look at how tools and
APIs are used in practice, they do not allow researchers to isolate and test specific
hypotheses. Thus, we also recommend controlled experiments to measure how con-
crete factors affect developers’ decisions. For example, in recent work we examined
how using Stack Overflow compared to official documentation affected the secu-
rity of code Android developers wrote in response to short programming tasks [4],
Chapter 3. We also conducted an experiment comparing how different cryptogra-
phy APIs affect the code developers write [3], Chapter 4. Researchers should also
measure the usability of existing bug-finding and fuzzing tools to identify problems
and pain points; these studies could be modeled on investigations of usability for
security tools used by end users, such as [83, 92, 98, 212, 213, 219, 224, 272].

In addition to field studies and lab measurements, expert review (including, e.g.,
cognitive walkthroughs and heuristic evaluations) of tools and APIs for usability can
provide valuable feedback to their authors with less time and expense. We propose
that researchers evaluate groups of related APIs and tools to provide clear evidence
of the benefits and drawbacks of each. Expert reviews are frequently used in HCI
generally and in usable security specifically [38, 56, 79, 272].



1.2. A Research Agenda for Usable Security for Developers 7

Key research questions:

• How well do current APIs, documentation, and tools support secure behav-
ior?

• In which ways should future APIs, documentation, and tools be designed to
encourage secure behavior?

• Which of APIs, documentation, and tools has the most promising impact on
security; where should we place the focus of our research?

1.2.4 Improving the Status Quo

Here, we make recommendations for improvements to APIs, tools, and other devel-
oper resources.

Usable security APIs The software engineering community has developed guide-
lines for designing usable APIs and tools generally [34, 57, 120, 165, 173], and se-
curity researchers have considered API usability at a high level as well [115, 278].
Guidelines from all these sources should be synthesized and extended to provide
concrete objectives for security APIs. We developed a framework for measuring the
usability of security APIs, and applied this framework to evaluate security APIs
in the wild [3], Chapter 4. Further work should be done both to make existing
APIs more usable—including via better documentation—as well as to introduce
new APIs that balance security and usability.

Secure, usable information resources We have shown that developers make in-
secure choices when the (usable) resource they turn to for help is offering quick
but insecure fixes[4], Chapter 3. To address this, we advocate making official doc-
umentation (which already promotes security) more interactive and usable, and to
introduce security monitoring to usable resources. More research is needed on how
to best combine usability with security in developer resources.

Developer tool support Integrating tool support into developer environments can
both raise security awareness and provide direct security feedback. For example,
we developed an exemplar Android Studio plugin that applies static code analysis
to help developers to turn insecure choices into more secure ones [172]. While de-
veloper support and IDEs that make developing faster and easier exist, no security
tools are rarely in use.

Taking developers out of the loop We recommend removing developers from the
security loop whenever possible. We have shown in the past that developers who
implement custom SSL/TLS handling nearly always make insecure choices; in re-
sponse, we suggested configurable TLS handling at the OS level [85, 176]. In a sim-
ilar vein, we recommend further research aimed at moving security management
and security-critical decisions from apps to the OS and framework levels whenever
possible. This includes but is not limited to automatic security library updates, or
automatic permission requests on Android. Not only could this reduce developers’
opportunities to make errors, but it is also compatible with the tendency to prioritize
reducing development time and effort over security correctness. Research is needed



8 Chapter 1. Introduction

to identify cases where this is possible as well as to suggest effective ways to remove
developers from the security loop without overly restricting functionality.

This dissertation presents a systematic approach to studying software develop-
ers within the security ecosystem. While studies with developers that target spe-
cific security tools and APIs are becoming more common [35, 280, 285], topics are
fragmented and quality research norms have not yet been firmly established. This
research is challenging in many ways: the population is not well-understood so far,
and these higher-skilled professionals are harder to recruit. Research that aims to
support these professionals needs interdisciplinary research teams that understand
the highly technical security problems can leverage human factor research methods
to understand the actors’ limitations and behaviors, then develop appropriate solu-
tions.

This dissertation introduces promising directions for human factor security re-
search with developers, including work to validate promising research methods and
identifying key areas of focus. Mixed methods studies of developers using APIs and
documentation are presented as well as the security outcomes for their code.

1.3 Thesis Statement

The purpose of this work is to explore the problem space of human factors in secure
programming from a usable security and privacy perspective and provide guidance
for future researchers and practitioners to build security mechanisms and tools for
developers that are easier to use for non-security experts. Accordingly, the central
thesis of this dissertation is:

Many developers are not security experts, but still use security tools, APIs and
mechanisms to build computer systems. Therefore, unnecessarily complex and un-
usable security tools, APIs, documentation and IDEs lead to a large number of soft-
ware vulnerabilities and data breaches. Considering software developers as human
factors can lead to better software security and less data breaches than current tools,
APIs, documentation and IDEs provide.
Recognition: For the research that contributed to this thesis, I received the John Karat
Usable Privacy and Security Student Research Award, which annually recognizes the best
student in the usable privacy and security community 2. The paper “You get where you’re
looking for: The Impact of Information Sources on Code Security”, Chapter 3, won the Na-
tional Security Agency’s 2016 Best Scientific Cybersecurity Paper Competition 3.

1.4 Contributions

The research that contributed to this thesis has been published as conference papers.
This section presents a summary of the the publications that contributed to this the-
sis, where they were published, and which author contributed in which way. As
is common with collaborative research, this research would not have been possible
without the significant contributions of the co-authors. Here, ∗ denotes the main au-
thor, † denotes an author with significant contribution, and +: denotes a supervising
author with significant contribution. These publications have been mildly edited
and contextualized where needed for inclusion in this thesis. The publications that
contributed to this dissertation are the following:

2https://www.usenix.org/conference/soups2020/karat-call-for-nominations
3https://cps-vo.org/node/39262

https://www.usenix.org/conference/soups2020/karat-call-for-nominations
https://cps-vo.org/node/39262


1.4. Contributions 9

You are not your developer, either: A research agenda for usable security
and privacy research beyond end users

This paper contributed to the introduction of this dissertation. We identify research
gaps and promising directions for future work in usable security and privacy for
software developers and other expert users.
Authors: Yasemin Acar∗, Sascha Fahl+, Michelle L. Mazurek+

Published at 2016 IEEE Cybersecurity Development, Acceptance Rate: 38%.
Contributions to the paper: All authors reviewed the literature, developed future research
directions and co-wrote the paper.

Paper summary While researchers have developed many tools, techniques, and
protocols for improving software security, exploits and breaches are only becom-
ing more frequent. Some of this gap between theoretical security and actual vul-
nerability can be explained by insufficient consideration of human factors, broadly
termed usability, when developing these mechanisms. In particular, security mech-
anisms may be difficult to use, may conflict with other priorities, or may assume
more security knowledge than users possess. For almost 20 years, the usable se-
curity community has investigated how to improve the usability of security tools
and interfaces aimed at end users. More recently, the community has begun to ap-
ply similar techniques in the context of improving security tools—such as APIs and
bug-finding software—aimed not at end users but at developers, whose security er-
rors are magnified across all users of their products. In this paper, we review key
lessons learned from usable security for end users and consider how to apply them
in the context of developers. We propose a research agenda aimed at developing
a high-quality, comprehensive literature for usable security for developers, includ-
ing: investigating how to conduct reliable research in this context; understanding
developers’ attitudes, knowledge, and priorities; measuring the status quo; and de-
veloping improved tools and interventions in the future.

SoK: Lessons Learned from Android Security Research for Appified Plat-
form

This paper contributed to Chapter 2 of this dissertation, Systematization of Android
Security Research. We survey the literature on Android security research, identify
lessons learned for appified platforms and identify Android developers as a promis-
ing but under-researched population.
Authors: Yasemin Acar∗, Michael Backes, Sven Bugiel∗, Patrick McDaniel, Sascha
Fahl∗, Matthew Smith.
Published at 2016 IEEE Symposium on Security and Privacy, Acceptance Rate: 13%
Contributions to the paper: Sascha Fahl, Sven Bugiel and I conducted the literature re-
view and systematization, and wrote the paper. The remaining authors provided guidance.

Paper summary Android security and privacy research has boomed in recent years,
far outstripping investigations of other appified platforms. However, despite this
attention, research efforts are fragmented and lack any coherent evaluation frame-
work. We present a systematization of Android security and privacy research with a
focus on the appification of software systems. To put Android security and privacy



10 Chapter 1. Introduction

research into context, we compare the concept of appification with conventional op-
erating system and software ecosystems. While appification has improved some
issues (e.g., market access and usability), it has also introduced a whole range of
new problems and aggravated some problems of the old ecosystems (e.g., coarse
and unclear policy, poor software development practices). Some of our key findings
are that contemporary research frequently stays on the beaten path instead of fol-
lowing unconventional and often promising new routes. Many security and privacy
proposals focus entirely on the Android OS and do not take advantage of the unique
features and actors of an appified ecosystem, which could be used to roll out new
security mechanisms less disruptively. Our work highlights areas that have received
the larger shares of attention, which attacker models were addressed, who is the tar-
get, and who has the capabilities and incentives to implement the countermeasures.
We conclude with lessons learned from comparing the appified with the old world,
shedding light on missed opportunities and proposing directions for future research.

You get where you’re looking for: The Impact of Information Sources on
Code Security

This paper contributes to Chapter 3 of this dissertation, On the Impact of Infor-
mation Sources on Code Security. We conduct a security developer study with
Android developers to compare the impact of developer documentation on code se-
curity and show that documentation usability and secure code examples are crucial
for secure software.
Authors: Yasemin Acar∗, Michael Backes, Sascha Fahl+, Doowon Kim†, Michelle L
Mazurek+, Christian Stransky∗.
Published at 2016 IEEE Symposium on Security and Privacy, Acceptance Rate: 13%.
Contributions to the paper: Christian Stransky, Sascha Fahl, Michelle L. Mazurek and
I designed the online survey and evaluated it and designed the controlled experiment, con-
ducted the experiment and evaluated the experiment. Doowon Kim helped in conducting the
experiment. Sascha Fahl and I designed the API call confirmation study. Christian Stransky
and Sascha Fahl conducted and evaluated the API call search. Christian Stransky, Doowon
Kim, Michelle L. Mazurek, Sascha Fahl and I co-wrote the paper. We are grateful to Sven
Bugiel for assisting in the controlled experiment, and Marten Oltrogge for assisting in the
API call search.
Recognition: This paper was recognized as the 2016 Best Scientific Cybersecurity Paper by
the National Security Agency (NSA). Based on the research in this paper, Google awarded
Sascha Fahl a Faculty Research Award, on which I was the lead research student 4.

Paper summary Vulnerabilities in Android code – including but not limited to in-
secure data storage, unprotected inter-component communication, broken TLS im-
plementations, and violations of least privilege – have enabled real-world privacy
leaks and motivated research cataloguing their prevalence and impact. Researchers
have speculated that appification promotes security problems, as it increasingly al-
lows inexperienced laymen to develop complex and sensitive apps. Anecdotally,
Internet resources such as Stack Overflow are blamed for promoting insecure solu-
tions that are naively copy-pasted by inexperienced developers.

In this paper, we for the first time systematically analyzed how the use of in-
formation resources impacts code security. We first surveyed 295 app developers
who have published in the Google Play market concerning how they use resources

4https://services.google.com/fh/files/blogs/v2_final_list.pdf

https://services.google.com/fh/files/blogs/v2_final_list.pdf


1.4. Contributions 11

to solve security-related problems. Based on the survey results, we conducted a lab
study with 54 Android developers (students and professionals), in which partici-
pants wrote security- and privacy-relevant code under time constraints. The par-
ticipants were assigned to one of four conditions: free choice of resources, Stack
Overflow only, official Android documentation only, or books only. Those partic-
ipants who were allowed to use only Stack Overflow produced significantly less
secure code than those using, the official Android documentation or books, while
participants using the official Android documentation produced significantly less
functional code than those using Stack Overflow.

To assess the quality of Stack Overflow as a resource, we surveyed the 139 threads
our participants accessed during the study, finding that only 25% of them were help-
ful in solving the assigned tasks and only 17% of them contained secure code snip-
pets. In order to obtain ground truth concerning the prevalence of the secure and
insecure code our participants wrote in the lab study, we statically analyzed a ran-
dom sample of 200,000 apps from Google Play, finding that 93.6% of the apps used
at least one of the API calls our participants used during our study. We also found
that many of the security errors made by our participants also appear in the wild,
possibly also originating in the use of Stack Overflow to solve programming prob-
lems. Taken together, our results confirm that API documentation is secure but hard
to use, while informal documentation such as Stack Overflow is more accessible but
often leads to insecurity. Given time constraints and economic pressures, we can ex-
pect that Android developers will continue to choose those resources that are easiest
to use; therefore, our results firmly establish the need for secure-but-usable docu-
mentation.

Comparing the Usability of Cryptographic APIs

This paper contributes to Chapter 4 of this dissertation, Comparing the Usability
of Cryptographic APIs. We investigate the impact of cryptographic API usability
on code security in a security developer study with experienced Python developers
and find that API simplicity is insufficient for secure outcomes, and that safe de-
faults and supportive documentation is needed.
Authors: Yasemin Acar∗, Michael Backes, Sascha Fahl+, Simson L. Garfinkel+, Doowon
Kim†, Michelle L. Mazurek+, Christian Stransky∗.
Published at 2017 IEEE Symposium on Security and Privacy, Acceptance Rate: 13%.
Contributions to the paper: Christian Stransky, Doowon Kim and Sascha Fahl conducted
the preliminary survey of libraries; based on critera all authors discussed, we chose the li-
braries. Christian Stransky, Michelle L. Mazurek, Sascha Fahl and I designed the study.
Simson L. Garfinkel and I conducted the literature review. Michelle L. Mazurek and I de-
signed the questionnaire. Christian Stransky and Sascha Fahl conducted the experiment.
Christian Stransky, Doowon Kim, Michelle L. Mazurek, Sascha Fahl and I evaluated the
experiment. Christian Stransky, Doowon Kim, Michelle L. Mazurek, Sascha Fahl and I
co-wrote the paper. Simson L. Garfinkel, Michelle L. Mazurek and Sascha Fahl supervised
throughout.
Recognition: After its publication, this paper was invited for presentation at Real World
Crypto 2018.

Paper summary Potentially dangerous cryptography errors are well-documented
in many applications. Conventional wisdom suggests that many of these errors are
caused by cryptographic Application Programming Interfaces (APIs) that are too
complicated, have insecure defaults, or are poorly documented. To address this



12 Chapter 1. Introduction

problem, researchers have created several cryptographic libraries that they claim
are more usable; however, none of these libraries have been empirically evaluated
for their ability to promote more secure development. This paper is the first to exam-
ine both how and why the design and resulting usability of different cryptographic
libraries affects the security of code written with them, with the goal of understand-
ing how to build effective future libraries. We conducted a controlled experiment in
which 256 Python developers recruited from GitHub attempt common tasks involv-
ing symmetric and asymmetric cryptography using one of five different APIs. We
examine their resulting code for functional correctness and security, and compare
their results to their self-reported sentiment about their assigned library. Our re-
sults suggest that while APIs designed for simplicity can provide security benefits—
reducing the decision space, as expected, prevents choice of insecure parameters—
simplicity is not enough. Poor documentation, missing code examples, and a lack of
auxiliary features such as secure key storage, caused even participants assigned to
simplified libraries to struggle with both basic functional correctness and security.
Surprisingly, the availability of comprehensive documentation and easy-to-use code
examples seems to compensate for more complicated APIs in terms of functionally
correct results and participant reactions; however, this did not extend to security re-
sults. We find it particularly concerning that for about 20% of functionally correct
tasks, across libraries, participants believed their code was secure when it was not.

Our results suggest that while new cryptographic libraries that want to promote
effective security should offer a simple, convenient interface, this is not enough: they
should also, and perhaps more importantly, ensure support for a broad range of
common tasks and provide accessible documentation with secure, easy-to-use code
examples.

Security Developer Studies with GitHub Users: Exploring a Convenience
Sample

This paper contributes to Chapter 5 of this dissertation, Exploring a GitHub Sam-
ple for Security Developer Studies. We perform a security developer study with
GitHub users to explore sample parameters, and find that they represent a diverse
population that vary strongly in their software development experience, and partic-
ularly in their security expertise.
Authors: Yasemin Acar∗, Christian Stransky∗, Dominik Wermke†, Michelle L. Mazurek+,
Sascha Fahl+.
Published at Symposium on Usable Privacy and Security 2017, Acceptance Rate:
27%.
Contributions to the paper: Christian Stransky, Michelle Mazurek and I designed the
study. Christian Stransky, Sascha Fahl and I conducted the study. All authors evaluated
and co-wrote the paper.

Paper summary The usable security community is increasingly considering how
to improve security decision-making not only for end users, but also for information
technology professionals, including system administrators and software develop-
ers. Recruiting these professionals for user studies can prove challenging, as, rela-
tive to end users more generally, they are limited in numbers, geographically con-
centrated, and accustomed to higher compensation. One potential approach is to
recruit active GitHub users, who are (in some ways) conveniently available for on-
line studies. However, it is not well understood how GitHub users perform when
working on security-related tasks. As a first step in addressing this question, we



1.5. Related and Concurrent Work 13

conducted an experiment in which we recruited 307 active GitHub users to each
complete the same security-relevant programming tasks. We compared the results
in terms of functional correctness as well as security, finding differences in perfor-
mance for both security and functionality related to the participant’s self-reported
years of experience, but no statistically significant differences related to the partici-
pant’s self-reported status as a student, status as a professional developer, or security
background. These results provide initial evidence for how to think about validity
when recruiting convenience samples as substitutes for professional developers in
security developer studies.

Developers need support, too: A survey of security advice for software
developers

This paper contributes to Chapter 6 of this dissertation, A Survey of Security Ad-
vice for Software Developers. We survey web resources for developers, evaluate
their usefulness and effectiveness in promoting security in practice, and identify im-
portant gaps in the current ecosystem.
Authors: Yasemin Acar∗, Christian Stransky∗, Dominik Wermke∗, Charles Weir†,
Michelle L. Mazurek, Sascha Fahl+.
Published at 2017 IEEE Cybersecurity Development
Contributions to the paper: Christian Stransky, Dominik Wermke, Michelle L. Mazurek,
Sascha Fahl and I designed the study. Christian Stransky, Dominik Wermke and Charles
Weir conducted the coding. All authors evaluated and co-wrote the paper.

Paper summary Increasingly developers are becoming aware of the importance of
software security, as frequent high-profile security incidents emphasize the need for
secure code. Faced with this new problem, most developers will use their normal
approach: web search. But are the resulting web resources useful and effective at
promoting security in practice? Recent research has identified security problems
arising from Q&A resources that help with specific secure-programming problems,
but the web also contains many general resources that discuss security and secure
programming more broadly, and to our knowledge few if any of these have been
empirically evaluated. The continuing prevalence of security bugs suggests that this
guidance ecosystem is not currently working well enough: either effective guidance
is not available, or it is not reaching the developers who need it. This paper takes a
first step toward understanding and improving this guidance ecosystem by identify-
ing and analyzing 19 general advice resources. The results identify important gaps
in the current ecosystem and provide a basis for future work evaluating existing
resources and developing new ones to fill these gaps.

1.5 Related and Concurrent Work

The work in this dissertation has supported that (a) secure software development
is subject to human factor challenges and (b) software security can be improved by
addressing these challenges and supporting software developers. While our studies
were conducted, several other avenues were explored by other research groups, ei-
ther concurrently or following our work. We published our research agenda for this



14 Chapter 1. Introduction

field in 2016 [5], Section 1.1, since then, many of our calls to action have been real-
ized, both by works in this thesis, and by the broader research community. A sum-
mary of the work in this field has since been published: In 2018, Tahaei and Vaniea
conducted a survey of 49 studies with developers as participants, identifying that
research is being conducted into tools, mindsets and methodology, finding that pri-
vacy engineering and team efforts are currently understudied [243]. A thoughtpiece
on how concepts from usability work with end users might or might not translate to
work with developers was written by Pieczul et al. in 2017 [187], and discussed at
the New Paradigms in Security Workshop, where the first ideas about human factors
in security, by Mary Ellen Zurko, also originated. This dissertation explored the con-
cept of human factors in secure software development. Initially, we systematized the
field of Android security research and identified secure software development chal-
lenges [2], Chapter 2. This knowledge of security challenges in Android has helped
inform our work with software developers. We presented a study on how informa-
tion sources impact the ability to write functional, secure code [4], Chapter 3. Since
then, Stack Overflow as a resource, and how developers interact with it, has been
studied [147], finding that developers tend to select code snippets based on sup-
plementary information, regardless of whether the example is secure. We found in
2017 that easy-to-implement suggestions in the software development environment,
based on static code analysis, can help application developers fix possible insecure
code as they type [172]. In 2018, we found that even with a relatively easy-to-use
method for obfuscation built into Android Studio, obfuscation is not widely used
and developers struggle to implement it beyond the basic use case [271]. This sug-
gests that tooling can help catch some “low-hanging fruit” software security issues,
but a more comprehensive approach may be needed to cover those cases that cannot
be addressed automatically.

We compared the usability of cryptographic APIs and found that certain deficien-
cies in usability track with insecure programming outcomes [3], Chapter 4, which
resulted in interesting discussions with some of the developers of some of the APIs
we investigated. After this paper was published, Gorski et al. [110] developed a
warning message that can be implemented by library developers, and is shown at
compile time to prevent going forward with potentially insecure code. This is an
exciting result, as it shows that those experts who are already knowledgeable about
the libraries they write can make additional usable contributions to code security in
projects that use their libraries. The same team conducted a focus group study with
software developers to co-design said warning message for better acceptance [109],
finding that developers have varying preferences depending on where in the process
the message will be shown. Patnaik et al. further identified developers’ “usability
smells”, common problems with cryptographic APIs [182]. While the software engi-
neering community has investigated how developers choose APIs [141], it is unclear
whether this transfers to cases relevant to software security. There is also no tried
and tested comprehensive blueprint yet for how to make security APIs usable.

Assal and Chiasson found that general software and web developers vary in
their adherence to the secure development lifecycle [17]. Tahaei et al. explored
computer science students’ mindsets, finding that their security mindsets some-
what resemble those of professional developers, and that security is rarely a priority,
and quickly finding functional solutions by implementing pre-existing code is com-
mon [242]. Assal et al. surveyed software developers, finding that vulnerabilities
may stem from a lack of organizational support [18]. Votipka et al. further explored
developers’ mindsets: They found that hackers and testers were two programmer



1.5. Related and Concurrent Work 15

archetypes [261]. They also further investigates how developers create vulnerabili-
ties [260] and developed a scale for secure development self-efficacy [259]. Thomas
et al. find that application developers often interact with security via auditors, out-
sourcing security reviews. They suggest incentivizing developers to integrate secu-
rity into development in the first place [250]. Poller et al. found that security training
does not necessarily translate into secure behavior [189]. Haney at al. found strong
security mindsets in organizations that develop cryptographic products, finding that
those mindsets both develop from the top down, and stay with employees as a sense
of identity [116]. This shows the important role of mindset, practice and education,
which is promising, given that universities, where many developers obtain their ed-
ucation, are starting to include security, usability and combinations thereof in their
coursework.

We hope that the results in this dissertation, and more broadly, in this field, will
continue to help practitioners in implementing software securely, and inspire new
research on how to support software developers in writing secure code.





17

Chapter 2

Systematization of Android
Security Research

Disclaimer: The contents of this chapter were previously published as part of the conference
paper “SoK: Lessons Learned From Android Security Research For Appified Software Plat-
forms”, presented at the 2016 IEEE Symposium on Security and Privacy. This research was
conducted as a team with my co-authors Sven Bugiel, Sascha Fahl, Matthew Smith, Patrick
McDaniel and Michael Backes; this chapter therefore uses the academic “we”. The idea and
initial concept for the systematization came from myself and Sascha Fahl. Sascha Fahl, Sven
Bugiel and I conducted the literature survey. We received input on the systematization from
all other authors and co-wrote the paper for publication. This work reflects the state of early-
2016 Android, as well as early-2016 research on appified ecosystems. Empirical research in
Chapter 3 builds on knowledge of that same time-period Android.

2.1 Motivation

Over the last couple of years, the appification of software has drastically changed
the way software is produced and consumed and how users interact with computer
devices. With the rise of web and mobile applications, the number of apps with
a highly specialized, tiny feature set drastically increased. In appified ecosystems,
there is an app for almost everything, and the market entrance barrier is low, attract-
ing many (sometimes unprofessional) developers. Apps are encouraged to share
features through inter-component communication, while risks are communicated
to users via permission dialogs. Based on the large body of research available for
Android as the pioneer of open source appified ecosystems, a systematization of
Android security and privacy research can help to understand the progress that has
been made, as well as remaining research gaps in appified ecosystems. Therefore
we focus on the dominant appified ecosystem with a large real-world deployment:
Android.

Necessity of a Systematization of Android/Appification Security. The large body of lit-
erature uncovered a myriad of appification-specific security and privacy challenges
as well as countermeasures to face these new threats. As with all new research fields,
there is no unified approach to research. As a consequence, efforts over the last half
decade necessarily pioneered ways to examine and harden these systems. A prob-
lem with this approach is that there are lots of fragmented efforts to improve security
and privacy in an appified platform, but no unified framework or understanding of
the ecosystem as a whole. Therefore, we believe that it is time to systematize the re-
search work on security and privacy in appified platforms, to offer a basis for more
systematic future research.



18 Chapter 2. Systematization of Android Security Research

Challenges and Methodology of the Systematization. While the fragmentation of the
Android security research is our main motivation, it is at the same time our biggest
challenge. Contributions to this research field have been made in many different
areas, such as static code analysis, access control frameworks and policies, and us-
able security for end users as well as app and platform developers. To objectively
evaluate and compare the different approaches, our first step will be to create a com-
mon understanding of the different security and privacy challenges and a universal
attacker model to express these threats. Security solutions are by default designed
with a very specific attacker model in mind. We found that in most Android re-
search, this attacker model has been only implicitly expressed. However, to under-
stand the role of a (new) approach within the context of Android’s appified ecosys-
tem, it is also important to understand which attacker capabilities it does not cover
and how different approaches can complement one another. By studying the eval-
uation details of many representative approaches from the literature, we create a
unified understanding of attacker capabilities. This forms the basis for analyzing
the security benefits of different solutions and lays the groundwork for comparing
approaches with respect to their role in the overall ecosystem.

One insight from our analysis of the challenges in Android’s appified ecosystem,
is that some security issues are new and unique to Android, as caused by the appifi-
cation paradigm or the result of design decisions of its architects. Other well-known
problems are aggravated by appification, while many security issues are lessened
or solved by the appification paradigm. Such understanding is key to transcend-
ing Android to develop a broader picture of the future of software systems and the
environments they will be placed in.

In particular, the tight integration of many non-traditional actors in the appified
ecosystem creates interesting problems as well as opportunities. Platform develop-
ers, device vendors, app markets, library providers, app developers, app publish-
ers, toolchain providers and end users all have different capabilities and incentives
to contribute (in)securely to the ecosystem. Our systematization makes the impor-
tant contribution of showing how previous research has interacted with these ac-
tors, identifying contributing factors to our research community’s work creating a
real-world impact.

Based on our systematization of this knowledge, we draw lessons learned from
our community’s security research that provide important insights into the design
and implementation of current and future appified software platforms. We also cre-
ate an overview of which areas have received focused attention and point out areas
where research went astray. Finally, we address underrepresented areas that could
benefit from or require further analysis and effort.

Please note that we are not discussing plausible problems and benefits of re-
search solutions for adoption by Google or other vendors. Such factors can be man-
ifold, such as technical reasons (e.g., backwards compatibility), business decisions
(e.g., interference with advertisement networks), protection of app developers (e.g.,
intrusion of application sandboxes), or usability aspects. However, without con-
crete first-hand knowledge, any such discussion would merely result in speculation,
which we do not consider a tangible contribution of a systematization of knowledge.

Systematization Methodology

There is a huge body of research work on Android security with (conservatively)
over 100 papers published. Since we aim to systematize this research as opposed to
offering a complete survey [240], we extracted key aspects and key papers to create



2.2. Problem and Research Areas 19

a foundation for our systematization. The focus of our systematization is on security
issues and challenges in the context of appification and the app market ecosystem.
We include both offensive works (i. e. papers that uncovered new security issues
or classes of attacks) as well as defensive ones (i. e. papers that focus on counter-
measures or new security frameworks). However, we do not focus on malware on
appified platforms, as this has been dealt with in prior work [294]. We also exclude
hardware-specific or other low level problems on mobile platforms, such as CPU
side-channels, differential power analysis, or base-band attacks, which are indepen-
dent from appification.
We selected the research based on the following criteria:

• Unique/Pioneering—Security issues which are unique to the Android ecosys-
tem, i.e. have never been seen before.

• Aggravated—Security issues which have greater impact on an appified ecosys-
tem than on traditional computing.

• Attention—Research on aspects that received more attention (i. e. many papers
dealt with this specific aspect or the papers received high citation counts).

• Impact—Security research that affected a large number of users (or devices).

• Scope—Security issues which involve a large fraction of the appified world’s
actors. We include these issues since they are particularly hard to fix.

• Open Challenges—Research worked on issues or countermeasures that remain
“unfinished” and highlight interesting and important areas of future work.

In the following, we systematize the research using the above rubric, extract a
unified attacker model and evaluate the work both in terms of content and also on
its placement within the Android ecosystem. We identify actors that are responsi-
ble for the problems, would benefit from solutions, and/or have the capability to
implement and deploy them.

2.2 Problem and Research Areas

To identify important problem and research areas, we compare aspects of traditional
software ecosystems with appified platforms, mainly focusing on Android.

Conventional Software Ecosystem vs. Appified Platform (Android)

We start our systematization by categorizing and summarizing key security chal-
lenges and issues that have been identified in the literature in both conventional
software ecosystems and the appified world. Our intention for systematizing the key
security challenges is to provide a systematic approach to help security researchers
understand the (old and new) challenges that have been identified and to lay the
foundation for a discourse on addressing these challenges.

Defining the Access to Resources

Controlling access to resources on a computer system requires 1) accurate definition
of the security principals and protected resources in the system; 2) a non-bypassable
and tamper-proof validation mechanism for any access (reference monitor); and 3) a



20 Chapter 2. Systematization of Android Security Research

sound security policy that governs, for all requested accesses in any system state,
whether access is allowed or should be denied. Android deviates from conventional
OSes in all three aspects:

System Security Principals Conventional systems are primarily designed as multi-
user systems with human users that have processes executing on their behalf. A
small number of dedicated user IDs is assigned to system daemons and services
that do not execute on behalf of a human user.

Appified security models build on the classic multi-user system: not only is the
human user of the system considered a principal, but in fact all app developers that
have their app(s) installed on the system are considered as security principals. De-
velopers are represented by their app, which receives a distinct user ID (UID), ex-
actly like the pre-installed system apps receive a UID. In recent Android versions
with multi-(human)-user support, the traditional UID scheme is further extended:
the UID is now a two-dimensional matrix that identifies the combination of the app
UID (i.e., developer) and human user ID under which the app is currently running.

Implementation of the Reference Monitor Conventionally, reference monitoring
is typically managed by the OS, e.g., the file system and network stack, so that user
processes can build their access control on top.

Appified ecosystems also use the OS for low-level access control. However, the
extensive application frameworks on top of which apps are deployed provide a dif-
ferent interface: following the paradigm of IPC-based privilege separation and com-
partmentalization in classical high assurance systems, security- and privacy-critical
functionality is consolidated into dedicated user-space processes. Exposed IPC in-
terfaces enforce access control on calling processes.

Security Policy In conventional software systems, multiple privilege level(s) for
a process are defined: Processes can run as superuser (root), system services, with
normal user privileges, guest privileges, and so on. All processes running under a
certain privilege level share the same set of permissions and may access the same set
of resources.

Modern appified ecosystems make a clearer distinction between system and third-
party apps: Direct access to security- and privacy-sensitive resources (e.g., driver
interfaces or databases) is only permitted to selected applications and daemons of
the application framework. This policy is implemented, as in the conventional plat-
forms, in the OS access control policies (i.e., discretionary and mandatory access con-
trol). However, system apps may request access to permissions that are not available
to third-party apps. Third-party apps have by default no permissions set, but may
request their permissions from a set commonly available to all third-party apps.

Sharing Functionalities

In conventional operating systems, third-party apps are usually self-contained and
heavily used to incorporate external functionalities as libraries (e.g. the OpenSSL
library to make TLS available in a program).

In addition to third-party libraries, in the appified world, apps also share func-
tionality through inter-component communication (ICC), i.e., by providing a Service
that can be accessed through Intents or persistent IPC connections. ICC is heavily



2.2. Problem and Research Areas 21

used to access system apps such as the map, phone, or Play app, but also popular
third-party services, e.g., as offered by the Facebook and Twitter apps.

Software Distribution

Conventionally, software is distributed in a decentralized way: It can be down-
loaded from websites, purchased in online stores or shipped on physical media such
as USB sticks or CDs. Software comes either in compiled binaries or, in case of open
source software, as source code that needs to be compiled before installation.

Appified ecosystems often make use of centralized stores that distribute soft-
ware/apps. These app stores allow developers to upload and distribute their soft-
ware in a highly organized way. The app markets provide search, feedback and
review interfaces for users and allow for centralized security mechanisms that can
be enforced by the markets directly. We distinguish between commercial app mar-
kets such as Google Play and central software repositories that are widely used in
different Linux distributions. In addition to simply distributing software by stream-
lining the process of searching and installing apps, commercial app markets have
additional responsibilities such as billing, DRM (e.g., forward locking on Android)
and in-app purchasing.

Software Engineering

Development Process Previously, single developers/companies developed soft-
ware and in many cases distributed it themselves. They followed agreed-on rules
(e.g., IDE, libraries, or frameworks to use) and could outsource in a regulated way
to contracted (sub-)companies. In appified ecosystems, a chain of actors is responsi-
ble for the distribution of software, which is much more loosely coupled than the
more stringent traditional development chains: The original developer, (often) a
publisher, and increasingly development frameworks are involved.

Programming Environment In conventional operating systems, developers can
choose what programming language they want to use (within the design space that
the project leaves them), and a wide range of programming languages and frame-
works are usually available to implement software. Appified ecosystems dictate
programming languages and frameworks to enforce compatibility with their ap-
plication framework and hence robustness of the deployed applications. Android
developers, for instance, are required to use Java and the Android SDK/NDK. App
creators play a crucial role in modern appified ecosystems: They provide easy-to-use
clickable interfaces to produce software that can be run on multiple platforms.

Present Classes of Programming Errors

Programming errors, such as logic errors and run-time errors, are the dominant
sources of software vulnerabilities in conventional software ecosystems. While re-
cent years have demonstrated that they are also present in mobile platforms with
the same devastating effects, the API-dependent design of apps has introduced a
new range of problems into the appified world as a direct consequence of misuse
of programming APIs of the surrounding application framework. This differs from
the traditional ecosystem, where this class of errors is limited mostly to library APIs,
since the application framework API is a necessity to make apps operational.



22 Chapter 2. Systematization of Android Security Research

Ecosystem Security Impact

3rd Party App
3rd Party App

Google Play 3rd Party Market

Application Framework

Advertisement 
Networks

Web Services

App Developers

Inter-Process Communication

Android Platform

Sideloading

Market Operators

App Developers /
Library Providers

End User

Platform Developer /
OS Vendor

Android Middleware

Linux

Install

Access Android API

Publish AppPublish App

IPC IPC

N
et

w
or

k

Library (e.g. Ads)

Tool Chain 
Provider

Uses tool chain
Tool Chain Providers

FIGURE 2.1: The Android ecosystem: Actors and their impact on the
ecosystem’s security.

Webification

In conventional software ecosystems, software is mainly self-contained and its pri-
mary functionality does not depend on the availability of remote resources such
as web services. The appification paradigm has seen a shift towards increasingly
web service-oriented architectures that depend on server backends to provide their
promised functionality. At the end of the spectrum are apps that consist merely of a
webview component that appears to be local app logic, but in fact is not much more
than a restricted web browser for the service’s backend web servers.

Software Update Mechanisms

Conventional OS updates are centrally organized, while the updating process for
third-party software takes, in contrast, a greater effort: Every program needs to be
updated (and hence, often started and restarted) separately. Only systems with a
central software distribution channel improve on this situation (e.g., Linux distribu-
tions). The situation for updates in appified ecosystems is currently the exact op-
posite. Fragmentation is a huge issue in appified ecosystems, such as Android, and
impedes the OS update process. As many different network providers and device
vendors customize parts of the operating system, they need to manage OS updates
on their own, resulting in lengthy and complicated update procedures. As a result,
many Android devices do not receive OS updates at all. In contrast, app updates
are straightforward and fast, as centralized app stores push updates immediately to
their users.

2.3 Android/Appified Ecosystem

As an example for appification, we provide an overview of the Android ecosystem,
the actors involved and their impact on the ecosystem’s overall security. We use
Figure 2.1 as our reference to introduce the actors and their interaction patterns.

2.3.1 Ecosystem Overview

At the core of appification ecosystems are the app developers, producing the millions
of apps available for the end users. The number of Android app developers is vastly



2.3. Android/Appified Ecosystem 23

larger than for the traditional desktop software ecosystem. For instance, in the cur-
rent Play market1 roughly 460,000 distinct developer accounts have published ap-
plications, where an account can also belong to an entire company or team of de-
velopers. These app developers rely on the rich APIs of the platform SDK, which is
provided by the platform developers. These APIs provide access to core functionalities
(e.g., telephony, connectivity and sensors like accelerometers) as well as to user data
(e.g., contact management, messaging, picture gallery).

Developers can request access to those functionalities by requesting permissions
in their app’s manifest file (e.g. the CONTACTS permissions grants access to the user’s
address book). End users are presented permission dialogs at install time. Those
dialogs present all the permissions previously requested by a developer and inform
users about an app’s resource access. Since version 6 (Marshmallow), Android also
introduced, like iOS has done several iterations before, the concept of dynamic per-
missions: a small subset of all permissions are granted by the user at runtime when
an app requests access to protected interfaces instead of statically at install time, and
those selected permissions can also be revoked again by the user. It is also possi-
ble for developers to define custom permissions that can grant access to their app’s
functionality to other apps written by the same developer, system apps, or all apps
installed on the device.

Android apps are composed of Java code (compiled to bytecode format for the
CPUs of mobile platforms) and of native code in the form of C/C++ shared libraries.
Library providers such as advertisement networks support developers in creating ad-
supported apps by offering dedicated ad libraries that apps can rely on, thus firmly
integrating the ad library in the final application package. Many apps connect to
web-services (e.g., cloud-based services or other backends) and use web-technologies
such as HTML, CSS and Javascript. This move to web apps is typical for the appifi-
cation paradigm.

Typically for the shift to appification is the way monetization works: App de-
velopers can sell their apps to end users for fixed one-time prices (using central app
stores such as Google Play), they can collaborate with advertisement networks by dis-
playing advertisements in their apps and receiving shares of the advertisement rev-
enues, or they can offer in-app purchases, e.g., users can buy additional features of
the app. Those options are not mutually exclusive, but conventionally paid apps re-
frain from displaying ads. Together they lower the economic burden on developers
and streamline the process of purchasing and installing apps for end users [158].

Unlike other current appified ecosystems, Android allows (and actually encour-
ages) inter-component communication (ICC), which prompts developers to divide
their apps into smaller parts (e.g., plugins) and allows them to act as service providers
(e.g., Facebook app, Play app, etc.). Technically, ICC is based on the Linux kernel’s
inter-process communication—primarily via a new IPC mechanism called Binder.
However, since logical communication occurs between application components such
as databases, user interfaces, and services, this Android-specific IPC has been coined
as Inter-Component Communication in the literature [76].

2.3.2 Involved Actors

Software ecosystems involve a number of actors that each have their own rights and
duties, which differ between appified and conventional ecosystems in some aspects.

1Approximately 1.5 million free apps crawled in February 2016.



24 Chapter 2. Systematization of Android Security Research

TABLE 2.1: All actors in the ecosystem and the impact of their security
decisions on the remaining actors.

Actor O
S

D
ev

el
op

er

H
ar

dw
ar

e
Ve

nd
or

Li
br

ar
y

Pr
ov

id
er

So
ft

w
ar

e
D

ev
el

op
er

To
ol

ch
ai

n
Pr

ov
id

er

So
ft

w
ar

e
Pu

bl
is

he
r

So
ft

w
ar

e
M

ar
ke

t

En
d

U
se

r

OS Developer

Hardware Vendor

Library Provider

Software Developer

Toolchain Provider

Software Publisher

Software Market

End User

= fully applies; = partly applies, = does not apply at all.

We differentiate these actors as groups of ecosystem participants, describe their pri-
mary task(s), their power to influence the security and privacy of the ecosystem with
their decisions, and then give concrete examples of each class of actors. Table 2.1 il-
lustrates the different actors, their influence on the ecosystem’s security and privacy,
and their interaction with each other.

Although feedback loops can be established between any number of actors, in
the following discussion we focus on the potential direct impact of a security deci-
sion made by one user on all other actors. We do not consider indirect impact, e.g.,
when users protest against or boycott certain apps and thus force app or platform
developers to react.

Platform Developers

Platform developers are responsible for providing the Android Open Source Plat-
form (AOSP). They make basic system and security decisions and all other actors
build on their secure paradigms. Library providers and app developers are bound
to the provided SDK, and app markets have to rely on Android’s open approach
(instead of, for example, Apple’s walled-garden ecosystem). An exception is that
device vendors can implement their own security decisions and need not adhere
to Android’s paradigms. In reality, though, they mostly build upon the provided
foundations.



2.3. Android/Appified Ecosystem 25

Device Vendors

Device vendors adopt the AOSP and customize it for their different needs. A va-
riety of device vendors currently share the market for mobile devices using An-
droid [180]. Besides adaptation of the basic Android software stack to the vendor-
specific hardware platforms, vendors customize in order to distinguish their An-
droid device from their competitors’. Thus, many versions of vendor-specific apps
and modified versions of Android’s original user interface are being distributed with
Android-based platforms. The impact of device vendors on the ecosystem’s security
is significant: Although, naturally, their customizations only affect their customers,
this user-base can be large in case of big vendors such as Samsung or HTC. De-
vice vendors can adopt security decisions from the platform developers or add their
own solutions (cf. Samsung KNOX [217]) on which library and app developers can
build. However, device vendors cannot change the way apps are published in mar-
kets, which is why their impact on publishers and markets is very limited—e.g. they
could not enforce CA-signed instead of self-signed certificates for app signing prac-
tices without breaking Android’s guidelines.

Library Providers

Based on the platform’s API, library providers build their own APIs to offer new
features such as ad services or to make the use of (possibly unnecessarily) complicated
platform APIs easier for app developers. Libraries exist for UI components (they
can but need not be attached to network tasks) as well as for ads or crash reports.
Library developers have the power to make all apps that include them either more
or less secure. Library developers suffer or benefit from security decisions made by
platform developers and device vendors. However, their decisions do not affect the
platform security in general. Their positive/negative security decisions propagate
to app developers who choose to use their libraries—they can, for example, wrap
badly designed programming interfaces from platform developers. Their decisions
affect neither app publishers nor markets directly. Typically, library providers offer
ad services, networking features or app usage evaluation features.

App Developers

App developers write apps using the APIs defined by platform developers and of
those libraries they choose to include. They can opt to write code themselves or
use existing third-party code. In theory, they can make essential contributions to
security. In practice, they make unsafe choices and implement features in the least
laborious way, which is frequently not the most secure choice.

While app developers can break secure default interfaces provided by platform
developers/device vendors (e.g. crypto primitive API misuse), this has no effect on
the platform security in general. Their decisions neither affect app publishers nor
markets directly. Still, app developers may impact libraries’ security (e.g. as fraud is
a frequently evaluated issue).

Toolchain Providers

Toolchain providers offer helpful tools for app developers (e.g. the Eclipse ADT
for Android app development). They can implement many analysis tools that help
discover API misuse. Toolchain providers can fix some weaknesses introduced by
platform providers and device vendors (e.g. confusing permission descriptions, or



26 Chapter 2. Systematization of Android Security Research

hard-to-use APIs). All app developers and their users benefit/suffer from good/bad
toolchain provider support.

App Publishers

App publishers are professional service providers that help developers publish their
apps to certain markets. They receive either binary or source code, add certain prop-
erties like ads, and distribute the app to one or more app markets. In theory, they
can run preliminary analyses on the code and report or fix bugs, as well as filter
malware. If app signing is delegated to the app publishers, they could also surrepti-
tiously insert malicious code. Several app publishers maintain substantial numbers
of apps [80] and thereby may substantially impact markets’ security. Hence, a single
publisher’s impact on the ecosystem’s security is rather impressive.

App Markets

App markets—Google Play is the most popular one—distribute apps from develop-
ers to the end users. Users as well as app developers rely on them to make sure that
the apps are distributed in a consistent, unchanged, reliable, and benign way. In
theory, app markets have the potential to find not only malware, but also buggy
and unsafe code. To do this, they can apply various kinds of security analyses
techniques—such as static or dynamic code analysis—on all apps they distribute.
For example, Google Play runs supposedly multiple tests on apps prior to distribu-
tion, including static/dynamic analysis and machine learning [105]. However, they
do not run deeper checks to detect dangerous misuse of the Android API. No app
market runs (theoretically possible) runtime tests, nor do they exclude apps signed
with the same key corresponding to different developers.

Users

Users are app consumers in the ecosystem. They can make the decision to install
(non-pre-installed) apps, and have to confirm the permissions that apps request.
They are the most likely target of attacks. In theory, they can make safe choices, as
well as choose not to use important credentials. However, a single user’s impact
on the ecosystem’s security is negligible. Users as a group have to rely on security
decisions made by all other actors in the ecosystem.

2.3.3 Global Attacker Model

We provide a taxonomy for attacker capabilities on Android. This taxonomy reflects
the threat models we extracted during our systematization in Section 2.4 and helps to
later on compare proposed countermeasures.

When considering the attacker capabilities, we had the options to order them
across capability categories or within categories. We decided to order them within cat-
egories, since our categories depend on too many distinct factors to be comparable
and since we base our systematization on those categories. For instance, a user con-
necting frequently to public Wi-Fi access points is susceptible to network attacks, but
this behavior does not influence other capability categories like, e.g., piggybacking
apps. We order the attacker capabilities vertically, i.e., we rate the power of attackers
in specific capability categories. We use the following semantics to note attacker ca-
pabilities in each category: Solid circles ( ) denote strong capabilities corresponding



2.3. Android/Appified Ecosystem 27

to a weak attacker model. Half-filled circles ( ) denote common attacker capabili-
ties, while hollow circles ( ) describe the absence of any capability in the category,
strengthening the attacker model.

Next, we introduce our categories for attacker capabilities, informally define the
exact capabilities attackers may have in each category, and explain our ordering of
those capabilities.

C1—Dangerous permissions: The attacker has code running on the victim de-
vice, which has been granted dangerous permissions ( ) that give access to privacy
sensitive user data or control over the device that can negatively impact the user.
Dangerous permissions must be explicitly granted by the user during app installa-
tion. We assume normal permissions ( ) when the attacker has been granted only
permissions that are of lower risk and automatically granted by the system.

C2—Multiple apps: Attacker-controlled apps are running on the user device. Full
capability indicates that the attacker has two or more apps running on the victim
device ( ). This would enable collusion attacks via overt and covert channels. Half-
capability ( ) means that only one attacker-controlled app is running on the device.
In general, the capability of having at least one app on the user device enables the
attacker to engage in ICC with other apps on the device or to scan the local file
system to the extent the attacker-controlled apps’ permissions allow this.

C3—Piggybacking apps: The attacker re-packages other apps and is able to mod-
ify the existing code or include new code ( ). A limited piggybacking capability ( ) is
assumed if the attacker provides code that is intentionally loaded by app developers
into their apps (e.g., libraries). Limited piggybacking is assumed to be the weaker
capability, because libraries used by developers are hosted by the app (i.e., share the
host sandbox) limiting the attacker to the host app’s permissions. In contrast, re-
packaging apps allows the attacker to request more permissions for the repackaged
app.

C4—Native code: The attacker has an app containing native code, i.e., shared
libraries. This requires having at least one app on the device under control (C2. ).
Native code that implements exploit payload, native programs, or zipper/crypto
routines for obfuscation are considered as full capability ( ). Non-exploit code that
still provides the means to modify the app’s memory space is assumed as half-
capability ( ). Although Android’s design permits all apps to contain native code,
there are apps that contain none ( ).

C5—Dynamic code loading: The attacker is able to dynamically load code at run-
time ( ) into an app (e.g., using the Java reflection API). This requires having at least
one app on the device under control (C2. ). Half-capability ( ) is assumed if the at-
tacker can inject code into another, benign but insecure app. Dynamic code loading
is assumed to be a stronger capability than code injection, since dynamic loading al-
lows the attacker to use obfuscation techniques to execute the attack surreptitiously.

C6—Network attacks: The attacker is capable of modifying/interrupting/forging
the Wi-Fi and cellular network communication of the end user device ( ). We assume
a passive attacker ( ) if the attacker is only able to eavesdrop on the communication.
Technically, a network attack can be accomplished as in traditional attacker models
by, e.g., setting up a rogue access point or base station. On Android, an attacker can
gain the same capability through a malicious VPN app, through which all network



28 Chapter 2. Systematization of Android Security Research

traffic of all processes is routed when it is activated by the user. This requires at least
C2. .

2.4 Systematization of Research Areas in Appified Ecosys-
tems

Building on the differences between conventional and appified ecosystems as well
as the actor and global threat model of the Android ecosystem, we now identify
fields of research that we think need to be systematized, considering a number of
representative research papers for each field. We discuss challenges in the respec-
tive fields, regarding the global actor model, identifying the involved actors, their
respective roles in causing a specific problem and their potential in resolving it. Re-
ferring to the global threat model, we summarize the attacker capabilities assumed
in the threat models required to exploit the problem areas. Moreover, we present
selected, representative Android security countermeasures if available. We do not
claim that our systematization is all-encompassing, nor that it includes all problem
fields ever identified for Android nor all countermeasures to known problems; how-
ever, we took great care to choose a representative selection (see Section2.1).

2.4.1 Permission Evolution

The concept of permission-based access control for privileged resources is one of the
cornerstones of Android’s security design and has received a lot of attention by the
security research community.

Challenges

We sub-categorize the identified problems and challenges according to the most af-
fected actors in the ecosystem: the end users and app developers.

Permission Comprehension and Attention by End Users To effectively inform
end users about the privacy risks that an app imposes, it is imperative that end users
are capable of correctly perceiving the risk of granting the access rights requested by
apps. Pioneering work showed that only a very small fraction of users could cor-
rectly associate privacy risks with the respective permissions [91]. One potential
root cause for this lack of understanding seems to be that permissions communi-
cate resource access, but do not explain how accessed data is processed and dis-
tributed [89]. Hence, users tend to underestimate the risks ("the app will not misuse
its permissions") or overestimate the risks ("the app will steal all my private informa-
tion") [91]. A lack of user comprehension of permissions allows attackers to create
malicious apps that request all necessary sensitive permissions for their operations
(as demonstrated, e.g., by the Geinimi Trojan [279]).

Apps published after Android v6.0 may request a small subset of privacy-related
permissions during runtime instead of at installation. Requesting permissions dy-
namically when they are required by the app should provide users with more con-
textual information and help them in their decision making process. However, Wi-
jesekera et al. [274] have shown that this desired contextual integrity—i.e., personal
information is only used in ways determined appropriate by the users—is not nec-
essarily provided by dynamic permissions and runtime consent dialogs: A majority



2.4. Systematization of Research Areas in Appified Ecosystems 29

T
A

B
L

E
2.2:

Security
challenges

in
the

appified
ecosystem

,actors
capable

of
redressing

the
problem

s,and
attacker

capabilities
consid-

ered
in

threatm
odels

ofdifferentproblem
areas.

C
ausative

A
ctors

Fixable
by

A
ttacker

capabilities

Problem
area

Focus
R

eferences

Discussed in Section

A1. Platform Developers

A2. Device Vendors

A3. App Markets

A4. Library Providers

A5. App Developers

A6. App Publishers

A7. Toolchain Providers

A8. End Users

R1. Platform Developers

R2. Device Vendors

R3. App Markets

R4. Library Providers

R5. App Developers

R6. App Publishers

R7. Toolchain Providers

R8. End Users

C1. Sensitive permissions

C2. Multiple apps

C3. Piggybacking apps

C4. Native code

C5. Dynamic code loading

C6. Network attacks

Perm
ission-based

A
ccess

C
ontroland

LeastPrivilege

Perm
ission

A
ttention

and
C

om
pre-

hension
by

End
U

sers
[26,89,91]

2.4.1

Perm
ission

C
om

prehension
by

A
pp

D
evelopers

[19,
28,

75,
87,

268,
277]

2.4.1

Perm
ission

A
ttention

by
A

pp
D

evel-
opers

[53,65,75,93,96,112,
151,277,293]

2.4.1

M
issing

Privilege
Separation

[63,74,114,183,188,
237,258]

2.4.2

M
issing

Efficacy
ofSecurity

A
pps

[204,294,295]
2.4.2

W
ebification

Issues
—

[55,128,152,155,163,
262]

2.4.3

A
PI

M
isuse

of
A

pp
D

evelop-
m

entFram
ew

orks
—

[50,70,82,84,85,188,
233]

2.4.4

Softw
are

D
istribution

C
hannels

A
pp

Piracy
and

M
alw

are
Incentives

[62,90,101,290,291,
295]

2.4.5

A
pplication

Signing
Issues

[26,80]
2.4.5

Vendor
C

ustom
izations

and
Fragm

entation
ofthe

Ecosystem
—

[1,112,160,277,283]
2.4.6

=
fully

applies;
=

partly
applies,

=
does

notapply
atall.



30 Chapter 2. Systematization of Android Security Research

TABLE 2.3: Categorization of proposed Android security countermeasures, their potential im-
plementers, and their addressed attacker model.

Possible implementers Considered attacker model

Problem area Focus Solution Reference R
1.

Pl
at

fo
rm

D
ev

el
op

er

R
2.

D
ev

ic
e

Ve
nd

or

R
3.

A
pp

M
ar

ke
t

R
4.

Li
br

ar
y

Pr
ov

id
er

R
5.

A
pp

D
ev

el
op

er

R
6.

A
pp

Pu
bl

is
he

r

R
7.

To
ol

ch
ai

n
Pr

ov
id

er

R
8.

U
se

r

C
1.

Se
ns

it
iv

e
pe

rm
is

si
on

s

C
2.

M
ul

ti
pl

e
ap

ps

C
3.

Pi
gg

yb
ac

ki
ng

ap
ps

C
4.

N
at

iv
e

co
de

C
5.

D
yn

am
ic

co
de

lo
ad

in
g

C
6.

N
et

w
or

k
at

ta
ck

s

Permission evolution
(Section 2.4.1)

System Security Extension

Kirin [75]

TaintDroid [73]

Apex [170]

Sorbet [96]

QUIRE [67]

IPC Inspection [93]

XManDroid [39]

SDK / Tool-chain Extension

Stowaway [87]

PScout [19]

Curbing Permissions [256]

HCI Modifications
Decision making process [135]

Using personal informa-
tion

[118]

(Meta) Data Analysis

WHYPER [181]

AutoCog [202]

DescribeMe [287]

User study Permissions remystified [274]

Permission revolution
(Section 2.4.2)

System Security Extension

Saint [177]

CRePE [59]

TISSA [296]

SE Android [227]

TrustDroid [40]

FlaskDroid [41]

ASM [122] ( )‡ ( )‡ ( )‡ ( )‡ ( )‡

Compac [266]

AdDroid [183]

AdSplit [223]

LayerCake [210]

Binary modifications

Aurasium [284]

Dr. Android,Mr. Hide [127]

I-ARM Droid [66]

AppGuard [21]

Boxify [20]

Webification
(Section 2.4.3)

System Security Extensions Morbs [262]

SDK / Tool-chain Modification
NoFrak [155]

NoInjection [128]

Programming-induced leakage
(Section 2.4.4)

SDK / Tool-chain Extension

MalloDroid [82]

CryptoLint [70]

SSL API Redesign [85]

App Analysis

SMV-Hunter [233]

CHEX [151]

SCanDroid [49]

AndroidLeaks [100]

FlowDroid [16]

Software Distribution
(Section 2.4.5)

Market solution

Meteor [27]

MAST [47]

Application Transparency [80]

(Meta) Data Analysis

DroidRanger [295]

DNADroid [62]

RiskRanker [113]

CHABADA [108]

Collaborative Verification [78]

MassVet [51]

SDK / Tool-chain Extension AppInk [289]

Software Update Mechanism (Section 2.4.7) (Meta) Data Analysis SecUp [283] ( )†

= actor must implement solution/attacker capability fully addressed; = actor should/can participate in solution/attacker capability partially addressed
= actor not involved/attacker capability not addressed.

† Requests sensitive permissions and attributes defined by a future Android OS version; ‡ Depends on loaded security module



2.4. Systematization of Research Areas in Appified Ecosystems 31

of privacy-related permission requests occur when the user is not interacting with
the requesting application or even with the phone, and, moreover, requests occur
at a frequency that prohibits involving the user in every decision making process.
As a consequence, users failed to establish the connection between the permission
request and the apps’ functionality and consent dialogs are only shown during first
request to grant access until manually revoked by the users although subsequent
permission checks might occur in a different privacy-context than the initial request.

Permission Comprehension and Attention by App Developers Android’s secu-
rity design requires app developers to contribute to platform security by request-
ing, defining, and properly enforcing permissions in order to retrieve and protect
sensitive user data. Thus, even more than for end users, it is imperative that app
developers understand permissions and the security tools at their disposal.

Permission Comprehension by App Developers. A number of studies [19, 28, 75, 87,
268] give insight into how app developers comprehend permissions and, in partic-
ular, how the SDK supports them in their task to realize least-privileged apps (e.g.,
considering the stability of the permission set or the extent to which permission-
protected APIs are well-documented). Between 30% [87] and 44.8% [268] of the
studied apps requested unnecessary permissions, i.e., were over-privileged and in
clear violation of the least-privilege principle. Moreover, several apps have been
found that request non-existent or even wrong permissions. Even developers of
system apps, who have access to the highest privileged and highly dangerous API
functions, did not exhibit a significantly better understanding of permissions [277].

To understand the root causes behind the developers’ incomprehension of per-
missions, the studies analyzed the Android API documentation, finding that the API
is insufficiently documented and does not identify all permission-protected APIs.
Even worse, the documentation also contained errors, e.g., describing the wrong per-
mission required for an API function. Confusing permission names also contribute
to these misconceptions. These inconsistencies and the instability of the API impede
a clear and well-developed documentation and thereby contribute to the developers’
incomprehension of permissions and to confusion about permission usage.

Permission Attention by App Developers. Besides developers’ (lack of) comprehen-
sion of permissions, the thoughtfulness of developers when enforcing permissions
was studied, as well as their level of comprehension of the mechanisms at their dis-
posal to accomplish this task. Although Android’s security design incorporates im-
portant lessons learned from prior operating system security research [216], the fact
that it allows and even encourages differently privileged apps to communicate with
each other has piqued the security research community’s interest in how this can be
exploited by unprivileged apps to escalate their privileges [53, 65, 75, 93, 96, 112, 151,
277, 293]. In particular, various works have identified an increase in failure of app
developers to properly protect their app’s IPC-exposed (or exported) interfaces and
to transitively enforce permissions [93]. This opens the attack surface for confused
deputy attacks2 to, e.g., initiate phone calls [75], hijack ICC [53], or exfiltrate sensi-
tive user data [151, 293]. The root cause of many of those identified vulnerabilities
is that application components were by default exported to be IPC-callable and thus
require that the developers either explicitly protect them with permissions or hide
the components. As indicated by the uncovered vulnerabilities, most developers are

2The literature has yet to agree on a fixed term. Other works designate this attack category as
permission re-delegation [93], as component hijacking [151], or as capability leaks [48, 112]. We use the
term confused deputy [119].



32 Chapter 2. Systematization of Android Security Research

unaware of these conditions. To phrase this in the terms of Saltzer’s and Schroeder’s
secure design principles [216]: Android failed to implement fail-safe defaults.

Countermeasures

Recent changes [107] in the default installer app for Google Play aim to improve
permission perception for users. Installers present permissions with low granular-
ity in groups, while some commonly requested permissions, like INTERNET, are not
presented at all anymore. This shift in permission presentation can be viewed as a
pure user experience decision, not as an enabler of user comprehension.

Research has made several suggestions to enhance the usability of permissions
for both end users and developers: Kelley et al. [135] propose to enrich permis-
sion dialogs with more detailed privacy-related information to help users make a
more informed decision. Porter Felt et al. [88] propose making the permission-
granting mechanism dependent on the kind of permission that is requested, e.g.,
auto-granting non-severe permissions with reversible side-effects, trusted UI for
user-initiated or alterable requests, or confirmation dialogs for non-alterable, app-
initiated requests that need immediate approval. A concrete realization of trusted
UI are access control gadgets by Roesner et al. [211] that allow a user-driven delega-
tion of permissions to apps whenever such widgets can be effectively integrated into
the apps’ workflows. Wijesekera et al. [274] suggest more intelligent systems that
learn about their users’ privacy preferences and only confront users with consent
dialogs when a permission request is unexpected for the user. This consent dialog
should provide sufficient contextual cues for users, e.g., clearly indicating the app
requesting the access to protected resources as well as clearly communicating why
the resource is accessed. Liu et al. [149] propose eliminating the burden of under-
standing the enormous list of permissions by using a limited set of privacy profiles
including certain permissions instead; and Felt et al. [87] propose to improve API
documentation to simplify permission requests for app developers.

Multiple system extensions have been suggested to enhance the permission sys-
tem: The seminal Kirin [75] OS extension used combinations of permissions re-
quested by an app to detect potential misuse of permissions and also revealed con-
fused deputy apps on AOSP. Apex [170] introduced dynamic and conditional per-
mission enforcement to Android. TaintDroid [73] used dynamic taint tracking to
reveal for the first time how apps actually use permission-protected data and un-
covered a number of questionable privacy practices that motivated enhancements
to the permission system and access control on ICC. Sorbet [96] was first to model
Android permissions and uncovered problems with desired security properties (like
controlled delegation of privileges) on Android.

Some system extensions specifically aim at mitigating confused deputies: XMan-
Droid [39] primarily augments the permission enforcement with policy-driven ac-
cess control, where policies specify confused deputy and collusion attacks [65, 154]
states. QUIRE [67] establishes provenance information along ICC call paths, en-
abling callees to evaluate their trust in the caller. IPC inspection [93] reduces the
privileges of callees to the privileges of the caller.

WHYPER [181] and AutoCog [202] apply NLP techniques to automatically derive
the required permissions from app descriptions, taking developers out of the loop,
and check whether described functionality and actually requested permissions cor-
respond. DescribeMe [287] takes the opposite track and generates security-centric
app descriptions from analysis of app code in order to increase user understanding
of the app.



2.4. Systematization of Research Areas in Appified Ecosystems 33

Actors’ Roles

Platform developers (A1. ) and market operators (A3. ) are fully responsible for
the permission comprehension problems, as the platform enforces use of the cur-
rent permission system, and the platforms’ and the markets’ installers communicate
the privacy risks of installing applications to users. Library providers (A4. ) con-
tribute to this problem through their permission requests. App developers (A5. )
tend to over-privilege their apps (either for their own needs, or on behalf of library
providers their apps use), making apps appear unnecessarily dangerous. End users
(A8. ) tend to pay little attention to permissions [91], and only have the option of
accepting everything or not installing the app at all.3 Thus, while end users’ behav-
ior eventually opens the door to misuse by malware, end users have limited options
and capabilities to detect whether permissions are being misused.

This problem could potentially be fixed by platform developers (R1. ) by chang-
ing their access control paradigm and avoiding conditions for some of the identi-
fied vulnerabilities (e.g. failing to implement fail-safe defaults). Additionally, by
helping app developers (R5. ) and library providers (R4. ) in realizing security best
practices for defensive programming through tool support [87, 256] (R7. ), this in-
directly helps end users. App markets (R3. ) could make their permission dialogs
more comprehensive, demand justification from app developers and run static anal-
yses on received app packages to adjust permissions accordingly.

Lesson Learned

In conventional ecosystems, neither developers nor users were involved in the pro-
cess of requesting or granting fine-grained permissions to access resources on a com-
puter. Allowing developers to request and define fine-grained permissions and pre-
senting end users permission dialogs is a good idea in theory. However, research
illustrates that this approach overburdens both: Developers tend not to focus their
efforts on the selection process for permissions [87], while end users neither under-
stand nor pay much attention to Android’s permission dialogs [54, 91]. Research has
strived to improve permission dialogs [135, 149, 274], but none of these approaches
has solved the two-sided usability and comprehension problem. Permission dialogs
have issues similar to warning messages: They fail to lead to the desired effect, as
users tend to click through them, misunderstand their purpose, and hence do not
benefit from them.

Instead of continuing the current line of research, we propose a clean break and a
shift towards taking both users and developers out of the loop: Approaches that try
to automatically derive the required permissions for an app based on its category,
description, and similarity to other apps seem to take a more promising track [181,
202, 287]. Another promising alternative seems to be authorizing entire informa-
tion flows instead of only access to resources. Although not new [164, 286], this
idea seems worth being re-investigated for appified platforms that put the burden
of granting permissions onto their end users.

3While this has changed with Android v6.0, developers nullify this change by making their apps
compatible with older Android versions.



34 Chapter 2. Systematization of Android Security Research

Our assessment (Permission Evolution): The decision to realize permissions
as implemented by Android was understandable at Android’s launch, but the
concept has failed in practice, and was presumably doomed to fail from the
beginning.

2.4.2 Permission Revolution

A dedicated line of research has investigated the possibilities of extending alterna-
tive access-control models to the Android platform to establish more flexible, fine-
grained, and mandatory control over system resources and ICC. This research fol-
lowed two major directions: OS extensions and Inlined Reference Monitoring (IRM).

Challenges

Missing Privilege Separation The most common third-party code distributed with
apps is analytic and advertisement libraries that display ads in order to monetize the
app [258]. More than 100 unique ad libraries are available for the different ad net-
works included in more than half of all apps [74, 114, 183, 237, 258].

The host app and third-party libraries engage in a symbiotic relationship that
currently requires mutual trust. Libraries execute in the context of their host app’s
sandbox and inherit all privileges of their host app. However, ad libraries tend to
exploit these privileges and exhibit a variety of dangerous behaviors, including mis-
conduct such as insecure loading of code from web sources [188] as well as collecting
users’ private information [114]. Inversely, developers of host apps have a strong in-
terest in monetizing their apps. Fraudulent app developers can exploit the symbiotic
relationship [63] to surreptitiously steal money from the ad network by faking click
events [63]. Android’s design failed to provide privilege separation between these
two principals [216], worsening the privacy threat of ad libraries to users’ data in
comparison to conventional browser-based ads [237].

Ineffective Security Apps Android follows the mantra that "all applications are cre-
ated equal" [179]. However, this also implies that apps by external security vendors,
such as anti-virus apps, do not have higher privileges than other apps. Studies have
investigated to what extent this philosophy influences the efficacy of such security
apps [204, 294, 295]. Prior systematization of existing Android malware has eval-
uated the effectiveness of existing anti-virus apps for Android and reported that
detection rates vary from 54.7%-79.6% [204, 294, 295]. One study [204] suggests that
platform support for anti-virus apps is essential to improve their efficacy.

Lack of Support for Mandatory Access Control Mobile devices are often used in
fields with strong security requirements, such as enterprises and government sec-
tors. Conventional operating systems in those contexts apply advanced access con-
trol models that protect more sensitive information (e.g., non-interference between
two distinct security levels). The support for mandatory access control is a corner-
stone of the platform security of such established systems. Conversely, Android
lacks any support for mandatory access control.

While the requirement of supporting advanced access control schemes is intu-
itive and plausibe, we are not aware of any academic security requirements analysis
that focuses on those particular stakeholders (i.e., enterprise and government sec-
tors) on mobile devices and that could describe the particular challenges that come



2.4. Systematization of Research Areas in Appified Ecosystems 35

with enabling support for such access control schemes on mobile devices. Only
governmental guidelines have been published, e.g., by NIST [234]. Consequently,
academic research has explored the particular challenges of adding mandatory and
alternative access control models to Android from different angles, not all of which
directly relate to high-security deployment.

Countermeasures

To provide advanced access control models and robust defenses against malware
on Android, research has followed two main directions for adding access control to
Android based on the responsible deployment actor.

Alternative Access Control Models Early work [59, 177, 296] explored how ac-
cess control within Android’s application framework can be more semantically rich
and dynamic and introduced mechanisms that have since been adopted by sev-
eral follow-up works. The seminal Saint [177] architecture allows app developers
to define policy-based restrictions and conditions on ICC to and from their app.
CRePE [59] extended Android with context-related access control for system re-
sources, where context is defined as the device state and senseable environment.
TISSA [296] introduced access control mechanisms for fine-grained data sharing,
such as returning filtered, fake, or empty data from calls to framework APIs.

More recently, the SE Android [227] project solved the technically complex chal-
lenge of porting SELinux-based mandatory access control from the desktop domain
to Android. While SE Android focused on the Android OS, FlaskDroid [41] demon-
strated how SELinux’ type enforcement can be extended into the userspace compo-
nents of the Android application framework and benefit privacy protection.

Prior work specifically addressed the lack of privilege separation between the
different security principals on Android. AdDroid [183] and AdSplit [223] both pro-
pose separating advertisement code into separate processes. LayerCake [210] investi-
gated the more general problem of secure cross-application interface embedding on
Android, e.g., integrating ad libraries or social network plugins into the host app’s
UI while mitigating common threats such as click fraud, overlays, or focus stealing.
Compac [266] demonstrates the applicability of stack inspection in conjunction with
ICC tagging to establish per-component access control for Android apps.

Inlined Reference Monitoring A parallel line of work [21, 66, 127, 284] has investi-
gated inline reference monitoring [77] for enforcing more fine-grained and dynamic
access control policies for privacy protection. These works were mainly motivated
by the deployability benefits of binary rewriting as a foundation for IRM in contrast
to OS modifications, which empower end users to enhance their privacy indepen-
dently from platform developers and device vendors.

IRM solutions on Android currently make the inherent tradeoff of abandoning a
strong security boundary between untrusted code and reference monitor, and hence
their attacker model focuses on curious-but-benign applications rather than on ma-
licious code. Moreover, modifying third-party code involves legal considerations.
Most recent advances in this field [20] introduce application virtualization tech-
niques to Android to avoid third-party code modifications and separate the refer-
ence monitor from untrusted code.



36 Chapter 2. Systematization of Android Security Research

Actors’ Roles

The platform developers are able (A1. , R1. and R2. ) to integrate more advanced
access control models, to offer better privilege separation between third party secu-
rity principals, and to provide means to integrate external security apps. The lack of
support for third-party security apps is particularly noticeable for the platform de-
veloper actor, since Android’s security philosophy shifts responsibility for privacy
protection to end users by forcing them to grant/deny permission requests and by
allowing them to load applications from arbitrary sources (i.e. to bypass controlled
distribution channels like markets). Furthermore, the problem of missing privilege
separation could also be alleviated by ad network providers (A4. , R4. ) by refrain-
ing from clearly unacceptable behavior and by implementing security best practices.

Binary rewriting solutions for IRM currently need to be deployed by end users
(R8. ), who also need to configure policies. Their technical approach would also
allow software distribution channels or toolchain providers to implement IRM solu-
tions for apps they distribute/create (R2. and R7. ).

Lesson Learned

Android adopted design principles from earlier high-assurance systems, and re-
search has proposed valuable access control extensions to their implementations on
Android. Although most of the proposed OS extensions are not based on a concrete
requirements analysis but rather on postulated challenges, the recent developments
of Google’s AOSP have a posteriori validated this research; and, in fact, research
results can be found in current real-world deployments within the bounds imposed
by Google’s business model (for instance, SELinux MAC & KNOX [153], dynamic
permissions, AppOps, VPN apps, after-market ROMs). Research ideas for privi-
lege separation within app sandboxes, in contrast, should be pushed to maturity
and have to be brought to the attention of platform developers. Like mash web-
sites that combine various security principals that are now privilege separated by
the browser’s sandboxing mechanims, mobile apps that mash various security prin-
cipals require an adequate privilege separation. IRM solutions are an interim idea,
but do not take the user out of the loop (see Section 2.4.2) and are limited in their
security guarantees.

Since access control enforcement on Android has been well studied, the research
community should shift focus to the canonical challenges of policy generation and
verification. Almost no attention has been given to developing useful and real poli-
cies. Drawing from experience on desktop systems, policies are moving targets that
require decades to develop; research for mobile systems should support this process.
In particular, Android’s strong requirement for sharing functionality between apps
and the shift to privacy protection are unexplored for global policies. Moreover, at
the moment enforcement mechanisms on Android are implemented as best-effort,
and the history of OS security has shown the need for verifying complex enforce-
ment mechanisms and their policies.

Our assessment (Permission Revolution): Retrofitting Android with manda-
tory access control has created valuable ideas that influenced real-world deploy-
ments. Better privilege separation of apps should be pushed to maturity. The
research community should now refocus on open challenges for policy genera-
tion and system verification.



2.4. Systematization of Research Areas in Appified Ecosystems 37

2.4.3 Webification

An ongoing trend for mobile apps is webification, the integration of web content into
mobile apps through technologies like WebView. Seamless integration of apps with
HTML and JavaScript content provides portability advantages for app developers.
Through its APIs, WebView allows apps a rich, two-way interaction with the hosted
web content: Apps can invoke JavaScript within the web page, and also monitor
and intercept events in the page as well as register interfaces that web content can
invoke to use app-local content outside the WebView sandbox. By now, mobile web
apps make up 85% of the free apps on Play [152, 163].

Challenges

The webification of apps raises new security challenges that are unique to appified
mobile platforms.

Foremost, the two-way interaction between a host app and its embedded web
content requires app developers to relax the WebView sandboxing. This enables
app-to-web and web-to-app attacks [152, 155, 163]. In app-to-web attacks, malicious
apps can inject JavaScript into hosted WebViews to extract sensitive user informa-
tion and use the WebView APIs to navigate the WebView to untrusted websites. In
web-to-app attacks, untrusted web content (possibly also injected into an insecure
HTTP/S connection [163]) can leverage the JavaScript bridge to the host app to es-
calate its privileges to the level of its hosting app’s process to access local system
resources. In particular, popular web app creator frameworks, such as PhoneGap,
open a large attack surface for those kind of attacks through their large web-to-app
and app-to-web interfaces [155].

Further, it has been shown [163, 262] that data flows between apps that host dif-
ferent web origins can cross domains through the default Android ICC channels,
enabling cross-site scripting and request forgery attacks by malicious apps or un-
trusted web content within an app. Specifically on mobile platforms, various means
enable code to be injected into web content and cross-site scripting attacks to be
conducted [128].

Countermeasures

To solve the new security challenges raised by webification, different defense strate-
gies have been proposed: NoFrak [155] extends the PhoneGap framework with capability-
based access control for web origins to restrict access by web content to the function-
ality of the JavaScript bridge. Along the same lines, NoInjection [128] adds sanitiza-
tion to the bridge of PhoneGap to prevent code injections. Morbs [262] proposes
an extension to the Android application framework to attach origin information on
ICC channels that can cross origin between apps, thus enabling apps to apply a
same-origin policy and prevent the reported cross site scripting and request forgery
attacks. Additionally, different modifications to the Android WebView and Android
IDEs have been discussed [163, 262], such as supporting whitelisting of web origins
that have access to the JavaScript bridge; displaying the security of WebView con-
nections to the end user; or lint tools to warn app developers about insecure TLS
certificate validation in WebViews.



38 Chapter 2. Systematization of Android Security Research

Actors’ Roles

Fundamentally, platform developers are required to integrate better isolation of web
origins in WebViews and support origin-based access control on data flows (R1. ).
Additionally, providers of web app frameworks and app publishers are responsible
for securing their web-to-app and app-to-web bridges (R4. and R6. ).

Lesson Learned

The trend towards web apps and usage of web technologies lowered the hurdle for
writing apps even more. However, some of the same mistakes known from web
applications in browsers were replicated and new problems arose. Cross-origin and
web-to-app/app-to-web vulnerabilities constitute serious security challenges for the
move towards web apps. However, since such issues are fixable by platform devel-
opers and do not require tens of thousands of developers or millions of end users to
adopt new security mechanisms, we think this trend is worth pushing in the future.

Our assessment (Webification): Using standard web technology for building
apps has proven satisfactory, if somewhat initially shaky. After well-known web
security issues have been fixed and integrated with the platform’s app sandbox-
ing, this trend should continue.

2.4.4 Programming-induced Leaks

This section deals with challenges and countermeasures regarding data leaks caused
by developer errors for apps, frameworks, and libraries.

Challenges

Android provides a comprehensive set of APIs for app developers. A fraction of
these APIs are security-related and provide interfaces for Android’s permission sys-
tem, secure network protocols and cryptographic primitives. Prior work has inves-
tigated the quality of security-related API implementations: Fahl et al. [82] investi-
gated security issues with customized TLS certificate validation implementations
in Android apps and found widespread, serious problems with how developers
used TLS. In follow-up work, they conducted developer interviews to learn the root
causes of misusing Android’s integrated TLS API and found that the current API is
too complex for many developers [85]. Although Android provides safe defaults,
in ≈95% of the cases app developers decided to implement customized certificate
validation mechanisms, the result being an active MITMA vulnerability.

An analysis on the programming quality of cryptographic primitives such as
block ciphers and message authentication codes in Android apps by Egele et al. [70]
found that 88% of the analyzed apps made at least one mistake when using those
primitives. The authors came to the conclusion that Android’s default configuration
for cryptographic primitives is not safe enough and that the API documentation
in this area is poor. It was also found that apps load code via insecure channels
(e.g., http) without verification of the loaded code [188]. Of the hereby analyzed
apps, 9.25% are vulnerable to insecure code loading, meaning attackers can inject
malicious code into benign apps and turn them into malware. The authors came to
the conclusion that this is an API issue, since Android’s API does not provide secure
remote code loading.



2.4. Systematization of Research Areas in Appified Ecosystems 39

Countermeasures

MalloDroid [82] is a static analysis tool to detect broken TLS certificate validation
implementations in Android apps. Fahl et al. [85] propose a redesign of Android’s
middleware/SDK to prevent developers from willfully or accidentally breaking TLS
certificate validation. SMV-Hunter [233] is a similar approach, additionally applying
dynamic code analysis techniques. CryptoLint [70] is a static analysis tool to detect
misuse of cryptographic APIs on Android. CHEX [151] is a static analysis tool to
automatically detect component hijacking vulnerabilities. ScanDroid [49] is a mod-
ular data flow analysis tool for apps, which tracks data flows through and across
components. AndroidLeaks [100] is a large-scale analysis tool to detect privacy leaks
in apps with the intention to reduce the overhead for manual security audits. Flow-
Droid [16] applies static taint analysis techniques to detect (un-)intentional privacy
leaks in Android apps.

Actors’ Roles

Apps that misuse the above security related APIs leave their apps vulnerable to
other apps installed on the device (C2. ), to malicious dynamic code loading (C5. )
or network attacks (C6. ).

A common conclusion of the above API misuse studies is that Android’s API
design does not provide safe defaults (A1. ) in many cases [70]) and when it does,
these defaults often do not match the average developer’s needs [85] (A4. , A5. ). A
study to identify the root causes of these issues conducted with Android developers
[85] suggests a redesign of existing security related APIs with the developer’s needs
in mind (R1. ). Better toolchain support to support secure API usage (R7. ) could
help the developers of apps (R5. ) and library providers (R4. ) to write more secure
code. App markets (R3. ) could run analyses on apps to prevent insecure apps from
being installed on end users’ devices.

Lesson Learned

Previous research uncovered numerous programming issues. A high number of
(new) developers code (mobile/web) apps, and security APIs seem to pose a severe
challenge for many of them. Developer interviews illustrated that many inexperi-
enced developers write (mobile/web) apps and struggle to provide the basic func-
tionality, which leaves no room for security and privacy considerations. Many of the
provided security APIs allow for very detailed configurations, which seem to over-
whelm the average developer and result in insecure/improper selection of security
options. Developers are on the front line of the security battle and many of them are
currently overburdened. However, user studies with developers [85] illustrate that
platform developers could modify the current API design to achieve better security
by making APIs more developer-friendly. We argue that it should become common
practice to use developer studies to test and improve security and privacy APIs.

Our assessment (Programming-induced Leaks): Existing work on redesigning
and simplifying usage of APIs and security-related tools should be extended
and complemented by research on currently unexplored areas of developer us-
ability.



40 Chapter 2. Systematization of Android Security Research

2.4.5 Software Distribution

Software distribution in the appified world has changed from a decentralized to a
centralized model.

Challenges

Android’s ecosystem has piqued the interest into investigating the impact of its soft-
ware distribution channels for the protection of end users against malicious apps.
A second challenge is the protection of app developers against common problems
such as piracy.

App Piracy and Malware Incentives Pioneering work investigated the incentives
of malware developers and the state of malware for modern smartphone operating
systems like iOS and Android [90]. The authors discovered that the most common
malware activities were collecting user information and sending premium-rate SMS
messages. This work predicted that in the future, with proliferation of the app mar-
kets and advertisement networks for mobile platforms, ad fraud will be a major
incentive for malware authors. This prediction has been proven accurate by differ-
ent follow-up studies [62, 101, 258, 290, 291, 295]. With the exception of a dedicated
malware detection analysis [295], these studies focused on re-packaged (also noted as
cloned [62, 101] or piggybacked [290]) apps, which have been identified as a major mal-
ware distribution method. The common bottom-line of all works (except one [295])
is that markets contain a noticeable number of re-packaged apps. Although all stud-
ies found trojan-like malware in the markets, the vast majority of re-packaged apps
have been modified to siphon ad revenue from the original app authors (e.g., by
exchanging the ad lib or ad identifier), thus suggesting that plagiarists of apps are
fiscally motivated. Hence, this majority of re-packaged apps is not strictly malware
in the sense that they harm the end user, but instead financially harm the affected
app developers [101].

The implication of this research is that besides the known open challenge of pro-
tecting end users from malware distributed over markets, another pressing issue is
the protection of app developers against plagiarism. Both are important factors in
maintaining a healthy appified ecosystem, which needs to be achieved primarily by
app markets. A particular challenge towards this goal is that plagiarism not only oc-
curs within a market, but also across markets. To fight plagiarism, some alternative
markets like Amazon’s App Store require the app developers to participate in their
DRM solutions—with limited success [150]. Moreover, the technical enabler for re-
packaging apps has to be considered: Android apps are signed by their developers
and the signature is used to verify install-time integrity of the installation package
and to implement a same-origin update policy. Thus, app developer certificates can
be (and are, by default) self-signed certificates whose signature of app packages can
be simply replaced with a new signature. This allows re-packaging of apps with a
low technical knowledge and effort.

Application Signing Issues Recent work [80] brought up the central role of app
markets in appified ecosystems as a new threat for their users. Due to their cen-
tral role and power when distributing apps, app markets have enormous potential
to cheat on their users by withholding apps or updates. A central security mecha-
nism for software distribution is the prior mentioned app signing with self-signed
certificates. Investigations [26, 47, 80] illustrate that the way app developers and



2.4. Systematization of Research Areas in Appified Ecosystems 41

publishers handle the current app signing mechanism undermines the mechanism’s
intention: Many developers and publishers use one single key to sign up to 25,000
apps. Without having effective revocation mechanisms at hand, such practices are a
serious threat to Android users. For instance, Android allows developers to define
permissions that are only available to apps with the same origin (i.e., signing key) in
order to establish secure ICC. This same-origin assumption (and with it secure ICC)
is defeated by these inappropriate app certification practices.

Countermeasures

Different market-enabled solutions have been proposed to address the malware prob-
lem: Meteor [27] addresses security issues arising from multi-market environments
by providing the same security semantics as for single-markets (e.g. kill switches
and developer name consistency). MAST [47] ranks apps based on their attributes
and helps targeting scarce malware analysis resources to apps with highest poten-
tial of being malicious. Application Transparency [80] addresses Android’s application
signing issues. It introduces different kinds of cryptographic proofs that allow users
to verify the authenticity of apps offered on app markets.

Naturally, different analysis methods evolved to identify malware: DNADroid [62]
is an approach to detect pirated apps in markets by applying program dependency
graphs for methods in candidate apps. RiskRanker [113] proposes a proactive zero-
day malware detection. CHABADA [108] takes a different approach from the prior
malware detection tools by relying on anomaly detection: by grouping apps from
same categories (e.g., games) by their protected API usage patterns, malicious apps
stick out as outliers from those sets.

Ernst et al. [78] divert from the adversarial trust assumptions between app ven-
dor and market operator in prior works by relying on a collaborative verification.
Assuming that benign developers will co-operate by annotating their code such that
it can be effectively verified, while malicious apps can be reliably rejected, this could
enable high-assurance app stores.

AppInk [289] aims at deterring app repackaging through dynamic watermarking
of apps. Through an IDE extension, app developers can encode watermarks as trig-
gerable code in their app that can be checked dynamically by a companion app to
confirm authorship.

Actors’ Roles

Platform developers (A1. , R1. ) are responsible for fixing key signing issues and
allowing for secure distribution of apps in the ecosystem, for instance, distribution
of encrypted application packages and full support for PKIs. Additionally, end users
(R8. ) could run malware detection software on their devices. However, this would
require more effective support for malware detection from the platform developers
(see Section 2.4.2).

App markets (A3. , R3. ) with their central role in the software distribution pro-
cess have an enormous impact on security. To prove their correct operations, they
can add accountability features [80]. However, also app developers (A5. , R5. ) and
publishers (A6. , R6. ) bear full responsibility for misusing app signing recommen-
dations and have the potential to fix these issues in the future.



42 Chapter 2. Systematization of Android Security Research

Lesson Learned

Appification has created an interesting paradigm shift here. Software distribution
and installation have become highly centralized. Users typically go to a single app
market to search for and install their apps. With their central role in the appified
ecosystem, app markets’ impact on overall security is enormous. They serve as a
line of defense in the fight against malware and could also implement one or more
of the many proposed app vetting technologies to protect their users against buggy
apps. On the other hand, app markets can also serve as powerful attackers against
their own users. They can act as malware distributors or withhold apps or updates.

Although app markets are in a very powerful position, not many of the secu-
rity and privacy mechanisms proposed by researchers have been adopted by app
markets as of today. However, when it comes to privacy, it is potentially not in the
best interest of an app market to protect its users. App markets’ major motive is
monetization by selling apps to their users. As was shown in our systematization,
particularly the solutions proposed by researchers to improve users’ awareness and
control of privacy issues often would require the app markets’ cooperation. How-
ever, less installs and less lucrative advertising potential could potentially harm app
markets’ interests. Thus, one result of our work is that researchers should look for
additional actors in the ecosystem that could assist in improving users privacy. In
particular, app publishers and generators as a strongly emerging pattern for soft-
ware distribution [80] have not yet received any attention, although their influence
on the ecosystem can be considerable. It is unclear to which extent publishers and
app generators are trustworthy or are harming the security of apps (e.g., following
security best practices) and the privacy of users (e.g., adding tracking code).

Our assessment (Software Distribution): Centralizing software distribution
has proven successful for protecting end users against malicious software and
for fighting piracy, and should be retained. The threat of malicious app mar-
kets is manageable, with countermeasures (almost) ready to be deployed for
market-scale application sets. Trustworthiness of app publishers and genera-
tors as emerging actors has to be evaluated and established.

2.4.6 Vendor Customization/Fragmentation

Fragmentation in appified ecosystems is a wide spread phenomenon since many
hardware and software vendors compete for the customer base in the ecosystem.

Challenges

The Android ecosystem is fragmented at two different levels: First, Android devices
are shipped with different OS versions customized by different vendors. Second,
vendors ship their devices with custom system apps. Different works investigated
the impact of vendor customizations on the permission enforcement on Android [1,
112, 160, 277, 283] that led to a large number of overprivileged system apps [277].
Moreover, vendor customization significantly increases the phone’s attack surface.
Vendors introduce higher-privileged apps that act as confused deputies [160] or mis-
configurations at framework layer [1], both of which allow unprivileged apps access
to protected functionality. Recently, the impact of vendor customizations of the de-
vice drivers [292] has been investigated and the study reports very similar results:



2.4. Systematization of Research Areas in Appified Ecosystems 43

customizations of Android to fit the vendor-specific hardware have significantly in-
creased the attack surface of the platform and provided attackers access to highly
sensible functionality.

Countermeasures

As of today no research has been conducted to investigate countermeasures to chal-
lenges that stem from fragmented appified ecosystems.

Actors’ Roles

Vendor customizations, and thus device vendors, are responsible for the security
degradations caused by fragmentation and customization (A2. , R2. ).

Lesson Learned

Android’s open ecosystem, in contrast to tighter controlled ecosystems like Apple’s
iOS, allows vendor customization and fosters the fragmentation that comes along
with such customizations. Hence, Android’s ecosystem illustrates the potential se-
curity risks that such an open approach can induce and should be a warning to
concurrent or future appified platforms.

Another lesson to be learned from Android is encouraging vendors to use (sys-
tem) apps instead of OS patches to provide custom hardware support and force An-
droid to become more modular. Forcing vendors to patch the OS was mainly driven
by having only two different privilege levels for apps: system and third party. Elimi-
nating the need for OS patches and allowing vendors to define more privilege levels
to integrate customization purely at user space level could reduce fragmentation and
drastically reduce the attack surface caused by OS modifications. Although prior
works found that vendor app developers make the same mistakes as third-party de-
velopers, e.g., over-requesting permissions, bugs in more privileged vendor apps
could be more efficiently fixed via the standard app update mechanism in contrast
to OS updates. Since vendor app and third party app developers presumably make
the same classes of errors, efforts to fix those error classes could be focused instead
of having to fight two challenges—apps and OS patches.

Our assessment (Vendor Customization/Fragmentation): Allowing different
vendors to customize their devices fueled the adoption process of Android as
an appification platform. However, customizing the OS core raised new chal-
lenges for platform developers and device vendors. Hence, future fragmenta-
tion should focus on system apps rather than OS patches.

2.4.7 Software Update Mechanism

Due to centralization of software distribution, app updates are straight forward and
can be pushed to millions of users simultaneously. However, fragmentation of the
ecosystem makes OS updates very challenging.

Challenges

Application life-cycles are very fast paced and updates for actively maintained apps
are published in high frequency to markets [258] from where automated update



44 Chapter 2. Systematization of Android Security Research

mechanisms distribute them to end users. This is even pushed forward with central-
izing updates of security critical libraries such as WebView. In contrast, the situation
at OS and application framework level is rather bleak. Thomas et al. [247] present
a field study of 20,400 Android devices to measure the prevalence of Android plat-
form specific bugs in the wild. They define a metric to rank the performance of de-
vice manufacturers and network operators, based on their provision of updates and
exposure to critical vulnerabilities. Their central finding is a significant variability
in the timely delivery of security updates across different device manufacturers and
network operators, since at least 87% of all investigated devices were vulnerable to
at least 11 different vulnerabilities.

In addition, the complexity of upgrading the Android OS version induced prob-
lems in the permission management across OS versions [283]. This attack class is
currently unique to permission-based mobile systems, such as Android, since the at-
tacker does not corrupt the current system or update image, but instead strategically
requests permissions and attributes that are available on the future OS version.

Countermeasures

No research has thus far investigated countermeasures for challenges that stem from
software update mechanisms as implemented on Android. Apart from research,
Google has with their latest Android versions changed their update strategy for their
Nexus devices [36, 106]. It remains to be seen if other vendors adopt this strategy.
Moreover, the SecUp [283] app can detect apps that exploit the above mentioned
privilege-escalation attack through OS updates.

Actors’ Roles

Providing OS updates is responsibility of device vendors (A2. , R2. ). Platform
developers (A1. , R1. ) are responsible for introducing the upgrade privilege esca-
lation attack.

Lesson Learned

Many researchers expect the platform developer to implement their countermea-
sures. However, even if that should happen—which is rare, as of today devices are
not long-term and frequently maintained by vendors except Google—this expecta-
tion is causing slow adaption of new mechanisms and contributes to the fragmenta-
tion of the ecosystem [180, 247]. This also opens a large window of opportunity for
attackers to compromise the system. Interestingly, appified platforms like Android
already have a modularization of software at the application layer. This is inspired
by classical high-assurance systems like EROS [222] and in fact, the Binder IPC of
Android establishes something like a microkernel-like concept on top of the Linux
kernel in userspace. We would like to see this modularization extended to allow
modular updates of the system so that security updates can be deployed faster to
the end user without requiring a full system update. This is an area where appified
platforms are way behind traditional operating systems.

Our assessment (Software Update Mechanism): Since most proposed counter-
measures rely on OS updates, and OS fragmentation make these very cumber-
some, the platform developers should create better update mechanisms, so that
security fixes and countermeasures can be more easily deployed.



2.5. Discussion 45

2.5 Discussion

The central conclusion we draw from this systematization is that, like many new
technologies, Android is a story of both victory and defeat. New security mech-
anisms were introduced without a clear understanding of how these applications
would be developed and used, and well-established security mechanisms were re-
used to meet the expected security needs of the new general purpose computing
platform. Some of the these techniques were a great success, while others failed
almost entirely. We draw the following meta-conclusion:

Our meta-assessment: Some aspects worked out beautifully, e.g., centralizing
software distribution helps to tackle critical security issues and makes fighting
piracy and malware easier. Other approaches had initial difficulties, but are
now more or less on track after research has helped to identify and bridge them.
Examples comprise easier-to-use APIs that have started to replace hard-to-use
but well-intended security APIs over the last few years, as well as the concept
of Webification that has enabled more developers to produce their own apps.
However, some approaches should be re-thought from the beginning and ar-
guably abandoned for designs of future OSes: Permission dialogs for end users
should be removed entirely, since they failed for the same reasons warning mes-
sages have failed since the dawn of computing.

In this chapter, we gave an in-depth analysis of the appified Android ecosystem, and its
successes and drawbacks for security and privacy compared to conventional software ecosys-
tems. We characterized the model’s different actors and their capabilities to mitigate security
and privacy threats. We systematized existing research, and classified attacker models and
capabilities. We find that end users are limited in their ability to protect their own security
and privacy, and that more responsibility lies “upstream”, with app developers, API develop-
ers, device vendors and platform providers. In the following chapter, we explore empirically
how app developers’ security outcomes are influenced by documentation, the responsibility
for which generally lies with API developers, or, in the case of official Android documenta-
tion, with the platform provider.





47

Chapter 3

On the Impact of Information
Sources on Code Security

Disclaimer: The contents of this chapter were previously published as part of the confer-
ence paper “You get where you’re looking for: The impact of information sources on code
security”, presented at the 2016 IEEE Symposium on Security and Privacy. This research
was conducted as a team with my co-authors Christian Stransky, Doowon Kim, Michelle L.
Mazurek, Sascha Fahl, and Michael Backes; this chapter therefore uses the academic “we”.
Christian Stransky, Sascha Fahl, Michelle L. Mazurek and I designed, conducted and eval-
uated the online survey and controlled laboratory experiment. Doowon Kim helped in con-
ducting the controlled experiment. Sascha Fahl and I designed the API call confirmation
study. Christian Stransky and Sascha Fahl conducted and evaluated the API call search.
Christian Stransky, Doowon Kim, Michelle L. Mazurek, Sascha Fahl and I co-wrote the pa-
per. We are grateful to Sven Bugiel for assisting in the controlled experiment, and Marten
Oltrogge for assisting in the API call search. This chapter builds on knowledge of common
problems with Android at the time; the controlled experiment uses a late-2015 version of
Android, as well as the resources available at the time.

3.1 Motivation

Mobile devices in general and Android in particular are a rapidly growing mar-
ket. Globally, mobile digital media has recently surpassed desktop and other me-
dia [244]; billions of users and devices with millions of apps installed attract many
(new) developers. Previous research has found that many of these mobile apps have
poorly implemented security mechanisms, potentially because developers are inex-
perienced, distracted or overwhelmed [19, 50, 53, 70, 74, 80, 82, 84, 85, 87, 93, 151, 175,
188, 233, 268, 277, 293]. Developers tend to request more permissions than actually
needed, do not use TLS or cryptographic APIs correctly, often use insecure options
for Inter Component Communication (ICC), and fail to store sensitive information
in private areas.

Some previous work attempts to assess root causes for these programming er-
rors. A frequent conclusion is that APIs are too complicated or insufficiently doc-
umented. Anecdotal reports indicate that developers use a search engine for help
when they encounter an unfamiliar security issue. The search results often lead to
official API documentation, blog posts, or Q&A forums such as Stack Overflow1.
For example, Fahl et al. [82, 84, 85] interviewed developers whose use of pasted
code snippets from Stack Overflow made them vulnerable to Man-In-The-Middle
attacks.

1http://stackoverflow.com



48 Chapter 3. On the Impact of Information Sources on Code Security

These anecdotes set the stage for our work: While many developer issues have
been identified in recent years, we know only very little about how these security is-
sues make their way into apps, and most of what we know remains unsubstantiated.
In this paper, we assess the validity of these anecdotes by exploring the following
research questions:

• What do Android developers do when they encounter a security- or privacy-
relevant issue?

• Which information sources do they use to look up security- or privacy-relevant
questions?

• Does the use of Stack Overflow really lead to less secure code than the use of
other resources?

• Is the official Android documentation really less usable, resulting in less func-
tional code compared to other resources?

We are the first to address these questions systematically rather than anecdotally,
shedding light on the root causes of security-related programming errors in Android
apps. In order to understand these causes, we first conducted an online survey of 295
developers with apps listed in the Google Play marketplace, covering how they han-
dle both general and security-specific programming challenges in their daily work.
We found that most developers indeed use search engines and Stack Overflow to ad-
dress security-related issues, with a sizable number also consulting the official API
documentation and a few using books.

Based on the results of this study, we conducted a laboratory user study with 54
student and professional Android developers, assessing how they handle security
challenges when given different resources for assistance. Participants were assigned
to one of four study groups, in which we isolated conditions: free choice of resources,
Stack Overflow only, official Android documentation only, and books only. Each
participant was asked to complete four programming tasks that were drawn from
common errors identified in previous work: A secure networking task, a secure stor-
age task, an ICC task, and a least permissions task. We analyzed the correctness and
security of the participants’ code for each task as well as how they employ the re-
sources we permitted them to use. Our results validate the prior anecdotal evidence:
Participants using Stack Overflow were more likely to be functionally correct, but
less likely to come up with a secure solution than participants in other study condi-
tions.

To place these results in context, we also surveyed the quality of Stack Overflow
Q&As. We first analyze the relevance and security implications of the 139 Stack
Overflow threads accessed by our subjects. We found that many of the threads con-
tain insecure code snippets, and that those threads are equally as popular as threads
with only secure snippets.

To establish ground truth, we also apply static analysis to a random sample of
200,000 free apps from the Google Play market in order to investigate if the code
written in the context of our laboratory study can be found in the wild. We find
that our programming tasks were highly representative for the typical Android pro-
grammer, as 93.6% of all apps we analyzed used at least one of the API calls our
participants generated during the study. Our analysis also finds that many of the
security errors made by our participants when using these APIs also appear in the
wild. For example, most of the custom hostname verifier implementations we found



3.2. Related Work 49

in real-world apps implement insecure hostname verification, which is also true for
the code written by our participants.

Taken together, our results confirm an important problem: Official API docu-
mentation is secure but hard to use, while informal documentation such as Stack
Overflow is more accessible but often leads to insecurity. Interestingly, books (the
only paid resource) perform well both for security and functionality. However, they
are rarely used (in our study, one free choice participant used a book). Given time
constraints and economic pressures, we can expect that Android developers will
continue to choose those resources that appear easiest to use; therefore, our results
firmly establish the need for secure-but-usable documentation.

The rest of this chapter proceeds as follows: In Section 3.2 we review related
work. Section 3.3 describes our online survey of Android developers who have pub-
lished in the Play market, Section 3.4 describes the design of our laboratory study,
and Section 3.5 reports its results. In Section 3.6 we present our analysis of Stack
Overflow posts and in Section 3.7 we present the ground truth from our static code
analysis. Section 3.8 discusses some limitations of our work. Finally, in Section 3.9
we discuss our results and conclude.

3.2 Related Work

In this section, we discuss related work in three key areas: Security and privacy flaws
in otherwise benign mobile apps, efforts to understand how mobile developers make
security- and privacy-relevant decisions and prior research exploring online Q&A
resources such as StackOverflow.

Security Flaws in Mobile Apps. Many researchers attempted to measure the in-
cidence of security flaws in otherwise benign mobile apps. Fahl et al. found that 8%
of 13,500 popular, free Android apps contained misconfigured TLS code vulnerable
to Man-In-The-Middle attacks [82]. Common problems included accepting all cer-
tificates without verifying their validity and not checking whether the name of the
server currently being accessed matches the hostname specified on the certificate it
provides. In follow-up work, the same research team extended their analysis to iOS
and found similar results: Using a Man-In-The-Middle attack, they were able to ex-
tract sensitive data from 20% of the apps [85]. Another examination of TLS code, this
time in non-browser software more generally, found similar flaws in many Android
and iOS applications and libraries [99]. In more recent work, Onwuzurike and De
Cristofaro found that the same problems remain prevalent several years later, even
in apps with more than 10 million downloads [178]. Oltrogge et al. [175] investigated
the applicability of certificate pinning in Android apps. They came to the conclusion
that pinning was not as widely applicable as commonly believed. However, there
was still a huge gap between developers who actually implement pinning and apps
that could use pinning.

Egele et al. examined the use of cryptography – including block ciphers and mes-
sage authentication codes – in Android applications and found more than 10,000
apps misusing cryptographic primitives in insecure ways [70]. Examples included
using constant keys and salts, using non-random seeds and initialization vectors,
and using insecure modes for block ciphers.

Many problems also exist with the use and misuse of app permissions, device
identifiers, and inter-application communication. Enck et al. analyzed 1,100 free
Android apps and reported widespread issues, including the use of fine-grained



50 Chapter 3. On the Impact of Information Sources on Code Security

location information in potentially unexpected ways, using device IDs for finger-
printing and tracking (in concert with personal identifiable information (PII) and
account registration), and transmitting device and location in plaintext [74]. Chin et
al. characterized errors in inter-application communications (intents) that can lead
to interception of private data, service hijacking, and control-flow attacks [53]. Felt
et al. [87] analyzed how app developers use permissions and report that many re-
quest unnecessary permissions. The authors identify incomplete documentation for
developers as one major root cause of this problem. Work by Poeplau et al. reported
that almost 10% of analyzed apps load code via insecure channels (e.g., http or the
SD card), which can allow attackers to inject malicious code into benign apps in
order to steal data or create malware [188].

Enck et al. [73] presented TaintDroid – a tool that applies dynamic taint track-
ing to reveal how apps actually use permission-protected data. They uncovered a
number of questionable privacy practices in apps and motivated enhancements to
Android’s original permission system and access control on inter-component com-
munication.

In this chapter, we consider how the information sources developers use con-
tribute to these kinds of errors and problems.

Understanding Developers. Many of the flaws discussed above arose from de-
veloper mistakes and misunderstandings. In interviews with developers who made
mistakes in TLS code, Fahl et al. found that problems arose from several sources,
including developers who disabled TLS functionality during testing and never re-
enabled it, developers who did not understand the purpose of TLS or the possible
threat scenarios, and problems with default configurations in frameworks and li-
braries [85]. Georgiev et al. also reported that confusion about the many parame-
ters, options, and defaults of TLS libraries contributed to developer errors [99]. Both
papers noted that developer forums such as Stack Overflow contained many sug-
gestions for avoiding TLS-related error messages by disabling TLS features, without
warning about the potential security consequences. Many developers use these re-
sources to solve security- and privacy-related problems [22]. Similarly, Egele et al.
discussed how poor default configurations and confusing APIs, along with insuffi-
cient documentation, may contribute to errors using cryptographic primitives [70].

In a non-mobile context, Leon et al. found that many popular websites used in-
valid or misleading P3P compact policies, which are tokens used to summarize a
website’s privacy policy for automated parsing [145]. Their manual analysis sug-
gested that while many mistakes likely resulted from developer error, others re-
sulted from attempts to avoid Internet Explorer’s cookie filtering mechanism, and
appeared to rely on suggestions from forums like Stack Overflow for avoiding this
filtering. While these works on TLS and compact policies observed problems re-
lated to Stack Overflow and similar sites, our work uses a controlled experiment to
compare the impact of different information sources.

Other flaws, particularly those related to privacy, are caused when developers
do not sufficiently consider the implications of their decisions. In interviews with
mobile developers from companies of various sizes, Balebako et al. found that pri-
vacy policies are not considered important and that privacy concerns are frequently
outweighed by concerns about revenue, time to market, and the potential for any
data that can be collected to someday be useful [23]. In a follow-up survey, the
same authors found that many developers are not aware of the privacy or security
implications of third-party advertising and analytics libraries they use [22]. These



3.3. Survey of Android Developers 51

findings provide valuable insight into developers’ perspectives; our work extends
these perspectives with empirical observation of developer behavior.

Other researchers considered how to improve developers’ decision making. Jain
and Lindqvist propose a new location-request API designed to promote privacy-
preserving choices by developers [126]. Fahl et al. suggested providing TLS as a
service within a mobile OS that supports a separate development mode [85]. Sim-
ilarly, Onwuzurike and De Cristofaro provided a code snippet for correctly using
self-signed certificates during development but not production [178]. Our work ex-
tends Jain and Lindqvist’s methodology to empirically evaluate developers’ deci-
sions.

Collectively, these findings suggest that helping well-meaning mobile develop-
ers to make better security- and privacy-relevant decisions could have a large impact
on the overall mobile ecosystem. In this chapter, we expand on these findings by us-
ing a controlled lab study to quantify how documentary resources impact security
and privacy outcomes.

Exploring Online Q&A Resources. The software engineering and machine learn-
ing communities explored how developers interact with Stack Overflow and other
Q&A sites. Much of this research focused on what types of questions are asked,
which are most likely to be answered, and who does the asking and answering [29,
30, 161, 251, 255, 263].

Other research considered the quality of questions and answers available on
Q&A sites – including general sites not specifically targeting programming [24, 127,
190]. These works are generally intended to support automated identification and
pruning of low-quality content. In contrast to the studies described above, our work
does not describe or measure broad trends in how Stack Overflow is used; nor do
we consider how to automatically classify content. Instead, we directly consider
how existing Stack Overflow content affects the outputs of developers who rely on
it.

Others have analyzed Q&A sites specifically in the context of mobile develop-
ment. Linares-Vásquez et al. investigated how changes to Android APIs trigger
activities on Stack Overflow and found that the frequency of questions increases
when Android APIs change, particular in the case of method updates [146]. In two
related works, Wang et al. mined Stack Overflow posts to identify mobile APIs (An-
droid and iOS) that frequently give developers trouble. They proposed that this data
can be used both to improve documentation for these “hotspots" and to help API
providers improve the design of their APIs to better support developer needs [264,
265]. In a similar vein, Nadi et al. analyze Stack Overflow posts to identify difficul-
ties that developers commonly have with Java cryptography APIs [166]. While these
works used Stack Overflow to identify trouble spots within APIs, we instead start
from known trouble spots in security and privacy and measure how information
sources, including Stack Overflow, directly affect the code developers write.

3.3 Survey of Android Developers

To understand the challenges app developers face during the implementation of
security-critical app components, we conducted an online survey of Android devel-
opers covering their experience, their programming habits, and the resources they
use. Results from this survey helped motivate the design of our lab experiment (Sec-
tion 3.4). In this section, we briefly discuss the design of this survey as well as the



52 Chapter 3. On the Impact of Information Sources on Code Security

0 50 100 150 200 250 300

>	2	years

1	year	- 2	years

6	months	 - 1	year

<	6	months

not	at	all How	long	have	you	been	developing	 software	in	general?

How	long	have	you	been	developing	Android	apps?

FIGURE 3.1: How long participants in our online survey have been
developing software, both in general and specifically for Android.

results. The online study was approved by the University of Maryland Institutional
Review Board.

We collected a random sample of 50,000 email addresses of Android applica-
tion developers listed in Google Play (the official Android application market). We
emailed these developers, introducing ourselves and asking them to take our online
survey. A total of 302 people completed the survey between April 2015 and October
2015. Seven participants were removed for providing answers that were nonsensi-
cal, profane, or not in English. Results are presented for the remaining 295.

Education and Experience. Most participants (91.2%, 269) had been developing
software for more than two years; 63.1% (186) had been developing Android apps
specifically for more than two years, as shown in Figure 3.1. About half of them
(48.7%, 147) had developed between two and five apps; however, 73.5% (218) of all
participants reported that they do not develop Android apps as their primary job.

Almost half of the participants had formally studied programming at the under-
graduate (27.8%, 82) or graduate level (18.6%, 55). Most of the remaining develop-
ers reported being self-taught (41.2%, 121). Most participants had never taken any
classes or training related specifically to Android programming (81.3%, 239) or to
computer or information security (56.6%, 167).

As we discuss in Section 3.5.1, these demographics have some similarity with
our lab study participants; however, survey participants as a whole reported less
formal education than lab participants.

Security and Permissions. We also asked participants about three security-related
issues they might have encountered during app development: HTTPS/TLS, encryp-
tion, and Android permissions. These results provide some context for the security
tasks used in our lab study.

About half of the developers (144) said that their Android app(s) use HTTPS to
secure network connections; of those, 80.6% (116) had looked up information on
HTTPS- or TLS-related topics at least once, but only 11.1% (16) did so more fre-
quently than once per month. The most popular resources among these 116 were
Stack Overflow (43.1%, 50) and a search engine such as Google (37.1%, 43); only
8.6% (10) mentioned the official Android documentation. Interestingly, a few (2.6%,
3) mentioned asking for help from certification-related companies such as certificate



3.3. Survey of Android Developers 53

0%# 25%# 50%# 75%# 100%#

HTTPS#
Encryp2on#

Percent#of#par2cipants#

Does%your%app%use%...% Yes# No# I#don't#know#

0%# 25%# 50%# 75%# 100%#

HTTPS#

Permission#

Encryp2on#

General#

Percent#of#par2cipants#

How%o.en%do%you%look%up%...%%

mul2ple#2mes#a#day# about#once#a#day# about#once#a#week#
about#once#a#month# rarely# never#

0%# 25%# 50%# 75%# 100%#

HTTPS#

Permission#

Encryp2on#

General#

Percent#of#par2cipants#

What%resources%do%you%use?%

Official#Android#
documenta2on#
Search#engine#

Stack#Overflow#

FIGURE 3.2: Highlights of resource questions from our online devel-
oper survey. How many participants work on apps that include en-
cryption or HTTPS (top), how often participants look up information
when solving general programming problems or security-related An-
droid problems (middle), how many participants mentioned using
each of the most popular resources for solving general programming

problems or security-related Android problems (bottom).

vendors or hosting companies. A large majority of respondents (78.4%, 91) said they
did not handle HTTPS or certificate problems differently from other problems.

Fewer participants (25.1%, 74) had used encryption to store files. Of these, al-
most all (90.5%, 67) had looked up encryption-related topics at least once, but again
the vast majority did so once a month or less (82.1%, 55). The primary sources were
once again search engines (mentioned by 31 participants, 46.3%) and Stack Over-
flow (28.4%, 19). Six of the 67 (9.0%) mentioned the official Android documentation,
and two (3.0%) mentioned books. As with HTTPS, the majority (58, 86.6%) solved
encryption problems similarly to other problems.

Responses to questions about Android permissions were somewhat different.
As with HTTPS and encryption, most (74.9%, 221) reported they had looked up
permissions information at least once, and a large majority of them did so once per
month or less (84.2%, 186). However, participants who had looked up permission



54 Chapter 3. On the Impact of Information Sources on Code Security

information favored official documentation (41.2%, 91) over search engines (29.0%,
64) or Stack Overflow (30.3%, 67) on that topic. One participant wrote that “[I] don’t
have to Google. [I] go directly to Android developer resource” for authoritative
information.

Development Resources More Generally. We also asked (free response) about the
resources participants use when they encounter programming problems in general.
The results are similar to those for security-specific problems. Large majorities men-
tioned Stack Overflow (69.5%, 205) and a search engine (62.0%, 183). Although this
question did not specifically mention Android programming, 27.5% (81) also men-
tioned official Android documentation, including APIs and best practices guides.

In a separate question, we asked how frequently participants use any resources
when programming for Android. More than half (52.2%, 154) reported looking up
Android programming information at least once per day and another 25.4% said
at least once per week. Among 35 participants (11.9%) who selected “rarely,” 11
(31.4%) explicitly mentioned that while they rarely looked things up now, they had
used resources or documentations for help many times a day when they were work-
ing on Android projects.

Figure 3.2 illustrates how participants used resources, both for security-related
tasks and in general.

Discussion. Overall, these results indicate that many Android developers must
deal with security or privacy issues periodically, but do not handle them consis-
tently enough to become experts. This suggests that the quality of documentation
is especially critical for these topics. Stack Overflow (and more generally, online
search) is the default resource for certificate or encryption problems, as well as pro-
gramming problems more generally. Permissions, however—perhaps because they
are Android-specific and closely associated with the platform itself—are more fre-
quently referenced from the official documentation. These findings validate both the
need to understand the impact of the resources on security and privacy decisions
generally, and our choice to compare Stack Overflow and the official documentation
more specifically.

3.4 Android Developer Study

To examine how the resources developers access affect their security and privacy
decision-making, we conducted a between-subjects laboratory study. We provided
a skeleton Android app and asked participants to complete four programming tasks
based on the skeleton, encompassing the storage of data, the use of HTTPS, the use
of ICC and the use of permissions. Each participant was assigned to one of four
conditions governing what resources they were allowed to access. We examined the
resulting code for functional correctness as well as for security- or privacy-relevant
decisions; we also used a think-aloud protocol and an exit interview to further ex-
amine how participants used resources and how this affected their programming.

The lab study was also approved by the University of Maryland Institutional
Review Board.



3.4. Android Developer Study 55

3.4.1 Recruitment

We recruited participants who had taken at least one course in Android develop-
ment or developed professionally or as a hobby for at least one year. Initially, partic-
ipants were also asked to complete a short programming task to demonstrate com-
petence with Android development. After receiving feedback that the qualification
task required too great a time commitment for prospective participants, we instead
required participants to correctly answer at least three of five multiple choice ques-
tions testing basic Android development knowledge. The bar for qualification was
intentionally set low, as we wanted to compare the impact of programming resources
for developers with different expertise levels. In addition, the usefulness of our re-
sults partially depended on our participants needing to look things up during the
programming process.

Participants were recruited in and around one major city in the U.S., as well
as in two university towns in Germany. We recruited participants by emailing un-
dergraduate and graduate students (in computer science in general and specifically
those who had taken mobile development courses), as well as by placing ads on
Craigslist, emailing local hacker and developer groups, and using developer-specific
websites such as meetup.com. Prospective participants who qualified were invited
to complete the study at a university campus or at another public place (library,
coffee shop) of their choice. No mention of security or privacy was made during
recruitment. Participants were compensated with $30 in the U.S. or an e18 gift card
in Germany.

3.4.2 Conditions and Study Setup

Participants were assigned round-robin to one of four conditions, as follows:

Official Only (official). Participants were only allowed to access websites within
the official Android documentation 2.

Stack Overflow Only (SO). Participants were only allowed to access questions
and answers within Stack Overflow, a popular crowd-sourced resource for asking
and answering questions about programming in a variety of contexts.

Book Only (book). Participants were only allowed to use two books: Pro Android
4 [138] and Android Security Internals [71]. Participants were provided access to the
PDF versions of the books, enabling text searching as well as use of indices and
tables of contents.

Free Choice (free). Participants were allowed to use any web resources of their
choice, and were also offered access to the two books used in condition book.

Conditions official and SO were enforced using whitelist-chrome3, a Chrome
browser plugin for limiting web access.

Participants were provided with AndroidStudio, pre-loaded with our skeleton
app, and a software Android phone emulator. The skeleton app, which was de-
signed to reduce participants’ workload and simplify the programming tasks, was
introduced as a location-tracking tool that would help users keep track of how much
time they spent in various locations (at home, at work, etc.) each day.

2cf. http://developer.android.com
3cf. https://github.com/unindented/whitelist-chrome

http://developer.android.com


56 Chapter 3. On the Impact of Information Sources on Code Security

After a brief introduction to the study and the skeleton app, participants were
given four programming tasks in random order (detailed below), with approxi-
mately 20-30 minutes to complete each. (The first task was allowed to run longer as
participants became acquainted with the skeleton app.) While the short time limit
impeded some participants’ performance, it also simulated the pressure of writing
code on tight deadlines that many app developers face.

Security and privacy were not mentioned during the introduction to the study
and skeleton app or in the directions for each task (the HTTPS task and password
task do inherently imply some reference to security). We deliberately minimized
security priming to account for the fact that security and privacy are generally sec-
ondary tasks compared to basic app functionality [23, 61, 85, 97]. Instead, we focus
on whether developers – who in real-world scenarios may or may not be explicitly
considering security – find and implement secure approaches. This is in line with
prior studies examining security and privacy decisionmaking by developers, such
as one by Jain and Lindqvist [126].

3.4.3 The Tasks

Each participant was assigned the same four tasks, but in a random order. We took
care to implement baseline functionality so that the tasks could be done in any order
and so that remaining tasks would still work, even if a previous task had not been
successfully completed.

Drawing on related work (as discussed in Section 3.2), we selected four general
areas that typically result in security or privacy errors on Android: (1) Mistakes in
TLS and cryptographic API handling; (2) storing sensitive user data insecurely, such
that it can be accessed by other (unauthorized) apps; (3) using inter-component com-
munications (ICC) in a way that violates least privilege principles; and (4) requesting
unneeded permissions. We designed four tasks, detailed below, to exercise these ar-
eas respectively.

Secure Networking Task. This task addressed correct usage of HTTPS and TLS in
the presence of X.509 certificate errors. The skeleton app connected to a website via
HTTP; participants were asked to convert the connection to HTTPS. This required
making a minor adjustment to the connection object. More interestingly, we created
a certificate for secure.location-tracker.org (a server we configured specifically for
this study), but the participant was requested to connect to location-tracker.org, and
a matching DNS entry for secure.location-tracker.org did not exist. As a result, par-
ticipants received a HostnameVerifier exception indicating the certificate name and
domain were mismatched. Secure solutions would include creating a custom Host-
nameVerifier to handle this case or pinning the certificate (although we expected
pinning to be too time-consuming for most participants to implement in the study) 4.
We also accepted a participant arguing that the location tracker app should obtain
a correct X.509 certificate rather than working around the problem as a secure so-
lution. Insecure solutions that allow a connection to be established include using
a HostnameVerifier that accepts all hostnames, or simply accepting all certificates
without validation.

ICC Task. This task addressed secure inter-component communication. Partici-
pants were asked to modify a service within the skeleton app, in order to make the

4Implementing it correctly requires inspecting the server’s certificate and using a third-party tool
such as the OpenSSL command-line client to generate the pinning information



3.4. Android Developer Study 57

service callable by other apps. However, participants were asked to limit this access
to apps created by the same developer. To accomplish this, participants needed to
modify the Android Manifest. An insecure solution would expose the service to be
called by any app; this could happen by setting the flag android:exported to true or
by declaring intent filters, which set the exported flag to true by default. A secure
solution for this task is to define an own permission with protection level ‘signature’
or ‘signatureOrSystem’ and assign it as required for the service. A second possible
secure solution is to use a sharedUserId among all apps from the same developer,
which allows the apps to share resources.

Secure Storage Task. This task focused on secure storage of the user’s login ID
and password for the remote server. The skeleton app contained empty store and
load functions for the participant to fill in; the directions asked the participant to
store the credentials persistently and locally on the device. A secure solution would
be to limit access only to this app, for example using Android’s shared preferences
API in private mode. An insecure solution would make the data accessible to third
parties, for example by storing it world-readable on the SD card.

Least Permissions Task. In this task, participants were asked to add function-
ality to dial a hard-coded customer support telephone number. The skeleton app
contained a non-functional call button, to which the dialing functionality was to be
applied. To solve this problem, the participant needed to use an intent to open the
phone’s dialing app. One option is to use the ACTION_DIAL intent, which requires
no permissions; it opens the phone’s dialer with a preset number but requires the
user to actively initiate the call. Another option is to use the ACTION_CALL intent,
which initiates the call automatically but requires the CALL_PHONE permission.
We consider the second solution less appropriate because it requires unnecessary
permissions, violating the principle of least privilege.

3.4.4 Exit Interview

After completing each task (or running out of time), participants were given a short
exit interview about their experience. Using a five-point Likert scale, we asked
whether each task was fun, difficult, and whether the participant was confident they
got the right answer. We also asked whether the documentation and resources par-
ticipants had access to were easy to use, helpful, and correct. We asked free-response
questions about whether the participant had used that documentation source before
and how they felt the documentation restriction (where applicable) and time crunch
affected their performance. We also asked whether and how participants had consid-
ered security or privacy during each task. Finally, we asked a series of demographic
and programming-experience questions that matched those in our initial developer
survey (see Section 3.3).

3.4.5 Data Collection and Analysis

In addition to each participant’s code, think-aloud responses, and exit interview re-
sponses, we collected browser activity during the session (for participants in all but
the book condition) using the History Export5 extension for Chrome, which stores
all visited URLs in a JSON file.

5cf. https://chrome.google.com/webstore/detail/history-export/lpmoaclacdaofhlijejogfldmgkdlglj



58 Chapter 3. On the Impact of Information Sources on Code Security

Scoring the Programming Tasks. For each programming task, we assigned the
participant a functionality score of 1 (if the participant’s code compiled and com-
pleted the assigned task) or 0 (if not). To provide a security score for each task,
we considered only those participants who had functional solutions to that task.
We manually coded each participant’s code to one of several possible strategies for
solving the task, each of which was then labeled secure or insecure. Based on these
categories, each participant who completed a task was assigned a security score of 0
(insecure approach) or 1 (secure approach) for that task. Manual coding was done by
two independent coders, who then met to review the assigned codes and resolve any
mismatches. All conflicts were resolved by discussions that resulted in agreement.
Example secure and insecure approaches for each task are detailed in Table 3.1.

Prior to the conducting the lab study, we verified that functional and secure so-
lutions for each task, such as those described in Table 3.1, were available in each of
the official Android documentation, Stack Overflow, and the selected books. This
ensured that it was possible (if not necessarily easy) for participants in all conditions
to locate a correct and secure answer.

Statistical Methods. For ordinal and numeric data, we used the non-parametric
Kruskal-Wallis test to compare multiple samples and Wilcoxon Signed-Rank test to
compare two samples. For categorical data, we used Fisher’s Exact test. In cases
of multiple testing, we report tests as significant if the p-values are significant after
applying the Bon Ferroni-Holm correction. To examine correlation between two sets
of binary outcomes, we the use Cohen’s κ measure of inter-rater reliability.

To examine functional correctness and security across tasks and conditions, while
accounting for multiple tasks per participant, we used a cumulative-link (logit) mixed
model (CLMM) [282]. As is standard, we include random effects to group each par-
ticipant’s tasks together. For the CLMM, we tested models with and without the
participant’s status as a professional developer as an explanatory factor, as well as
with and without interactions among task, condition, and developer status. In each
case, we selected the model with the lowest Akaike information criterion (AIC) [43].

3.5 Lab Study Results

In this section, we discuss our lab study results in terms of functional correctness,
security, and participants’ use of their assigned resources. We find that while Stack
Overflow is easier to use and results in more functional correctness, it also results in
less security than the less accessible official API documentation.

3.5.1 Participants

A total of 56 people participated in our lab study (13 in the U.S. and 43 in Germany).
Two participants (one from the U.S. and one from Germany) were removed, one due
to an error assigning the condition and one because of their refusal to work on the
tasks. We report results for the remaining 54.

Our participants were aged between 18 and 40 (mean = 26, sd = 4.70), 85.2% were
male (46 participants), and most of them (88.9%, 48) were students. Several were
part-time students and part-time professional developers. More than half of partic-
ipants said they grew up in Germany (51.9%, 28). The next most popular countries
of origin were the U.S. (11.1%, 6) and India (9.3%, 5). Table 3.2 shows demographic
information for the participants recruited in each country. Using Fisher’s exact test,
we did not find differences in gender (p = 0.400), occupation (p = 1.00) or country



3.5. Lab Study Results 59
Task

A
PI

D
etails

Security
R

ating
Explanation

Secure
N

et-
w

orking

javax.net.ssl.HostnameVerifier.verify(host,
session)

return
true

A
custom

hostnam
e

veri-
fier

w
ith

a
correct

dom
ain

check
is

rated
as

a
secure

so-
lution.

H
ostnam

e
verifiers

w
hich

accept
all

hostnam
es

are
rated

insecure.

e.g.host.equals("secure.foo.com")

org.apache.http.conn.ssl.X509HostnameVerifier.verify(host,
session)

return
true

e.g.host.equals("secure.foo.com")

IC
C

<service>...</service>

android:exported=true
A

service
that

has
the

ex-
ported

flag
set

to
true,

uses
intent

filters,
or

uses
a

norm
al

or
dangerous

per-
m

ission
is

rated
as

inse-
cure.

Services
protected

w
ith

a
signature

or
sig-

natureO
rSystem

perm
ission

are
rated

as
secure.

<intent-filter>...</intent-filter>

android:permission

android:protectionLevel=signature

android:protectionLevel=signatureOrSystem

Secure
Stor-

age

Environment.getExternalStoragePublicDirectory(type)
-

W
e

distinguish
three

dif-
ferent

storage
backends:

SQ
Lite

databases,
the

file
system

,
and

A
ndroid’s

shared
preferences.

A
ll

three
can

have
secure

and
insecure

im
plem

entations.
Secure

im
plem

entations
store

inform
ation

in
an

area
local

to
an

app;
this

is
the

default
im

plem
entation

for
SQ

Lite
databases

and
shared

preferences.
H

ow
-

ever,
both

backends
can

be
used

to
store

data
such

that
other

apps
can

access
it.The

file-system
A

PI
can

be
used

to
either

store
data

locally
or

externally
on

a
device’s

SD
card.

Im
plem

entations
that

store
inform

ation
in

an
externally

accessible
w

ay
are

rated
insecure.

Im
plem

entations
that

store
inform

ation
locally

are
rated

secure.

Context.getExternalFilesDir(type)
-

Context.getFilesDir()
-

Context.getCacheDir()
-

Context.openFileOutput(name,
mode)

Context.MODE_PRIVATE

Context.MODE_WORLD_READABLE

Context.MODE_WORLD_WRITABLE

Context.getDir(name,
mode)

Context.MODE_PRIVATE

Context.MODE_WORLD_READABLE

Context.MODE_WORLD_WRITABLE

PreferenceManager.getDefaultSharedPreferences()
-

PreferenceManager.getSharedPreferences(context)
-

Context.getSharedPreferences(name,
mode)

Context.MODE_PRIVATE

Context.MODE_WORLD_READABLE

Context.MODE_WORLD_WRITABLE

Activity.getPreferences(mode)

Context.MODE_PRIVATE

Context.MODE_WORLD_READABLE

Context.MODE_WORLD_WRITABLE

Context.openOrCreateDatabase(name,
mode,...)

Context.MODE_PRIVATE

Context.MODE_WORLD_READABLE

Context.MODE_WORLD_WRITABLE

Least
Per-

m
issions

new
Intent(action,

uri)

Intent.ACTION_DIAL
U

sing
action_dial

is
rated

secure.
H

ow
ever,

using
action_call

and
requesting

the
call_phone

perm
ission

is
rated

insecure.

Intent.ACTION_CALL

android:name=’android.permission.CALL_PHONE’

=
w

e
rated

this
solution

as
secure,

=
w

e
rated

this
solution

as
insecure

T
A

B
L

E
3.1:Task

related
A

PIcalls
and

their
param

eters.W
ith

security
rating

param
eters

help
classify

w
hether

a
solution

is
secure.



60 Chapter 3. On the Impact of Information Sources on Code Security

Assigned condition
Official: 13 SO: 13 Book: 14 Free: 14

Location of Study
United States: 12 (22.2%) Germany: 42 (77.8%)

Gender
Male: 46 (85.2%) Female: 8 (14.8%)

Country of Origin
United States: 6 (11.1%) Germany: 28 (51.9%)
India: 5 (9.3%) Others: 15 (27.8%)

Professional Android Experience
Yes: 14 No: 40

Ages
mean = 26.0 median = 25 sd = 4.7

TABLE 3.2: Participant Demographics.

of origin (p = 0.81) between the randomly assigned conditions. Using the Kruskal-
Wallis test, we could not find a difference in ages across the randomly assigned con-
ditions (X2 = 2.22, p = 0.528). Both in the U.S. and in Germany, participants were
distributed evenly across the four conditions.

Every lab study participant but one (98.1%) had been programming in general
for more than two years; 51.9% (28) had been specifically developing Android apps
for more than two years. About half of the participants (53.7%, 29) had developed
between two and five Android apps, and 18.5% (10) had developed 10 or more apps.
Most participants (85.2%, 46) were not developing Android apps as their primary
job, but eight participants were employed as Android app programmers. Using
the Kruskal-Wallis test, we did not find a difference in years of Android experience
or in number of apps developed across the randomly assigned conditions (X2 =
5.06, 4.46 and p = 0.409, 0.485 respectively). As shown in Figure 3.3, our lab-study
participants had roughly similar experience to the developers in our online survey.

We also asked how participants learned to program (multiple answers allowed).
Almost all (83.3%, 45/54) said they were at least partially self-taught, and 79.6% (43)
had formally studied programming at the undergraduate or graduate level. More
than half (63.0%, 34) had taken at least one security class, and slightly fewer than
half (46.3%, 25) had taken a class in Android programming. Overall, our lab study
participants had notably more education than the developers in our online survey.

3.5.2 Functional Correctness Results

Our results demonstrate that the assigned resource condition had a notable impact
on participants’ ability to complete the tasks functionally correctly; SO and book
participants performed best, and official participants performed worst. SO partici-
pants solved 67.3% (35/52) of tasks correctly, compared to 66.1% (37/56) for book,
51.8% (29/56) for free, and 40.4% (21) for official. Figure 3.4 (top) provides more de-
tail on the breakdown of correctness across tasks and conditions. The CLMM model
(see Table 3.3) indicates that when controlling for task type, professional status, and
multiple tasks per participant, participants in official were significantly less likely
than baseline SO participants to functionally complete tasks.

Participants’ perceptions of the tasks only partially dovetailed with these results.
We asked participants, on a 5-point Likert scale, whether they were confident they



3.5. Lab Study Results 61

0% 25% 50% 75% 100%

Between 2 and 5
Android apps

Non-primary job

>2 years
(In general)

> 2 years
(Anroid app)

Percentage of participants

Lab study vs. Online survey
Lab
Online

FIGURE 3.3: Comparison of programming experience for participants
in our online survey and lab study.

0% 25% 50% 75% 100%

Least Permissions

Secure Storage

ICC

Secure Networking

Correctness
Official
SO
Book
Free

0% 25% 50% 75% 100%

Least Permissions

Secure Storage

ICC

Secure Networking

Security

Official
SO
Book
Free

Percentage of participants

FIGURE 3.4: Top: Percentage of participants who produced function-
ally correct solutions, by task and condition. Bottom: Percentage of
participants whose functionally correct solutions were scored as se-

cure, by task and condition.

had gotten the right answer for each task.6 Participants in condition free were most

6One book participant’s confidence answer for the least permissions task was inadvertently not
recorded; we exclude that participant from confidence analyses only.



62 Chapter 3. On the Impact of Information Sources on Code Security

confident: They agreed or strongly agreed they were confident for 55.4% of tasks.
Participants in each of the other three conditions were confident for slightly fewer
than half of tasks: 47.3% in book and 46.2% in both SO and official. Figure 3.5 illus-
trates these results.

0% 25% 50% 75% 100%

Free

Book

SO

Official

Percentage of participants

I am confident I got the right answer on this task

Strongly Disagree Disagree Neither Agree Strongly Agree

FIGURE 3.5: Participants’ confidence in their tasks’ correctness, by
condition, on a 1-5 Likert scale (1 = Strongly disagree, 5 = Strongly

agree).

Using Cohen’s κ, we examined whether participants’ self-reported confidence in
their tasks’ correctness (binned as strongly agree/agree and strongly disagree/dis-
agree/neutral) matched with our functional correctness result. We found κ = 0.55,
indicating that participants were assessing their functional correctness only some-
what effectively.

Correctness per Task. Observed correctness varied strongly among the four tasks,
as shown in Figure 3.4 (top). In the least permissions task, 87.0% (47) of participants
produced a functional solution; in the secure networking task only 33.3% (18) did.
These results were mirrored in self-reported confidence: 81.1% of participants were
confident about the least permissions task, compared to 53.7% for secure storage,
40.7% for ICC, and only 20.1% for secure networking. The CLMM analysis (Table 3.3)
indicates that both the secure storage and least permissions tasks were significantly
more likely to be functionally correct than the baseline secure networking task.

Factor Coef. Exp(coef) SE p-value

free -1.054 0.349 0.613 0.085
official -1.535 0.215 0.634 0.015*
book -0.142 0.868 0.602 0.814
ICC 0.795 2.215 0.455 0.081
secure storage 1.280 3.597 0.468 0.006*
least permissions 3.299 27.092 0.632 < 0.001*
professional 1.004 2.728 0.501 0.045*

TABLE 3.3: CLMM regression table for functional correctness. The
non-interaction model including professional status was selected.
Non-significant values are greyed out; significant values are indicated
with an asterisk. The baseline for condition is SO, and the baseline for

task is secure networking.



3.5. Lab Study Results 63

3.5.3 Security Results

Our results suggest that choice of resources has the opposite effect on security than it
did on functionality: SO participants performed worst on this metric. As described
in Section 3.4.5, we scored tasks that had been solved correctly for security, privacy,
and adherence to least-privilege principles. In the SO condition, only 51.4% (18/35)
of functional solutions were graded as secure, compared to 65.5% (19/29) for free,
73.0% (27/37) for book, and 85.7% (18/21) for official. Figure 3.4 (bottom) illustrates
these results. Using a CLMM that includes only tasks that were graded as func-
tionally correct (Table 3.4), we find that both official and book produce significantly
more secure results than SO. The difference between SO and free, in which many
participants elected to use Stack Overflow for most of their tasks (see Section 3.5.4),
was not significant.

Factor Coef. Exp(coef) SE p-value

free 1.112 3.040 0.623 0.074
official 2.218 9.184 0.796 0.005*
book 1.539 4.660 0.604 0.011*
ICC 0.763 2.144 0.666 0.252
least permissions 0.856 2.353 0.609 0.160

TABLE 3.4: CLMM regression table for security. Only tasks graded as
functionally correct are included in the model. The non-interaction
model without professional status was selected. Non-significant val-
ues are greyed out; significant values are indicated with an asterisk.
The baseline for condition is SO, and the baseline for task is secure

networking.

Security per Task. As with correctness, security results differed noticeably among
tasks. For example, every participant who produced a functional solution to the
storage task (31) produced a secure solution. On the other hand, only 38.9% (7/18) of
participants who produced a functional solution to the networking task were scored
as secure. This discrepancy is illustrated in Figure 3.4 (bottom). Our CLMM results
(Table 3.4) indicate that neither the ICC nor least permissions task was significantly
different from the networking task. Because all functional solutions to the storage
task were graded as secure regardless of condition, the regression coefficient for that
task approaches infinity, and the results of the model estimates for that task are not
interpretable. We omit it from the table.

Considering Security while Programming. We were also interested in the ex-
tent to which participants thought about security while solving each task. We mea-
sured this in two ways. First, we considered the participants’ think-aloud comments
for each task, classifying them as having either explicitly mentioned security; men-
tioned security but later decided to ignore it for the task at hand; or not mentioned
security at all. These classifications were independently coded by two coders who
then reached agreement, as discussed in Section 3.4.5. We refer to this as observed
security thinking. Second, we asked participants during the exit interview to self-
report for each task whether or not they had considered security, as a yes/no ques-
tion. We refer to this metric as self-reported security thinking. For both metrics, we
considered all tasks, not just those that participants completed correctly.



64 Chapter 3. On the Impact of Information Sources on Code Security

In the observed metric, most participants did not mention security at all (79.2%
of all tasks, 171). In the storage task, 16 participants (29.6%) mentioned security and
all stuck with it; in the networking task 20 mentioned security (37.0%) but nine later
abandoned it. In contrast, only five and four participants ever mentioned security
or privacy in the least permissions and ICC tasks, respectively. Common reasons
for abandoning security included that finding a secure solution proved too difficult,
that the task was for a study rather than real, and that the participant was running
short of time.

In the self-reported metric, more participants reported considering security: 60.2%
of all tasks (130). Using this metric, security was most frequently considered for se-
cure networking (79.6%), followed by ICC (70.4%) and secure storage (68.5%). Only
22.2% of participants reported considering security for the least permissions task.
The higher rate of security thinking using this metric is most likely attributable to
the participants being prompted.

To compare conditions, we assign each participant a separate score for each met-
ric, corresponding to the number of tasks in which the participant considered secu-
rity. In both metrics the average scores were highest in book (0.93, 2.86) and lowest
in SO (0.69, 1.92), but neither difference was significant (Kruskal-Wallis, observed:
X2 = 0.507, p = 0.917, self-report: X2 = 4.728, p = 0.192).

Comparing Professionals and Non-Professionals. Although the relatively small
sample of professionals we were able to recruit makes comprehensive comparisons
difficult, we examined differences in correctness and security between these two
groups. For purpose of this analysis, we categorize 14 participants as professionals,
including those who are currently or recently had been professional developers. The
non-professional participants are primarily university students. The professionals
were randomly distributed across conditions: five in free, three in SO, two in official
and four in book.

Overall, professionals were slightly more likely to produce a functional solution,
with a median three functionally correct tasks (mean = 2.79, sd = 0.70) compared
to two functionally correct tasks (mean = 2.08, sd = 1.23) for non-professionals.
We observed essentially no difference in security results: professionals’ solutions
were median 66.7% secure (mean = 69.0%, sd = 0.20), compared to 66.7% for non-
professionals (mean = 66.2%, sd = 0.36). These observations fit with the CLMM
results: professional status predicts a small but significant increase in functional cor-
rectness, but professional status is excluded from the best-fitting security model.

3.5.4 Use of Resources

During the tasks, we collected the search terms used and pages visited by all par-
ticipants in non-book conditions. In addition, during the exit interview, we asked
participants several questions about the resources they were assigned to use. In this
section, we analyze participants’ search and lookup behavior as well as their self-
reported opinions.

Lookup Behavior Across Conditions.
We define “search queries" as submitting a search string to a search engine or to

the search boxes provided by Stack Overflow and the official Android documenta-
tion. Participants in the SO condition made on average 22.8 queries across the four
tasks, compared to 14.5 for the official condition. Participants in free were closer
to SO than official, with an average of 21.1 queries. We also observed that partici-
pants in the official, free and SO conditions visited on average 35.4, 36.1, and 53.2



3.5. Lab Study Results 65

unique web pages across the four tasks. We offer two hypotheses for these results,
based on on our qualitative observations: First, official participants were more likely
to scroll through a table of contents or index and click topics that seemed relevant
(as opposed to doing a keyword search) than those in other conditions, presumably
because the official documentation is more structured. Second and perhaps more
importantly, SO participants seemed to be more likely to visit pages that turned out
to be unhelpful and restart their searches.

Participants in the free condition were given their choice of Internet resources to
help them solve the programming tasks. Every free participant started every attempt
to get help with a Google search. Undoubtedly this was partially influenced by
Chrome using Google as the default start page as well as automatically using Google
search for terms entered in the URL bar, but the complete unanimity (along with
results from the online survey) suggests that many or most attempts would have
started there anyway. From within their Google results, every participant selected at
least one page within the official Android API documentation, and all but one visited
Stack Overflow as well. A few visited blogs, and one visited an online book. These
results are consistent with the online survey results reported in Section 3.3. In terms
of frequency, official documentation was most popular, representing between 50 and
85% of non-google-search pages for all participants except one outlier who visited it
98% of the time. Most participants visited Stack Overflow for between 10 and 40%
of their pages, with outliers at 0 and 2.4% as well as 50%. While participants in the
group visited more official documentation pages than pages at Stack Overflow, their
functionality and security results more closely resemble the group than the official
group. This may be partially explained by a behavior pattern that we observed
several times in the free condition: participants spent some time reading through
the official documentation, but as the time limit approached used content (often a
copied and pasted code snippet) from Stack Overflow.

Search Query Selection. We also examined the search query text chosen by par-
ticipants. Queries were normalized for capitalization and spacing, and any queries
within one string edit of each other were consolidated (to account for plurals and
typos). Because few participants exactly duplicated one another’s queries, in or-
der to discern trends, one researcher manually coded similar terms into categories.
For example, “restrict access developers," “restrict app access for same developer,"
and “restrict apps same developer" were categorized together. For the secure net-
working task, the most common queries involved hostname exceptions and HTTPS,
together with just a few searches for certificates, certificate errors, and hostname ver-
ifiers. For the ICC task, the most popular searches included manifest, permissions,
services, external access, and restricting access. A few more knowledgeable partic-
ipants searched for intent filters, user IDs, and signatures. For secure storage, the
most popular choices included storage, persistent storage, and shared preferences;
for least permissions participants most frequently searched for call and phone call,
with a few searching for dial. Only four participants searched for “secure" or “secu-
rity," including two in free and one each in SO and official.

Participants’ Opinions about Information Sources. We asked our non-free par-
ticipants whether they had previously used their assigned resource. All 14 SO par-
ticipants had previously used Stack Overflow, and most (10/13) official participants
had used the official documentation. However, only six of 14 book participants had
used books. We also asked participants to rate, on a five-point Likert scale, the extent
to which the resources they used were easy to use, helpful, and correct. Results are



66 Chapter 3. On the Impact of Information Sources on Code Security

FIGURE 3.6: Participants’ agreement (on a five-point Likert scale)
with the statements that the resources they used were easy to use,

helpful, and correct, by condition.

shown in Figure 3.6. As might be expected, participants found free choice easiest to
use and books least easy; in contrast, they were most likely to consider books and
the official documentation to be correct.

We also asked about the effect of participants’ assigned resource on their perfor-
mance. In every non-free condition, the large majority (official: 92.3% (12/13); book:
92.9% (13/14); SO: 78.6% (11/14)) said they would have performed better on the
tasks if they had been allowed to use different resources. In particular, official and
book participants said they would have liked to access Stack Overflow or search en-
gines such as Google, so that they could search for their specific problems rather than
reading background information. One book user mentioned the “danger that books
could be outdated.” On the other hand, many SO participants said they would have
liked to access the official documentation to read up on background information for
their problems.

Time constraints were also a concern for our participants. Most (61.1%, 33) said
they would probably have performed better had they been given more time, while
nine (16.7%) mentioned (unprompted) that more time would have allowed them
to make their solutions more secure. One participant in official, for example, said



3.6. Quality of Stack Overflow Responses 67

that “Twenty minutes is very limited to consider security.” The remaining 38.9%
said more time would not have helped, either because they solved the tasks to their
satisfaction, or because they believed the resource they were using did not allow
them to find a (better) solution.

3.6 Quality of Stack Overflow Responses

To better contextualize the performance of the participants – in both, the SO and free
condition –, we examined in detail all Stack Overflow pages (threads) visited by our
participants during the programming tasks. In particular, we were curious about
whether these pages contained secure and/or insecure examples and code snippets,
and whether the security implications were explained. As might be expected, we
found many discouraging instances of insecure examples and few discussions of
security implications.

3.6.1 Classification Methodology

We rated each thread on five different attributes, described below. All threads were
independently coded by two researchers, who then reached consensus on any con-
flicts.

Task Relevance. We first checked whether the topic of the thread was actually
relevant to solving the study task. If it would not help the participant in solving the
task, it was flagged as off-topic and not looked at further.

Usefulness. We rated each on-topic thread as useful or not useful, based on how
related answers were to the question. Threads with no answers, or no answers that
responded to the original question, were rated as not useful. Threads with answers
that discussed the question and gave helpful comments, links to other resources, or
sample code were rated as useful.

Code Snippets. We examined all answers in each thread for ready-to-use code
snippets. We rated a code snippet as ready-to-use if it was syntactically correct and
a developer could copy and paste it into an app. Each thread in which at least one
answer qualified was marked as containing a code snippet. Each code snippet was
individually rated as secure or insecure relative to the programming tasks described
in Section 3.4.3.

External Links. Within each thread, we looked for answers containing external
links. We classified threads as containing links to GitHub, to other code repositories,
to other Stack Overflow threads, or to anywhere else. Additionally, we classified the
linked content as either secure or insecure.

Security Implications. We investigated whether any answer in the thread dis-
cussed security implications of possible solutions. For example, if two solutions
existed and one included an extra permission request, we checked whether any of
the answers discussed a violation of the least-privilege principle. If an answer con-
tained a NullHostnameVerifier, we would check if at least one of the answers would
advise that verification should not be disabled.



68 Chapter 3. On the Impact of Information Sources on Code Security

3.6.2 Classification Results

Overall, our participants accessed 139 threads on Stack Overflow. We categorized 41
threads as being on-topic. Table 3.5 summarizes the classification results for these
41 threads. Of these, 20 threads contained code snippets. Half of the threads con-
taining code snippets contained only insecure snippets, such as instructions to use
NullHostnameVerifiers and NullTrustManagers, which will accept all certificates re-
gardless of validity. Among these 10 threads containing only insecure code snippets,
only three described the security implications of using them. This creates the pos-
sibility for developers to simply copy and paste a “functional” solution that voids
existing security measures, without realizing the consequences of their actions. More
encouragingly, seven of the 10 remaining threads with code snippets contained only
secure code snippets.

We next investigated how threads with different properties compared in terms
of popularity (measured by total upvotes for the thread). Unsurprisingly, we found
that threads with code snippets were more popular than those without (W = 319.5,
p = 0.00217, α = 0.025, Wilcoxon-Signed-Rank Test (B-H)). Discouragingly, we
found no statistical difference between threads with secure and insecure code snip-
pets (W = 73, p = 0.188). On the other hand, threads that discuss security impli-
cations are slightly more popular than those that don’t (W = 239.5, p = 0.0308,
α = 0.05 (B-H)).

Although these results cover only a very small sample of Stack Overflow threads,
they provide some insight into why our SO participants had lower security scores
than those in the official condition.

Answers in the thread include ... Count

Useful answers 35 (85.4%)
Useless answers 6 (14.6%)
Discussion of security implications 12 (29.3%)

Working code examples 20 (48.8%)
Only secure code examples 7 (17.0%)
Only insecure code examples 10 (24.4%)
. . . but also discussion of security implications 3 (30.0%)

Secure links 23 (56.1%)
Insecure links 6 (14.6%)
Links to GitHub 4 (9.8%)
Links to other code repositories 1 (2.4%)
Links to other Stack Overflow threads 4 (9.8%)

Only secure code examples and secure links 3 (7.3%)

TABLE 3.5: Properties of the 41 on-topic Stack Overflow threads ac-
cessed during the lab study.

3.7 Programming Task Validity

To provide evidence for the validity of our lab study tasks and results, we examined
how the APIs used in our programming tasks (cf. Table 3.1) are used in real-world
apps. In particular, we were interested in how frequently these APIs are used in real
Google Play apps, as well as whether secure or insecure solutions are more preva-
lent. Results of our analysis show that the APIs we examined are widely used; in



3.7. Programming Task Validity 69

Stack Overflow Threads

with code snippets without code snippets
mean 97.7 mean 3.9
median 12 median 2.5
sd 163.9 sd 4.4

W = 319.5, p = 0.00217, α = 0.025 (B-H)

with secure code snippets with insecure code snippets
mean 204.3 mean 70.2
median 145 median 14
sd 209.3 sd 122.4

W = 73, p = 0.188

with security implications without security implications
mean 135.2 mean 17.4
median 16 median 3
sd 207 sd 37

W = 239.5, p = 0.0308, α = 0.05 (B-H)

TABLE 3.6: Popularity ratings for threads containing code snippets.

line with our lab study results, the secure networking and ICC APIs were frequently
used in ways that suggest security concerns.

3.7.1 Analysis

To analyze real-world apps, we applied standard static code-analysis techniques:
We decompiled Android APK files, constructed control flow graphs (CFGs), and
applied backtracking to gather insights about how often real-world developers use
APIs relevant to our programming tasks. Limitations of this approach are discussed
in Section 3.8. Overall, we analyzed a random sample of 200,000 free Android apps
from Google Play.

Secure Networking Task. For this task, we analyzed whether an app implements
the HostnameVerifier interface (cf. Table 3.1). Hostname verification requires a de-
veloper to implement the verify(String hostname, SSLSession session)method.
We checked if an implementation actually performs hostname verification by pro-
cessing the hostname parameter or if it simply accepts every hostname (i. e. return
true;).

ICC Task. For this task, we analyzed an app’s Manifest file (cf. Table 3.1). We ex-
tracted <service> entries from the XML DOM, then checked for <intent-filter>
child nodes to determine whether an intent filter was set. We also checked whether
the android:exported flag, which indicates whether a service is made publicly avail-
able, was present and if it was set to true. Lastly, we extracted android:permission
attributes to see if services were protected by permissions. We also extracted the
android:protectionLevel attributes to learn whether signature or system permis-
sions are required to use this service.

Secure Storage Task. To determine whether an app stores data persistently, we
looked up relevant API calls in the call graph. We distinguished between three dif-
ferent targets: SQLite databases, the file system, and shared preferences (cf. Ta-
ble 3.1).

To check for SQLite database usage, we looked up the openOrCreateDatabase
API call in the CFG. Developers can use this API call in a way that keeps data local



70 Chapter 3. On the Impact of Information Sources on Code Security

to an app by explicitly setting the MODE_PRIVATE flag or using the default. Setting the
MODE_WORLD_WRITEABLE or MODE_WORLD_READABLE flag stores the database outside an
app’s local storage and makes it available to other apps. We used backtracking to
check which flags were set.

To analyze file-system access, we looked up API calls that return output- or in-
putstreams to a file handle. This includes the openFileOutput method and the mode
flags. Additionally, we checked for use of methods that find the path of the external
storage as well as the WRITE_EXTERNAL_STORAGE permission.

To check for shared preferences usage, we looked up the getSharedPreferences,
getPreferences and getDefaultSharedPreferences API calls in the CFG. The
MODE_PRIVATE, MODE_WORLD_WRITEABLE and MODE_WORLD_READABLE flags are used to
distinguish between secure and insecure solutions.

Least Permissions Task. To examine use of dialing compared to calling, we ana-
lyzed the Manifest file for the occurrence of the CALL_PHONE permission request and
searched for relevant API calls in the CFG. To initiate a phone call, a new Intent ob-
ject must be created using a string parameter to specify the intended action. We used
backtracking to obtain the respective action value and searched for ACTION_DIAL and
ACTION_CALL values.

Apps that used an ACTION_DIAL intent were rated as adhering to least privilege
since they use the system’s dialer and do not require an additional permission. Apps
that use an ACTION_CALL intent in combination with requesting the CALL_PHONE per-
mission were rated as not adhering to least privilege.

3.7.2 Results

Table 3.7 summarizes the results of our real-world app analysis, which are further
detailed below.

Secure Networking Task. We identified 19,734 apps that implement their own
hostname verifier. Of those apps, 19,520 apps (98.9%) implement it in a way that
accepts any hostname, i.e. they effectively turn off hostname verification and make
their apps vulnerable to active Man-In-The-Middle attacks. Only the remaining 214
apps (0.1%) implement alternative hostname verification strategies. Although the
limitations of static code analysis prevent us from assessing whether these imple-
mentations meet the programmers’ expectations, we score them as secure compared
to hostname verifiers that simply accept every hostname.

ICC Task. 42,193 apps implemented their own services. Of those, 15,857 (37.6%)
configured a non-default access policy for their services by setting respective prop-
erties in the Manifest file. 11,929 (75.2%) of those apps use intent filters or set the
exported=true flag, which weakens security. 3,928 (24.8%) of those apps configured
their services to that an entity must have a permission in order to launch the service
or bind to it. Only 101 apps required an entity to have a permission of the same
developer or a system permission.

Secure Storage Task. 155,017 apps implemented file-system access. Of those,
34,183 (22.1%) access files on external storage or write to the internal storage with
MODE_WORLD_READABLE/WRITEABLE. However, 120,834 (77.9%) only access files on in-
ternal storage with MODE_PRIVATE. Similar numbers can be seen with shared pref-
erences, where 130,408 (88.0%) apps out of 148,256 use MODE_PRIVATE and 17,848
(12.0%) use a publicly accessible mode. SQLite databases are not very common



3.7. Programming Task Validity 71

secure apps

Secure Networking Task

broken hostname verifier 19,520
alternative hostname verification 214

ICC Task

service - 42,193
intent filter 8,133
exported=true 3,796
permission 3,827
permission, signature 86
permission, signature or system 15

Secure Storage Task

filesystem, private 120,834
filesystem, public 34,183
database, private 4,471
database, public 154
shared preferences, private 130,408
shared preferences, public 17,848

Least Permissions Task

dial, permission 3,907
dial, no permission 48,832
call, permission 5,336
call, no permission 6,157

= secure; = insecure

TABLE 3.7: Results of statically analysing a random sample of 200,000
Android apps.



72 Chapter 3. On the Impact of Information Sources on Code Security

among our dataset, but 4471 out of 4625 (96.7%) also use a private mode and only
154 (3.3%) a public mode.

Least Permissions Task. Overall we identified 64,232 apps that use intents to make
phone calls. Of those apps 52,739 (82.1%) use the ACTION_DIAL action for that pur-
pose. Interestingly 3,907 (7.4%) of those apps request the CALL_PHONE permission al-
though ACTION_DIAL does not require a dedicated permission. The remaining 11,493
(17.9%) apps use the ACTION_CALL action which requires the CALL_PHONE permission
to be requested by the developer. Of those apps, 6,157 (53.6%) do not request the
CALL_PHONE permission and hence might crash if the ACTION_CALL intent is called.

3.7.3 Discussion

We found that 187,291 (93.6%) of the randomly chosen 200,000 apps we analyzed in
our study used at least one of the APIs we used in our programming tasks, suggest-
ing that our laboratory study includes programming tasks that real-world develop-
ers encounter. Interestingly, for the secure storage and least privilege tasks, most
apps implement the more secure solutions. In contrast, for the secure networking
and ICC tasks, we found more insecure solutions. This mirrors the results of our lab
study (cf. Section 3.5). This analysis provides additional concrete evidence for the
relevance and the results of our lab study.

3.8 Limitations

As with most studies of this type, our work has several limitations.
First, the response rate for our online developer survey was very low, as might

be expected from sending unsolicited emails to prospective participants. This may
introduce some self-selection bias, but we have no reason to believe a priori that
those who responded differ meaningfully in terms of security knowledge or resource
usage from those who did not.

Our lab study created an artificial scenario—working within a tight time limit,
with unfamiliar starter code—which may have impacted participants’ ability to
complete tasks correctly and securely. Similarly, the artificial nature of study partic-
ipation may have reduced participants’ incentives to consider security. In addition,
a majority of our lab participants were students rather than professional developers,
and overall the lab participants were more formally educated than the developers
in our online survey, which may limit the generalizability of our results somewhat.
The professionals in the study performed slightly but not significantly better than
the non-professionals in functional correctness, but not in security. All of these is-
sues, however, were present across conditions, suggesting that comparisons among
conditions are valid. We also hoped that the time limit would partially emulate the
pressure professional developers feel to bring apps to market quickly rather than
focus on writing the best possible software.

Our analysis of Stack Overflow threads is limited to only those accessed by our
lab study participants; threads on other topics may exhibit different properties. In
addition, our manual coding process was somewhat subjective. Nonetheless, we
believe this analysis provides a useful glimpse into the broader characteristics of
Stack Overflow as a resource.

The static code analysis we conducted has several limitations. Although we per-
formed reachability analyses for all API calls, an inherent limitation of static code
analysis is that we still might have included code paths that are not executed. For



3.9. Discussion 73

the ICC task, it is possible that some services we marked as insecure were made pub-
licly available deliberately rather than by mistake; however, the official Android doc-
umentation7 discourages the use of intent filters for security reasons. Hence, while
we may have some false positives, our results do suggest at minimum a violation of
best practices. A similar limitation applies to the storage task: while some uses of
external storage are necessary or deliberate, this also represents a risky violation of
best practices8 that can lead to unexpected disclosures of personal information [231].

3.9 Discussion

In the past, anecdotal evidence has suggested that the resources Android develop-
ers use when programming directly affect the security and privacy properties of the
apps they make. In this paper, we present the first systematic investigation of this
theory by approaching the problem of how programming resources affect Android
developers’ security- and privacy-relevant decisions from several different angles.
We conducted a 295-person online survey about the resources developers use, both
in general and specifically for security-relevant problems. Based on results from this
survey, we then conducted a 54-person lab study directly exploring the impact of
resource choice on both functional correctness and security. To provide context for
these studies, we manually analyzed the security characteristics of the Stack Over-
flow posts our participants accessed and automatically analyzed how the APIs we
tested in the lab are used in 200,000 randomly sampled apps from the Google Play
market.

When combined, results from these varied analyses suggest several interesting
conclusions:

• Real-world Android developers use Stack Overflow (and other Q&A com-
munities) as a major resource for solving programming problems, including
security- and privacy-relevant problems.

• Other resources, such as official Android API documentation, do not provide
the same degree of quickly understandable, directly applicable assistance. Our
results suggest that using Stack Overflow helps Android developers to arrive
at functional solutions more quickly than with other resources.

• Participants who were given free choice of resources tended to visit both the of-
ficial documentation and Stack Overflow, but their performance in both func-
tional correctness and security was more similar to participants in the Stack
Overflow condition.

• Because Stack Overflow contains many insecure answers, Android developers
who rely on this resource are likely to create less secure code. Access to quick
solutions via a Q&A community may also inhibit developers’ security thinking
or reduce their focus on security.

• Code relevant to the tasks we explored can be found in 93.6% of the apps we
sampled. Many of these apps exhibit similar security patterns to those ob-
served in our lab study.

7cf. http://developer.android.com/guide/components/intents-filters.html
8cf. http://developer.android.com/guide/topics/data/data-storage.html

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/topics/data/data-storage.html


74 Chapter 3. On the Impact of Information Sources on Code Security

Few participants in our study explicitly mentioned security or used it as a search
term when accessing resources. While this may be partially a function of our ar-
tificial environment, when combined with prior research and anecdotal evidence,
this suggests that security remains at best a secondary concern for many real-world
developers [23, 85]. This underscores the need for both APIs and informational re-
sources that promote security even when developers are not thinking about it di-
rectly.

Android developers are unlikely to give up using resources that help them quickly
address their immediate problems. Therefore, it is critical to develop documentation
and resources that combine the usefulness of forums like Stack Overflow with the
security awareness of books or official API documents. One approach might involve
rewriting API documents to be more usable, e.g. by adding secure and functional
code examples. Another might be to develop a separate programming-answers site
in which experts address popular questions, perhaps initially drawn from other fo-
rums, in a security-sensitive manner. Alternatively, Stack Overflow could add a
mechanism for explicitly rating the security of provided answers and weighting
those rated secure more heavily in search results and thread ordering. Further re-
search is needed to develop and evaluate solutions to help prevent inexperienced or
overwhelmed mobile developers from making critical mistakes that put their users
at risk.

This chapter made clear that usable secure resources are an important factor for code
security. Conducting the programming study in the lab limited us to developer populations
that were locally available, which means that we recruited mostly students. For our next
study, we aimed to investigate whether cryptographic APIs that are specifically developed to
be usable help developers choose secure programming solutions. We moved our experiment
online in order to access a more diverse population with more professional developers.



75

Chapter 4

Comparing the Usability of
Cryptographic APIs

Disclaimer: The contents of this chapter were previously published as part of the conference
paper “Comparing the Usability of Cryptographic APIs”, presented at the 2017 IEEE Sym-
posium on Security and Privacy. This research was conducted as a team with my co-authors
Christian Stransky, Doowon Kim, Michelle L. Mazurek, Simson Garfinkel, Sascha Fahl, and
Michael Backes; this chapter therefore uses the academic “we”. Christian Stransky, Doowon
Kim and Sascha Fahl conducted the preliminary survey of libraries; based on critera all au-
thors discussed, we chose the libraries. Christian Stransky, Michelle L. Mazurek, Sascha Fahl
and I designed the study. Simson L. Garfinkel and I conducted the literature review. Michelle
L. Mazurek and I designed the questionnaire. Christian Stransky and Sascha Fahl conducted
the experiment. Christian Stransky, Doowon Kim, Michelle L. Mazurek, Sascha Fahl and I
evaluated the experiment. Christian Stransky, Doowon Kim, Michelle L. Mazurek, Sascha
Fahl and I co-wrote the paper. Simson L. Garfinkel, Michelle L. Mazurek and Sascha Fahl
supervised throughout. The libraries and version of Python used throughout the study reflect
the landscape in 2016.

4.1 Motivation

Today’s connected digital economy and culture run on a foundation of cryptogra-
phy, which both authenticates remote parties to each other and secures private com-
munications. Cryptographic errors can jeopardize people’s finances, publicize their
private information, and even put political activists at risk [12]. Despite this critical
importance, cryptographic errors have been well documented for decades, in both
production applications and widely used developer libraries [13, 70, 99, 205].

Many researchers have used static and dynamic analysis techniques to identify
and investigate cryptographic errors in source code or binaries [13, 70, 83, 99, 205].
This approach is extremely valuable for illustrating the pervasiveness of crypto-
graphic errors, and for identifying the kinds of errors seen most frequently in prac-
tice, but it cannot reveal root causes. Conventional wisdom in the security com-
munity suggests these errors proliferate in large part because cryptography is so
difficult for non-experts to get right. In particular, libraries and Application Pro-
gramming Interfaces (APIs) are widely seen as being complex, with many confusing
options and poorly chosen defaults (e.g. [257]). Recently, cryptographers have cre-
ated new libraries with the goal of addressing developer usability by simplifying the
API and establishing secure defaults [32, 64]. To our knowledge, however, none of
these libraries have been empirically evaluated for usability. To this end, we con-
duct a controlled experiment with real developers to investigate root causes and
compare different cryptographic APIs. While it may seem obvious that simpler is



76 Chapter 4. Comparing the Usability of Cryptographic APIs

better, a more in-depth evaluation can be used to reveal where these libraries suc-
ceed at their objectives and where they fall short. Further, by understanding root
causes of success and failure, we can develop a blueprint for future libraries.

This chapter presents the first empirical comparison of several cryptographic li-
braries. Using Python as common implementation language, we conducted a 256-
person, between-subjects online study comparing five Python cryptographic libraries
chosen to represent a range of popularity and usability: cryptography.io, Keyczar,
PyNaCl, M2Crypto and PyCrypto. Open-source Python developers completed a
short set of cryptographic programming tasks, using either symmetric or asymmet-
ric primitives, and using one of the five libraries. We evaluate participants’ code
for functional correctness and security, and also collect their self-reported sentiment
toward the usability of the library. Taken together, the resulting data allows us to
compare the libraries for usability, broadly defined to include ability to create work-
ing code, effective security in practice (when used by primarily non-security-expert
developers), and participant satisfaction. By using a controlled, random-assignment
experiment, we can compare the libraries directly and identify root causes of errors,
without confounds related to the many reasons particular developers may choose
particular libraries for their real projects.

We find that simplicity of individual mechanisms in an API does not assure that
the API is, in fact, usable. Instead, the stronger predictors of participants producing
working code were the quality of documentation, and in particular whether exam-
ples of working code were available on the Internet, within or outside the provided
documentation. Surprisingly, we also found that the participant’s Python experi-
ence level, security background, and experience with their assigned library did not
significantly predict the functionality of the code that they created. None of the li-
braries were rated as objectively highly usable, but PyCrypto, a complex API with
relatively strong documentation, was rated significantly more usable than Keyczar,
a simple API with poor documentation.

On the other hand, with some important caveats, simplified APIs did seem to
promote better security results. As might be expected, reducing the number of
choices developers must make (for example, key size or encryption mode of op-
eration) also reduces their opportunity to choose incorrect parameters. Python ex-
perience level was not significantly correlated with security results, but participants
with a security background were more likely to produce code that was, in fact, se-
cure. Nevertheless, the overall security results were somewhat disappointing. A
notable source of problems was APIs that did not easily support important auxiliary
tasks, such as secure key storage. Perhaps of most concern, 20% of functional solu-
tions were rated secure by the participant who developed them but insecure accord-
ing to our evaluation; this suggests an important failure to communicate important
security ideas or warn about insecure decisions.

4.2 Related Work

We discuss related work in four key areas: measuring cryptography problems in
deployed code; investigating how developers interact with cryptographic APIs; at-
tempts at developing more usable cryptographic libraries and related tools; and ap-
proaches to evaluating API usability more generally.

Cryptography problems in real code. Researchers have identified misuses of
cryptography in deployed code. Egele et al. examined more than 11,000 deployed
Android apps that use cryptography and found that nearly 90% contained at least



4.2. Related Work 77

one of six common cryptography errors [70]. Fahl et al. and Onwuzurike et al. also
analyzed Android apps, and found that a large number did not correctly implement
the Trusted Layer Security (TLS) protocol, potentially leading to security vulnera-
bilities to Man-In-The-Middle (MITM) attacks [2, 82, 84, 175, 178, 184]. Likewise,
a study examining Apple’s iOS apps revealed that many were vulnerable to MITM
attacks because of incorrect certificate validation during TLS connection establish-
ment [85]. Other researchers specifically examined mobile banking applications and
found a plethora of potentially exploitable cryptographic errors [205]. Lazar et al. ex-
amined cryptography-related vulnerabilities from the Common Vulnerabilities and
Exposures (CVE) database and found more than 80% resulted from errors at the ap-
plication level [143]. In all of these cases, weak ciphers and insufficient randomness
were common problems; in this paper, we test the hypothesis that these problems
are strongly affected by API design. Georgiev et al. identified many certificate-
validation errors in applications and libraries; the authors attribute many of these
vulnerabilities to poorly designed APIs and libraries with too many confusing op-
tions [99].

Interacting with cryptographic APIs. Others have investigated how developers
interact with cryptographic APIs. Nadi et al. manually examined the top 100 Java
cryptography posts on Stack Overflow and found that a majority of problems were
related to API complexity rather than a lack of domain knowledge [166]. Follow-up
surveys of some Stack Overflow users who had asked questions and of Java devel-
opers more generally confirmed that API complexity and poor documentation are
common barriers in cryptographic API use. In this paper, we compare different APIs
to measure their relative difficulty of use. Relatedly, Acar et al. examined how use of
different documentation resources affects developers’ security decisions, including
decisions about certificate validation [4]; we compare different APIs rather than dif-
ferent sources of help. Making cryptography more usable. Several cryptographic
APIs have been designed with usability in mind. The designers of NaCl (Network-
ing and Cryptographic library, pronounced “salt”) describe how their design de-
cisions are intended to promote usability, in large part by reducing the number of
decisions a developer must make, but do not empirically evaluate its usability [32].
In this work, we empirically compare NaCl to more traditional APIs, as well as to
non-academic libraries that also claim usability benefits (e.g., cryptography.io [64]).

Rather than a new API, Arzt et al. present an Eclipse plugin that produces correct
code templates based on high-level requirements identified by the developer [15].
This approach can make working with existing APIs easier; however, it is orthogo-
nal to the question of how APIs do or do not encourage secure practices. Indela et
al. suggest using design patterns to describe high-level semantic APIs for goals that
require cryptography, such as establishing a secure connection or storing data se-
curely [125]. This approach is complementary to improving cryptographic libraries
that underlie such patterns.

Evaluating APIs, security and otherwise. Many software engineering researchers
have examined what makes an API usable. Myers and Stylos provide a broad overview
of how to evaluate API usability, with reference to Nielsen’s general usability guide-
lines as well as the Cognitive Dimensions framework [57, 165, 173]. Henning and
Bloch separately provide sets of maxims for improving API design [34, 120]. Smith
and Green proposed similar high-level guidelines specific to security APIs [115]. We
adapt guidelines from these various sources to evaluate the APIs we examine.

Concurrent with our work, Gorski and Iacono [111] use an extensive literature
review to formulate high-level technical and usability criteria along which security-
relevant APIs should be designed, calling for further work on evaluating adherence



78 Chapter 4. Comparing the Usability of Cryptographic APIs

to these principles. Also concurrent to our work, Wijayarathna et al. develop a
set of questions about security APIs based on the above guidelines, resulting in a
questionnaire similar to the one we developed and used in this work [273].

Oliveira et al. conducted a laboratory study to examine the security mindset of
developers. They found that security is not a priority in the standard developer’s
mindset, but that detailed priming for security issues helps [174]. Wurster and Van
Oorschot recommend assuming that developers will not prioritize security unless
incentivized or forced to, and suggest mandating security tools, rewarding secure
coding practices, and ensuring that secure tools and APIs are more usable and at-
tractive than less secure ones [278]. Our work focuses on how choice of library af-
fects developers who have already decided to interact with a cryptographic API and
have been primed for the importance of security to their task.

Finifter, Wagner and Prechelt compared the security of two web applications
built to the same specification but with different frameworks. They found that
automatic framework-level support for mitigating certain vulnerabilities improved
overall security, while manual framework supports were readily forgotten or ne-
glected [94, 191].

Researchers have also conducted empirical studies of API usability in different
domains, including comparing APIs for configuration [220], considering how as-
signing methods to classes affects usability [239], and analyzing the usability of the
factory pattern [72]. Piccioni et al. examined the usability of a persistence library
using a method similar to the one we use in this work, with exit interview questions
structured around the Cognitive Dimensions framework [186]. They successfully
identify usability failures of the examined API, and their results emphasize the criti-
cal importance of accurate, unambiguous and self-contained documentation to API
usability. Burns et al. provide a preliminary survey of work evaluating APIs empir-
ically [44].

4.3 Study Design

We designed an online, between-subjects study to compare how effectively develop-
ers could quickly write correct, secure code using different cryptographic libraries.
We recruited developers with demonstrated Python experience (on GitHub) for an
online study.

Participants were assigned to complete a short set of programming tasks using
either symmetric- or asymmetric-key cryptography, using one of five Python crypto-
graphic libraries. Assignment to one of the resulting 10 conditions was initially ran-
dom, with counterbalancing to ensure roughly equivalent participant counts start-
ing each condition. As the study progressed, however, it became clear that dropout
rates varied widely by condition (see Section 4.4.3 for details), so we weighted the
random assignment to favor conditions with higher dropout rates.

Within each condition, task order was randomized. Symmetric participants were
either given a key generation, then an encryption/decryption task, or vice-versa.
Asymmetric participants were assigned a key generation task, an encryption/de-
cryption task, and a certificate validation task, according to a latin square ordering.

After finishing the tasks, participants completed a brief exit survey about the
experience. We examined participants’ submitted code for functional correctness
and security. The study was approved by our institutions’ ethics review boards.



4.3. Study Design 79

4.3.1 Language Selection

We chose to use Python as the programming language for our experiment because it
is widely used across many communities and has support for all kinds of security-
related APIs, including cryptography. As a bonus, Python is easy to read and write
and is widely used among both beginners and experienced programmers. Indeed,
Python is the third most popular language on GitHub, trailing JavaScript and
Java [103]. Therefore, we reasoned that there would be many Python developers
to recruit for our study.

4.3.2 Cryptographic Library Identification

Next, we performed a series of Internet searches to identify possible cryptographic
libraries that we could use in our study. We were agnostic to library implementation
language, performance, and third-party certification: all that mattered was that the
library could be called from Python language bindings. At this point, we decided
to use the Python 2.7 programming language because several Python cryptographic
libraries did not support Python 3.

We selected five Python libraries to empirically compare based on a combination
of their popularity, their suitability for the range of tasks we were interested in, and
our desire to compare libraries that were and were not designed with usability in
mind. Table 4.1 lists details of these features for the libraries we examined.

We selected three libraries whose documentation claims they were designed for
usability and that each handle (most of) the tasks we were interested in: cryptogra-
phy.io, Keyczar, and PyNaCl. cryptography.io describes itself as “cryptography for
humans” [64], Keyczar is “designed to make it easier and safer for developers to use
cryptography" [275], and PyNaCl is a Python binding for NaCl, a crypto library de-
signed to avoid “disaster" in part via simplified APIs [32]. pysodium is a potential
alternative to PyNaCl; although pysodium is very slightly more popular, it is still
beta and has no included documentation, so we selected PyNaCl.

For comparison, we also selected two libraries that do not make usability claims:
PyCrypto and M2Crypto. PyCrypto is the most popular general-purpose Python
crypto library we found, and the closest thing to a “default" Python crypto library
that exists. M2Crypto is a Python binding for the venerable OpenSSL library, which
is frequently criticized for its lack of usability. pyOpenSSL is both more popular than
M2Crypto and the official OpenSSL [245] binding for Python; however, it lacks sup-
port for symmetric and asymmetric encryption, which was a major part of our study,
so we opted for M2Crypto instead. We provide further details about the features and
documentation of the libraries we selected in Section 4.3.6.

We excluded libraries that include few of the features we were interested in, or
that have negligible popularity. We excluded PyCryptodome as a less popular re-
placement for PyCrypto, gnupg for its limited support for encryption (mainly in the
context of email), pycryptopp as it was deprecated as of January 2016, and simple-
crypt as it does not support asymmetric cryptography.

In tables and figures throughout the paper, we order the libraries as follows:
PyCrypto first as the most popular, then M2Crypto as the other library without us-
ability claims, then the three libraries with usability claims.



80 Chapter 4. Comparing the Usability of Cryptographic APIs

Sym Asym

K
ey

ge
ne

ra
ti

on

En
cr

yp
ti

on

K
ey

ge
ne

ra
ti

on

En
cr

yp
ti

on

K
D

F

D
ig

it
al

si
g.

X
.5

09

U
sa

bi
lit

y
cl

ai
m

s

D
ow

nl
oa

ds

PyCrypto [148] 25 149 446
cryptography.io[64] 10 481 277
M2Crypto [46] 2 369 827
Keyczar [136] 595 277
PyNaCl [199] 46 013

pyOpenSSL [200] 10 188 101
tlslite [185] 641 488
bcrypt [31] 536 851
gnupg [104] 189 851
pycryptopp [196] 140 703
scrypt [221] 140 446
simple-crypt [225] 112 254
pysodium [201] 49 275
ed25519 [69] 29 670
pyaes [193] 19 091
PyCryptodome[195] 16 960
PyMe [198] 2 489
pyDes [197] ? †

tls [194] ? †

= applies; = does not apply

TABLE 4.1: Cryptography-related Python libraries and their features,
ordered by popularity. The top section includes the libraries we
tested. Download counts as of May 2016 were taken from the PyPI
ranking website (http://pypi-ranking.info). †No download statistics

available.



4.3. Study Design 81

4.3.3 Recruitment and Framing

To maintain ecological validity, we wanted to recruit developers who actively use
Python. To find such developers, we conducted a systematic analysis of Python
contributors on the popular GitHub collaborative source code management service.

We extracted all Python projects from the GitHub Archive database [102] be-
tween GitHub’s launch in April 2008 and February 2016, giving us 749 609 projects
in total. We randomly sampled 100 000 of these repositories and cloned them. Us-
ing this random sample, we extracted email addresses of 50 000 randomly chosen
Python committers. These committers served as a source pool for our recruiting.

We emailed these developers in batches, asking them to participate in a study
exploring how developers use Python libraries. We did not mention cryptography
or security in the recruitment message. We mentioned that we would not be able
to compensate them, but the email offered a link to learn more about the study and
a link to remove the email address from any further communication about our re-
search. Each contacted developer was assigned a unique pseudonymous identifier
(ID) to allow us to correlate their study participation to their GitHub statistics sepa-
rately from their email address.

Recipients who clicked the link to participate in the study were directed to a
landing page containing a consent form. After affirming they were over 18, con-
sented to the study, and were comfortable with participating in the study in English,
they were introduced to the study framing. We asked participants to imagine they
were developing code for an app called CitizenMeasure, “a new global monitor-
ing system that will allow citizen-scientists to travel to remote locations and make
measurements about such issues as water pollution, deforestation, child labor, and
human trafficking. Please keep in mind that our citizen-scientists may be operating
in locations that are potentially dangerous, collecting information that powerful in-
terests want kept secret. Our citizen scientists may have their devices confiscated
and hacked.” We hoped that this framing would pique participants’ interest and
motivate them to make a strong effort to write secure code. We also provided brief
instructions for using the study infrastructure, which we describe next.

4.3.4 Experimental Infrastructure

After reading the study introduction and framing, participants were redirected to
the tasks themselves. Our aim was to conduct an online developer study in which
real developers would write and test real cryptographic code in our environment.
We wanted to capture the code that they typed and their program runs. We wanted
to control the study environment (Python version, available libraries) and collect
data about their progress in real time. To achieve this, we used Jupyter
Notebook [133], which allowed participants to write and run Python code in their
browser, using the Python installation from our server. We instrumented the note-
book to frequently snapshot the participant’s code, as well as to detect and store
copy&paste events. All this information was stored on the server.

We configured Notebook (version 4.2.1) with Python 2.7.11 and all five tested
cryptographic libraries. To prevent interference between participants, each partici-
pant was assigned to a Notebook running on a separate Amazon Web Service (AWS)
instance. We maintained a pool of prepared instances so that each new participant
could begin without waiting for an instance to boot. Instances were shut down when
each participant finished, to avoid between-subjects contamination.



82 Chapter 4. Comparing the Usability of Cryptographic APIs

FIGURE 4.1: An example of the study’s task interface.

Tasks were shown one at a time, with a progress indicator showing that the par-
ticipant had completed, e.g., 1 of 3 tasks. For each task, participants were given but-
tons to “Run and test" their code, and to move on using “Solved, next task" or “Not
solved, but next task." After each button press, we stored the participant’s current
code, along with metadata like timing, in a remote database. An example Notebook
is shown in Figure 4.1.

Allowing participants to write and execute Python code presents serious security
concerns. To mitigate this, we removed all unnecessary packages from the AWS
image. We used the AWS firewall to restrict incoming traffic to port 80 and prevent
outgoing traffic other than to our study database, which was password protected
and restricted to sanitized insert commands. All instances were shut down within 4
hours of the last observed participant activity.

4.3.5 Task Design

We designed tasks that were short enough so that the uncompensated participants
would be likely to complete them before losing interest, but still complex enough to
be interesting and allow for some mistakes. Most importantly, we designed tasks
to model real world problems that Python developers could reasonably be expected
to encounter in their professional career. We chose two symmetric-encryption tasks:
generating an encryption key and storing it securely in a password-protected file,
and using the key to encrypt and decrypt text. We chose three asymmetric tasks:
generating a key pair and storing the private key securely, using the public key to
encrypt and the private key to decrypt, and validating an X.509 certificate.

Most of the libraries we chose support most of these tasks (Table 4.2). Unfor-
tunately, task coverage by the libraries was not uniform: Keyczar and PyNaCl do
not support secure key storage. The Keyczar documentation encourages generat-
ing keys at the command line; this can be worked around in the API, but it is not



4.3. Study Design 83

Library C
ur

re
nt

Ve
rs

io
n

D
es

ig
ne

d
fo

r
U

sa
bi

lit
y

Sy
m

m
et

ri
c

K
ey

G
en

er
at

io
n

Sy
m

m
et

ri
c

En
cr

yp
ti

on
/D

ec
ry

pt
io

n

Se
cu

re
Sy

m
m

et
ri

c
K

ey
St

or
ag

e

A
sy

m
m

et
ri

c
K

ey
G

en
er

at
io

n

A
sy

m
m

et
ri

c
En

cr
yp

ti
on

/D
ec

ry
pt

io
n

Se
cu

re
A

sy
m

m
et

ri
c

K
ey

St
or

ag
e

C
er

ti
fic

at
e

V
al

id
at

io
n

PyCrypto 2.6.1
M2Crypto 0.25.1
cryptography.io 1.4
Keyczar 0.716
PyNaCl 1.0.1

= fully applies; = partly applies; = does not apply

TABLE 4.2: Features and popularity for the five cryptography li-
braries we tested. Popularity data was updated as of Aug. 11, 2016.

straightforward to do so. Keyczar and PyNaCl do not support certificate validation
directly, but it is possible to extract the public key and manually verify the signature.
Finally, PyCrypto does not support certificate validation at all.

To account for cases where the library does not fully support the task, we offered
participants the option to skip a task.

For each task, participants were provided with stub code and some commented
instructions. These stubs were designed to make the task clear and ensure the re-
sults could be easily evaluated, without providing too much scaffolding. We also
provided a main method pre-filled with code to test the provided stubs. This helped
orient participants and saved time, but it did prevent us from learning how partici-
pants might have designed their own tests.

We also asked participants to please use only the included documentation for
their assigned library, if at all possible, and to report (in comments) any additional
documentation resources they consulted.

4.3.6 Python Cryptographic Libraries we Included

We briefly review the available features and documentation for each library we se-
lected for our experiment (Table 4.2).

PyCrypto. The Python cryptographic toolkit PyCrypto [148] is Python’s most
popular cryptographic library. Developers can choose among several encryption
and hashing algorithms and modes of operation, and may provide initialization vec-
tors (IVs).

PyCrypto comes with primarily auto-generated documentation that includes min-
imal code examples. The documentation recommends the Advanced Encryption
Standard (AES) and provides an example, but also describes the weaker Data En-
cryption Standard (DES) as cryptographically secure. The documentation warns



84 Chapter 4. Comparing the Usability of Cryptographic APIs

against weak exclusive-or (XOR) encryption. However, the documentation does not
warn against using the default Electronic Code Book (ECB) mode, or the default
empty IV, neither of which is secure.

M2Crypto. M2Crypto [46] is a binding to the well-known OpenSSL library that
is more complete than alternative bindings such as pyOpenSSL. Although devel-
opment on M2Crypto has largely ceased, the library is still widely used, and there
is ample documentation and online usage examples, so we included it. M2Crypto
supports all of the tasks we tested, including X.509 certificate handling. Develop-
ers are required to choose algorithms, modes of operation, and initialization vec-
tors. M2Crypto comes with automatically generated documentation that includes
no code examples or comments on the security of cryptographic algorithms and
modes.

cryptography.io. cryptography.io has a stated goal of providing more usable se-
curity than other libraries by emphasizing secure algorithms, high-level methods,
safe defaults, and good documentation [64]. It supports symmetric and asymmetric
encryption as well as X.509 certificate handling. The documentation includes code
examples that include secure options, with context for how they should be used.
cryptography.io provides a high-level interface for some cryptographic tasks (such
as symmetric key generation and encryption); this interface does not require de-
velopers to choose any security-sensitive parameters. The library also includes a
lower-level interface, necessary for some asymmetric tasks and for encrypted key
storage; this low-level interface does require developers to specify parameters such
as algorithm and salt.

Keyczar. The library aims to make it easier to safely use cryptography, so that
developers do not accidentally expose key material, use weak key lengths or depre-
cated algorithms, or improperly use cryptographic modes [275]. The documentation
consists of an 11-page technical report that includes a few paragraphs regarding the
program’s design and a few abbreviated examples. Keyczar does not easily support
X.509 certificate handling, encrypted key files, or password-based key derivation,
but it does support digital signatures. There is no public API for key generation, but
developers can generate keys by using an internal interface or by calling a provided
command-line tool programmatically. Developers do not have to specify crypto-
graphic algorithms, key sizes, or modes of operation.

PyNaCl. PyNaCl is a Python interface to libsodium [246], a cryptographic library
designed with a focus on usability. The detailed documentation includes code exam-
ples with context for how to use them. PyNaCl supports both secure symmetric and
asymmetric APIs without requiring the developer to choose cryptographic details,
although the developer must provide a nonce. PyNaCl neither supports encrypted
key storage nor password-based key derivation. X.509 certificate handling is also
not supported directly; however, verifying digital signatures is supported.

4.3.7 Exit Survey

Once all tasks had been completed or abandoned, the participant was directed to a
short exit survey. We asked for their opinions about the tasks they had completed
and the library they used, including the standard System Usability Scale (SUS) [131]
score for the library. We also collected their demographics and programming ex-
perience. The participant’s code for each task was displayed (imported from our
database) for their reference with each question about that task.

We were specifically interested in the participants’ opinions about the usability
of the API. To this end, we collected the SUS score, but we wanted to also investigate



4.3. Study Design 85

in more depth. Prior work on API usability has suggested several concrete factors
that affect an API’s usability. We combined the cognitive dimensions framework [57]
with usability suggestions from Nielsen and from Smith and Green [115, 173], and
pulled out the factors that could most easily be evaluated via self-reporting from
developers using the API. We transformed these factors into an 11-question scale
(given in Appendix B.2) that focuses on the learnability of the API, the helpfulness
of its documentation, the clarity of observed error messages, and other features. Our
scale can be used to produce an overall score, as well as to target specific character-
istics that impede the usability of each API. For this work, we treat this scale as
exploratory; we correlate it with SUS and investigate its internal reliability in Sec-
tion 4.4.6.

4.3.8 Evaluating Participant Solutions

We used the code submitted by our participants for each task, henceforth called a
solution, as the basis for our analysis.

We evaluated each participant’s solution to each task for both functional correct-
ness and security. Every task was independently reviewed by two coders, using a
codebook prepared ahead of time based on the capabilities of the libraries we eval-
uated. Differences between the two coders were adjudicated by a third coder, who
updated the codebook accordingly. We briefly describe the codebook below.

Functionality. For each programming task, we assigned a participant a func-
tionality score of 1 if the code ran without errors, passed the tests and completed the
assigned task, or 0 if not.

Security. We assigned security scores only to those solutions which were graded
as functional. To determine a security score, we considered several different security
parameters. A participant’s solution was marked secure (1) only if their solution was
acceptable for every parameter; an error in any parameter resulted in a security score
of 0.

Not all security parameters applied to all libraries, as some libraries do not al-
low users to make certain potentially insecure choices. Details of how the different
security parameters applied to each library can be found in Table 4.3. Whenever a
given library requires a developer to make a secure choice for a given parameter,
we assign a full circle; if that parameter is not applicable in that library, we assign
an empty circle. For example, for symmetric encryption, PyCrypto participants had
to specify an encryption algorithm, mode of operation and an initialization vector
(three full circles). However, PyNaCl participants did not have to care about these
cryptographic details (three empty circles).

For key generation, we checked key size and proper source of randomness for
the key material. We selected an appropriate key size for a particular algorithm
(e.g., for RSA we required at least 2 048-bit keys [168]). For key storage we checked
if encryption keys were actually encrypted and if a proper encryption key was de-
rived from the password we provided. Depending on the library and task type,
encrypting cryptographic key material requires the application of a key derivation
function such as PBDKF2 [132]. For libraries in which developers had to pick pa-
rameters for PBKDF2 manually (cf. Table 4.3), we scored use of a static or empty
salt, HMAC-SHA1 or below as the pseudorandom function, and less than 10 000 it-
erations as insecure [169]. For some libraries, participants had to select encryption
parameters for one or more tasks; in these cases, we also scored the security of the
chosen encryption algorithm, mode of operation, and initialization vector. For sym-
metric encryption, we scored ARC2, ARC4, Blowfish, (3)DES, and XOR as insecure,



86 Chapter 4. Comparing the Usability of Cryptographic APIs

Symmetric

Key Generation Key Storage Key Derivation Encryption
Plain/

Size Encrypted Algorithm Mode IV Salt PRF Iterations Algorithm Mode IV
PyCrypto
M2Crypto
cryptography.io
Keyczar * * *
PyNaCl * * *

Asymmetric

Key Generation Key Storage Encryption Certificate Validation
Plain/ Signature Hostname CA Date

Type Size Encrypted Algorithm Mode IV Padding Nonce Verification Check Check Check
PyCrypto
M2Crypto
cryptography.io
Keyczar * * *
PyNaCl * * *

TABLE 4.3: Security choices required by various libraries, as defined
in our codebook. indicates the developer is required to make a se-
cure choice, indicates no such choice is required. Libraries that do
not include a key derivation function, requiring the developer to fall

back to Python’s hashlib API, are indicated with *.

and AES as secure. We scored the ECB as an insecure mode of operation and scored
Cipher Block Chaining (CBC), Counter Mode (CTR) and Cipher Feedback (CFB) as
secure. Static, zero or empty initialization vectors were scored insecure. For asym-
metric encryption we scored the use of OAEP/PKCS1 for padding as secure.

4.3.9 Limitations

As with any user study, our results should be interpreted in context. We chose an
online study because it is difficult to recruit “real” developers (rather than students)
for an in-person lab study at a reasonable cost. Choosing to conduct an online study
allowed us less control over the study environment; however, it allowed us to re-
cruit a geographically diverse sample. Because we targeted developers, we could
not easily take advantage of services like Amazon’s Mechanical Turk or survey sam-
pling firms. Managing online study payments outside such infrastructures is very
challenging; as a result, we did not offer compensation and instead asked partici-
pants to generously donate their time. As might be expected, the combination of
unsolicited recruitment emails and no compensation led to a strong self-selection
effect, and we expect that our results represent developers who are interested and
motivated enough to participate. Comparing the full invited sample to the valid
participants (see Section 4.4.1) suggests that indeed, more active GitHub users were
more likely to participate. That said, these limitations apply across conditions, sug-
gesting that comparisons between conditions are valid. Further, we found almost no
results (Section 4.4) correlated with self-reported Python experience.

In any online study, some participants may not provide full effort, or may answer
haphazardly. In this case, the lack of compensation reduces the motivation to answer
in a manner that is not constructive; those who are not motivated will typically not
participate. We attempt to remove any obviously low-quality data (e.g., responses
that are entirely invective) before analysis, but cannot discriminate perfectly. Again,
this limitation should apply across conditions without affecting condition compar-
isons.

Our study examines how developers use different cryptographic libraries. De-
velopers who reach this point already recognize that they need encryption and have



4.4. Study results 87

chosen to use an existing library rather than trying to develop their own mechanism;
these are important obstacles to secure code that cannot be addressed by better li-
brary design. Nonetheless, we believe that evaluating and improving cryptographic
libraries is a valuable step toward more secure development.

Finally, we are comparing libraries overall: this includes their API design and
implementation as well as their documentation. The quality of both varies signifi-
cantly across the libraries. Our results provide insight into the contributions made
by documentation and by API design to a library’s overall success or failure, but
future work is needed to further explore how the two operate independently.

4.4 Study results

Study participants experienced very different rates of task completion, functional
success, and security success as a function of which library they were assigned
and whether they were assigned the symmetric or asymmetric tasks. Overall, we
find that completion rate, functional success, and self-reported usability satisfaction
showed similar results: cryptography.io, PyCrypto and (to some extent) PyNaCl
performed best on these metrics. The security results, however, were somewhat
different. PyCrypto and M2Crypto were worst, while Keyczar performed best. Py-
NaCl also had strong security results; cryptography.io exhibited strong security for
the symmetric tasks but poor security for asymmetric tasks. These results suggest
that the relationship between “usable" design, developer satisfaction, and security
outcomes is a complex one.

4.4.1 Participants

In total, we sent 52 448 email invitations. Of these, 5 918 (11.3%) bounced, and an-
other 698 (1.3%) requested to be removed from our list, a request we honored.

A total of 1 571 people agreed to our consent form; 660 (42.0%) dropped out
without taking any action, most likely because the initial task seemed too difficult
or time-consuming. The other 911 proceeded through at least one task; of these, 337
proceeded to the exit survey, and 282 completed it with valid responses.1 Of these,
26 were excluded for failing to use their assigned library. Unless otherwise noted, we
report results for the remaining 256 participants, who proceeded through all tasks,
used their assigned library, and completed the exit survey with valid responses.

An additional 61 participants attempted to reach the study but encountered tech-
nical errors in our infrastructure, mainly due to occasional AWS pool exhaustion
during times of high demand.

Our 256 participants reported ages between 18 and 63 (mean 29.4, sd 7.9), and
the vast majority of them reported being male (238, 93.0%). We successfully reached
the professional developer demographic we targeted. Almost all (247, 96.5%) had
been programming in general for more than two years, and 81.2% (208) had been
programming in Python for more than two years. Most participants (196, 76.6%) re-
ported programming as (part of) their primary job; of those, 147 (75.0%) used Python
in their primary job. Most participants (195, 76.2%) said they had no IT-security
background.

While the developers we invited represent a random sample from GitHub, our
valid participants are a small, self-selected subset. Table 4.4 and Figure 4.2 detail

1We define invalid responses as providing straight-line answers to all questions or writing off-topic
or abusive comments in free-text responses.



88 Chapter 4. Comparing the Usability of Cryptographic APIs

Invited Valid

Hireable 19.5% 37.9%
Company listed 28.0% 42.2%
URL to Blog 34.7% 55.6%
Biography added 8.1% 16.3%
Location provided 49.9% 75.8%

Public gists (median) 0 1
Public repositories (median) 12 20
Following (users, median) 1 2
Followers (users, median) 3 7
GitHub profile creation (days ago, median) 1 415 1 589
GitHub profile last update (days ago, median) 50 38

TABLE 4.4: GitHub demographics for the 50 000 invited users and for
our 256 valid participants.

available GitHub demographics for both groups. Our participants appear to be
slightly more active on GitHub than average: owning more public repositories, hav-
ing more followers, having older accounts, and being more likely to provide optional
profile information. This may correspond to their self-reported high levels of pro-
gramming experience and professional status.

FIGURE 4.2: Boxplots comparing our invited participants (a random
sample from GitHub) with those who provided valid participation.
The center line indicates the median; the boxes indicate the first and
third quartiles. The whiskers extend to ±1.5 times the interquartile

range. Outliers greater than 150 were truncated for space.

4.4.2 Regression models

In the following subsections, we apply regression models to analyze our results in
detail. To analyze binary outcomes (e.g., secure vs. insecure), we use logistic regres-
sion; to analyze numeric outcomes (e.g., SUS score), we use linear regression. When
we consider results on a per-task rather than a per-participant basis (for security and
functionality results, as well as perceived security), we use a mixed model that adds
a random intercept to account for multiple tasks from the same participant.

For each regression analysis, we consider a set of candidate models and select
the model with the lowest Akaike Information Criterion (AIC) [43]. The included
factors are described in Table 4.5. We consider candidate models consisting of the
required factors library and encryption mode, as well as (where applicable) the partic-
ipant random intercept, plus every possible combination of the optional variables.



4.4. Study results 89

We report the outcome of our regressions in tables. Each row measures change in
the analyzed outcome related to changing from the baseline value for a given factor
to a different value for that factor (e.g., changing from asymmetric to symmetric
encryption). Logistic regressions produce an odds ratio (O.R.) that measures change
in likelihood of the targeted outcome; baseline factors by construction have O.R.=1.
For example, Table 4.7 indicates that M2Crypto participants were 0.55× as likely to
complete all tasks as participants in the baseline PyCrypto condition. In constrast,
linear regressions measure change in the absolute value of the outcome; baseline
factors by construction have coef=0. In each row, we also provide a 95% confidence
interval (C.I.) and a p-value indicating statistical significance.

For each regression, we set the library PyCrypto as the baseline, as it has the
most download counts of all libraries we included in our study, and can therefore be
considered as the most common “default” crypto library for Python. In addition, we
used the set of symmetric tasks as the baseline, as these correspond to the simpler
and more basic form of encryption. All baseline values are given in Table 4.5.

Factor Description Baseline

Required factors
Library The cryptographic library used. PyCrypto
Encryption mode Asymmetric or Symmetric Symmetric

Optional factors
Experienced True if a programming in Python is part of participant’s

job, and/or if participant has been programming in
Python for more than five years; otherwise false. Self-
reported.

False

Security background True or false, self-reported. False
Library experience Whether the participant has used the library before,

seen code that used it but not used it themselves; or
neither. Self-reported.

No experience

Copy-paste Whether the participant pasted code during this task.
Measured, per-task regressions only.

False

Library × Mode Interaction between the library and encryption mode
factors described above.

cryptography.io
:asymmetric

TABLE 4.5: Factors used in regression models. Categorical factors are
individually compared to the baseline. Final models were selected by
minimum AIC; candidates were defined using all possible combina-
tions of optional factors, with both required factors included in every

candidate.

4.4.3 Dropouts

We first examine how library and encryption mode affected participants’ dropout
rates, as we believe that dropping out of the survey is a first (if crude and over-
simplified) measure of how much effort was required to solve the assigned tasks
with the assigned library. Table 4.6 details how many participants in each condition
reached each stage of the study.

We test whether library and encryption mode affect dropout rate using a logistic
regression model (see Section 4.4.2) examining whether each participant who con-
sented proceeded through all tasks and started the exit survey. (We use the start of
the survey here because dropping out at the survey stage seems orthogonal to library



90 Chapter 4. Comparing the Usability of Cryptographic APIs

Started Total
Library Mode Consented Survey Valid

PyCrypto sym 136 48 41
asym 175 37 24

M2Crypto sym 157 36 20
asym 174 35 27

cryptography.io sym 136 48 39
asym 174 22 19

Keyczar sym 136 26 20
asym 173 24 17

PyNaCl sym 136 34 29
asym 174 27 20

Total 1 571 337 256

TABLE 4.6: The number of participants who progressed through each
phase of the study, by condition. Each column is a subset of the pre-

vious columns.

type.) For this model, we include only the library-encryption mode interactions as
an optional factor, because we do not have experience or security background data
for the participants who dropped out.

The final model (see Table 4.7) indicates that asymmetric-encryption participants
were only about half as likely to proceed through all tasks as participants assigned to
symmetric encryption, which was statistically significant. Compared to the “default"
choice of PyCrypto, participants assigned to M2Crypto and Keyczar were about half
as likely to proceed through all tasks, which was also statistically significant. Py-
NaCl exhibits a higher dropout rate than PyCrypto; however, this trend was not sig-
nificant. cryptography.io matches PyCrypto’s dropout rate. Although the two-way
interactions are included in the final model, none exhibits a significant result.

Overall, these results suggest that PyCrypto (approximate default) and cryptog-
raphy.io (designed for usability, with relatively complete documentation) were least
likely to drive participants away. Keyczar, also designed for usability, performed
worst on this metric.

Factor O.R. C.I. p-value

M2Crypto 0.55 [0.33, 0.91] 0.02*
cryptography.io 1.00 [0.61, 1.64] 1
Keyczar 0.43 [0.25, 0.75] 0.003*
PyNaCl 0.61 [0.36, 1.03] 0.065

asymmetric 0.49 [0.3, 0.81] 0.006*

M2Crypto:asymmetric 1.72 [0.83, 3.57] 0.144
cryptography.io:asymmetric 0.54 [0.25, 1.16] 0.112
Keyczar:asymmetric 1.39 [0.63, 3.05] 0.418
PyNaCl:asymmetric 1.12 [0.53, 2.39] 0.768

TABLE 4.7: Results of the final logistic regression model examining
whether participants who consented proceeded through all tasks and
continued to the survey. Odds ratios (O.R.) indicate relative likeli-
hood of continuing. Statistically significant factors indicated with *.

See Section 4.4.2 for further details.



4.4. Study results 91

FIGURE 4.3: Percentage of tasks for which participants generated
functional solutions, by condition.

4.4.4 Functionality results

We next discuss the extent to which participants were able to produce functional
solutions—that is, solutions that produced a key or encrypted and decrypted some
content without generating an exception.2 We observed a wide variance in func-
tional results across libraries and encryption types, ranging from asymmetric Key-
czar (13.7% functional) to symmetric cryptography.io and symmetric PyNaCl (89.5%
and 87.9% functional respectively).

Figure 4.3 illustrates these results.
To examine these results more precisely, we applied a logistic regression, as de-

scribed in Section 4.4.2, to model the factors that affect whether or not each indi-
vidual task was marked as functional. The final model (see Table 4.8) shows that
M2Crypto and Keyczar are significantly worse for functionality than the baseline
PyCrypto; cryptography.io and PyNaCl appear slightly better, but the difference is
not significant. Most notably, Keyczar is estimated as only 10% as likely to produce
a functional result. By comparing confidence intervals, we see that Keyczar is also
significantly worse than PyNaCl and cryptography.io. The results also show that
symmetric tasks were about 6× (0.16-1) as likely as asymmetric tasks to have func-
tional solutions, and that using code generated via copy-and-paste improves a task’s
odds of functionality about 3× (both significant). The participant’s Python experi-
ence level, security background, and experience with their assigned library do not
appear in the final model, suggesting they are not significant factors in the function-
ality results.

In general, the set of asymmetric cryptography tasks was harder to solve in a
functionally correct way than the set of symmetric cryptography tasks. This seems
to be largely because we included X.509 certificate handling in the set of asymmet-
ric cryptography tasks. Two of the libraries specifically designed to be easy to use
(Keyczar and PyNaCl) do not support X.509 certificate handling out of the box, so
these tasks had to be done via workarounds or could not be solved at all. On the

2Participants who skipped a task are counted as functionally incorrect for that task.



92 Chapter 4. Comparing the Usability of Cryptographic APIs

other hand, the low-level X.509 certificate APIs of M2Crypto and PyCrypto require
developers to deal with many cryptographic details (e.g., root certificate stores and
certificate details such as the Common Name or Subject Alternative Name), which
might have an impact on functionality in addition to security.

The only significant interaction in the final model is between M2Crypto and
asymmetric tasks: these tasks were about 8× more likely than expected to be marked
functional. Indeed, M2Crypto is the only library (see Figure 4.3) for which sym-
metric tasks were (slightly) less functional than asymmetric tasks. We hypothesize
that this is caused by the requirement that developers have to choose many crypto-
graphic details for both symmetric and asymmetric encryption in M2Crypto.

Factor O.R. C.I. p-value

M2Crypto 0.26 [0.09, 0.69] 0.007*
cryptography.io 1.68 [0.61, 4.61] 0.311
Keyczar 0.10 [0.04, 0.26] < 0.001*
PyNaCl 1.58 [0.55, 4.56] 0.394

asymmetric 0.16 [0.07, 0.38] < 0.001*

copy-paste 3.29 [1.97, 5.49] < 0.001*

M2Crypto:asymmetric 8.14 [2.29, 28.95] 0.001*
cryptography.io:asymmetric 1.53 [0.4, 5.75] 0.532
Keyczar:asymmetric 1.50 [0.36, 6.22] 0.578
PyNaCl:asymmetric 0.49 [0.13, 1.86] 0.293

TABLE 4.8: Results of the final logistic regression mixed model ex-
amining which factors correlate with task functionality. Odds ratios
indicate relative likelihood of a task being functionally correct. Statis-
tically significant values indicated with *. See Section 4.4.2 for further

details.

4.4.5 Security results

Next, we consider whether participants whose code was functional also produced
secure solutions. As with functionality, we observed a broad range of results (see
Figure 4.4). Overall, Keyczar was notably secure (for a small sample) and PyCrypto
and to a lesser extent M2Crypto were notably insecure.

We again apply logistic regression (Section 4.4.2) to investigate the factors that
influence security; we include only functional task solutions in this analysis. The
results are shown in Table 4.9. The final model shows that compared to the base-
line PyCrypto, every library appears to produce better security; all of these except
M2Crypto are significant. At the extreme, Keyczar is estimated almost 25× as likely
to produce a secure solution. This is particularly notable because Keyczar was
so difficult: only 16 and seven participant tasks, respectively, exhibited functional
symmetric and asymmetric solutions, but 12 and six of these respectively were se-
cure, the highest per-capita of any library. The regression results also show that at
baseline, asymmetric tasks were about 3× more likely to exhibit secure code than
symmetric tasks. The final model also indicates that tasks from participants with
a security background were about 1.5× more likely to be secure; Python experi-
ence level and experience directly with the assigned library do not seem to affect
security noticeably, as they do not appear in the final model. The only significant
interaction term is between cryptography.io and asymmetric: cryptography.io is the
only library for which asymmetric performed less securely. We hypothesize that this



4.4. Study results 93

FIGURE 4.4: Percentage of tasks with secure solutions, considering
only tasks with functional solutions, by condition.

Factor O.R. C.I. p-value

M2Crypto 2.20 [0.68, 7.11] 0.186
cryptography.io 19.34 [7.78, 48.03] <0.001*
Keyczar 24.54 [6.31, 95.43] <0.001*
PyNaCl 11.29 [4.46, 28.61] <0.001*

asymmetric 3.58 [1.28, 10.03] 0.015*

sec. bkgrd. 1.57 [0.94, 2.61] 0.083

M2Crypto:asymmetric 1.09 [0.25, 4.73] 0.909
cryptography.io:asymmetric 0.08 [0.02, 0.31] <0.001*
Keyczar:asymmetric 0.54 [0.04, 7.37] 0.642
PyNaCl:asymmetric 0.29 [0.07, 1.2] 0.088

TABLE 4.9: Results of the final logistic regression mixed model ex-
amining which factors correlate with task security, among only tasks
that were functional. Odds ratios indicate relative likelihood of a so-
lution being secure. Statistically significant values indicated with *.

See Section 4.4.2 for further details.

is because the symmetric tasks could be completed using the library’s high-level
“recipes" layer, while the asymmetric tasks required the participant to work with
the low-level “hazmat" layer.

Security perception. In the exit survey, we showed participants the code they
had written to solve each task and asked them (on a five-point Likert scale from
Strongly Agree to Strongly Disagree) whether they thought their solution was se-
cure. We did not define security, as we wanted to know whether our participants
were satisfied with the security properties of their code in general, rather than meet-
ing a specific threat model. Across all libraries, the majority of our participants were
convinced that their solution was secure. The median (excluding 10% of tasks for
which participants answered “I don’t know") was no lower than “neutral" across
all combinations of libraries and encryption modes; security confidence was highest
for cryptography.io and PyNaCl (both encryption modes), as well as PyCrypto and



94 Chapter 4. Comparing the Usability of Cryptographic APIs

Factor O.R. C.I. p-value

M2Crypto 0.59 [0.25, 1.38] 0.221
cryptography.io 0.58 [0.27, 1.27] 0.176
Keyczar 0.25 [0.05, 1.3] 0.099
PyNaCl 0.62 [0.27, 1.46] 0.277

asymmetric 1.32 [0.72, 2.42] 0.373

sec. bkgrd. 1.65 [0.86, 3.14] 0.13

TABLE 4.10: Results of the final logistic regression mixed model ex-
amining factors correlating with erroneous belief that a task is secure.
Odds ratios indicate relative likelihood of this belief. Some trends are
observable, but no results are statistically significant. See Section 4.4.2

for further details.

Keyczar (asymmetric), all of which had median value “agree."
In considering these answers, we are most interested in tasks for which we rated

the solution insecure, but the participant agreed or strongly agreed that their so-
lution for that task was secure. These situations are potentially dangerous, as the
developer mistakenly believes they have achieved security. Overall, 78 of 396 tasks
(19.7%) fell into this category, a disappointingly high number. To examine factors
that correlate with this situation, we applied a mixed-model logistic regression, as
described in Section 4.4.2, with outcome dangerous error or not per task. The results
are shown in Table 4.10. Although some trends are observable, the final model finds
no significant results; this suggests that at least at this sample size, no particular
factors were significantly associated with a higher likelihood of erroneous belief.

4.4.6 Participant opinions

Our self-reported usability metrics reveal large differences between the libraries. Ta-
ble 4.11 lists the average SUS scores by condition. Overall, PyNaCl and cryptog-
raphy.io performed best, while M2Crypto and Keyczar performed worst. Overall,
these SUS scores are quite low; a score of 68 is considered average for end-user prod-
ucts and systems [131], and even our best-performing condition does not reach this
standard. This suggests that even the most usable libraries we tested have consider-
able room for improvement.

Using a linear regression model (see Section 4.4.2), we analyzed the impact of
library and encryption mode, shown in Table 4.12. We find that M2Crypto and
Keyczar are significantly less usable than the baseline PyCrypto; PyNaCl is signifi-
cantly more usable. Unsurprisingly, symmetric-condition participants reported sig-
nificantly more usability than asymmetric-condition participants. The final model
indicates that security background and having seen the assigned library before were
both associated with a significant increase in usability. Having used the library be-
fore was associated with an increase relative to no familiarity, but this trend was not
significant, probably because of the very small sample size: only 18 participants re-
ported having used their assigned library before. Python experience was included
in the final model but was not a signficiant covariate; the final model did not include
any interactions between library and encryption mode.

We compiled our additional usability questions, drawn from prior work as de-
scribed in Section 4.3.7, into a score out of 100 points. The results were similar to
the SUS, and in fact, the two scores were significantly correlated (Kendall’s τ=0.65,



4.4. Study results 95

Mean Mean
Library Mode SUS API Scale

PyCrypto sym 63.9 64.2
asym 47.8 52.5

M2Crypto sym 33.9 32.5
asym 36.4 35.6

cryptography.io sym 67.2 67.7
asym 52.3 61.6

Keyczar sym 40.8 40.9
asym 32.5 26.9

PyNaCl sym 67.2 66.8
asym 59.5 57.1

TABLE 4.11: Mean SUS scores and scores on our new API usability
scale, by condition.

Factor Coef. C.I. p-value

M2Crypto -20.57 [-27.62, -13.52] <0.001*
cryptography.io 5.04 [-1.52, 11.61] 0.131
Keyczar -18.07 [-25.85, -10.3] <0.001*
PyNaCl 7.56 [0.48, 14.64] 0.036*

asymmetric -9.60 [-14.13, -5.08] <0.001*

experienced 3.79 [-1.33, 8.91] 0.146

sec. bkgrd. 6.22 [0.98, 11.46] 0.02*

seen lib 6.62 [0.39, 12.85] 0.037*
used lib 3.33 [-5.95, 12.6] 0.481

TABLE 4.12: Linear regression model examining SUS scores. The co-
efficient indicates the average difference in score between the listed
factor and the base case. Significant values indicated with *. R2 =

0.376. See Section 4.4.2 for further details.

p < 0.001). Using Cronbach’s alpha, we determined that the scale’s internal reliabil-
ity was high (α = 0.98).

Table 4.13 shows the results of a linear regression examining score on our scale.
As before, M2Crypto and Keyczar are significantly worse than PyCrypto. Using this
measure, cryptography.io is significantly better than PyCrypto, while PyNaCl is bet-
ter than PyCrypto but not significantly so. Also as before, significantly higher scores
were correlated with symmetric tasks and with having seen the assigned library
before. Having used the library before was again correlated with higher scores, but
not significantly so, probably due to sample size. Security background was included
in the final model but not significant; Python experience and interactions between
library and encryption mode were not included in the final model.

The answers to questions about the API documentation indicate that Keyczar
and M2Crypto have a sizable problem with their documentation: Our participants
consistently answered that they found neither helpful explanations nor helpful code
examples in the documentation, and that they had to spend a lot of time reading the
documentation before they could solve the tasks. Altogether, they found the docu-
mentation for Keyczar and M2Crypto not helpful. This corresponded to responses
saying that the tasks were not straightforward to implement for these two libraries.
Interestingly, for cryptography.io, the perceived effort that had to be invested into
understanding the library in order to be able to work on the tasks was the lowest.



96 Chapter 4. Comparing the Usability of Cryptographic APIs

Factor Coef. C.I. p-value

M2Crypto -22.44 [-28.54, -16.35] <0.001*
cryptography.io 7.21 [1.45, 12.97] 0.014*
Keyczar -21.59 [-28.41, -14.77] <0.001*
PyNaCl 5.66 [-0.5, 11.82] 0.072

asymmetric -8.00 [-11.99, -4.02] <0.001*

sec. bkgrd. 3.94 [-0.66, 8.54] 0.093

seen lib 6.60 [1.12, 12.09] 0.019*
used lib 6.74 [-1.41, 14.88] 0.104

TABLE 4.13: Linear regression model examining scores on our
cognitive-dimension-based scale. The coefficient indicates the aver-
age difference in score between the listed factor and the base case
(PyCrypto and symmetric, respectively). Significant values indicated

with *. R2 = 0.466. See Section 4.4.2 for further details.

For cryptography.io, PyNaCl, and PyCrypto, the developers felt that after having
used the library to solve the tasks, they had a pretty good understanding of how the
library worked.

For color, we include a few exemplar quotes from our participants who chose to
comment on the documentation. One participant said the Keyczar documentation
was “awful and doesn’t seem to document its Python API at all.” A second said,
“I don’t understand why you have an API with no search feature and functional
descriptions. This is insane,“ and a third commented that “The linked document is
so unkind that I must read the code.” A third Keyczar participant left an ASCII-art
comment spelling out “Your documentation is bad and you should feel bad."

One participant assigned to M2Crypto called the documentation “solidly awful,”
“just terrible,” and “completely unusable.” The same participant inquired whether
our request to use this library was “a joke" or “part of the study." Other M2Crypto
participants said “the linked documentation is wildly insufficient” and M2Crypto’s
“interface is arcane and documentation hard to understand.” Several participants
assigned to this library commented that they had to revert to Stack Overflow posts
or blog entries found via search engines to be able to work on the tasks at all.

In contrast, one participant working with cryptography.io called a tutorial con-
tained in the documentation “amazing!” while stating that “The comparable
OpenSSL docs make one want to jump off a cliff.” Another said the documentation
“was confusing at first, but later I got the hang of it.”

4.4.7 Examining individual tasks

Success in solving the tasks varied not only across libraries, but also across individ-
ual tasks, as illustrated in Figure 4.5. We analyze these results for trends, rather than
statistical significance, to avoid diluting our statistical power by testing the same
results in multiple ways.

Encryption proved easiest. Symmetric participants achieved 85.2% functional
success, with 70.1% of those rated secure; 72.0% of asymmetric encryption tasks
were functional, with 78.8% of those rated secure. In contrast, the hardest task to
solve overall dealt with certificate validation. Only 22.4% of asymmetric participants
were able to provide a functional solution, and not a single one was secure. Key
generation tasks fell in the middle.



4.4. Study results 97

FIGURE 4.5: Percentage of tasks with functionally correct solutions
(left), and percentage of functional solutions that were rated secure

(right), organized by library and task type.

Investigating security errors. We also examined trends in the types of secu-
rity errors made by our participants. (For a full accounting, see Table B.1 in Ap-
pendix B.1.)

We first consider symmetric cryptography, and in particular situations where
participants were allowed to make security choices. Only M2Crypto and PyCrypto
allow developers to choose an encryption algorithm; interestingly, all 11 PyCrypto
participants selected DES (insecure), but no M2Crypto participants chose an inse-
cure algorithm. While M2Crypto’s official API documentation does not provide
code examples, the first results on Google when searching “m2crypto encryption”
provide code snippets that use AES. The PyCrypto documentation does provide
code examples for symmetric encryption and discourages the use of DES as a weak
encryption algorithm. However, the first Google results when searching “pycrypto
encryption" provide code examples that use DES. Nine of the 11 participants who
used DES mentioned specific blog posts and Stack Overflow posts that we later de-
termined to have insecure code snippets. Similarly, allowing developers to pick
modes of operation resulted in relatively many vulnerabilities. PyCrypto partici-
pants chose the insecure ECB as mode of operation explicitly or did not provide a



98 Chapter 4. Comparing the Usability of Cryptographic APIs

mode of operation parameter at all (ECB is the default). As with selecting an encryp-
tion algorithm, affected participants reported using blog posts and Stack Overflow
posts containing insecure snippets as information sources. PyCrypto participants
chose static IVs more frequently than those using other libraries; interestingly, this
corresponds to not mentioning the importance of a truly random IV in the docu-
mentation. Relatedly, requiring developers to pick key sizes manually frequently
resulted in too-small keys, across libraries.

Interestingly, PyCrypto participants were most likely to fail to use any key deriva-
tion function, possibly because the documentation uses a plain string for an encryp-
tion key. PyNaCl and PyCrypto participants used an insecure custom key derivation
function more frequently than participants in other conditions: they frequently used
a simple hash function for key stretching. cryptography.io participants, in contrast,
performed exceedingly well on this task, likely because the included PBKDF2 func-
tion is well documented and close to the symmetric encryption example. On the
negative side, cryptography.io users picked static salts for PBKDF2 more frequently
than others, even though the code example in the API documentation uses a random
salt; however, no explanation on the importance of using a random value is given.
Storing encryption keys in plaintext rather than encrypted was also common across
all libraries.

Generating and storing asymmetric keys was significantly less vulnerable to
weak cryptographic choices. Only PyCrypto and M2Crypto participants failed to
pick sufficiently secure RSA key sizes, potentially due again to insecure code ex-
amples (mentioning 1024-bit keys) among the top Google search results. Since all
libraries but Keyczar and PyNaCl provide a private-key export function that offers
encryption, asymmetric private-key storage had comparably few insecurities. How-
ever, PyNaCl users had to manually encrypt their private key and ran into similar
security problems as the symmetric-encryption users mentioned above. Asymmet-
ric encryption produced relatively few security errors.

Certificate validation was the most challenging task. Across all libraries, partic-
ipants had trouble properly implementing signature validation, hostname verifica-
tion, CA checks, and validity checks. This may be caused by task complexity and
insufficient API support.

4.5 Discussion

Our results suggest that usability and security are deeply interconnected in some-
times surprising ways. We distill some high-level findings derived from our indi-
vidual results and suggest future directions for library design and further research.

Simplicity does promote security (to a point). In general, the simplified libraries
we tested produced more secure results than the comprehensive libraries, validating
the belief that simplicity is better. Further, cryptography.io proved secure for the
symmetric tasks (primarily doable via the simplified “recipes” layer) but not for
the asymmetric tasks (primarily requiring use of the complex “hazmat” layer). This
reinforces both the idea that simplicity promotes security and the need for simplified
libraries to offer a broader range of features.

However, even simplified libraries did not entirely solve the security problem;
in all but one condition, the rate of security success was below 80%. These security
errors were frequently caused by missing features (discussed next). Worse, for 20%
of functional solutions, participants rated their code as secure when it was not; this
indicates a dangerous gap in recognition of potential security problems.



4.5. Discussion 99

Features and documentation matter for security. Several of the libraries we se-
lected did not (or not well) support tasks auxiliary to encryption and decryption,
such as secure key storage and password-based key generation. These missing fea-
tures caused many of the insecure results in the otherwise-successful simplified li-
braries. We argue that to be usably secure, a cryptographic API must support such
auxiliary tasks, rather than relying on the developer to recognize the potential for
danger and identify a secure alternate solution. Further, we suggest that crypto-
graphic APIs should be designed to support a reasonably broad range of use cases;
requiring developers to learn and use new APIs for closely related tasks seems likely
to drive them back to comprehensive libraries like PyCrypto or M2Crypto, which
pose security risks.

Documentation is also critical. PyCrypto, for example, contains symmetric en-
cryption examples that use AES in ECB mode, which is prima facie insecure. Par-
ticipants who left the PyCrypto documentation to search for help on Stack Over-
flow and blogs often ended up with insecure solutions; this suggests the importance
of creating official documentation that is useful enough to keep developers from
searching out unvetted, potentially insecure alternatives. Many participants copied
these examples in their solutions. In contrast, the excellent code examples for Py-
NaCl and in the cryptography.io “recipes" layer appear to have contributed to high
rates of security success.

What do we mean by usable? Despite claims of usability and a simplified API,
Keyczar proved the most difficult to use of our chosen libraries. This was caused
primarily by two issues: poor documentation (as measured by our API usability
scale) and the lack of documented support for key generation in code, rather than
requiring interaction at the command line. Those few participants who successfully
achieved functional code had very high rates of security, but in practice developers
who give up on a library because they cannot make it work for the desired task will
not be able to take advantage of potential security benefits. For example, develop-
ers who have difficulty with Keyczar might turn to PyCrypto, which participants
preferred but which showed poor security results.

A blueprint for future libraries. Taken together, our results suggest several
important considerations for designers of future cryptographic libraries. First, the
recent emphasis on simplifying APIs (and choosing secure defaults) has provided
improvement; we endorse continuing in this direction. We suggest, however, that
library designers go further, by treating documentation quality as a first-class re-
quirement, with particular emphasis on secure code examples. We also recommend
that library designers consider a broad range of potential tasks users might need
to accomplish cryptographic goals, and build support for each of them into a more
comprehensive whole.

Our results suggest that supporting holistic, application-level tasks with ready-
to-use APIs is the best option. That said, we acknowledge that it may be difficult
or impossible to predict all tasks API users may want or need. Therefore, where
lower-level features are necessary, they should be intentionally designed to make
combining them into more complex tasks securely as easy as possible.

Looking forward, further research is needed to design and evaluate libraries that
meet these goals. Some changes can also be made within existing libraries—for ex-
ample, improving documentation, changing insecure defaults to secure defaults,
or even adding compiletime or runtime warnings for insecure parameters. These
changes should be evaluated involving future users both before they are deployed
and longitudinally to see how they affect outcomes within real-world code. We also
hope to refine and expand the usability scale developed in this chapter to create



100 Chapter 4. Comparing the Usability of Cryptographic APIs

an evaluation framework for security APIs generally, providing both feedback and
guidance for improvement.

This chapter showed that studies with developers can be used to research API usability in
a programming study. Our experiment helped us to create meaningful guidelines to improve
the usable security of cryptographic libraries. For this, we experimented with a then-novel
group of developers: those we recruited from GitHub. In a follow-up work, we explore this
sample in depth. One main result of Chapters 3 and 4 was that documentation and other
advice sources significantly impact security outcomes. In Chapter 6, we therefore explore
online advice for secure programming.



101

Chapter 5

Exploring a GitHub Sample for
Security Developer Studies

Disclaimer: The contents of this chapter were previously published as part of the conference
paper “Security Developer Studies with GitHub Users: Exploring a Convenience Sample”,
presented at the 2017 Symposium on Usable Privacy and Security. This research was con-
ducted as a team with my co-authors Christian Stransky, Dominik Wermke, Michelle L.
Mazurek, and Sascha Fahl; this chapter therefore uses the academic “we”. Christian Stran-
sky, Michelle Mazurek, Sascha Fahl, and I designed the study. Christian Stransky, Sascha
Fahl, and I conducted the study. All authors evaluated the study and co-wrote the paper. The
libraries and version of Python used throughout the study reflect the landscape in 2016.

5.1 Motivation

The usable security community is increasingly considering how to improve secu-
rity decision-making not only for end users, but for information technology pro-
fessionals, including system administrators and software developers [3, 4, 85, 95,
285]. By focusing on the needs and practices of these communities, we can develop
guidelines and tools and even redesign ecosystems to promote secure outcomes in
practice, even when administrators or developers are not security experts and must
balance competing priorities.

One common approach in usable security and privacy research is to conduct an
experiment, which can allow researchers to investigate causal relationships (e.g., [37,
83, 118, 253]). Other non-field-study mechanisms, such as surveys and interview
studies, are also common. For research concerned with the general population of
end users, recruitment for these studies can be fairly straightforward, via online re-
cruitment platforms such as Amazon Mechanical Turk or via local methods such as
posting flyers and advertising on email lists or classified-ad services like Craigslist.
These approaches generally yield acceptable sample sizes at an affordable cost.

Recruiting processes for security developer studies, however, are less well estab-
lished. For in-lab studies, professional developers may be hard to contact (relative
to the general public), may not be locally available outside of tech-hub regions, may
have demanding schedules, or may be unwilling to participate when research com-
pensation is considerably lower than their typical hourly rate. For these reasons,
studies involving developers tend to have small samples and/or to rely heavily on
university computer-science students [4, 22, 126, 248, 249, 285]. To our knowledge,
very few researchers have attempted large-scale online security developer studies [3,
22].



102 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

To date, however, it is not well understood how these different recruitment ap-
proaches affect research outcomes in usable security and privacy studies. The empir-
ical software engineering community has a long tradition of conducting experiments
with students instead of professional developers [226] and has found that under cer-
tain circumstances, such as similar level of expertise in the task at hand, students can
be acceptable substitutes [215]. These studies, however, do not consider a security
and privacy context; we argue that this matters, because security and privacy tasks
differ from general programming tasks in several potentially important ways. First,
because security and privacy are generally secondary tasks, it can be dangerous to
assume they exhibit similar characteristics as general programming tasks. For ex-
ample, relative to many general programming tasks, it can be especially difficult for
a developer to directly test that security is working. (For example, how does one
observe that a message is correctly encrypted?) Second, a portion of professional
developers are self-taught, so their exposure to security and privacy education may
differ importantly from university students’ [235].

The question of how to recruit for security studies of developers in order to max-
imize validity is complex but important. In this study, we take a first step toward
answering it: We report on an experiment (n=307) comparing GitHub contributors
completing the same security-relevant tasks. For this experiment, we take as a case
study the approach (which we used in prior work [3], Chapter 4) of recruiting ac-
tive developers from GitHub for an online study. All participants completed three
Python-programming tasks spanning four security-relevant concepts, which were
manually scored for functionality and security. We found that participants across
all programming experience levels were similarly inexperienced in security, and
that professional developers reported more programming experience than univer-
sity students. Being a professional did not increase a participant’s likelihood of
writing functional or secure code statistically significantly. Similarly, self-reported
security background had no statistical effect on the results. Python experience was
the only factor that significantly increased the likelihood of writing both functional
and secure code. Further work is needed to understand how participants from
GitHub compare to those recruited more traditionally (e.g., students recruited us-
ing flyers and campus e-mail lists, or developers recruited using meetup websites
or researchers’ corporate contacts). Nonetheless, our findings provide preliminary
evidence that at least in this context, similarly experienced university students can
be a valid option for studying professionals developers’ security behaviors.

5.2 Related Work

We discuss related work in two key areas: user studies with software developers and
IT professionals focusing on security-relevant topics, and user studies with software
developers and IT professionals that do not focus on security but do discuss the
impact of participants’ level of professionalism on the study’s validity.

Studies with Security Focus. In [4] (Chapter 3) we present a laboratory study
on the impact of information sources such as online blogs, search engines, official
API documentation and StackOverflow on code security. We recruited both com-
puter science students (40) and professional Android developers (14). We found that
software development experience in Android, as bucketed in the study, had no im-
pact on code security, but previous participation in security classes had a significant
impact. That study briefly compares students to professionals, finding that profes-
sionals were more likely to produce functional code but no more likely to produce



5.2. Related Work 103

secure code; however, that work does not deeply interrogate differences between
the populations and the resulting implications for validity. The study is however
limited by bucketing experience years, and by the small sample size, as well as the
limited representation by professional developers. In [3], we conducted an online
experiment with GitHub users to compare the usability of cryptographic APIs; that
work does not distinguish different groups of GitHub users.

Many studies with a security focus rely primarily on students. Yakdan et al.
conducted a user study to measure the quality of decompilers for malware analy-
sis [285]. Participants included 22 computer-science students who had completed
an online bootcamp as well as 9 professional malware analysts.

Scandariato conduct a controlled experiment with 9 graduate students, all of
whom had taken a security class, to investigate whether static code analysis or pene-
tration testing was more successful for finding security vulnerabilities in code [218].
Layman et al. conducted a controlled experiment with 18 computer-science students
to explore what factors are used by developers to decide whether or not to address
a fault when notified by an automated fault detection tool [142].

Jain and Lindqvist conducted a laboratory study with 25 computer-science stu-
dents (5 graduate; 20 undergraduate) to investigate a new, more privacy-friendly
location API for Android application developers and found that, when given the
choice, developers prefer the more privacy-preserving API [126]. Barik et al. con-
ducted an eye-tracking study with undergraduate and graduate university students
to investigate whether developers read and understand compiler warning messages
in integrated development environments [25]. Studies that use professional devel-
opers are frequently qualitative in nature, and as such can effectively make use of
relatively small sample sizes. Johnson et al. [130] conducted interviews with 20 real
developers to investigate why software developers do not use static analysis tools
to find bugs in software, while Xie et al. [281] conducted 15 semi-structured inter-
views with professional software developers to understand their perceptions and
behaviors related to software security. Thomas et al. [248] conducted a laboratory
study with 28 computer-science students to investigate interactive code annotations
for access control vulnerabilities. As follow up, Thomas et al. [249] conducted an
interview and observation-based study with professional software developers us-
ing snowball sampling. They were able to recruit 13 participants, paying each a $25
gift card, to examine how well developers understand the researchers’ static code
analysis tool ASIDE.

Johnson et al. [129] describe a qualitative study with 26 participants including
undergraduate and graduate students as well as professional developers. Smith et
al. [230] conducted an exploratory study with five students and five professional
software developers to study the questions developers encounter when using static
analysis tools. To investigate why developers make cryptography mistakes, Nadi
et al. [166]surveyed 11 Stack Overflow posters who had asked relevant questions.
A follow-up survey recruited 37 Java developers via snowball sampling, social me-
dia, and email addresses drawn from GitHub commits. This work does not address
demographic differences, nor whether participants were professional software de-
velopers, students, or something else.

A few online studies of developers have reached larger samples, but generally
for short surveys rather than experimental tasks. Balebako et al. [22] studied the pri-
vacy and security behaviors of smartphone application developers; they conducted
13 interviews with application developers and an online survey with 228 application
developers. They compensated the interviewees with $20 each, and the online sur-
vey participants with a $5 Amazon gift card. Witschey et al. [276] survey hundreds



104 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

of developers from multiple companies (snowball sampling) and from mailing lists
to learn their reasons for or against the use of security tools.

Overall, these studies suggest that reaching large numbers of professional devel-
opers can be challenging. As such, understanding the sample properties of partic-
ipants who are more readily available (students, online samples, convenience sam-
ples) is an aspect of contextualizing the valuable results of these studies. In this
paper, we take a first step in this direction by examining in detail an online sample
from GitHub.

Studies without Security Focus. In the field of Empirical Software Engineering,
the question whether or not students can be used as substitutes for developers when
experimenting is of strong interest. Salman et al. [215] compared students and de-
velopers for several (non-security-related) tasks, and found that the code they write
can be compared if they are equally inexperienced in the subject they are working on.
When professionals are more experienced than students, their code is better across
several metrics. Hoest et al. [124] compare students and developers across assess-
ment (not coding) tasks and find that under certain conditions, e.g., that students be
in the final stretches of a Master’s program, students can be used as substitutes for
developers. Carver et al. [45] give instructions on how to design studies that use stu-
dents as coding subjects. McMeekin et al. [159] find that different experience levels
between students and professionals have a strong influence on their abilities to find
flaws in code. Sjoeberg et al. [226] systematically analyze a decade’s worth of studies
performed in Empirical Software Engineering, finding that eighty-seven percent of
all subjects were students and nine percent were professionals. They question the
relevance for industry of results obtained in studies based exclusively on student re-
cruits. Smith et al. [229] perform post-hoc analysis on previously conducted surveys
with developers to identify several factors software researchers can use to increase
participation rates in developer studies. Murphy-Hill et al. [162] enumerate dimen-
sions which software engineering researchers can use to generalize their findings.

5.3 Methods

We designed an online, between-subjects study to compare how effectively develop-
ers could quickly write correct, secure code using Python. We recruited participants,
all with Python experience, who had published source code at GitHub.

Participants were assigned to complete a set of three short programming tasks
using Python: an encryption task, a task to store login credentials in an SQLite
database, and a task to write a routine for a URL shortener service. Each partici-
pant was assigned the tasks in a random order (no task depended on completing a
prior task). We selected these tasks to provide a range of security-relevant operations
while keeping participants’ workloads manageable.

After finishing the tasks, participants completed an exit survey about the code
they wrote during the study, as well as their educational background and program-
ming experience. Two researchers coded participants’ submitted code for functional
correctness and security.

All study procedures were approved by the Ethics Review Board of Saarland
University, the Institutional Review Board of the University of Maryland and the
NIST Human Subjects Protection Office.



5.3. Methods 105

5.3.1 Language Selection

We elected to use Python as the programming language for our experiment, as it is
widely used across many communities and offers support for all kinds of security-
related APIs, including cryptography. As a bonus, Python is easy to read and write,
is widely used among both beginners and experienced programmers, and is reg-
ularly taught in universities. Python is the third most popular programming lan-
guage on GitHub, trailing JavaScript and Java [103]. Therefore, we reasoned that
we would be able to recruit sufficient professional Python developers and computer
science students for our study.

5.3.2 Recruitment

As a first step to understanding security-study behavior of GitHub committers, we
recruited broadly from GitHub, the popular source-code management service. To
do this, we extracted all Python projects from the GitHub Archive database [102] be-
tween GitHub’s launch in April 2008 and December 2016, yielding 798,839 projects
in total. We randomly sampled 100,000 of these repositories and cloned them. Us-
ing this random sample, we extracted email addresses of 80,000 randomly chosen
Python committers. These committers served as a source pool for our recruitment.

We emailed these GitHub users in batches, asking them to participate in a study
exploring how developers use Python. We did not mention security or privacy in the
recruitment message. We mentioned that we would not be able to compensate them,
but the email offered a link to learn more about the study and a link to remove the
email address from any further communication about our research. Each contacted
GitHub users was assigned a unique pseudonymous identifier (ID) to allow us to
correlate their study participation to their GitHub statistics separately from their
email address.

Recipients who clicked the link to participate in the study were directed to a
landing page containing a consent form. After affirming that they were over 18,
consented to the study, and were comfortable with participating in the study in En-
glish, they were introduced to the study framing. We did not restrict participation
to those with security expertise because we were interested in the behavior of non-
security-experts encountering security as a portion of their task.

To explore the characteristics of this sample, the exit questionnaire included ques-
tions about whether they were currently enrolled in an undergraduate or graduate
university program and whether they were working in a job that mainly involved
Python programming. We also asked about years of experience writing Python code,
as well as whether the participant had a background in computer security.

5.3.3 Experimental Infrastructure

For this study, we used an experimental infrastructure we developed, which is de-
scribed in detail in our previous work [3, 238](Chapter 4).

We designed the experimental infrastructure with certain important features in
mind:

• A controlled study environment that would be the same across all participants,
including having pre-installed all needed libraries.

• The ability to capture all code typed by our participants, capture all program
runs and attendant error messages, measure time spent working on tasks, and
recognize whether or not code was copied and pasted.



106 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

FIGURE 5.1: An example of the study’s task interface.

• Allowing participants to skip tasks and continue on to the remaining tasks,
while providing information on why they decided to skip the task.

To achieve these goals, the infrastructure uses Jupyter Notebooks
(version 4.2.1) [133], which allow our participants to write, run, and debug their code
in the browser, without having to download or upload anything. The code runs on
our server, using our standardized Python environment (Python 2.7.11). This setup
also allows us to frequently snapshot participants’ progress and capture copy-paste
events. To prevent interference between participants, each participant was assigned
to a separate virtual machine running on Amazon’s EC2 service. Figure 5.1 shows
an example Notebook.

We pre-installed many popular Python libraries for accessing an SQLite database,
dealing with string manipulation, storing user credentials, and cryptography. Ta-
ble C.2 in Appendix C.3 lists all libraries we provided. We tried to include as many
relevant libraries as possible, so that every participant could work on the tasks using
their favorite libraries.

The tasks were shown one at a time, with a progress indicator showing how
many tasks remained. For each task, participants were given buttons to “Run and
test” their code, and to move on using “Solved, next task” or “Not solved, but next
task.” A "Get unstuck" button was also provided in case the participant accidentally
sent Python into an infinite loop or otherwise crashed the Python interpreter run-
ning in the Notebook. After completing (or skipping) all tasks, the participant was
redirected to the exit survey.

5.3.4 Exit Survey

Once all tasks had been completed or abandoned, the participants were directed
to a short exit survey (cf. Appendix C.1). We asked for their opinions about the
tasks they had completed: Did they think they had solved them? How did they
perceive the tasks’ difficulty? Did they think their solution was secure? We also
were interested in whether they thought about security or privacy when working
on the tasks. Finally, we wanted to know whether our participants had worked on
similar programming problems in the past. For these task-specific questions, we
used our infrastructure to display the participant’s code for the corresponding task



5.3. Methods 107

for their reference. We also asked several questions about demographic information
and programming experience, to allow us to distinguish categories of participants.

5.3.5 Task Design

We designed tasks that were short enough so that the uncompensated participants
would be likely to complete them before losing interest, but still complex enough to
be interesting and allow for some mistakes. Most importantly, we designed the tasks
to model real-world security and privacy problems that Python developers could
reasonably be expected to encounter. While these tasks of course do not represent
all possible security tasks, we think they provide an interesting variety for analysis.

URL Shortener We asked our participants to write code for a method that could be
part of a URL shortening service such as bit.ly 1 or Google’s URL shortener goo.gl. 2

URL Shortener Task:
You are asked to develop code for a URL shortening service similar to https:
//goo.gl/. Users of this service will provide you URLs such as https://en.
wikipedia.org/wiki/History_of_the_Internet. As a result your service should
return a shortened URL such as http://foo.bar/1xf2. In this task we would
like you to implement a method shortenURL that is called for every input URL.
The output of this method is a shortened URL for the input URL.

When is the problem solved?
A shortened URL is returned. Please print the output of the method to the con-
sole.

While this task does not directly have security implications, we were mainly in-
terested in whether, e.g., they used well established approaches such as message
digest or random number generators to generate a short URL, or whether they in-
vented their own algorithm.

1cf. https://bitly.com/
2cf. https://goo.gl/

https://goo.gl/
https://goo.gl/
https://en.wikipedia.org/wiki/History_of_the_Internet
https://en.wikipedia.org/wiki/History_of_the_Internet
http://foo.bar/1xf2
https://bitly.com/
https://goo.gl/


108 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

Credential Storage We asked our participants to store login credentials, namely a
username and password, in a database backend.

Credential Storage Task:
You are asked to develop a web-application backend that stores login creden-
tials (i.e., usernames and passwords) for the web application’s users. In this
task, we would like you to implement a method storeCredentials that is called
for every user at account registration. New login credentials are appended to a
local SQLite database. Assume that the username and password are given as
HTTP POST parameters to your method. Although we are not asking you to
implement the verifyCredentials method for authenticating users at this time,
assume that you will also be writing that method, so you can choose the stor-
age format within the database. We have prepared a SQLite database named
“db.sqlite” containing a table “users” and five text columns, “column1”, “col-
umn2”, “column3”, “column4”, “column5”. You can use any or all of these
columns as needed to store users’ login credentials; you do not have to use all
columns to solve the task.

When is the problem solved?
The credentials are stored in the database file.

This task has direct security implications: we were mainly interested in whether
participants followed security best practices. Best practices to store user credentials
in a database include hashing and salting the password instead of storing it in plain-
text and using some sort of input sanitization (e.g. parameterized instead of raw
SQL queries) for SQL queries to prevent SQL injection attacks.

String Encryption We asked participants to write code to encrypt and decrypt a
string.

String Encryption Task:
You are asked to write code that is able to encrypt and decrypt a string.

When is the problem solved?
The input string is encrypted and decrypted afterwards. You should see the
encrypted and decrypted string in the console.

In this task we were mainly interested in whether participants wrote secure cryp-
tographic code, e.g., choosing secure algorithms, strong key sizes, and secure modes
of operation.

For each task, we provided stub code and some comments with instructions
about how to work on the task. The code stubs were intended to make the pro-
gramming task as clear as possible and to ensure that we would later easily be able
to run automated unit tests to examine functionality. The code stubs also helped to
orient participants to the tasks.

We told participants that “you are welcome to use any resources you normally
would" (such as documentation or programming websites) to work on the tasks.
We asked participants to note any such resources as comments to the code, for our
reference, prompting them to do so when we detected that they had pasted text
and/or code into the Notebook.



5.3. Methods 109

5.3.6 Evaluating Participant Solutions

We used the code submitted by our participants for each task, henceforth called
a solution, as the basis for our analysis. We evaluated each participant’s solution to
each task for both functional correctness and security. Every task was independently
reviewed by two coders, using a content analysis approach [140] with a codebook
based on our knowledge of the tasks and best practices. Differences between the
two coders were resolved by discussion. We briefly describe the codebook below.

Functionality. For each programming task, we assigned a participant a function-
ality score of 1 if the code ran without errors, passed the unit tests and completed
the assigned task, or 0 if not.

Security. We assigned security scores only to those solutions which were graded
as functional. To determine a security score, we considered several different security
parameters. A participant’s solution was marked secure (1) only if their solution was
acceptable for every parameter; an error in any parameter resulted in a security score
of 0.

URL Shortener For the URL shortening task, we checked how participants gener-
ated a short URL for a given long URL. We were mainly interested in whether partici-
pants relied on well-established mechanisms such as message digest algorithms (e.g.
the SHA1 or SHA2 family) or random number generators, or if they implemented
their own algorithms. The idea behind this evaluation criterion is the general rec-
ommendation to rely on well-established solutions instead of reinventing the wheel.
While adhering to this best practice is advisable in software development in general,
it is particularly crucial for writing security- or privacy-relevant code (e.g., use es-
tablished implementations of cryptographic algorithms instead of re-implementing
them from scratch). We also considered the reversibility of the short URL as a secu-
rity parameter (reversible was considered insecure). We did not incorporate whether
solutions were likely to produce collisions (i. e. produce the same short URL for dif-
ferent input URLs) or the space of the URL-shortening algorithm (i. e. how many
long URLs the solution could deal with) as security parameters: we felt that given
the limited time frame, asking for an optimal solution here was asking too much.

Credential Storage For the credential storage task, we split the security score in
two. One score (password storage) considered how participants stored users’ pass-
words. Here, we were mainly interested whether our participants followed security
best practices for storing passwords. Hence, we scored the plain text storage of a
password as insecure. Additionally, applying a simple hash algorithm such as MD5,
SHA1 or SHA2 was considered insecure, since those solutions are vulnerable to rain-
bow table attacks. Secure solutions were expected to use a salt in combination with
a hash function; however, the salt needed to be random (but not necessarily secret)
for each password to withstand rainbow table attacks. Therefore, using the same
salt for every password was considered insecure. We also considered the correct use
of HMACs [139] and PBKDF [132] as secure.

The second security score (SQL input) considered how participants interacted
with the SQLite database we provided. For this evaluation, we were mainly inter-
ested whether the code was vulnerable to SQL injection attacks. We scored code



110 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

that used raw SQL queries without further input sanitization as insecure, while we
considered using prepared statements secure.3

String Encryption For string encryption, we checked the selected algorithm, key
size and proper source of randomness for the key material, initialization vector and,
if applicable, mode of operation. For symmetric encryption, we considered ARC2,
ARC4, Blowfish, (3)DES and XOR as insecure and AES as secure. We considered
ECB as an insecure mode of operation and scored Cipher Block Chaining (CBC),
Counter Mode (CTR) and Cipher Feedback (CFB) as secure. For symmetric key size,
we considered 128 and 256 bits as secure, while 64 or 32 bits were considered in-
secure. Static, zero or empty initialization vectors were considered insecure. For
asymmetric encryption, we considered the use of OAEP/PKCS1 for padding as se-
cure. For asymmetric encryption using RSA, we scored keys larger than or equal to
2048 bits as secure.

5.3.7 Limitations

As with any user study, our results should be interpreted within the context of our
limitations.

Choosing an online rather than an in-person laboratory study allowed us less
control over the study environment and the participants’ behavior. However, it al-
lowed us to recruit a diverse set of developers we would not have been able to obtain
for an in-person study.

Recruiting using conventional recruitment strategies, such as posts at university
campuses, on Craigslist, in software development forums or in particular compa-
nies would likely have limited the number and variety of our participants. As a
result, we limited ourselves to active GitHub users. We believe that this resulted in a
reasonably diverse sample, but of course GitHub users are not necessarily represen-
tative of developers more broadly, and in particular students and professionals who
are active on GitHub may not be representative of students and professionals over-
all. The small response rate compared to the large number of developers invited also
suggests a strong opt-in bias. Comparing the set of invited GitHub users to the valid
participants suggests that more active GitHub users were more likely to participate,
potentially widening this gap. As a result, our results may not generalize beyond
the GitHub sample. However, all the above limitations apply equally across differ-
ent properties of our participants, suggesting that comparisons between the groups
are valid.

Because we could not rely on a general recruitment service such as Amazon’s
Mechanical Turk, managing online payment to developers would have been very
challenging; further, we would not have been able to pay at an hourly rate commen-
surate with typical developer salaries. As a result, we did not offer our participants
compensation, instead asking them to generously donate their time for our research.

We took great care to email each potential participant only once, to provide an
option for an email address to opt out of receiving any future communication from
us, and to respond promptly to comments, questions, or complaints from potential
participants. Nonetheless, we did receive a small number of complaints from people
who were upset about receiving unsolicited email.4

3While participants could have manually sanitized their SQL queries, we did not find a single so-
lution that did that.

4Overall, we received 13 complaints.



5.4. Results 111

Some participants may not provide full effort or many answer haphazardly; this
is a particular risk of all online studies. Because we did not offer any compensa-
tion, we expect that few participants would be motivated to attempt to “cheat" the
study rather than simply dropping out if they were uninterested or did not have
time to participate fully. We screened all results and attempted to remove any obvi-
ously low-quality results (e.g., those where the participant wrote negative comments
in lieu of real code) before analysis, but cannot discriminate with perfect accuracy.
Further, our infrastructure based on Jupyter Notebooks allowed us to control, to
an extent, the environment used by participants; however, some participants might
have performed better had we allowed them to use the tools and environments they
typically prefer. However, these limitations are also expected to apply across all
participants.

5.4 Results

We were primarily interested in comparing the performances of different categories
of participants in terms of functional and secure solutions. Overall, we found that
students and professionals report differences in experience (as might be expected),
but we did not find significant differences between them in terms of solving our
tasks functionally or securely.

5.4.1 Statistical Testing

In the following subsections, we analyze our results using regression models as well
as non-parametric statistical testing. For non-regression tests, we primarily use the
Mann-Whitney-U test (MWU) to compare two groups with numeric outcomes, and
X2 tests of independence to compare categorical outcomes. When expected values
per field are too small, we use Fisher’s exact test instead of X2.

Here, we explain the regression models in more detail. The results we are in-
terested in have binary outcomes; therefore, we use logistic regression models to
analyze those results. the consideration whether an insecure task counts as danger-
ous, i.e. whether it is functional, insecure and the programmer thinks it is secure,
is also binary and therefore analyzed analogously. As we consider results on a per-
task basis, we use a mixed model with a random intercept; this accounts for multi-
ple measures per participant. For the regression analyses, we select among a set of
candidate models with respect to the Akaike Information Criterion (AIC) [43]. All
candidate models include which task is being considered, as well as the random
intercept, along with combinations of optional factors including years of Python ex-
perience, student and professional status, whether or not the participant reported
having a security background, and interaction effects among these various factors.
These factors are summarized in Table 5.1. For all regressions, we selected as final
the model with the lowest AIC.

The regression outcomes are reported in tables; each row measures change in the
dependent variable (functionality, security, or security perception) related to chang-
ing from the baseline value for a given factor to a different value for the same factor
(e.g., changing from the encryption task to the URL shortening task). The regres-
sions output odds ratios (O.R.) that report on change in likelihood of the targeted
outcome. By construction, O.R.=1 for baseline values. For example, Table 5.2 indi-
cates that the URL shortening task was 0.45× as likely to be functional as the baseline
string encryption task. In each row, we also report a 95% confidence interval (C.I.)



112 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

and a p-value; statistical significance is assumed for p≤.05, which we indicate with
an asterisk (*). For both regressions, we set the encryption task to be the baseline, as
it was used similarly in previous work [3].

5.4.2 Participants

We sent 23,661 email invitations in total. Of these, 3,890 (16.4%) bounced and an-
other 447 (1.9%) invitees requested to be removed from our list, a request we hon-
ored. 16 invitees tried to reach the study but failed due to technical problems in our
infrastructure, either because of a large-scale Amazon outage5 during collection or
because our AWS pool was exhausted during times of high demand.

A total of 825 people agreed to our consent form; 93 (11.3%) dropped out without
taking any action, we assume because the study seemed too time-consuming. The
remaining 732 participants clicked on the begin button after a short introduction; of
these, 440 (60.1%) completed at least one task and 360 of those (81.8%) proceeded
to the exit survey. A total of 315 participants completed all programming tasks and
the exit survey. We excluded eight for providing obviously invalid results. From
now on, unless otherwise specified, we report results for the remaining 307 valid
participants, who completed all tasks and the exit survey.

We classified these 307 participants into students and professionals according to
their self-reported data. If a participant reported that they work at a job that mainly
requires writing code, we classified them as a professional. If a participant reported
being an undergraduate or graduate student, we classified them as a student. It was
possible to be classified as either only a professional, only a student, both, or nei-
ther. The 307 valid participants includes 254 total professionals, 25 undergraduates,
and 49 graduate students. 53 participants were both students and professionals; 32
participants were neither students nor developers. Due to the small sample size, we
treated undergraduates and graduate students as one group for further analysis.

The 307 valid participants reported ages between 18 and 81 years (mean: 31.6;
sd: 7.7) [Student: 19-37, mean: 25.3, sd: 5.2 - Professional: 18-54, mean: 32.9, sd: 6.7],
and most of them reported being male (296 - Student: 21 - Professional 194). All but
one of our participants (306) had been programming in general for more than two
years and 277 (Student: 18, Professional: 186) had been programming in Python for
more than two years. The majority (288 - Student: 20, Professional: 188) said they
had no IT-security background nor had taken any security classes.

We compared students to non-students and professionals to non-professionals
for security background and years of Python experience. (We compared them sep-
arately because some participants are both students and professionals, or are nei-
ther.) In both cases, there was no difference in security background (due to small
cell counts, we used Fisher’s exact test; both with p ≈ 1). Professionals had signifi-
cantly more experience in Python than non-professionals, with a median 7 years of
experience compared to 5 (MWU, W = 5040, p = 0.004). Students reported signifi-
cantly less experience than non-students, with median 5 years compared to 7 years
(MWU, W = 10963, p < 0.001).

The people we invited represent a random sample of GitHub users — however,
our participants are a small, self-selected subset of those. We were able to retrieve
metadata for 192 participants; for the remainder, GitHub returned a 404 error, which
most likely means that the account was deleted or set to private after the commit

5Some participants were affected by this Amazon EC2 outage: https://www.recode.net/2017/3/
2/14792636/amazon-aws-internet-outage-cause-human-error-incorrect-command.

https://www.recode.net/2017/3/2/14792636/amazon-aws-internet-outage-cause-human-error-incorrect-command
https://www.recode.net/2017/3/2/14792636/amazon-aws-internet-outage-cause-human-error-incorrect-command


5.4. Results 113

FIGURE 5.2: Boxplots comparing our invited participants (a random
sample from GitHub) with those who provided valid participation.
The center line indicates the median; the boxes indicate the first and
third quartiles. The whiskers extend to ±1.5 times the interquartile

range. Outliers greater than 150 were truncated for space.

we crawled was pushed to GitHub. We compare these 192 participants to the 12117
invited participants for whom we were able to obtain GitHub metadata.

Figure 5.2 illustrates GitHub statistics for all groups (for more detail, see Ta-
ble C.1 in the Appendix). Our participants are slightly more active than the aver-
age GitHub user: They have a median of 3 public gists compared to 2 for invited
GitHub committers (MWU, W = 1045300, p = 0.01305); they have a median of 28
public repositories compared to 21 for invited participants (MWU, W = 1001200, p
< 0.001); they all follow a median of 3 committers (MWU, W = 1142100, p = 0.66);
and they are followed by a similar number of committers (10 for participants, 11 for
invited; MWU, W = 1146100, p = 0.73).

5.4.3 Functionality

We evaluated the functionality of the code our participants wrote while working on
the programming tasks. Figure 5.3 illustrates the distribution of functionally correct
solutions between tasks and across professional developers and university students.
Overall, professionals got 720 of 804 tasks correct (89.6%), while students got 71 of
84 correct (84.5%); participants who were both students and professionals got 181
of 212 (85.4%) correct, while participants who were neither succeeded in 114 of 128
(89.1%) cases.

Table 5.2 shows the results of the regression model for functionality. The final
model does not include developer or student status, security background, or any in-
teraction effects, suggesting that these factors are not important predictors of func-
tional success. Python experience, on the other hand, did produce a statistically sig-
nificant effect: each additional year of experience corresponds to on average a 10%
increase in likelihood of a correct solution. Comparing tasks, the password storage
task proved most difficult: participants were only 0.45× as likely to complete it as
to complete the baseline string encryption task. Results for the URL shortening task
were comparable to the baseline.



114 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

FIGURE 5.3: Functionality results per task, split by students vs. pro-
fessional developers.

To assess the fit of our regression model, we use Nagelkerke’s method [167] to
compute a pseudo-R2 value, somewhat analogous to the standard coefficient of de-
termination commonly used with ordinary linear regression. We find that, relative
to a null model that includes only the random (per-participant) effect, our model
produces a pseudo-R2 of 0.07; this is not a particularly strong fit, reflecting the fact
that there are potentially many unmeasured covariates, such as the specifics of a
participant’s prior programming experience and education.

5.4.4 Security

We evaluated the security of the code based on the codebook described in Sec-
tion 5.3.6. In this section, we talk about four tasks instead of three, as the credentials
storage task had two security relevant components that we account for individually:
secure password digest and SQL input validation (see Section 5.3.6 for details).

Figure 5.4 illustrates the distribution of secure solutions between tasks and across
professional developers vs. university students. Altogether, professionals got 493 of
720 tasks correct (68.5%), while students got 48 of 71 correct (67.6%); participants
who were both students and professionals got 119 of 181 (65.7%) correct, while par-
ticipants who were neither succeeded in 77 of 114 (67.5%) cases.

Table 5.3 lists the results of the final security regression model. This model had
Nagelkerke pseudo-R2 of 0.183, which is a fairly strong fit for an uncontrolled ex-
periment with potential unmeasured factors.

As with the functionality results, none of developer status, student status, se-
curity background, nor any interactions, appear in the final model. This again sug-
gests that these factors do not meaningfully predict security success. As before, more
Python experience is associated with more success: this time, each year of additional
experience adds about 5% to the likelihood of a secure solution. Comparing tasks,
string encryption proved significantly more difficult to complete securely than any
other task. Password storage was associated with about 2× higher likelihood of
success. Both these tasks were significantly harder than SQL input validation and
URL shortening. (The non-overlapping confidence intervals indicate significant dif-
ference from password storage as well as from the baseline string encryption task).
SQL input validation and URL shortening were each about 8× easier to secure than
string encryption.



5.4. Results 115

Factor Description Baseline

Required
Task The performed tasks String encryption
Participant Random effect accounting for repeated

measures
n/a

Optional
Python experience Python programming experience in years,

self-reported.
n/a

Security background True or false, self-reported. False
Developer True or false, self-reported. False
Student True or false, self-reported. False
Python experience × task False:String encryption
Python experience × developer False:False
Python experience × student False:False
Developer × task False:String encryption
Student × task False:String encryption

TABLE 5.1: Factors used in regression models. Categorical factors are
individually compared to the baseline. Final models were selected by
minimum AIC; candidates were defined using all possible combina-
tions of optional factors, with the required factors included in every

candidate.

Factor O.R. C.I. p-value

URL shortener 0.45 [0.22, 0.89] 0.022*
Credentials storage 0.22 [0.11, 0.42] <0.001*
Python experience 1.10 [1.02, 1.19] 0.014*

TABLE 5.2: Results of the final logistic regression model examining
functionality of tasks for participants. Odds ratios (O.R.) indicate rel-
ative likelihood of succeeding. Statistically significant factors indi-

cated with *. See Table 5.1 for further details.

FIGURE 5.4: Security results per task, split by students vs. profes-
sional developers.



116 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

Factor O.R. C.I. p-value

URL shortener 8.03 [5.14, 12.53] <0.001*
Password storage 2.34 [1.6, 3.43] <0.001*
SQL input 7.69 [4.89, 12.09] <0.001*
Python experience 1.05 [1.01, 1.1] 0.020*

TABLE 5.3: Results of the final logistic regression model examining
security of tasks for participants. Odds ratios (O.R.) indicate relative
likelihood of succeeding. Statistically significant factors indicated

with *. See Table 5.1 for further details.

Category Encryption

Passw
ord

Storage

URL shortener

SQL input

Total

Dangerous (Perception Secure & Scoring Insecure) 41 (13.4%) 57 (18.6%) 17 (5.5%) 39 (12.7%) 154
Harmless Misperception (Perception Insecure &
Scoring Secure)

49 (16.0%) 31 (10.1%) 156 (50.8%) 64 (20.8%) 300

True Positives (Perception Secure & Scoring Se-
cure)

82 (26.7%) 131 (42.7%) 75 (24.4%) 149 (48.5%) 437

True Negatives (Perception Insecure & Scoring In-
secure)

135 (44.0%) 88 (28.7%) 59 (19.2%) 55 (17.9%) 337

TABLE 5.4: Detailed distribution of perceived and actual security
within functional solutions, broken out per task. Percentages are as a
function of each task; for example, 13.4% of all encryption solutions

were categorized as dangerous.

Security Perception

We asked participants, for each task, whether they believed their result was secure.
In this section, we analyze the incidence of what we call dangerous solutions: so-
lutions that are functionally correct and where the participant believes the result is
secure, but our analysis indicates that it is not. In a sense, this represents a worst-case
scenario, where a developer may confidently release insecure code unwittingly.

Table 5.4 details how perceptions of security connect to evaluated security. Across
tasks, 154 of 1228 (12.5%) solutions were classified as dangerous; dangerous solu-
tions were least common of the four classes, but this rate is still higher than we
might hope.

Table 5.5 reports on a regression model with whether or not a solution is clas-
sified as dangerous as the binary outcome. The final model contains no optional
factors at all. This indicates that none of Python experience, security background,
professional status, or student status is a good predictor of a dangerous outcome.
Indeed, the Nagelkerke pseudo-R2 for this model is only 0.049, which reflects that
we did not measure important additional factors.

Our regression model suggests that string encryption, which was most difficult
to secure, was (unsurprisingly) also associated with significantly higher likelihood
of dangerous solutions than the SQL input and URL shortening tasks. Encryption,
however, was comparable to password digests, which also have a cryptographic
component. In a prior experiment, we found that about 20% of cryptographic tasks
fell into this dangerous category [4].



5.4. Results 117

Factor O.R. C.I. p.value

URL shortener 0.25 [0.12, 0.52] <0.001*
Password storage 1.16 [0.7, 1.93] 0.565
SQL input 0.53 [0.29, 0.97] 0.038*

TABLE 5.5: Results of the final logistic regression model examining
perceived security and actual security. Odds ratios (O.R.) indicate
relative likelihood of being insecure. Statistically significant factors

indicated with *. See Table 5.1 for further details.

Investigating Security Errors

We also examined patterns in the types of security errors made by our participants
across tasks. Note that these patterns reflect only functional but insecure solutions.
In all cases, the same solution may have more than one security error, so percentages
generally total to more than 100%.

Plain password MD5 hash SHA1 hash No salt Static salt Raw SQL Not stored

Professionals 24 (14.0%) 3 (1.7%) 4 (2.3%) 40 (23.3%) 15 (8.7%) 29 (16.9%) 1 (0.6%)
Student 4 (25.0%) 0 (0.0%) 0 (0.0%) 6 (37.5%) 1 (6.2%) 3 (18.8%) 0 (0.0%)
Both 8 (19.5%) 2 (4.9%) 2 (4.9%) 14 (34.1%) 2 (4.9%) 8 (19.5%) 0 (0.0%)
Neither 9 (31.0%) 2 (6.9%) 0 (0.0%) 14 (48.3%) 1 (3.4%) 4 (13.8%) 0 (0.0%)
Total 45 (17.4%) 7 (2.7%) 6 (2.3%) 74 (28.7%) 19 (7.4%) 44 (17.1%) 1 (0.4%)

TABLE 5.6: Types of security errors found in functional solutions (and
their percentages) by professional, student, both or neither for the
password storage task. See Subsection 5.3.5 for task details and Sub-

section 5.3.6 for codebook details.

URL Shortening First, we consider the URL shortening task. The most common
security error (11 cases, 23.0%) was participants who implemented their URL short-
ening feature using an algorithm that allows an attacker to easily predict the long
URL for a given short URL. An example is the use of Base 64 to derive a “short”
URL from a given long URL. Although we did not consider keyspace as a security
parameter, we briefly review the keyspace generated by participants with functional
solutions to this task. 104 participants (37.4%) selected a shortening approach with
an unlimited keyspace. The remaining 174 solutions had an average keyspace of
74.1 bits (median 48, standard deviation 6.1). The average for professionals (82.0
bits, median 48) was higher than for students (62.5 bits, median 48), participants
who were both students and professionals (58.5 bits, median 36) and participants
who were neither (60.6 bits, median 36).

Password Storage Next, we consider insecure password storage. Here the most
common error was hashing the password without using a proper salt, leaving the
stored password vulnerable to rainbow-table attacks (74 cases, 77.1%). The second
most common error was storing the plain password (45 cases, 46.9%). A total of 19
(19.8%) participants used a static salt instead of a random salt. Seven (7.3%) par-
ticipants used MD5, while six (6.3%) used SHA-1 family hashes. Instead of using a
one way hash function, four (4.2%) used encryption to secure the password. This is
highly discouraged, since an attacker who can gain access to the decryption key is
able to recover plain text passwords. These results are detailed in Table 5.6.



118 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

Library Used Weak Algo Weak Mode Static IV

Professionals
No library 44 (22.8%) 42 (21.8%) 0 (0.0%) 0 (0.0%)
cryptography.io 71 (36.8%) 0 (0.0%) 0 (0.0%) 10 (5.2%)
pyCrypto 65 (33.7%) 5 (2.6%) 9 (4.7%) 23 (11.9%)
PyNaCl 10 (5.2%) 0 (0.0%) 0 (0.0%) 1 (0.5%)
Other 3 (1.6%) 3 (1.6%) 0 (0.0%) 0 (0.0%)

Student
No library 8 (42.1%) 8 (42.1%) 0 (0.0%) 0 (0.0%)
cryptography.io 5 (26.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
pyCrypto 6 (31.6%) 1 (5.3%) 0 (0.0%) 1 (5.3%)

Both
No library 17 (33.3%) 17 (33.3%) 0 (0.0%) 0 (0.0%)
cryptography.io 16 (31.4%) 0 (0.0%) 0 (0.0%) 3 (5.9%)
pyCrypto 15 (29.4%) 1 (2.0%) 2 (3.9%) 5 (9.8%)
PyNaCl 1 (2.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
pySodium 1 (2.0%) 1 (2.0%) 0 (0.0%) 0 (0.0%)
Other 1 (2.0%) 1 (2.0%) 0 (0.0%) 0 (0.0%)

Neither
No library 6 (20.7%) 6 (20.7%) 0 (0.0%) 0 (0.0%)
cryptography.io 11 (37.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
pyCrypto 7 (24.1%) 0 (0.0%) 0 (0.0%) 2 (6.9%)
PyNaCl 4 (13.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Other 1 (3.4%) 1 (3.4%) 0 (0.0%) 0 (0.0%)

Total
No library 75 (25.7%) 73 (25.0%) 0 (0.0%) 0 (0.0%)
cryptography.io 103 (35.3%) 0 (0.0%) 0 (0.0%) 13 (4.5%)
pyCrypto 93 (31.8%) 7 (2.4%) 11 (3.8%) 31 (10.6%)
PyNaCl 15 (5.1%) 0 (0.0%) 0 (0.0%) 1 (0.3%)
pySodium 1 (0.3%) 1 (0.3%) 0 (0.0%) 0 (0.0%)
Other 5 (1.7%) 5 (1.7%) 0 (0.0%) 0 (0.0%)

TABLE 5.7: Types of security errors found in functional solutions (and
their percentages) by professional, student, both or neither for the
string encryption task. Participant categories are subdivided by the
cryptographic library they opted to use. See Subsection 5.3.5 for task

details and Subsection 5.3.6 for codebook details.

SQL Query For the SQL query task, 44 (97.8%) of the participants used raw SQL
queries instead of prepared statements, leaving their implementation vulnerable to
SQL injection attacks. Interestingly, no participant tried to implement their own SQL
query sanitization solution.

Encryption For the string encryption task, one important decision participants
made was the choice of cryptographic library (cf. Table C.2 for the libraries that
came pre-installed). 118 (40.4% of all functional solutions) of the participants used
a cryptographic library that was designed with usability in mind, which reduces
the necessity to select (and potential make an error with) parameters like algorithm,
mode of operation, key size, initialization vector, and padding scheme (cryptog-
raphy.io: 103, PyNacl: 15, PySodium: 1). 93 participants (31.8% of all functional
solutions) chose a more conventional library (PyCrypto: 93), and 73 (25.0% of all
functional solutions) used no third-party library at all.

Overall, 15 (12.7%) of participants who applied a usable library made a security
error, while 49 (52.7%) of the participants who used a conventional library made a
security error. All participants but one who used usable libraries used secure algo-
rithms, modes of operation, and key sizes; the other 14 who made an error used a



5.5. Discussion 119

1 def encrypt ( p la inText ) :
2 return ’ ’ . j o i n ( [ chr ( ord ( c ) + n % 5) for n , c in enumerate ( p la inText ) ] )
3

4 def decrypt ( c ipherText ) :
5 return ’ ’ . j o i n ( [ chr ( ord ( c ) − n % 5) for n , c in enumerate ( c ipherText )

] )
6

7 str ingToEncrypt = " ThisIsAnExample "
8 encryptedStr ing = encrypt ( str ingToEncrypt )
9 print encryptedStr ing

10 decryptedStr ing = decrypt ( encryptedStr ing )
11 print decryptedStr ing

LISTING 5.1: Substitution cipher solution as written by a professional
developer participant.

static initialization vector. Users of conventional cryptographic libraries mostly also
used a static initialization vector (31 cases, 63.3% of error cases), used an insecure
mode of operation (11, 22.4% of error cases), or chose an insecure algorithm (7, 14.3%
of error cases). These results indicate that usable libraries do reduce errors, and they
are in line with the errors we identified in a prior experiment [3] (Chapter 4). These
results are detailed in Table 5.7.

Among participants who did not apply cryptography effectively, 20 used Base64
to encode their plaintext instead of encrypting it, and 43 implemented a very basic
substitution cipher like Rot13. An example is shown in Listing 5.1.

5.5 Discussion

In our online quasi-experiment with 307 GitHub participants, we measured func-
tionality and security outcomes across Python programming tasks. We came into
the experiment hypothesizing that whether or not a participant wrote code profes-
sionally or as a student would impact at least the functional correctness of their code.
However, we found that neither student nor professional status (self-reported) was
a significant factor for functionality, security, or security perception. We were also
surprised to learn that self-reported security background was equally unimportant.
Note that only small numbers of participants reported that they were exclusively
students or that they had a security background, which may affect these results.

We did, however, find a significant effect for Python experience: Each year of
experience corresponded to 10% more likelihood of getting a functional result and a
5% better chance of getting a secure result. Differences in experience across students
and professionals were significant: Students reported a median of 5 years of experi-
ence, compared to 7 for professionals. On the other hand, experience did not appear
to matter for security perception. This accords well with previous results within the
empirical software engineering community (cf. Section 5.4), which suggest that stu-
dent and professional developer participants’ expertise should be similar to produce
similar results. While expertise with Python in our study differs significantly be-
tween students and professional developers, their security and privacy expertise is
similar (in both cases quite low). At least within GitHub then, it seems that students
and professionals can be equally useful for studying usable security and privacy
problems, particularly if overall experience is controlled for.

In addition to the small sample size, we speculate that the very similar results
across students and professional developers can be accounted for in part because



120 Chapter 5. Exploring a GitHub Sample for Security Developer Studies

writing security-related code is not something the average software developer deals
with on a regular basis, nor is security education a strong focus at many universities
teaching computer science. We hypothesize, therefore, that overall the result (that
experience matters somewhat, but professional status on its own does not) would
continue to hold for student and professional populations recruited more tradition-
ally, at local universities and via professional networks. We suspect, however, that
typically local university students may have less experience than students recruited
from GitHub. Further research is needed to validate these hypotheses.

We found the recruitment strategy of emailing GitHub developers to be conve-
nient in many ways: We were able to recruit many experienced professionals quickly
and at a low cost. In addition, many participants expressed to us how much they en-
joyed the challenge of our tasks and the opportunity to contribute to our research.
However, it does have important drawbacks: we received complaints about unso-
licited email from 13 invited GitHub committers and were generally subject to a
small opt-in rate. We also found that our participants were slightly more active and
therefore not quite representative of the GitHub population; representativeness for
professionals (or students) in general is considerably less likely. Overall, the practice
of sending unsolicited emails was not ideal, and is unlikely to be sustainable over
many future studies. Instead, we plan in the future to develop a GitHub application
that would allow developers who are interested in contributing to research to opt in
to study recruitment requests, which would benefit both these developers and the
research community.

This chapter addressed the methodological challenge of recruiting developers to partici-
pate in programming studies. While Chapter 2 identified challenged for developers through
a systematic review, problems with resources can be found in developer studies. The next
chapter collects information about online advice sources on secure development that we could
review independently from recruiting developers into our research.



121

Chapter 6

A Survey of Security Advice for
Software Developers

Disclaimer: The contents of this chapter were previously published as part of the conference
paper “Developers need support, too: A survey of security advice for software developers”,
presented at the 2017 IEEE Cybersecurity Development Conference. This research was con-
ducted as a team with my co-authors Christian Stransky, Dominik Wermke, Charles Weir,
Michelle L. Mazurek, and Sascha Fahl; this chapter therefore uses the academic “we”. Chris-
tian Stransky, Dominik Wermke, Michelle L. Mazurek, Sascha Fahl and I designed the study.
Christian Stransky, Dominik Wermke and Charles Weir conducted the coding. All authors
evaluated and co-wrote the paper. The resources gathered and evaluated in the study reflect
the landscape in 2017.

6.1 Motivation

The last two decades have seen explosive growth in the creation and usage of soft-
ware, as we now use computers and digital devices to manage almost every aspect
of our lives: to communicate, to plan, to manage our finances, to do our shopping,
and to remember all our security information. Software holds sensitive information
about us, controls our financial transactions, enables our personal communication
and social networking, and holds the intimate details of our lives. This growth has
led to a commensurate rise in the number of people working as software develop-
ers. In 1997, the Bureau of Labor Statistics estimated just over 500,000 computer
programmers in the United States; by 2016, this category had been revised into four
sub-categories and more than tripled, to 1.6 million employees [42].

The increasing ubiquity of software has also led to the increasing ubiquity of
security bugs and associated attacks [203]. An important question, therefore, is how
to help the increasing population of developers adopt effective security practices
and write more secure code.1

Balebako et al. surveyed and interviewed more than 200 app developers and con-
cluded most approached security issues using web search, or by consulting peers [23].
A survey by many of the current authors concluded the same, and also determined
experimentally the surprising result that programmers using digital books achieved
better security than those using web search [4] (Chapter 3). Nadi et al. found that
Java developers perceived cryptography APIs as too low-level and preferred more
task-based solutions in documentations [166]. Further work from several of the cur-
rent authors concluded that documentation is critical to security outcomes when
developers use unfamiliar cryptography APIs [3] (Chapter 4).

1For simplicity, throughout this paper we refer to security and privacy as security.



122 Chapter 6. A Survey of Security Advice for Software Developers

When developers search the internet for guidance, some of the most popular
results will often point to Stack Overflow.2 Oftentimes, the developer’s search will
lead to a code snippet on Stack Overflow, and the developer can be tempted to copy
and paste the snippet into their own code. This behaviour has been shown to often
lead to operational but insecure code, widespread across hundreds of thousands of
apps [3, 4, 81, 85, 95, 281]. As Stack Overflow’s effect on code security has been
investigated in depth, we focus our analysis elsewhere. Similarly, code completion
systems found in IDEs often are not evaluated for the evolving context found in
real-world situations [192].

Beyond crowdsourcing application-specific problems and documenting particu-
lar APIs, the web also contains many general resources about security and secure
programming. While we would hope that these resources are helpful, to our knowl-
edge few if any have been empirically tested for effectiveness. Moreover, the con-
tinuing prevalence of security bugs suggests that this guidance ecosystem is fun-
damentally broken: either effective guidance is not available (if it is even possi-
ble), or it is not reaching the developers who need it. We speculate that this web-
based guidance is particularly important for developers working outside of large
mainstream corporations, who do not have access to professional security teams or
well-developed toolchains and frameworks supporting secure programming (e.g.,
Google’s Tricorder [214]).

In this paper, we take a first step toward understanding and improving this guid-
ance ecosystem. We have identified and analyzed 19 guidance websites, to under-
stand what currently available guidance says; what it does and does not cover; and
how it is structured. We found that, overall, this general-purpose guidance does not
often provide concrete examples, tutorials, or exercises to help developers practice
the concepts being described. We also found that while some critical topics like se-
cure networking, user input validation, and software testing are well represented,
other important concepts like program analysis tools, data minimization, and so-
cial engineering are rarely mentioned. These results provide a foundation for future
research to fill gaps as well as to empirically evaluate existing guidance.

6.2 Selecting Online Resources

We collected online developer resources relevant to security by searching for varia-
tions of “developer,” “security” and “guide” on various online search engines. This
gives us a collection of links to online resources, some of them collections of other
online resources, which we exclude from our analysis in favour of directly investi-
gating the linked resources themselves.

We found 19 sites designed to help developers with security related questions.
We excluded forum posts and Q&A platforms such as Stack Overflow, and included
guides such as blog posts from authoritative sources and official guidelines from
software providers and non-profit organizations such as OWASP.3

We focused on those types of guidelines since they carry authority for developers
who feel the need to look up security-related questions and concepts. The guidelines
we found covered mobile application security (Android, iOS and Windows Mobile),
web security, and general secure programming. We focused on these three areas
since they cover the vast majority of today’s software development; additionally,

2cf. https://stackoverflow.com/
3cf. https://www.owasp.org



6.3. Evaluating Resources 123

ID Title Organization Description 

1. Safeguard your code: 17 security tips 
for developers 

InfoWorld, an online magazine for IT 
and business professionals 

Article dated 2013 

2. Best Practices for Security & Privacy Google Online Android training materials from Google. 

3. Secure Coding Practice Guidelines UC Berkeley Guidance on ways to satisfy application software security 
requirements, mainly in the form of links to other 
resources. 

4. Start with Security: A Guide for 
Business 

US Government Federal Trade 
Commission 

Paper with guidelines on corporate IS security 

5. Android Secure Coding Standard Software Engineering Institute, CMU Wiki with extensive guidelines. 

6. Mobile Application Security: 15 Best 
Practices for App Developers 

Checkmarx, a development tool 
vendor 

Short blog article 

7. Top 10 Secure Coding Practices Software Engineering Institute, CMU Short summary of 10 general secure coding principles 

8. Secure Coding Guide Apple Extensive online handbook covering technical aspects of 
iOS security 

9. Secure Mobile Development Guide NowSecure, company specializing in 
app security testing and support 

Online handbook covering many aspects of mobile app 
security. 

10. Secure Coding Practices Quick 
Reference Guide Project 

OWASP, a not-for-profit dedicated to 
application security 

Checklist of around 100 short bullet-point entries around 
general coding 

11. Secure Coding Cheat Sheet OWASP  More detailed handbook describing principles of general 
coding. 

12. Security Guidance for Applications Microsoft Handbook with security guidance for web applications 
(outdated) 

13. Security Checklist for Software 
Developers 

CERN, a research organization Site with general guidelines and tips for specific languages. 

14. Website security Mozilla Extensive training article on web application security. 

15. Web Fundamentals: Security and 
Identity 

Google Several tips on web app security, with emphasis on Google 
tools. 

16. Developer How To Guide SANS, a not-for-profit specializing in 
software security training 

Article on how to avoid three common web security 
vulnerabilities. 

17. 8 Tips for Better Mobile Application 
Security 

UpWork, a developer recruitment site Blog article  

18. TOP 25 Most Dangerous Software 
Errors 

SANS with MITRE, a non-profit 
research company 

Handbook, exploring types of security errors  

19. Intro to secure Windows app 
development 

Microsoft Extensive handbook to secure programming in the MS 
Windows environment. 

FIGURE 6.1: The 19 security guides that we identified and analyzed.

mobile and web security issues have received a lot of attention from the security
and privacy research community in the past.

Table 6.1 shows the resources we analyzed. We use the term ‘handbook’ to de-
scribe structured websites containing relatively large amounts of information; ‘arti-
cle’ to describe smaller sites, mainly arranged linearly.

6.3 Evaluating Resources

We evaluated the 19 guides using a content-analysis-based manual coding
approach [140]. We first defined a code book that listed desirable features that might
be present in a secure-development guide. These features are listed as the heading
to Table 6.4. We identified several main categories:

6.3.1 Source

The source category describes the author of a guide: we distinguish between official
guidelines written by a framework/platform company, e.g., Google for Android or
Apple for iOS, and a third-party organization (for-profit or non-profit, e.g., OWASP)
providing a guide as a community service.

6.3.2 Content Organization

This category distinguishes different features that describe the content organization
of a guide. We distinguish two different types of guides: brief, single-section articles
and more detailed, multi-section handbooks. We noted whether a guide contained



124 Chapter 6. A Survey of Security Advice for Software Developers

a tutorial, defined as a step-by-step walkthrough of a specific real-world example,
or any exercises to help developers become familiar with a certain security mech-
anism in a risk-free way. Whenever we found code examples, we checked if they
were ready to use to solve certain small tasks, e.g., encrypting a file or establishing
a secure HTTPS connection. We thought this to be important as ready-to-use code
snippets can be copied directly into the programmer’s source code without major
changes. We distinguish these ready-to-use snippets from examples that present or
describe specific API calls one at a time rather than in usage context. In addition, we
checked whether a guide contained references to code repositories such as GitHub
or BitBucket. We noted when a guide referenced external articles, blog or Wikipedia
posts, or other external information sources. We noted the last time that the guide
was updated as a measure of whether it was outdated or maintained. Finally, we an-
alyzed how easy it was to find specific information in a guide: this included check-
ing whether a guide had multiple hierarchical sections to avoid extensive scrolling,
whether multiple levels of information granularity were provided (e.g., for novices,
experienced programmers, and experts) and whether the guide was easily search-
able.

6.3.3 Covered Topics

We next analyzed the different topics that were covered in the guides we examined.
We started from an initial list of topics we thought were important, and added others
as we encountered them in different guides. The final list of topics included:

• Obfuscation: Motivation for code obfuscation obfuscation techniques and tools.

• Cryptography: Encrypted data storage, secure key generation, etc.

• Secure networking: TLS/SSL, HTTPS, etc.

• Storage management: Backups, secure deletion, and proper management of
shared storage.

• Privileges: Responsible use of privileges, principle of least privilege.

• User input: Proper validation of user input to avoid, e.g., SQL injection, cross-
site scripting, and memory errors.

• Use of tools: Using of automated security-test tools including linters and other
program-analysis techniques.

• Mobile security: Mobile-specific topics including privacy implications of mo-
bile device tracking and geolocation.

• Library use: Using trusted libraries to avoid reinventing the security wheel,
validating that selected libraries do not introduce malicious behavior.

• Testing: Measures for examining finished or deployed systems, including code
review, fuzzing and penetration testing.

• Data minimization: Limiting the collection, storage, and transmission of per-
sonal information to protect users’ privacy.

• Regulations: Security and privacy laws and regulations in various jurisdic-
tions.



6.4. Results 125

Content Organization Covered Topics

Resource ID So
ur

ce
3

Last Update1 Ty
pe

2

R
ea

dy
to

us
e

co
de

A
PI

ex
am

pl
es

Ex
er

ci
se

Tu
to

ri
al

s
R

ep
os

it
or

y
C

it
at

io
ns

La
ye

re
d

In
fo

rm
at

io
n

Se
ar

ch
ab

le
Se

ct
io

ne
d

O
bf

us
ca

ti
on

C
ry

pt
og

ra
ph

y
Se

cu
re

N
et

w
or

ki
ng

St
or

ag
e

M
an

ag
em

en
t

Pr
iv

ile
ge

s
U

se
r

In
pu

t
U

se
of

To
ol

s
M

ob
ile

Se
cu

ri
ty

Li
br

ar
y

U
se

Te
st

in
g

D
at

a
M

in
im

iz
at

io
n

R
eg

ul
at

io
ns

Th
re

at
M

od
el

lin
g

Lo
gg

in
g

Pa
ss

w
or

d
A

dv
ic

e
So

ci
al

En
gi

ne
er

in
g

ID 1 (InfoWorld) t 2013-02-04 a
ID 2 (Google Android) v ? h
ID 3 (UC Berkeley) o ? a
ID 4 (US FTC) o 2015-06 a
ID 5 (SEI, CMU) o 2016-07-11 h
ID 6 (Checkmarx) t 2015-08-19 a
ID 7 (SEI, CMU, Top 10) o 2011-03-01 a
ID 8 (Apple) v 2016-09-13 h
ID 9 (NowSecure) t 2017-03-05 h
ID 10 (OWASP, reference) n 2010-08-11 h
ID 11 (OWASP, cheat sheet) n 2017-04-18 h
ID 12 (Microsoft) v 2003-07-01 h
ID 13 (CERN) o ? a
ID 14 (Mozilla) n 2017-05-24 h
ID 15 (Google) v 2017-05-22 h
ID 16 (SANS) n ? h
ID 17 (UpWork) t 2017-01-15 a
ID 18 (SANS, MITRE) n 2011-07-27 h
ID 19 (Microsoft) v 2017-02-08 h

1 ?: date not specified 2 a: short article, h: detailed handbook
3 t: third-party, v: vendor, o: organization, n: non-profit

TABLE 6.1: Features of the guides, as determined by content analysis. A shaded circle ( ) indicates a
guide exhibits this feature; an empty circle ( ) indicates it does not.

• Threat modeling: Design-level analysis of security requirements.

• Logging: Keeping records to enable post-hoc auditing.

• Password advice: Guidelines for the secure creation and storage of passwords
(e.g., salting and hashing stored passwords).

• Social engineering: Tricking people into making security errors, such as giv-
ing away secret data improperly.

6.4 Results

Table 6.4 provides an overview of our results.
Sources and Organization. We found that the majority (>55%) of the resources

we analyzed were written by companies. All of these companies are in some way
involved in secure software development or benefit from it. In 16% of cases, the
guides were published as part of the official developer documentation written by
the vendor of a development framework such as Apple for iOS, Google for Android,
and Microsoft for Windows Mobile. Interestingly, about a third of all guides were
written by non-profit organizations like OWASP.

Most of the guides for which we could identify update times (10 of 15) were last
updated within the last two years; one (Microsoft web-application guidance, ID 12)



126 Chapter 6. A Survey of Security Advice for Software Developers

could be considered entirely obsolete, as it dated from 2003. These findings suggest
that when developers search for secure-programming resources, they will frequently
but not always encounter up-to-date ones.

Overall, these resources did not tend to contain concrete, low-level guidance.
We found only five guides (IDs 5, 12, 15, 16, 19) that contained ready-to-use code
snippets; most of these offered help on secure network connections using TLS. An
additional three guides included API examples that do not rise to the level of snip-
pets: Google’s Android security and privacy guide (ID 2) exhibits the Android cryp-
tography API, Apple’s Secure Coding Guide (ID 8) gives examples for platform-
specific security mechanisms, and NowSecure (ID 9) contains negative examples
that demonstrate how not to use their SSL API. Interestingly, all these API examples
come from mobile application guides.

Sadly, none of the guidelines we checked contained exercises that would have
helped developers to learn security APIs or frameworks. Similarly, only the Mi-
crosoft Windows handbook (ID 19) contained a tutorial introducing developers to
secure web programming techniques or referenced an external GitHub code reposi-
tory with example code demonstrating specific security features. Only six guides ref-
erenced external information sources; a lack of such citations potentially undermines
a reader’s confidence in the guide’s accuracy and inhibits further reading and learn-
ing. Overall, these results provide evidence of an important guidance gap noted in
our prior work [4]: official documents and corporate guidelines do not provide the
same level of detail and focus on utility as, for example, Q&A sites.

On the positive side, we were heartened to observe that most guides provide lay-
ers of advice that can target readers with different skill levels and are easily search-
able.

Coverage of Topics. We found significant variation in coverage across topics.
Some important topics are well covered: cryptography, secure networking, privi-
lege management, and user input validation were all covered in at least 14 guides,
and testing was covered in 10. On the other hand, there are several potentially crit-
ical topics with little to no coverage. Social engineering, which is a source of many
security horror stories from phishing to recklessness with USB drives, is covered
by only four guides. Logging, which is critical for being able to audit a system
and understand any potential problems, is covered by only seven. Despite years of
intensive research and commercial development creating and improving program-
analysis tools, these tools are also only mentioned in seven guides. Another topic
mentioned in only seven guides is data minimization, a critical modern concept in a
world of exploding data mining. Some of the guides we analyzed may be too old to
recognize the critical importance of data minimization; nonetheless it is concerning
that developers searching for security help may not encounter it. Using and validat-
ing trusted libraries is an important and well-regarded practice, but it is mentioned
by only six guides, perhaps because it is assumed to be implied. Finally, we note
that laws and regulations are mentioned in only two guides. One might assume this
is an issue for lawyers and executives rather than for software developers, but in-
dependent developers and small companies (the kind of developers most likely to
be searching for guidance on the internet rather than talking to a company’s dedi-
cated security team) may not have separate compliance departments either. Further,
developers who have some knowledge of legal requirements are less likely to make
accidental errors that violate regulations.

We speculate that these coverage limitations arise from the nature of the authors
creating these guides. The coverage suggests a predominantly traditional approach
to security, based around technical support for developers. Looking at the results,



6.5. Discussion 127

we may conclude that in future better results may come from having a cross disci-
pline team create the documentation, with representation from test, support, prod-
uct management, and legal experts.

6.5 Discussion

Our brief survey of general security guidance available on the web provides some in-
sight into what developers—especially those without formal security training
and/or without corporate security support—may encounter when they search for
information about how to write secure code. They will find accessible information,
appropriately layered and searchable, with good coverage of cryptography, secure
networking and the handling of user input and privileges. However there are sig-
nificant areas of concern: some readily available advice is outdated; most of this
general-purpose guidance does not provide concrete examples or exercises; and
some critical topics like program analysis tools, logging/auditing, and data mini-
mization are not well represented. To remedy this would require a rather different
team of authors from traditional security writers: pedagogical experts to generate
exercises and tutorials, and human-centred security experts and legal experts to deal
with social engineering and regulations.

Our prior work found that “official" guidance (from Google and from books)
could promote stronger security outcomes than community-based guidance from
Stack Overflow [4] (Chapter 3). The results of this survey, however, underscore an-
other conclusion from that work: these “official" documents may not necessarily
provide the content and format that developers want or need in practice.

In this work, we take the preliminary step of identifying and classifying a mul-
titude of information sources. Further work is needed to assess their quality, and to
understand how developers use these guides as well as how to increase their effec-
tiveness. Therefore, the question of how best to organize online security help, such
as guides, crowdsourcing sites, aggregators that combine various sources of secu-
rity advice, as well as how to ensure that the quality of such advice remains high,
remains open.

Thus, our results suggest two paths for understanding and improving the security-
guidance ecosystem. First, we must examine whether and which of the gaps we
have identified here—both in content and in format—represent serious omissions,
and which are filled by other resources outside the scope of this paper. Second, we
must continue to empirically evaluate the existing guidance, to understand which
approaches do and don’t prove to be effective and why. By understanding what
current guidance is missing, where it succeeds, and where it fails, we can hope to
provide a framework for developing better guidance, both now and as secure pro-
gramming continues to evolve.





129

Chapter 7

Conclusions and Future Work

This concluding part of the dissertation builds on, and sometimes uses verbatim, conclusions
and future work ideas from the previously published papers that contributed to this disserta-
tion, and for better coherence, are also contained in Chapters 1, 2, 3, 4, 5, and 6. As detailed
in the individual chapters, this research was collaborative in nature and therefore uses the
academic “we”.

Throughout this dissertation, we have demonstrated that human factors are a
major factor in secure software development.

First, we systematized research on appified ecosystems, finding that, like many
new technologies, Android is a story of both victory and defeat. New security mech-
anisms were introduced without a clear understanding of how these applications
would be developed and used, and well-established security mechanisms were re-
used to meet the expected security needs of the new general purpose computing
platform. Some of the these techniques were a great success, while others failed al-
most entirely. Some aspects worked out beautifully, e.g., centralizing software distri-
bution helps to tackle critical security issues and makes fighting piracy and malware
easier. Other approaches had initial difficulties, but are now more or less on track
after research has helped to identify and bridge them. Examples comprise easier-
to-use APIs that have started to replace hard-to-use but well-intended security APIs
over the last few years, as well as the concept of Webification that has enabled more
developers to produce their own apps. However, some approaches should be re-
thought from the beginning and arguably abandoned for designs of future OSes:
Permission dialogs for end users should be removed entirely, since they failed for
the same reasons warning messages have failed since the dawn of computing.

Second, we followed this research up with empirical research on how decisions
made by API developers, namely on documentation, can impact security outcomes.
We started out with anecdotal evidence that suggested that copying and pasting
code snippets from the internet can directly lead to insecure code outcomes. In
Chapter 3, we conducted the first systematic investigation of this theory, by em-
pirically investigating the question of how programming resources affect Android
developers’ security- and privacy-relevant decisions from several different angles,
including an online survey that helped us scope resource use and realistic program-
ming problems, a controlled programming experiment with isolated conditions for
resource use and a control condition that represents real-world free resource use, a
manual analysis of relevant Stack Overflow threads, and a large scale analysis of
Android apps. Our results suggest that developers use both peer-created resources
that are not moderated for security, like Stack Overflow, and official (moderated for
security) resources to help solve problems while programming. However, we found
that, compared to official documentation, Stack Overflow significantly contributes



130 Chapter 7. Conclusions and Future Work

to achieving functional code; however, using Stack Overflow also contributes to in-
secure applications. Compared to this, while often approached, official API docu-
mentation is less accessible, and less often successful in helping developers achieve
functional code, which contributes to the prominence of insecure resource use. We
do not think that it’s likely for Android developers to give up using resources that
help them quickly address their immediate problems in favor of secure outcomes.
Therefore, we think it is critical to develop documentation and resources that com-
bine the usefulness of forums like Stack Overflow with the security awareness of
books or official API documents. One approach might involve rewriting API doc-
uments to be more usable, e.g. by adding secure and functional code examples,
and making them search-able for common errors. Another might be to develop a
separate programming-answers site in which experts address popular questions,
perhaps initially drawn from other forums, in a security-sensitive manner. Alter-
natively, Stack Overflow could add a mechanism for explicitly rating the security of
provided answers and weighting those rated secure more heavily in search results
and thread ordering. Further research is needed to develop and evaluate solutions to
help prevent inexperienced or overwhelmed mobile developers from making critical
mistakes that put their users at risk.

Third, as a next step, we aimed to evaluate the efficacy of efforts to make crypto-
graphic libraries more usable. We conducted a 256-participants online experiment,
where we asked participants to use different cryptographic libraries to write Python
code to solve security-relevant tasks, and evaluated their success in solving the tasks
securely. Our results suggest that usability and security are deeply interconnected in
sometimes surprising ways. Our high-level findings show that simplicity in libraries
does promote security, as intended by library developers—to a point. In general, the
simplified libraries we tested produced more secure results than the comprehensive
libraries, validating the belief that simplicity is better. However, even simplified li-
braries did not entirely solve the security problem; for all but one library, the rate
of security success was below 80%, frequently, missing features caused the problem.
More problematically, for 20% of functional solutions, participants rated their code
as secure when it was not; this indicates a dangerous gap in recognition of potential
security problems. Several libraries in our study did not (or not well) support tasks
auxiliary to encryption and decryption, such as secure key storage and password-
based key generation. These missing features caused many of the insecure results
in the otherwise-successful simplified libraries. We argue that to be usably secure,
a cryptographic API must support such auxiliary tasks, rather than relying on the
developer to recognize the potential for danger and identify a secure alternate so-
lution. Further, we suggest that cryptographic APIs should be designed to support
a reasonably broad range of use cases; requiring developers to learn and use new
APIs for closely related tasks seems likely to drive them back to comprehensive li-
braries, which pose security risks. Future work might want to survey common main
and auxiliary tasks to provide a benchmark for a comprehensive feature set. Docu-
mentation is also critical. Documentation containing insecure examples contributed
to insecure code being used by participants. Incomplete or inaccessible documenta-
tion contributes to participants leaving the official documentation to search for help
on Stack Overflow and blogs, which often resulted in insecure solutions. This sug-
gests the importance of creating official documentation that is useful enough to keep
developers from searching out unvetted, potentially insecure alternatives. Many
participants copied these insecure examples in their solutions. In contrast, library
documentations that contained useful code examples appear to have contributed to
high rates of security success. Taken together, our results suggest several important



Chapter 7. Conclusions and Future Work 131

considerations for designers of future cryptographic libraries. First, the recent em-
phasis on simplifying APIs (and choosing secure defaults) has provided improve-
ment; we endorse continuing in this direction. We suggest, however, that library
designers go further, by treating documentation quality as a first-class requirement,
with particular emphasis on secure code examples. We also recommend that library
designers consider a broad range of potential tasks users might need to accomplish
cryptographic goals, and build support for each of them into a more comprehensive
whole.

Our results suggest that supporting holistic, application-level tasks with ready-
to-use APIs is the best option. That said, we acknowledge that it may be difficult
or impossible to predict all tasks API users may want or need. Therefore, where
lower-level features are necessary, they should be intentionally designed to make
combining them into more complex tasks securely as easy as possible.

Looking forward, further research is needed to design and evaluate libraries
that meet these goals. Some changes can also be made within existing libraries—
for example, improving documentation, changing insecure defaults to secure de-
faults, or even adding compiletime or runtime warnings for insecure parameters.
These changes should be evaluated involving future users both before they are de-
ployed and longitudinally to see how they affect outcomes within real-world code.
We also hope to refine, expand, and validate the usability scale we developed to cre-
ate an evaluation framework for security APIs generally, providing both feedback
and guidance for improvement.

Fourth, we explored the novel strategy of recruiting developers directly from
GitHub, and the properties of the recruited population, especially as they pertain
to programming studies with security outcomes. In our two previous experiments,
the question was raised whether recruiting students in lieu of professional devel-
opers impacts study validity. The GitHub sample contained both student and pro-
fessional developers, and allowed us to explore that question. In our online quasi-
experiment with 307 GitHub participants, we measured functionality and security
outcomes across Python programming tasks. We came into the experiment hypoth-
esizing that whether or not a participant wrote code professionally or as a student
would impact at least the functional correctness of their code. However, we found
that neither student nor professional status (self-reported) was a significant factor
for functionality, security, or security perception. We were also surprised to learn
that self-reported security background was equally unimportant. We did, however,
find a significant effect for Python experience: additional experience correlated with
better functionality and security outcomes, and we did find that professionals re-
ported significantly more years of experience. While expertise with Python in our
study differs significantly between students and professional developers, their secu-
rity and privacy expertise is similar (in both cases quite low). At least within GitHub
then, it seems that students and professionals can be equally useful for studying us-
able security and privacy problems, particularly if overall experience is controlled
for. We speculate that the very similar results across students and professional de-
velopers can be accounted for in part because writing security-related code is not a
regular task for average software developers, nor is security education a strong fo-
cus at many universities teaching computer science. We hypothesize, therefore, that
overall these results — experience matters somewhat, but professional status on its
own does not — would continue to hold for student and professional populations re-
cruited more traditionally, at local universities and via professional networks. Based
on results from Chapter 3, we suspect that typically local university students may
have less experience than students recruited from GitHub. We expect that future



132 Chapter 7. Conclusions and Future Work

research will compare student samples recruited locally at various universities to
samples recruited online. We found the recruitment strategy of emailing GitHub de-
velopers to be convenient in many ways: We were able to recruit many experienced
professionals quickly and at a low cost; many participants expressed to us how much
they enjoyed the challenge of our tasks and the opportunity to contribute to our re-
search. However, it does have important drawbacks: we received complaints about
unsolicited email from 13 invited GitHub committers and were generally subject to a
small opt-in rate. We also found that our participants were slightly more active and
therefore not quite representative of the GitHub population; representativeness for
professionals (or students) in general is considerably less likely. Overall, the practice
of sending unsolicited emails was not ideal, and is unlikely to be sustainable over
many future studies. Instead, future work includes developing a GitHub application
that would allow developers who are interested in contributing to research to opt in
to study recruitment requests, which would benefit both these developers and the
research community.

Fifth, as Chapters 3 and 4 had underlined the importance of usable documenta-
tion and complete, secure advice sources, we conducted a survey of general online
security advice for developers; assuming that this is the advice encountered espe-
cially by those without formal security training and/or without corporate security
support when they search for information about how to write secure code. Our
survey finds that they will find accessible information, appropriately layered and
searchable, with good coverage of some topics central to security, while other topics
are not sufficiently covered. However there are significant areas of concern: some
readily available advice is outdated; most of this general-purpose guidance does
not provide concrete examples or exercises; and some critical topics are not well
represented. To remedy this would require a rather different team of authors from
traditional security writers: pedagogical experts to generate exercises and tutorials,
and human-centred security experts and legal experts to deal with social engineer-
ing and regulations. As shown in Chapters 3 and 4, security advice from official
sources (as compared to developer forums like Stack Overflow) may not provide the
content and format that is useful for developers in practice. In this work, we take the
preliminary step of identifying and classifying a multitude of information sources.
Further work is needed to assess their quality, and to understand whether and how
developers use these guides as well as how to increase their effectiveness. Therefore,
the question of how best to organize online security help – guides, crowdsourcing
sites, aggregators that combine various sources of security advice – as well as how to
ensure that the quality of such advice remains high – remains open. Thus, our results
suggest two paths for understanding and improving the security-guidance ecosys-
tem. First, we must examine whether and which of the gaps we have identified
here—both in content and in format—represent serious omissions, and which are
filled by other resources outside the scope of this survey. Second, we must continue
to empirically evaluate the existing guidance, to understand which approaches do
and don’t prove to be effective and why. By understanding what current guidance is
missing, where it succeeds, and where it fails, we can hope to provide a framework
for developing better guidance, both now and as secure programming continues to
evolve.

Finally, we think that more generally, we need a systematic, organized effort to
understand developers’ attitudes, needs, and priorities toward security. Based on
this understanding, security tools and APIs can be improved to increase adoption
and adherence. We recommend further research aimed at moving security man-
agement and security-critical decisions from apps to the OS and framework levels



Chapter 7. Conclusions and Future Work 133

whenever possible. This includes but is not limited to automatic security library up-
dates, or automatic permission requests on Android. Not only could this reduce de-
velopers’ opportunities to make errors, but it is also compatible with the tendency to
prioritize reducing development time and effort over security correctness. Research
is needed to identify cases where this is possible as well as to suggest effective ways
to remove developers from the security loop without overly restricting functionality.
Advancing usable security for developers will be challenging, but it has the potential
to bring already-known solutions into greater use and provide enormous benefits to
the overall security ecosystem.





135

Appendix A

Appendix: Android
Documentation Study

A.1 Exit Survey Questions

Using the agreement scale (hand them sheet), how much do you agree with the
following statements?

• The login task was difficult.

• The login task was fun.

• I’m confident I got the right answer for the login task.

• The HTTPS task was difficult.

• The HTTPS task was fun.

• I’m confident I got the right answer for the HTTPS task.

• The phone task was difficult.

• The phone task was fun.

• I’m confident I got the right answer for the phone task.

• The manifest task was difficult.

• The manifest task was fun.

• I’m confident I got the right answer for the manifest task.

• The documentation and resources I used were easy to use.

• The documentation and resources I used were helpful.

• The documentation and resources I used were correct.

Free response questions. [Questions 2-4 apply to restricted documentation only.]

• What about the documentation you used was easy, helpful or correct? (Give
them a chance to elaborate on the Likerts).

• Have you used [documentation] before?

• If you had been allowed to use different documentation, do you think you
would have performed differently? Why/how/why not?



136 Appendix A. Appendix: Android Documentation Study

• What different documentation would you prefer (if any)? Why/why not?

• Would you have performed differently if you’d had more time? If yes, how?

• When you performed any of the tasks, were you thinking about security or
privacy? Which tasks and what specifically? (Prompt for each task)

• Have you written similar code or come across similar problems in the past?
(Prompt for each task). Tell us about it. When was it and what did you do?

Demographics and past experience

• For how long have you been developing Android apps?

• How many Android apps have you written in the past? When did you last
work on an Android app?

• How long have you been programming in general (not just for Android)?

• How did you learn to code? (self-taught, online class, in university (BS/M-
S/PhD/no degree?), in professional certification program, on the job, coding
bootcamp/hacker camp, etc.)

• How many Android classes have you taken (hours + semesters)? When did
you last take an Android class?

• Is developing Android apps your primary job?

• Which IDE do you use to develop Android apps (Eclipse, Android Studio,
other?)

• Have you ever taken a security class? How many / where / at what education
level? How about a class that had security as one major component or module?

• Do you have experience working in computer security or privacy outside of
school? Professionally or as a hobby? When/how much?

• What documentation or resources do you normally use when developing An-
droid apps?

• When solving a security- or privacy-related problem (for android), do you use
any different resources than those you already mentioned?

• What is your gender?

• What is your age?

• What is your occupation?

• What country did you (primarily) grow up in?

• What is your native language and what other languages are you fluent in (if
any)?



137

Appendix B

Appendix: Cryptographic APIs
Study

B.1 Errors

Table B.1 details the different types of security errors made by our participants,
across the libraries we tested and the tasks we assigned. Our definitions of secu-
rity are discussed in Section 4.3.8.

B.2 Survey

Task-specific questions: Asked about each task
Please rate your agreement to the following statements: (Strongly agree; agree; neu-
tral; disagree; strongly disagree; I don’t know.)

• I think I solved this task correctly.

• I think I solved this task securely.

• The documentation was helpful in solving this task.

General questions

• Are you aware of a specific library or other resource you would have preferred
to solve the tasks? Which? (Yes with free response; no; I don’t know.)

• Have you used or seen the assigned library before? For example, maybe you
worked on a project that used the assigned library, but someone else wrote that
portion of the code. (I have used the assigned library before; I have seen the
assigned library used but have not used it myself; No, neither; I don’t know.)

• Have you written or seen code for tasks similar to this one before? For exam-
ple, maybe you worked on a project that included a similar task, but someone
else wrote that portion of the code. (I have written similar code; I have seen
similar code but have not written it myself; No, neither; I don’t know.)

System Usability Scale (SUS)
We asked you to use the assigned library and the following questions refer to the
assigned library and its documentation. Please rate your agreement or disagreement
with the following statements: (Strongly agree; agree; neutral; disagree; strongly
disagree)



138 Appendix B. Appendix: Cryptographic APIs Study

Symmetric Keygen Key
Siz

e

Key
in

Plai
n

W
ea

k Cip
her

W
ea

k M
ode

Sta
tic

IV

No KDF

Custo
m

KDF

KDF Sa
lt

KDF Algo.

KDF Ite
r.

PyCrypto 6 4 11 14 3 15 11 1 1 2
M2Crypto 2 2 0 0 7 4 2 2 1 1
cryptography.io 1 7 0 0 0 1 3 10 0 0
Keyczar 0 3 0 0 0 1 0 0 0 0
PyNaCl 0 2 0 0 0 1 17 1 1 0

Symmetric Encryption No Enc.

W
ea

k Algo.

W
ea

k M
ode

Sta
tic

IV

PyCrypto 0 17 23 29
M2Crypto 0 0 1 9
cryptography.io 0 0 0 0
Keyczar 0 0 0 0
PyNaCl 0 0 0 0

Asymmetric Keygen Key
Siz

e

Key
in

Plai
n

W
ea

k Cip
her

W
ea

k M
ode

Sta
tic

IV

No KDF

Custo
m

KDF

KDF Sa
lt

KDF Algo.

KDF Ite
r.

PyCrypto 6 0 0 0 0 0 0 0 0 0
M2Crypto 6 0 0 0 0 0 0 0 0 0
cryptography.io 0 0 0 0 0 0 0 0 0 0
Keyczar 0 1 0 0 0 0 0 0 0 0
PyNaCl 0 3 0 0 0 0 7 0 0 0

Asymmetric Encryption Key
Siz

e

Pad
din

g

PyCrypto 9 0
M2Crypto 6 1
cryptography.io 0 0
Keyczar 0 0
PyNaCl 0 0

Certificate Validation Sig
. Chec

k

CA
Flag

Chec
k

Hostn
am

e Chec
k

Date
Chec

k

PyCrypto 1 1 1 1
M2Crypto 2 13 11 14
cryptography.io 4 7 7 7
Keyczar 0 0 0 0
PyNaCl 1 1 1 1

TABLE B.1: Security errors made by our participants, as categorized
by our codebook.

• I think that I would like to use this library frequently.

• I found the library unnecessarily complex.

• I thought the library was easy to use.

• I think that I would need the support of a technical person to be able to use
this library.

• I found the various functions in this library were well integrated.

• I thought there was too much inconsistency in this library.

• I would imagine that most people would learn to use this library very quickly.

• I found the library very cumbersome to use.

• I felt very confident using the library.



B.2. Survey 139

• I needed to learn a lot of things before I could get going with this library.

Our usability scale
Please rate your agreement to the following questions on a scale from ‘strongly
agree’ to ‘strongly disagree.’ (Strongly agree; agree; neutral; disagree; strongly dis-
agree) Calculate the 0-100 score as follows: 2.5 * (5-Q1 + ∑i=2..10(Qi − 1)); for the
score, Q11 is omitted.

• I had to understand how most of the assigned library works in order to com-
plete the tasks.

• It would be easy and require only small changes to change parameters or con-
figuration later without breaking my code.

• After doing these tasks, I think I have a good understanding of the assigned
library overall.

• I only had to read a little of the documentation for the assigned library to un-
derstand the concepts that I needed for these tasks.

• The names of classes and methods in the assigned library corresponded well
to the functions they provided.

• It was straightforward and easy to implement the given tasks using the as-
signed library.

• When I accessed the assigned library documentation, it was easy to find useful
help.

• In the documentation, I found helpful explanations.

• In the documentation, I found helpful code examples.

Please rate your agreement to the following questions on a scale from ‘strongly
agree’ to ‘strongly disagree.’ (Strongly agree; agree; neutral; disagree; strongly dis-
agree; does not apply)

• When I made a mistake, I got a meaningful error message/exception.

• Using the information from the error message/exception, it was easy to fix my
mistake.

Demographics

• How long have you been programming in Python? (Less than 1 year; 1-2 years;
2-5 years; more than five years)

• How long have you been coding in general? (Less than 1 year; 1-2 years; 2-5
years; more than five years)

• How did you learn to code? [all that apply] (self-taught, online class, college,
on-the-job training, coding camp)

• Is programming your primary job? If yes: Is writing Python code (part of) your
primary job?



140 Appendix B. Appendix: Cryptographic APIs Study

• Do you have an IT-security background? If yes, please specify.

• Please tell us your highest degree of education. (dropdown)

• Please tell us your gender. (female, male, other (please specify), decline to say)

• How old are you? (free text, check that the answer is a number)

• What country/countries do you live in / which country/countries are you a
citizen of? (dropdown)

• What is your occupation? (free text)



141

Appendix C

Appendix: GitHub Study

C.1 Exit Survey Questions

Task-specific questions: Each task has these questions
On a five-point scale, how much do you agree with the following statements: [strongly
agree, agree, neither agree nor disagree, disagree, strongly disagree]

• The task was difficult. (for each task)

• I am confident my solution is correct. (for each task)

• I am confident my solution is secure. (for each task)

What makes this solution either secure or insecure? (free text per task)

When you performed the task, were you thinking about security or privacy? (for
each task)

• yes, a lot

• yes, a little

• no

What specifically? (For each task) [free text]

Have you written similar code or come across similar problems in the past? (For
each task).

• yes

• sort of

• no

Tell us about it. When was it and what did you do; did you do something differ-
ently? [free text]

Demographics and past experience
Check all that apply: Have you ever taken a computer security class?

• at an undergraduate level

• at a graduate level

• via online learning



142 Appendix C. Appendix: GitHub Study

• via professional training

• another way [specify]

• no, but I took a class that had security as one major component or module

• no

How many computer security classes total have you taken? [input a number]

When did you last take a computer security class? [input a year]

Check all that apply: Do you have experience working in computer security or
privacy outside of school?

• Professionally (you got paid to do it)

• As a hobby

• No

• Other [specify]

Check all that apply: Have you ever taken a Python programming class?

• at an undergraduate level

• at a graduate level

• via online learning

• via professional training

• another way [specify]

• no, but I took a class that had Python as one major component or module

• no

How many total Python classes have you taken? [input a number]

When did you last take a Python class [input a year]

Do you have experience programming in Python outside of school?

• Professionally (you got paid to do it)

• As a hobby

• No

• Other [specify]

For how many years have you been programming in Python? [number]

How many Python projects have you worked on in the past? [number]

When did you last work on a Python project? [year]



C.2. GitHub Demographics 143

For how many years have you been programming in general (not just in Python)?
[number]

How did you primarily learn to program? (Choose one)

• Self-taught

• In a university / as part of a degree

• In an online learning program

• In a professional certification program

• On the job

• Other [specify]

What is your gender?

• Male

• Female

• Other

• Prefer not to answer

What is your age? [number]

Are you currently a student?

• Undergraduate

• Graduate

• Professional certification program

• Other [specify]

• Not a student

Are you currently employed at a job where programming is a critical part of your
job responsibility? [yes/no]

What country did you (primarily) grow up in? [list of countries]

What is your native language (mother tongue)? [list of languages]

C.2 GitHub Demographics

Table C.1 compares demographics for invited users vs. participants.

C.3 Installed Python libraries

Table C.2 lists the Python libraries we pre-installed in the study infrastructure.



144 Appendix C. Appendix: GitHub Study

Invited Pros Students Both Neither

Hireable 20.5% 19.4% 40.0% 30.6% 23.5%
Company listed 39.4% 43.4% 30.0% 38.9% 17.6%
URL to blog 48.0% 47.3% 40.0% 63.9% 58.8%
Biography added 14.1% 21.7% 20.0% 16.7% 29.4%
Location provided 62.0% 69.8% 50.0% 69.4% 29.4%

GitHub profile creation2 2158 2148 1712 2101 2191
GitHub profile last update2 22 20 23 18 14

Minimal/Maximal age — 18/54 19/37 19/43 24/81
Average age (Std) — 32.9 (6.7) 25.3 (5.2) 27.5 (4.7) 35.2 (12.7)
> 2 years coding experience — 99.5% 100.0% 100.0% 100.0%
> 2 years Python experience — 92.5% 85.7% 81.2% 88.7%
Security background — 6.5% 4.8% 5.7% 6.2%
Male/Female1 — 96.5%/1.5% 100.0%/0.0% 94.3%/5.7% 96.9%/0.0%

1 the remainder either answered "other" or prefer not to disclose their gender.
2 days ago, median

TABLE C.1: GitHub demographics for invited users vs. our valid
participants.



C.3. Installed Python libraries 145

Library Version

apsw 3.8.11.1.post1
backports-abc 0.5
backports.shutil-get-terminal-
size

1.0.0

bcrypt 2.0.0
blinker 1.3
certifi 2016.9.26
cffi 1.9.1
chardet 2.3.0
configparser 3.5.0
cryptography 1.2.3
cryptography-vectors 1.2.3
decorator 4.0.10
ecdsa 0.13
entrypoints 0.2.2
enum34 1.1.6
file-encryptor 0.2.9
Flask 0.10.1
flufl.password 1.3
functools32 3.2.3.post2
idna 2.0
ipaddress 1.0.16
ipykernel 4.5.2
ipython 5.1.0
ipython-genutils 0.1.0
ipywidgets 5.2.2
itsdangerous 0.24
Jinja2 2.8
jsonschema 2.5.1
jupyter 1.0.0
jupyter-client 4.4.0
jupyter-console 5.0.0
jupyter-core 4.2.0
M2Crypto 0.22.6rc4
m2ext 0.1
macaron 0.3.1
MarkupSafe 0.23
mistune 0.7.3
nbconvert 4.2.0
nbformat 4.1.0

Library Version

ndg-httpsclient 0.4.0
notebook 4.2.3
passlib 1.6.5
pathlib2 2.1.0
pexpect 4.2.1
pickleshare 0.7.4
prompt-toolkit 1.0.9
ptyprocess 0.5.1
pyasn1 0.1.9
pycparser 2.17
pycrypto 2.6.1
pycryptopp 0.6.0.12...
Pygments 2.1.3
pyinotify 0.9.6
PyNaCl 1.0.1
pyOpenSSL 0.15.1
pysodium 0.6.9.1
pysqlite 2.7.0
python-geohash 0.8.3
python-keyczar 0.715
python-mhash 1.4
pyzmq 16.0.2
qtconsole 4.2.1
requests 2.9.1
simplegeneric 0.8.1
singledispatch 3.4.0.3
six 1.10.0
smbpasswd 1.0.1
ssdeep 3.1
terminado 0.6
tlsh 0.2.0
tornado 4.4.2
traitlets 4.3.1
typing 3.5.3.0
urllib3 1.13.1
wcwidth 0.1.7
Werkzeug 0.10.4
widgetsnbextension 1.2.6
withsqlite 0.1

TABLE C.2: Pre-installed libraries.





147

Bibliography

[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, Xi-
aoFeng Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. “Hare Hunt-
ing in the Wild Android: A Study on the Threat of Hanging Attribute Refer-
ences”. In: Proc. 22nd ACM Conference on Computer and Communication Security
(CCS’15). ACM, 2015.

[2] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel,
and Matthew Smith. “Sok: Lessons learned from android security research
for appified software platforms”. In: Proc. 37th IEEE Symposium on Security
and Privacy (SP’16). IEEE, 2016.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,
Michelle L. Mazurek, and Christian Stransky. “Comparing the Usability of
Cryptographic APIs”. In: Proc. 38th IEEE Symposium on Security and Privacy
(SP’17). IEEE, 2017.

[4] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. “You Get Where You’re Looking For: The Impact of
Information Sources on Code Security”. In: Proc. 37th IEEE Symposium on Se-
curity and Privacy (SP’16). IEEE, 2016.

[5] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek. “You are Not Your
Developer, Either: A Research Agenda for Usable Security and Privacy Re-
search Beyond End Users”. In: Proc. 2016 IEEE Secure Development Conference
(SecDev’16). IEEE, 2016.

[6] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L. Mazurek,
and Sascha Fahl. “Security Developer Studies with GitHub Users: Exploring
a Convenience Sample”. In: Proc. 13th Symposium on Usable Privacy and Secu-
rity (SOUPS’17). USENIX Association, 2017.

[7] Alessandro Acquisti, Laura Brandimarte, and George Loewenstein. “Privacy
and human behavior in the age of information”. In: Science 347.6221 (2015),
pp. 509–514.

[8] Alessandro Acquisti, Leslie K John, and George Loewenstein. “What is pri-
vacy worth?” In: The Journal of Legal Studies 42.2 (2013), pp. 249–274.

[9] Anne Adams and Martina Angela Sasse. “Users are not the enemy: Why
users compromise security mechanisms and how to take remedial measures”.
In: Communications of the ACM 42.12 (1999), pp. 40–46.

[10] Devdatta Akhawe and Adrienne Porter Felt. “Alice in Warningland: A Large-
Scale Field Study of Browser Security Warning Effectiveness.” In: Proc. 22nd
Usenix Security Symposium (SEC’13). USENIX Association, 2013.

[11] Abrar Al-Heeti. WhatsApp: 65B messages sent each day, and more than 2B minutes
of calls. https://www.cnet.com/news/whatsapp-65-billion-messages-
sent- each- day- and- more- than- 2- billion- minutes- of- calls/. May
2018.

https://www.cnet.com/news/whatsapp-65-billion-messages-sent-each-day-and-more-than-2-billion-minutes-of-calls/
https://www.cnet.com/news/whatsapp-65-billion-messages-sent-each-day-and-more-than-2-billion-minutes-of-calls/


148 Bibliography

[12] Amnesty International USA. Encryption - A Matter of Human Rights. https:
//www.amnestyusa.org/sites/default/files/encryption_-_a_matter_
of_human_rights_-_pol_40-3682-2016.pdf. 2016.

[13] Ross J. Anderson. “Why Cryptosystems Fail”. In: Communications of the ACM
37.11 (1994), 32–40.

[14] Noah Apthorpe, Sarah Varghese, and Nick Feamster. “Evaluating the Con-
textual Integrity of Privacy Regulation: Parents’ IoT Toy Privacy Norms Ver-
sus COPPA”. In: Proc. 28th Usenix Security Symposium (SEC’19). USENIX As-
sociation, 2019.

[15] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and
Mira Mezini. “Towards Secure Integration of Cryptographic Software”. In:
Proc. 2015 ACM International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (Onward! 2015). ACM, 2015.

[16] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves le Traon, Damien Octeau, and Patrick McDaniel. “Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps”. In: Proc. ACM SIGPLAN 2014 Conference on Pro-
gramming Language Design and Implementation (PLDI’14). ACM, 2014.

[17] Hala Assal and Sonia Chiasson. “Security in the Software Development Life-
cycle”. In: Proc. 14th Symposium on Usable Privacy and Security (SOUPS’18).
USENIX Association, 2018.

[18] Hala Assal and Sonia Chiasson. “’Think Secure from the Beginning’: A Sur-
vey with Software Developers”. In: Proc. CHI Conference on Human Factors in
Computing Systems (CHI’19). ACM, 2019.

[19] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. “PScout: An-
alyzing the Android Permission Specification”. In: Proc. 19th ACM Conference
on Computer and Communication Security (CCS’12). ACM, 2012.

[20] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp
von Styp-Rekowsky. “Boxify: Full-fledged App Sandboxing for Stock An-
droid”. In: Proc. 24th Usenix Security Symposium (SEC’15). USENIX Associ-
ation, 2015.

[21] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and
Philipp von Styp-Rekowsky. “AppGuard – Enforcing User Requirements on
Android Apps”. In: Proc. 19th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’13). Springer, 2013.

[22] R Balebako, A Marsh, J Lin, and J Hong. “The Privacy and Security Behav-
iors of Smartphone App Developers”. In: Proc. Workshop on Usable Security
(USEC’14). The Internet Society, 2014.

[23] Rebecca Balebako and Lorrie Cranor. “Improving App Privacy: Nudging App
Developers to Protect User Privacy”. In: IEEE Security & Privacy 12.4 (2014),
pp. 55–58.

[24] Antoaneta Baltadzhieva and Grzegorz Chrupala. “Question Quality in Com-
munity Question Answering Forums: A Survey”. In: SIGKDD Explorations
17.1 (2015), pp. 8–13.

https://www.amnestyusa.org/sites/default/files/encryption_-_a_matter_of_human_rights_-_pol_40-3682-2016.pdf
https://www.amnestyusa.org/sites/default/files/encryption_-_a_matter_of_human_rights_-_pol_40-3682-2016.pdf
https://www.amnestyusa.org/sites/default/files/encryption_-_a_matter_of_human_rights_-_pol_40-3682-2016.pdf


Bibliography 149

[25] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. “Do Developers Read Compiler Error
Messages?” In: Proc. 39th IEEE/ACM International Conference on Software Engi-
neering (ICSE’17). IEEE, 2017.

[26] David Barrera, Jeremy Clark, Daniel McCarney, and Paul C. van Oorschot.
“Understanding and Improving App Installation Security Mechanisms Through
Empirical Analysis of Android”. In: Proc. 2nd ACM CCS Workshop on Security
and Privacy in Mobile Devices (SPSM’12). ACM, 2012.

[27] David Barrera, William Enck, and Paul C. Van Oorschot. “Meteor: Seeding a
Security-Enhancing Infrastructure for Multi-market Application Ecosystems”.
In: Proc. 2012 Mobile Security Technologies Workshop (MoST’12). IEEE, 2012.

[28] David Barrera, H Güneş Kayacik, Paul C Van Oorschot, and Anil Somayaji.
“A Methodology for Empirical Analysis of Permission-Based Security Mod-
els and its Application to Android”. In: Proc. 17th ACM Conference on Com-
puter and Communication Security (CCS’10). ACM, 2010.

[29] Anton Barua, Stephen W. Thomas, and Ahmed E. Hassan. “What Are Devel-
opers Talking About? An Analysis of Topics and Trends in Stack Overflow”.
In: Empirical Software Engineering 19.3 (2012), pp. 619–654.

[30] Blerina Bazelli, Abram Hindle, and Eleni Stroulia. “On the Personality Traits
of StackOverflow Users”. In: Proc. 29th IEEE International Conference on Soft-
ware Maintenance (ICSM’13. IEEE, 2013.

[31] bcrypt. https://github.com/pyca/bcrypt.

[32] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. “The Security Impact of
a New Cryptographic Library”. In: Proc. 2nd International Conference on Cryp-
tology and Information Security in Latin America (LATINCRYPT’12). Springer,
2012.

[33] Robert Biddle, Sonia Chiasson, and P C van Oorschot. “Graphical passwords:
Learning from the first twelve years”. In: ACM Computing Surveys 44.4 (2012),
19:1–19:41.

[34] Joshua Bloch. “How to design a good API and why it matters”. In: Proc. 21st
Conference on Object-oriented Programming Systems Languages and Applications
(OOPSLA’06). ACM, 2006.

[35] David Botta, Rodrigo Werlinger, André Gagné, Konstantin Beznosov, Lee
Iverson, Sidney Fels, and Brian Fisher. “Towards Understanding IT Security
Professionals and Their Tools”. In: Proc. 3rd Symposium on Usable Privacy and
Security (SOUPS’07). ACM, 2007.

[36] Russell Brandom. Android Marshmallow’s best security measure is a simple date.
http://www.theverge.com/2015/9/29/9415313/android-marshmallow-
security-update-vulnerability. Last visited: 11/12/2015. 2015.

[37] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor, Robert W. Reeder,
Manya Sleeper, Julie Downs, and Stuart Schechter. “Your Attention Please:
Designing Security-decision UIs to Make Genuine Risks Harder to Ignore”.
In: Proc. 9th Symposium on Usable Privacy and Security (SOUPS’13). ACM, 2013.

[38] Carolyn A Brodie, Clare-Marie Karat, and John Karat. “An empirical study
of natural language parsing of privacy policy rules using the SPARCLE policy
workbench”. In: Proc. 2nd Symposium on Usable Privacy and Security (SOUPS’06).
ACM, 2006.

https://github.com/pyca/bcrypt
http://www.theverge.com/2015/9/29/9415313/android-marshmallow-security-update-vulnerability
http://www.theverge.com/2015/9/29/9415313/android-marshmallow-security-update-vulnerability


150 Bibliography

[39] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-
Reza Sadeghi, and Bhargava Shastry. “Towards Taming Privilege-Escalation
Attacks on Android”. In: Proc. 19th Annual Network and Distributed System
Security Symposium (NDSS’12). The Internet Society, 2012.

[40] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-
Reza Sadeghi, and Bhargava Shastry. “Practical and Lightweight Domain Iso-
lation on Android”. In: Proc. 1st ACM CCS Workshop on Security and Privacy in
Mobile Devices (SPSM’11). ACM, 2011.

[41] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. “Flexible and Fine-
Grained Mandatory Access Control on Android for Diverse Security and Pri-
vacy Policies”. In: Proc. 22nd Usenix Security Symposium (SEC’13). USENIX
Association, 2013.

[42] Bureau of Labor Statistics. Occupational Employment Statistics. https://www.
bls.gov/oes/tables.htm. 2016.

[43] K. P. Burnham. “Multimodel Inference: Understanding AIC and BIC in Model
Selection”. In: Sociological Methods & Research 33.2 (2004), pp. 261–304. URL:
http://smr.sagepub.com/cgi/doi/10.1177/0049124104268644.

[44] Chris Burns, Jennifer Ferreira, Theodore D Hellmann, and Frank Maurer.
“Usable results from the field of API usability: A systematic mapping and fur-
ther analysis”. In: Proc. 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’12). IEEE, 2012.

[45] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. “Issues in using students in
empirical studies in software engineering education”. In: Proc. 5th Interna-
tional Workshop on Enterprise Networking and Computing in Healthcare Industry
(Healthcom’03). IEEE, 2003.

[46] Cepl, Matěj. M2Crypto. https://gitlab.com/m2crypto/m2crypto.

[47] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck. “MAST:
Triage for Market-scale Mobile Malware Analysis”. In: Proc. 6th ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec’13). ACM,
2013.

[48] Patrick P.F. Chan, Lucas C.K. Hui, and Siu-Ming Yiu. “Droidchecker: analyz-
ing android applications for capability leak”. In: Proc. 5th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec’12). ACM, 2012.

[49] Avik Chaudhuri, Adam Fuchs, and Jeffrey Foster. SCanDroid: Automated Se-
curity Certification of Android Applications. Tech. rep. University of Maryland,
2009.

[50] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick
Tague. “OAuth Demystified for Mobile Application Developers”. In: Proc.
21st ACM Conference on Computer and Communication Security (CCS’14). ACM,
2014.

[51] Kai Chen, Peng Wang, Yeonjoon Lee, Xiao Feng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. “Finding Unknown Malice in 10 Seconds:
Mass Vetting for New Threats at the Google-Play Scale”. In: Proc. 24th Usenix
Security Symposium (SEC’15). USENIX Association, 2015.

[52] Sonia Chiasson and P. Oorschot. “Quantifying the security advantage of pass-
word expiration policies”. In: Designs, Codes and Cryptography 77.2 (2015),
pp. 401–408.

https://www.bls.gov/oes/tables.htm
https://www.bls.gov/oes/tables.htm
http://smr.sagepub.com/cgi/doi/10.1177/0049124104268644
https://gitlab.com/m2crypto/m2crypto


Bibliography 151

[53] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. “An-
alyzing inter-application communication in Android”. In: Proc. 9th Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys’11). ACM,
2011.

[54] Erika Chin, Adrienne Porter Felt, Vyas Sekar, and David Wagner. “Measuring
User Confidence in Smartphone Security and Privacy”. In: Proc. 8th Sympo-
sium on Usable Privacy and Security (SOUPS’12). ACM, 2012.

[55] Erika Chin and David Wagner. “Bifocals: Analyzing WebView Vulnerabili-
ties in Android Applications”. In: Proc. Information Security Applications - 14th
International Workshop (WISA’13). Springer, 2013.

[56] Jeremy Clark, P C van Oorschot, and Carlisle Adams. “Usability of anony-
mous web browsing: an examination of Tor interfaces and deployability”. In:
Proc. 3rd Symposium on Usable Privacy and Security (SOUPS’07). ACM, 2007.

[57] Steven Clarke. Using the cognitive dimensions framework to design usable APIs.
https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-
cognitive-dimensions-framework-to-design-usable-apis/. Last visited:
10/18/2020. 2003.

[58] Jessica Colnago, Yuanyuan Feng, Tharangini Palanivel, Sarah Pearman, Megan
Ung, Alessandro Acquisti, Lorrie Faith Cranor, and Norman Sadeh. “Inform-
ing the Design of a Personalized Privacy Assistant for the Internet of Things”.
In: Proc. CHI Conference on Human Factors in Computing Systems (CHI’20). ACM,
2020.

[59] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. “CRePE: Context-
Related Policy Enforcement for Android”. In: Proc. 13th Information Security
Conference (ISC’10). Springer, 2010.

[60] Lorrie Cranor. Time to rethink mandatory password changes. https://www.ftc.
gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-
password-changes/. Mar. 2016.

[61] Lorrie Faith Cranor. “A Framework for Reasoning about the Human in the
Loop”. In: Proc. Usenix Workshop on Usability, Psychology, and Security (UP-
SEC’08). USENIX Association, 2008.

[62] Jonathan Crussell, Clint Gibler, and Hao Chen. “Attack of the Clones: De-
tecting Cloned Applications on Android Markets”. In: Proc. 17th European
Symposium on Research in Computer Security (ESORICS’12). Springer, 2012.

[63] Jonathan Crussell, Ryan Stevens, and Hao Chen. “MAdFraud: Investigating
Ad Fraud in Android Applications”. In: Proc. 12th International Conference on
Mobile Systems, Applications, and Services (MobiSys’14). ACM, 2014.

[64] Cryptography.io. https://cryptography.io.

[65] L. Davi, A. Dmitrienko, A.R. Sadeghi, and M. Winandy. “Privilege escalation
attacks on Android”. In: Proc. 13th Information Security Conference (ISC’10).
Springer, 2010.

[66] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. “I-ARM-
Droid: A Rewriting Framework for In-App Reference Monitors for Android
Applications”. In: Proc. 2012 Mobile Security Technologies Workshop (MoST’12).
IEEE, 2012.

https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-cognitive-dimensions-framework-to-design-usable-apis/
https://blogs.msdn.microsoft.com/stevencl/2003/11/14/using-the-cognitive-dimensions-framework-to-design-usable-apis/
https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes/
https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes/
https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes/
https://cryptography.io


152 Bibliography

[67] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wal-
lach. “QUIRE: Lightweight Provenance for Smart Phone Operating Systems”.
In: Proc. 20th Usenix Security Symposium (SEC’11). USENIX Association, 2011.

[68] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654.

[69] ed25519. https://pypi.python.org/pypi/ed25519.

[70] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.
“An empirical study of cryptographic misuse in android applications”. In:
Proc. 20th ACM Conference on Computer and Communication Security (CCS’13).
ACM, 2013.

[71] Nikolay Elenkov. Android Security Internals. No Starch Press, 2015.

[72] Brian Ellis, Jeffrey Stylos, and Brad Myers. “The Factory Pattern in API De-
sign: A Usability Evaluation”. In: Proc. 29th IEEE/ACM International Confer-
ence on Software Engineering (ICSE’07). IEEE, 2007.

[73] William Enck, Peter Gilbert, Byung Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. “TaintDroid: An Information-flow
Tracking System for Realtime Privacy Monitoring on Smartphones”. In: (2010).

[74] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaudhuri.
“A Study of Android Application Security”. In: Proc. 20th Usenix Security
Symposium (SEC’11). USENIX Association, 2011.

[75] William Enck, Machigar Ongtang, and Patrick McDaniel. “On Lightweight
Mobile Phone Application Certification”. In: Proc. 16th ACM Conference on
Computer and Communication Security (CCS’09). ACM, 2009.

[76] William Enck, Machigar Ongtang, and Patrick McDaniel. “Understanding
Android Security”. In: IEEE Security & Privacy 7.1 (2009), pp. 50–57.

[77] Úlfar Erlingsson. “The Inlined Reference Monitor Approach to Security Pol-
icy Enforcement”. PhD thesis. Cornell University, Jan. 2004.

[78] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pern-
steiner, Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar,
Seungyeop Han, Paul Vines, and Edward X. Wu. “Collaborative Verification
of Information Flow for a High-Assurance App Store”. In: Proc. 21st ACM
Conference on Computer and Communication Security (CCS’14). ACM, 2014.

[79] S Eskandari, D Barrera, and E Stobert. “A first look at the usability of bit-
coin key management”. In: Proc. Workshop on Usable Security (USEC’15). The
Internet Society, 2015.

[80] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Smrcek,
and Matthew Smith. “Hey, NSA: Stay away from my market! Future proofing
app markets against powerful attackers”. In: Proc. 21st ACM Conference on
Computer and Communication Security (CCS’14). ACM, 2014.

[81] Sascha Fahl, Marian Harbach, Yasemin Acar, and Matthew Smith. “On The
Ecological Validity of a Password Study”. In: Proc. 9th Symposium on Usable
Privacy and Security (SOUPS’13). ACM, 2013.

[82] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. “Why Eve and Mallory love Android: An
analysis of Android SSL (in)security”. In: Proc. 19th ACM Conference on Com-
puter and Communication Security (CCS’12). ACM, 2012.

https://pypi.python.org/pypi/ed25519


Bibliography 153

[83] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, and Uwe
Sander. “Helping Johnny 2.0 to encrypt his Facebook conversations”. In: Proc.
8th Symposium on Usable Privacy and Security (SOUPS’12). ACM, 2012.

[84] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew
Smith. “Hey, you, get off of my clipboard - On How Usability Trumps Secu-
rity in Android Password Managers”. In: Proc. 17th International Conference on
Financial Cryptography and Data Security (FC’13). Springer, 2013.

[85] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew
Smith. “Rethinking SSL Development in an Appified World”. In: Proc. 20th
ACM Conference on Computer and Communication Security (CCS’13). ACM, 2013.

[86] Adrienne Porter Felt, Alex Ainslie, Robert W. Reeder, Sunny Consolvo, So-
mas Thyagaraja, Alan Bettes, Helen Harris, and Jeff Grimes. “Improving SSL
Warnings: Comprehension and Adherence”. In: Proc. 33rd Annual ACM Con-
ference on Human Factors in Computing Systems (CHI’15). ACM, 2015.

[87] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wag-
ner. “Android permissions demystified”. In: Proc. 18th ACM Conference on
Computer and Communication Security (CCS’11). ACM, 2011.

[88] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe,
and David Wagner. “How to ask for permission”. In: Proc. 7th USENIX Work-
shop on Hot Topics in Security (HotSec’12). USENIX Association, 2012.

[89] Adrienne Porter Felt, Serge Egelman, and David Wagner. “I’ve got 99 prob-
lems, but vibration ain’t one: A survey of smartphone users’ concerns”. In:
Proc. 2nd ACM CCS Workshop on Security and Privacy in Mobile Devices (SPSM’12).
ACM, 2012.

[90] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. “A Survey of Mobile Malware in the Wild”. In: Proc. 1st ACM CCS
Workshop on Security and Privacy in Mobile Devices (SPSM’11). ACM, 2011.

[91] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. “Android Permissions: User Attention, Comprehension,
and Behavior”. In: Proc. 8th Symposium on Usable Privacy and Security (SOUPS’12).
ACM, 2012.

[92] Adrienne Porter Felt, Robert W. Reeder, Alex Ainslie, Helen Harris, Max
Walker, Christopher Thompson, Mustafa Embre Acer, Elisabeth Morant, and
Sunny Consolvo. “Rethinking Connection Security Indicators”. In: Proc. 12th
Symposium on Usable Privacy and Security (SOUPS’16). USENIX Association,
2016.

[93] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. “Permission Re-Delegation: Attacks and Defenses”. In: Proc. 20th
Usenix Security Symposium (SEC’11). USENIX Association, 2011.

[94] Matthew Finifter and David Wagner. “Exploring the Relationship Between
Web Application Development Tools and Security”. In: Proc. 2nd USENIX
conference on Web application development (WebApps’11). USENIX Association,
2011.

[95] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. “Stack Overflow Considered Harm-
ful? The Impact of Copy&Paste on Android Application Security”. In: Proc.
38th IEEE Symposium on Security and Privacy (SP’17). IEEE, 2017.



154 Bibliography

[96] Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey. “Modeling and En-
hancing Android’s Permission System”. In: Proc. 17th European Symposium on
Research in Computer Security (ESORICS’12). Springer, 2012.

[97] Simson Garfinkel and Heather Richter Lipford. “Usable Security: History,
Themes, and Challenges”. In: Synthesis Lectures on Information Security, Pri-
vacy, and Trust 5.2 (2014), pp. 1–124.

[98] Simson L. Garfinkel and Robert C. Miller. “Johnny 2: a user test of key conti-
nuity management with S/MIME and Outlook Express”. In: Proc. 1st Sympo-
sium on Usable Privacy and Security (SOUPS’05). ACM, 2005.

[99] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,
and Vitaly Shmatikov. “The most dangerous code in the world: validating
SSL certificates in non-browser software”. In: Proc. 19th ACM Conference on
Computer and Communication Security (CCS’12). ACM, 2012.

[100] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. “Androi-
dLeaks: Automatically Detecting Potential Privacy Leaks in Android Appli-
cations on a Large Scale”. In: Proc. 5th International Conference on Trust and
Trustworthy Computing (TRUST’12). Springer, 2012.

[101] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and
Heesook Choi. “AdRob: Examining the Landscape and Impact of Android
Application Plagiarism”. In: Proc. 11th International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys’13). ACM, 2013.

[102] GitHub Archive. https://www.githubarchive.org. visited. Nov. 2016.

[103] GitHut: A Small Place to discover languages in github. http://githut.info.
visited. Nov. 2016.

[104] gnupg. https://github.com/isislovecruft/python-gnupg.

[105] Google. Google Report: Android Security 2014 Year in Review. https://source.
android.com/security/reports/Google_Android_Security_2014_Report_
Final.pdf. Apr. 2015.

[106] Google. Nexus Security Bulletins. https://source.android.com/security/
bulletin/index.html. Last visited: 11/13/2015.

[107] Google. Review app permissions thru Android 5.9. https://support.google.
com/googleplay/answer/6014972?hl=en. Last visited: 11/13/2015. 2015.

[108] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. “Check-
ing App Behavior Against App Descriptions”. In: Proc. 36th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE’14). ACM, 2014.

[109] Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl. “Listen to
Developers! A Participatory Design Study on Security Warnings for Crypto-
graphic APIs”. In: Proc. CHI Conference on Human Factors in Computing Systems
(CHI’20). ACM, 2020.

[110] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stransky, Se-
bastian Möller, Yasemin Acar, and Sascha Fahl. “Developers Deserve Secu-
rity Warnings, Too: On the Effect of Integrated Security Advice on Crypto-
graphic API Misuse”. In: Proc. 14th Symposium on Usable Privacy and Security
(SOUPS’18). USENIX Association, 2018.

https://www.githubarchive.org
http://githut.info
https://github.com/isislovecruft/python-gnupg
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/security/bulletin/index.html
https://source.android.com/security/bulletin/index.html
https://support.google.com/googleplay/answer/6014972?hl=en
https://support.google.com/googleplay/answer/6014972?hl=en


Bibliography 155

[111] PL Gorski and L Lo Iacono. “Towards the Usability Evaluation of Security
APIs”. In: Proc. Tenth International Symposium on Human Aspects of Informa-
tion Security & Assurance (HAISA 2016). School of Computing & Mathematics
Plymouth University, 2016.

[112] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. “Systematic detec-
tion of capability leaks in stock Android smartphones”. In: Proc. 19th Annual
Network and Distributed System Security Symposium (NDSS’12). The Internet
Society, 2012.

[113] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
“RiskRanker: Scalable and Accurate Zero-day Android Malware Detection”.
In: Proc. 10th International Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys’12). ACM, 2012.

[114] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. “Un-
safe Exposure Analysis of Mobile In-App Advertisements”. In: Proc. 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec’12).
ACM, 2012.

[115] Matthew Green and Matthew Smith. “Developers are Not the Enemy!: The
Need for Usable Security APIs”. In: IEEE Security & Privacy 14.5 (2016), pp. 40–
46.

[116] Julie M Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Pretty-
man. “"We make it a big deal in the company": Security Mindsets in Orga-
nizations that Develop Cryptographic Products”. In: Proc. 14th Symposium on
Usable Privacy and Security (SOUPS’18). USENIX Association, 2018.

[117] Marian Harbach, Alexander De Luca, and Serge Egelman. “The Anatomy of
Smartphone Unlocking”. In: Proc. CHI Conference on Human Factors in Com-
puting Systems (CHI’16). ACM, 2016.

[118] Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. “Us-
ing Personal Examples to Improve Risk Communication for Security and Pri-
vacy Decisions”. In: Proc. SIGCHI Conference on Human Factors in Computing
Systems (CHI’14). ACM, 2014.

[119] Norman Hardy. “The Confused Deputy (or why capabilities might have been
invented)”. In: ACM SIGOPS: Operating Systems Review 22.4 (1988), pp. 36–38.

[120] Michi Henning. “API: Design Matters: Why Changing APIs Might Become a
Criminal Offense.” In: 5.4 (2007), pp. 24–36.

[121] C Herley. “More Is Not the Answer”. In: Proc. 35th IEEE Symposium on Secu-
rity and Privacy (SP’14). IEEE, 2014.

[122] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi.
“ASM: A Programmable Interface for Extending Android Security”. In: Proc.
23rd Usenix Security Symposium (SEC’14). USENIX Association, 2014.

[123] Rolf Holtz and Norman Miller. “Assumed similarity and opinion certainty”.
In: Journal of Personality and Social Psychology 48.4 (1985), pp. 890–898.

[124] Martin Höst, Björn Regnell, and Claes Wohlin. “Using Students as Subjects—
A Comparative Study of Students and Professionals in Lead-Time Impact
Assessment”. In: Empirical Software Engineering 5.3 (2000), pp. 201–214. URL:
http://dx.doi.org/10.1023/A:1026586415054.

http://dx.doi.org/10.1023/A:1026586415054


156 Bibliography

[125] Soumya Indela, Mukul Kulkarni, Kartik Nayak, and Tudor Dumitraş. “Help-
ing Johnny Encrypt: Toward Semantic Interfaces for Cryptographic Frame-
works”. In: Proc. 2016 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! 2016). ACM, 2016.

[126] S Jain and J Lindqvist. “Should I Protect You? Understanding Developers’
Behavior to Privacy-Preserving APIs”. In: Proc. Workshop on Usable Security
(USEC’14). The Internet Society, 2014.

[127] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel, Nikhilesh
Reddy, Jeffrey S Foster, and Todd Millstein. “Dr. Android and Mr. Hide: Fine-
grained Permissions in Android Applications”. In: Proc. 2nd ACM CCS Work-
shop on Security and Privacy in Mobile Devices (SPSM’12). ACM, 2012.

[128] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gautam
Nagesh Peri. “Code Injection Attacks on HTML5-based Mobile Apps: Char-
acterization, Detection and Mitigation”. In: Proc. 21st ACM Conference on Com-
puter and Communication Security (CCS’14). ACM, 2014.

[129] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emer-
son Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. “A Cross-Tool Com-
munication Study on Program Analysis Tool Notifications”. In: Proc. 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE’16). ACM, 2016.

[130] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
“Why don’t software developers use static analysis tools to find bugs?” In:
Proc. 35th IEEE/ACM International Conference on Software Engineering (ICSE’13).
IEEE, 2013.

[131] P. W. Jordan, B. Thomas, B. A. Weerdmeester, and A. L. McClelland. “SUS: A
“quick and dirty" usability scale”. In: Usability Evaluation in Industry. Taylor
and Francis, 1996, pp. 189–194.

[132] Simon Josefsson. PKCS #5: Password-Based Key Derivation Function 2 (PBKDF2)
Test Vectors. http://www.ietf.org/rfc/rfc6070.txt. Jan. 2011.

[133] Jupyter Notebook. http://jupyter.org/. visited. Nov. 2016.

[134] Kate Kelley, Belinda Clark, Vivienne Brown, and John Sitzia. “Good practice
in the conduct and reporting of survey research”. In: International Journal for
Quality in Health Care 15.3 (2003), pp. 261–266.

[135] Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. “Privacy as
Part of the App Decision-Making Process”. In: Proc. SIGCHI Conference on
Human Factors in Computing Systems (CHI’13). ACM, 2013.

[136] Keyczar. https://github.com/google/keyczar.

[137] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L Mazurek,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. “Of
Passwords and People: Measuring the Effect of Password-Composition Poli-
cies”. In: Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI’11).
ACM, 2011.

[138] Satya Komatineni and Dave MacLean. Pro Android 4. Apress, 2012.

[139] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. http://www.ietf.org/rfc/rfc2104.txt. Feb. 1997.

http://www.ietf.org/rfc/rfc6070.txt
http://jupyter.org/
https://github.com/google/keyczar
http://www.ietf.org/rfc/rfc2104.txt


Bibliography 157

[140] Klaus Krippendorff. Content Analysis: An Introduction to Its Methodology (2nd
ed.) SAGE Publications, 2004.

[141] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. “Selecting Third-Party Libraries: The Practitioners’
Perspective”. In: Proc. 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. ACM,
2020.

[142] Lucas Layman, Laurie Williams, and Robert St Amant. “Toward reducing
fault fix time: Understanding developer behavior for the design of automated
fault detection tools”. In: Proc. First International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM’07). IEEE, 2007.

[143] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. “Why does
cryptographic software fail?: a case study and open problems”. In: Proc. 5th
Asia-Pacific Workshop on Systems (APSys’14). ACM, 2014.

[144] J Lee, L. Bauer, and M L Mazurek. “The Effectiveness of Security Images in
Internet Banking”. In: IEEE Internet Computing 19.01 (2015), pp. 54–62.

[145] Pedro Giovanni Leon, Lorrie Faith Cranor, Aleecia M McDonald, and Robert
McGuire. “Token Attempt: The Misrepresentation of Website Privacy Poli-
cies Through the Misuse of P3P Compact Policy Tokens”. In: Proc. 9th Annual
ACM Workshop on Privacy in the Electronic Society (WPES ’10). ACM, 2010.

[146] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. “How Do API Changes Trigger Stack Overflow Dis-
cussions? A Study on the Android SDK”. In: Proc. 22th IEEE International Con-
ference on Program Comprehension (ICPC’14). ACM, 2014.

[147] Dirk van der Linden, Emma Williams, Joseph Hallett, and Awais Rashid.
“The impact of surface features on choice of (in) secure answers by Stack-
overflow readers”. In: IEEE Transactions on Software Engineering (2020), pp. 1–
1.

[148] Darsey Litzenberger. PyCrypto. https://www.dlitz.net/software/pycrypt
o.

[149] Bin Liu, Jialiu Lin, and Norman Sadeh. “Reconciling Mobile App Privacy and
Usability on Smartphones: Could User Privacy Profiles Help?” In: Proc. 23rd
International Conference on World Wide Web (WWW’14). ACM, 2014.

[150] lohan. AntiLVL: android cracking. http://androidcracking.blogspot.in/p/
antilvl_01.html. Last visited: 11/06/15.

[151] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. “Chex: Stat-
ically Vetting Android Apps for Component Hijacking Vulnerabilities”. In:
Proc. 19th ACM Conference on Computer and Communication Security (CCS’12).
ACM, 2012.

[152] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. “Attacks
on WebView in the Android system”. In: Proc. 27th Annual Computer Security
Applications Conference (ACSAC’11). ACM, 2011.

[153] Raj Mallempati. Google I/O Recap, Part 1: Google is Serious About Enterprise Mo-
bility. https://www.mobileiron.com/en/smartwork- blog/google- io-
recap-part-1-google-serious-about-enterprise-mobility. Last visited:
11/13/2015. June 2014.

https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto
http://androidcracking.blogspot.in/p/antilvl_01.html
http://androidcracking.blogspot.in/p/antilvl_01.html
https://www.mobileiron.com/en/smartwork-blog/google-io-recap-part-1-google-serious-about-enterprise-mobility
https://www.mobileiron.com/en/smartwork-blog/google-io-recap-part-1-google-serious-about-enterprise-mobility


158 Bibliography

[154] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Čapkun.
“Analysis of the Communication between Colluding Applications on Mod-
ern Smartphones”. In: Proc. 28th Annual Computer Security Applications Con-
ference (ACSAC’12). ACM, 2012.

[155] Vitaly Shmatikov Martin Georgiev Suman Jana. “Breaking and Fixing Origin-
Based Access Control in Hybrid Web/Mobile Application Frameworks”. In:
Proc. 21st Annual Network and Distributed System Security Symposium (NDSS’14).
The Internet Society, 2014.

[156] Arunesh Mathur, Josefine Engel, Sonam Sobti, Victoria Chang, and Marshini
Chetty. “"They Keep Coming Back Like Zombies": Improving Software Up-
dating Interfaces”. In: Proc. 12th Symposium on Usable Privacy and Security
(SOUPS’16). USENIX Association, 2016.

[157] Michelle L Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nico-
las Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay, and Blase
Ur. “Measuring Password Guessability for an Entire University”. In: Proc.
SIGCHI Conference on Human Factors in Computing Systems (CHI’13). ACM,
2013.

[158] P. McDaniel and W. Enck. “Not So Great Expectations: Why Application Mar-
kets Haven’t Failed Security”. In: IEEE Security & Privacy 8.5 (2010), pp. 76–
78.

[159] David A McMeekin, Brian R von Konsky, Michael Robey, and David JA Cooper.
“The significance of participant experience when evaluating software inspec-
tion techniques”. In: Proc. 20th Australian Conference on Software Engineering
(ASWEC’09). IEEE, 2009.

[160] André Moulo. Android OEM’s applications (in)security and backdoors without
permission. http://www.quarkslab.com/dl/Android-OEM-applications-
insecurity-and-backdoors-without-permission.pdf. 2014.

[161] D Movshovitz-Attias, Y Movshovitz-Attias, P Steenkiste, and C Faloutsos.
“Analysis of the Reputation System and User Contributions on a Question
Answering Website: StackOverflow”. In: Proc. 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM’13).
IEEE, 2013.

[162] Emerson Murphy-Hill, Da Y. Lee, Gail C. Murphy, and Joanna McGrenere.
“How Do Users Discover New Tools in Software Development and Beyond?”
In: Computer Supported Cooperative Work (CSCW) 24.5 (2015), pp. 389–422. URL:
http://people.engr.ncsu.edu/ermurph3/papers/jcscw15.pdf.

[163] Patrick Mutchler, Adam Doupé, John Mitchell, Christopher Kruegel, and Gio-
vanni Vigna. “A Large-Scale Study of Mobile Web App Security”. In: Proc.
2015 Mobile Security Technologies Workshop (MoST’15). IEEE, 2015.

[164] Andrew C. Myers and Barbara Liskov. “A Decentralized Model for Infor-
mation Flow Control”. In: Proc. 16th ACM Symposium on Operating Systems
Principles (SOSP’97). ACM, 1997.

[165] Brad A Myers and Jeffrey Stylos. “Improving API Usability”. In: 59.6 (2016),
pp. 62–69.

http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without-permission.pdf
http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without-permission.pdf
http://people.engr.ncsu.edu/ermurph3/papers/jcscw15.pdf


Bibliography 159

[166] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. ““Jumping Through
Hoops": Why do Java Developers Struggle With Cryptography APIs?” In:
Proc. 37th IEEE/ACM International Conference on Software Engineering (ICSE’15).
IEEE, 2016. URL: https://googledrive.com/host/0BypYpzQy3hi8YWw1Umw
1cl9ZX0k/NADI_ICSE16.pdf.

[167] Nico JD Nagelkerke. “A note on a general definition of the coefficient of de-
termination”. In: Biometrika 78.3 (1991), pp. 691–692.

[168] National Institute of Standards and Technology (NIST). NIST Special Publi-
cation 800-57 Part 1 Revision 4: Recommendation for Key Management. http :
/ / nvlpubs . nist . gov / nistpubs / SpecialPublications / NIST . SP . 800 -
57pt1r4.pdf. 2016.

[169] National Institute of Standards and Technology (NIST). NIST Special Publica-
tion 800-63B Digital Authentication Guideline. https://pages.nist.gov/800-
63-3/sp800-63b.html. 2016.

[170] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. “Apex: Extending
Android Permission Model and Enforcement with User-defined Runtime Con-
straints”. In: Proc. 5th ACM Symposium on Information, Computer and Commu-
nication Security (ASIACCS’10). ACM, 2010.

[171] Lily Hay Newman. The Worst Hacks and Breaches of 2020 So Far | WIRED.
https://www.wired.com/story/worst-hacks-breaches-2020-so-far/.
Mar. 2020.

[172] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles
Weir, and Sascha Fahl. “A Stitch in Time: Supporting Android Developers in
Writing Secure Code”. In: Proc. 24th ACM Conference on Computer and Commu-
nication Security (CCS’17). ACM, 2017.

[173] Jakob Nielsen. Usability engineering. Morgan Kaufmann Publishers, 1993.

[174] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh, Justin
Cappos, and Yanyan Zhuang. “It’s the Psychology Stupid: How Heuristics
Explain Software Vulnerabilities and How Priming Can Illuminate Devel-
oper’s Blind Spots”. In: Proc. 30th Annual Computer Security Applications Con-
ference (ACSAC’14). ACM, 2014.

[175] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and Sascha
Fahl. “To Pin or Not to Pin - Helping App Developers Bullet Proof Their
TLS Connections”. In: Proc. 24th Usenix Security Symposium (SEC’15). USENIX
Association, 2015.

[176] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar, Michael
Backes, and Sascha Fahl. “Why Eve and Mallory Still Love Android: Revisit-
ing TLS (In)Security in Android Applications”. In: Proc. 30th Usenix Security
Symposium (SEC’21). USENIX Association, 2021.

[177] Machigar Ongtang, Stephen E. McLaughlin, William Enck, and Patrick Mc-
Daniel. “Semantically Rich Application-Centric Security in Android”. In: Proc.
25th Annual Computer Security Applications Conference (ACSAC’09). ACM, 2009.

[178] Lucky Onwuzurike and Emiliano De Cristofaro. “Danger is my middle name:
experimenting with SSL vulnerabilities in Android apps”. In: Proc. 8th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec’15).
ACM, 2015.

https://googledrive.com/host/0BypYpzQy3hi8YWw1Umw1cl9ZX0k/NADI_ICSE16.pdf
https://googledrive.com/host/0BypYpzQy3hi8YWw1Umw1cl9ZX0k/NADI_ICSE16.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.wired.com/story/worst-hacks-breaches-2020-so-far/


160 Bibliography

[179] Open Handset Alliance. Android. http://www.openhandsetalliance.com/
android_overview.html. Last visited: 11/13/2015. 2015.

[180] Open Signal. Android Fragmentation Visualized (August 2015). http : / / ope
nsignal.com/reports/2015/08/android- fragmentation/. Last visited:
11/06/2015. Aug. 2015.

[181] R Pandita, X Xiao, W Yang, W Enck, and T Xie. “WHYPER: towards automat-
ing risk assessment of mobile applications”. In: Proc. 22nd Usenix Security
Symposium (SEC’13). USENIX Association, 2013.

[182] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. “Usability Smells: An Anal-
ysis of Developers’ Struggle With Crypto Libraries”. In: Proc. 15th Symposium
on Usable Privacy and Security (SOUPS’19). USENIX Association, 2019.

[183] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. “Ad-
Droid: Privilege Separation for Applications and Advertisers in Android”.
In: Proc. 7th ACM Symposium on Information, Computer and Communication Se-
curity (ASIACCS’12). ACM, 2012.

[184] Henning Perl, Sascha Fahl, and Matthew Smith. “You Won’t Be Needing
These Any More: On Removing Unused Certificates from Trust Stores”. In:
Proc. 18th International Conference on Financial Cryptography and Data Security
(FC’14). Springer, 2014.

[185] Trevor Perrin. tlslite. http://trevp.net/tlslite/.

[186] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. “An Empirical Study of
API Usability”. In: Proc. 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM’13). IEEE, 2013.

[187] Olgierd Pieczul, S. Foley, and Mary Ellen Zurko. “Developer-centered secu-
rity and the symmetry of ignorance”. In: Proc. 2017 New Security Paradigms
Workshop (NSPW’17). ACM, 2017.

[188] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. “Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications.” In: Proc. 21st Annual Network
and Distributed System Security Symposium (NDSS’14). The Internet Society,
2014.

[189] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and Katha-
rina Kinder-Kurlanda. “Can Security Become a Routine?: A Study of Orga-
nizational Change in an Agile Software Development Group”. In: Proc. 2017
ACM Conference on Computer Supported Cooperative Work and Social Computing
(CSCW ’17). ACM, 2017.

[190] L Ponzanelli, A Mocci, A Bacchelli, and M Lanza. “Understanding and Clas-
sifying the Quality of Technical Forum Questions”. In: Proc. 14th International
Conference on Quality Software (QSIC’14). IEEE, 2014.

[191] Lutz Prechelt. “Plat_Forms: A web development platform comparison by
an exploratory experiment searching for emergent platform properties”. In:
IEEE Transactions on Software Engineering 37.1 (2011), pp. 95–108.

[192] Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. “Evaluat-
ing the Evaluations of Code Recommender Systems: A Reality Check”. In:
Proc. 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’16). ACM, 2016.

http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html
http://opensignal.com/reports/2015/08/android-fragmentation/
http://opensignal.com/reports/2015/08/android-fragmentation/
http://trevp.net/tlslite/


Bibliography 161

[193] pyaes. https://github.com/ricmoo/pyaes.

[194] PyCA-TLS. https://github.com/pyca/tls.

[195] PyCryptodome. http://pycryptodome.readthedocs.io.

[196] pycryptopp. https://tahoe-lafs.org/trac/pycryptopp.

[197] pyDes. https://github.com/toddw-as/pyDes.

[198] PyMe. http://pyme.sourceforge.net.

[199] PyNaCl. https://pynacl.readthedocs.io/en/latest.

[200] pyOpenSSL. http://www.pyopenssl.org/en/stable.

[201] pysodium. https://github.com/stef/pysodium.

[202] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. “AutoCog: Measuring the Description-to-permission Fidelity in
Android Applications”. In: Proc. 21st ACM Conference on Computer and Com-
munication Security (CCS’14). ACM, 2014.

[203] Sai Ramanan. The Top 10 Security Breaches Of 2015. http://www.forbes.
com/sites/quora/2015/12/31/the- top- 10- security- breaches- of-
2015/#7a67d9d5694f. Last visited: 10/18/2020. Dec. 2015.

[204] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. “DroidChameleon: evaluat-
ing Android anti-malware against transformation attacks”. In: Proc. 8th ACM
Symposium on Information, Computer and Communication Security (ASIACCS’13).
ACM, 2013.

[205] B Reaves, N Scaife, A Bates, and P Traynor. “Mo(bile) Money, Mo(bile) Prob-
lems: Analysis of Branchless Banking Applications in the Developing World”.
In: Proc. 24th Usenix Security Symposium (SEC’15). USENIX Association, 2015.

[206] Elissa M. Redmiles, Sean Kross, and Michelle L. Mazurek. “How I Learned
to Be Secure: A Census-Representative Survey of Security Advice Sources
and Behavior”. In: Proc. 23nd ACM Conference on Computer and Communication
Security (CCS’16). ACM, 2016.

[207] Rob Reeder, E Cram Kowalczyk, and Adam Shostack. “Helping engineers
design NEAT security warnings”. In: Proc. 7th Symposium on Usable Privacy
and Security (SOUPS’11). ACM, 2011.

[208] Karen Renaud, Melanie Volkamer, and Arne Renkema-Padmos. “Why Doesn’t
Jane Protect Her Privacy?” In: Proc. on Privacy Enhancing Technologies 2014
(PETS’14). Springer, 2014.

[209] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems”. In: Communications of
the ACM 21.2 (1978), 120––126.

[210] Franziska Roesner and Tadayoshi Kohno. “Securing Embedded User Inter-
faces: Android and Beyond”. In: Proc. 22nd Usenix Security Symposium (SEC’13).
USENIX Association, 2013.

[211] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno,
Helen J. Wang, and Crispin Cowan. “User-Driven Access Control: Rethink-
ing Permission Granting in Modern Operating Systems”. In: Proc. 33rd IEEE
Symposium on Security and Privacy (SP’12). IEEE, 2012.

https://github.com/ricmoo/pyaes
https://github.com/pyca/tls
http://pycryptodome.readthedocs.io
https://tahoe-lafs.org/trac/pycryptopp
https://github.com/toddw-as/pyDes
http://pyme.sourceforge.net
https://pynacl.readthedocs.io/en/latest
http://www.pyopenssl.org/en/stable
https://github.com/stef/pysodium
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#7a67d9d5694f
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#7a67d9d5694f
http://www.forbes.com/sites/quora/2015/12/31/the-top-10-security-breaches-of-2015/#7a67d9d5694f


162 Bibliography

[212] Scott Ruoti, Jeff Andersen, Scott Heidbrink, Mark O’Neill, Elham Vaziripour,
Justin Wu, Daniel Zappala, and Kent Seamons. “"We’re on the Same Page": A
Usability Study of Secure Email Using Pairs of Novice Users”. In: Proc. CHI
Conference on Human Factors in Computing Systems (CHI’16). ACM, 2016.

[213] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy Van Der Horst, and Kent Sea-
mons. “Confused Johnny: when automatic encryption leads to confusion and
mistakes”. In: Proc. 9th Symposium on Usable Privacy and Security (SOUPS’13).
ACM, 2013.

[214] C. Sadowski, J. v. Gogh, C. Jaspan, E. Söderberg, and C. Winter. “Tricorder:
Building a Program Analysis Ecosystem”. In: Proc. 37th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE’15). IEEE, 2015.

[215] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. “Are students rep-
resentatives of professionals in software engineering experiments?” In: Proc.
37th IEEE/ACM International Conference on Software Engineering (ICSE’15). IEEE
Press, 2015.

[216] Jerome H Saltzer and Michael D Schroeder. “The Protection of Information
in Computer Systems”. In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308.

[217] Samsung. Knox. https://www.samsungknox.com. Last visited: 11/13/2015.

[218] Riccardo Scandariato, James Walden, and Wouter Joosen. “Static analysis ver-
sus penetration testing: A controlled experiment”. In: Proc. 24th International
Symposium on Software Reliability Engineering (ISSRE’13). IEEE, 2013.

[219] Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian Fischer. “The
Emperor’s New Security Indicators”. In: Proc. 28th IEEE Symposium on Secu-
rity and Privacy (SP’07). IEEE, 2007.

[220] Thomas Scheller and Eva Kühn. “Usability Evaluation of Configuration-Based
API Design Concepts”. In: Proc. 1st International Conference on Human Factors
in Computing and Informatics (SouthCHI’13). Springer, 2013.

[221] scrypt. http://bitbucket.org/mhallin/py-scrypt.

[222] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. “EROS: a fast
capability system”. In: Proc. 17th ACM Symposium on Operating Systems Prin-
ciples (SOSP’99). ACM, 1999.

[223] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. “AdSplit: Separating
Smartphone Advertising from Applications”. In: Proc. 21st Usenix Security
Symposium (SEC’12). USENIX Association, 2012.

[224] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J Hyland.
“Why Johnny Still Can’t Encrypt: Evaluating the Usability of Email Encryp-
tion Software”. In: Proc. 2nd Symposium on Usable Privacy and Security (SOUPS’06).
ACM, 2006.

[225] simple-crypt. https://github.com/andrewcooke/simple-crypt.

[226] D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic,
N. K. Liborg, and A. C. Rekdal. “A survey of controlled experiments in soft-
ware engineering”. In: IEEE Transactions on Software Engineering 31.9 (2005),
pp. 733–753.

[227] Stephen Smalley and Robert Craig. “Security Enhanced (SE) Android: Bring-
ing Flexible MAC to Android”. In: Proc. 20th Annual Network and Distributed
System Security Symposium (NDSS’13). The Internet Society, 2013.

https://www.samsungknox.com
http://bitbucket.org/mhallin/py-scrypt
https://github.com/andrewcooke/simple-crypt


Bibliography 163

[228] D. K. Smetters and Nathan Good. “How Users Use Access Control”. In: Proc.
5th Symposium on Usable Privacy and Security (SOUPS’09). ACM, 2009.

[229] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. “Improving developer participation rates in surveys”. In: Proc.
6th International Workshop on Cooperative and Human Aspects of Software En-
gineering (CHASE’13). IEEE, 2013. URL: http://people.engr.ncsu.edu/
ermurph3/papers/chase13.pdf.

[230] Justin Smith, Brittany Johnson, Emerson Murphy-Hill, Bill Chu, and Heather
Richter Lipford. “Questions developers ask while diagnosing potential secu-
rity vulnerabilities with static analysis”. In: Proc. 10th Joint Meeting on Foun-
dations of Software Engineering. ACM, 2015.

[231] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. “What Mobile Ads Know
About Mobile Users”. In: Proc. 23rd Annual Network and Distributed System
Security Symposium (NDSS’16). The Internet Society, 2016.

[232] SophosLabs. Sophos 2020 Threat Report. https://www.sophos.com/en-us/
medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-
report.pdf. Dec. 2019.

[233] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Lati-
fur Khan. “SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-
in-the-Middle Vulnerabilities in Android Apps”. In: Proc. 21st Annual Network
and Distributed System Security Symposium (NDSS’14). The Internet Society,
2014.

[234] M. Souppaya and K. Scarfone. NIST Special Publication 800-124 Revision 1:
Guidelines for Managing the Security of Mobile Devices in the Enterprise. https:
//doi.org/10.6028/NIST.SP.800-124r1. June 2013.

[235] Stack Overflow - Developer Survey Results. https://insights.stackoverflow.
com/survey/2017. visited. June 2017.

[236] Frank Stajano. “Pico: No More Passwords!” In: Security Protocols XIX - 19th
International Workshop. Springer, 2011.

[237] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen.
“Investigating User Privacy in Android Ad Libraries”. In: Proc. 2012 Mobile
Security Technologies Workshop (MoST’12). IEEE, 2012.

[238] Christian Stransky, Yasemin Acar, Duc Cuong Nguyen, Dominik Wermke,
Elissa M. Redmiles, Doowon Kim, Michael Backes, Simson Garfinkel, Michelle
L. Mazurek, and Sascha Fahl. “Lessons Learned from Using an Online Plat-
form to Conduct Large-Scale, Online Controlled Security Experiments with
Software Developers”. In: Proc. 10th USENIX Workshop on Cyber Security Ex-
perimentation and Test (CSET’17). USENIX Association, 2017.

[239] Jeffrey Stylos and Brad A Myers. “The implications of method placement on
API learnability”. In: Proc. 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (SIGSOFT’08/FSE-16). ACM, 2008.

[240] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. “Securing
Android: A Survey, Taxonomy, and Challenges”. In: ACM Computing Surveys
47.4 (2015), 58:1–58:45.

http://people.engr.ncsu.edu/ermurph3/papers/chase13.pdf
http://people.engr.ncsu.edu/ermurph3/papers/chase13.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://www.sophos.com/en-us/medialibrary/pdfs/technical-papers/sophoslabs-uncut-2020-threat-report.pdf
https://doi.org/10.6028/NIST.SP.800-124r1
https://doi.org/10.6028/NIST.SP.800-124r1
https://insights.stackoverflow.com/survey/2017
https://insights.stackoverflow.com/survey/2017


164 Bibliography

[241] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie
Faith Cranor. “Crying Wolf: An Empirical Study of SSL Warning Effective-
ness.” In: Proc. 18th Usenix Security Symposium (SEC’09). USENIX Association,
2009.

[242] Mohammad Tahaei. “"I Don’t Know Too Much About It": On the Security
Mindsets of Future Software Creators”. In: Proc. 2019 ACM Conference on In-
novation and Technology in Computer Science Education. ACM, 2019.

[243] Mohammad Tahaei and Kami Vaniea. “A Survey on Developer-Centred Se-
curity”. In: Proc. 2019 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW). IEEE, 2019.

[244] The Internet Society. Internet Society Global Internet Report 2015. http://www.
internetsociety.org/globalinternetreport/assets/download/IS_web.
pdf. 2015.

[245] The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS. www.open
ssl.org. 2003.

[246] The Sodium crypto library (libsodium). https://libsodium.org.

[247] Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. “Security Metrics
for the Android Ecosystem”. In: Proc. 5th ACM CCS Workshop on Security and
Privacy in Mobile Devices (SPSM’15). ACM, 2015.

[248] T. Thomas, B. Chu, H. Lipford, J. Smith, and E. Murphy-Hill. “A study of
interactive code annotation for access control vulnerabilities”. In: Proc. 2015
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’15).
IEEE, 2015.

[249] Tyler W Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson Murphy-
Hill. “What Questions Remain? An Examination of How Developers Under-
stand an Interactive Static Analysis Tool”. In: Proc. 2nd Workshop on Security
Information Workers (WSIW’16). USENIX Association, 2016.

[250] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. “Secu-
rity During Application Development: An Application Security Expert Per-
spective”. In: Proc. CHI Conference on Human Factors in Computing Systems
(CHI’18). ACM, 2018.

[251] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. “How Do Pro-
grammers Ask and Answer Questions on the Web?: Nier track”. In: Proc. 33rd
IEEE/ACM International Conference on Software Engineering (ICSE’11). IEEE,
2011.

[252] Amos Tversky and Daniel Kahneman. “Judgment under Uncertainty: Heuris-
tics and Biases”. In: Utility, Probability, and Human Decision Making: Selected
Proceedings of an Interdisciplinary Research Conference, Rome, 3–6 September, 1973.
Springer Netherlands, 1975, pp. 141–162.

[253] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass,
Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. “How does your password
measure up? The effect of strength meters on password creation.” In: Proc.
21st Usenix Security Symposium (SEC’12). USENIX Association, 2012.

[254] Kami E Vaniea, Emilee Rader, and Rick Wash. “Betrayed by updates”. In:
Proc. SIGCHI Conference on Human Factors in Computing Systems (CHI’14). ACM,
2014.

http://www.internetsociety.org/globalinternetreport/assets/download/IS_web.pdf
http://www.internetsociety.org/globalinternetreport/assets/download/IS_web.pdf
http://www.internetsociety.org/globalinternetreport/assets/download/IS_web.pdf
www.openssl.org
www.openssl.org
https://libsodium.org


Bibliography 165

[255] B Vasilescu, A Capiluppi, and A Serebrenik. “Gender, Representation and
Online Participation: A Quantitative Study of StackOverflow”. In: Proc. 2012
International Conference on Social Informatics (SocialInformatics’12). IEEE, 2012.

[256] Timothy Vidas, Nicolas Christin, and Lorrie Faith Cranor. “Curbing Android
Permission Creep”. In: Proc. Workshop on Web 2.0 Security and Privacy 2011
(W2SP’11). IEEE, 2011.

[257] John Viega, Matt Messier, and Pravir" Chandra. Network Security with OpenSSL.
O’Reilly Media, 2002.

[258] Nicolas Viennot, Edward Garcia, and Jason Nieh. “A Measurement Study of
Google Play”. In: Proc. 2014 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’14). ACM, 2014.

[259] Daniel Votipka, Desiree Abrokwa, and Michelle L Mazurek. “Building and
Validating a Scale for Secure Software Development Self-Efficacy”. In: Proc.
CHI Conference on Human Factors in Computing Systems (CHI’20). ACM, 2020.

[260] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou, Michelle L.
Mazurek, and Michael Hicks. “Understanding security mistakes developers
make: Qualitative analysis from Build It, Break It, Fix It”. In: Proc. 29th Usenix
Security Symposium (SEC’20). USENIX Association, 2020.

[261] Daniel Votipka, Rock Stevens, Elissa Redmiles, Jeremy Hu, and Michelle Mazurek.
“Hackers vs. Testers: A Comparison of Software Vulnerability Discovery Pro-
cesses”. In: Proc. 39th IEEE Symposium on Security and Privacy (SP’18). IEEE,
2018.

[262] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. “Unauthorized Ori-
gin Crossing on Mobile Platforms: Threats and Mitigation”. In: Proc. 20th
ACM Conference on Computer and Communication Security (CCS’13). ACM, 2013.

[263] Shaowei Wang, David Lo, and Lingxiao Jiang. “An Empirical Study on Devel-
oper Interactions in StackOverflow”. In: Proc. 28th Annual ACM Symposium on
Applied Computing (SAC’13). ACM, 2013.

[264] Wei Wang and Michael W. Godfrey. “Detecting API Usage Obstacles: A Study
of iOS and Android Developer Questions”. In: Proc. 10th Working Conference
on Mining Software Repositories (MSR’13). IEEE, 2013.

[265] Wei Wang, Haroon Malik, and Michael W. Godfrey. “Recommending Posts
Concerning API Issues in Developer Q&A Sites”. In: Proc. 12th Working Con-
ference on Mining Software Repositories (MSR’15). IEEE, 2015.

[266] Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du.
“Compac: Enforce Component-level Access Control in Android”. In: Proc. 4th
ACM Conference on Data and Application Security and Privacy (CODASPY’14).
ACM, 2014.

[267] R Wash and E Rader. “Too Much Knowledge? Security Beliefs and Protective
Behaviors Among United States Internet Users”. In: Proc. 11th Symposium on
Usable Privacy and Security (SOUPS’15). USENIX Association, 2015.

[268] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. “Per-
mission evolution in the Android ecosystem”. In: Proc. 28th Annual Computer
Security Applications Conference (ACSAC’12). ACM, 2012.

[269] Joel Weinberger and Adrienne Porter Felt. “A Week to Remember: The Im-
pact of Browser Warning Storage Policies”. In: Proc. 12th Symposium on Usable
Privacy and Security (SOUPS’16). USENIX Association, 2016.



166 Bibliography

[270] Rodrigo Werlinger, Kirstie Hawkey, and Konstantin Beznosov. “An integrated
view of human, organizational, and technological challenges of IT security
management”. In: Information Management & Computer Security 17.1 (2009),
pp. 4–19.

[271] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Brad Reaves, Patrick Traynor,
and Sascha Fahl. “A Large Scale Investigation of Obfuscation Use in Google
Play”. In: Proc. 34th Annual Computer Security Applications Conference (AC-
SAC’18). ACM, 2018.

[272] Alma Whitten and J. D. Tygar. “Why Johnny Can’t Encrypt: A Usability Eval-
uation of PGP 5.0”. In: Proc. 8th Usenix Security Symposium (SEC’99). USENIX
Association, 1999.

[273] Chamila Wijayarathna, Nalin Asanka Gamagedara Arachchilage, and Jill Slay.
“Generic Cognitive Dimensions Questionnaire to Evaluate the Usability of
Security APIs”. In: Proceedings of the 19th International Conference on Human-
Computer Interaction. Springer, 2017.

[274] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David
Wagner, and Konstantin Beznosov. “Android Permissions Remystified: A
Field Study on Contextual Integrity”. In: Proc. 24th Usenix Security Symposium
(SEC’15). USENIX Association, 2015.

[275] Shawn Willden. Keyczar Design Philosophy. https://github.com/google/
keyczar/wiki/KeyczarPhilosophy. 2015.

[276] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. “Quantifying developers’ adoption of se-
curity tools”. In: Proc. 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015.

[277] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. “The
Impact of Vendor Customizations on Android Security”. In: Proc. 20th ACM
Conference on Computer and Communication Security (CCS’13). ACM, 2013.

[278] Glenn Wurster and P C van Oorschot. “The developer is the enemy”. In: Proc.
2008 New Security Paradigms Workshop (NSPW’08). ACM, 2008.

[279] Tim Wyatt. Security Alert: Geinimi, Sophisticated New Android Trojan Found in
Wild. https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/. Last
visited: 11/06/15. Dec. 2010.

[280] Jing Xie, Bill Chu, Heather Richter Lipford, and John T Melton. “ASIDE: IDE
support for web application security”. In: Proc. 27th Annual Computer Security
Applications Conference (ACSAC’11). ACM, 2011.

[281] Jing Xie, Heather Richter Lipford, and Bill Chu. “Why do programmers make
security errors?” In: Proc. 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’11). IEEE, 2011.

[282] Yu Xie and Daniel Powers. Statistical Methods for Categorical Data Analysis.
Emerald Publishing, 2008.

[283] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. “Up-
grading Your Android, Elevating My Malware: Privilege Escalation Through
Mobile OS Updating”. In: Proc. 35th IEEE Symposium on Security and Privacy
(SP’14). IEEE, 2014.

https://github.com/google/keyczar/wiki/KeyczarPhilosophy
https://github.com/google/keyczar/wiki/KeyczarPhilosophy
https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/


Bibliography 167

[284] Rubin Xu, Hassen Saïdi, and Ross Anderson. “Aurasium: Practical policy en-
forcement for android applications”. In: Proc. 21st Usenix Security Symposium
(SEC’12). USENIX Association, 2012.

[285] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. “Helping Johnny
to Analyze Malware: A Usability-Optimized Decompiler and Malware Anal-
ysis User Study”. In: Proc. 37th IEEE Symposium on Security and Privacy (SP’16).
IEEE, 2016.

[286] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. “Securing Dis-
tributed Systems with Information Flow Control”. In: Proc. 5th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’08). USENIX
Association, 2008.

[287] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. “Towards Automatic Gener-
ation of Security-Centric Descriptions for Android Apps”. In: Proc. 22nd ACM
Conference on Computer and Communication Security (CCS’15). ACM, 2015.

[288] Yinqian Zhang, Fabian Monrose, and Michael K Reiter. “The Security of Mod-
ern Password Expiration: An Algorithmic Framework and Empirical Analy-
sis”. In: Proc. 17th ACM Conference on Computer and Communication Security
(CCS’10). ACM, 2010.

[289] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. “AppInk: Watermarking An-
droid Apps for Repackaging Deterrence”. In: Proc. 8th ACM Symposium on
Information, Computer and Communication Security (ASIACCS’13). ACM, 2013.

[290] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. “Fast,
Scalable Detection of "Piggybacked" Mobile Applications”. In: Proc. 3rd ACM
Conference on Data and Application Security and Privacy (CODASPY’13). ACM,
2013.

[291] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. “Detecting Repack-
aged Smartphone Applications in Third-Party Android Marketplaces”. In:
Proc. 2nd ACM Conference on Data and Application Security and Privacy (CO-
DASPY’12). ACM, 2012.

[292] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and Xi-
aoFeng Wang. “The Peril of Fragmentation: Security Hazards in Android De-
vice Driver Customizations”. In: Proc. 35th IEEE Symposium on Security and
Privacy (SP’14). IEEE, 2014.

[293] Yajin Zhou and Xuxian Jiang. “Detecting Passive Content Leaks and Pollu-
tion in Android Applications”. In: Proc. 20th Annual Network and Distributed
System Security Symposium (NDSS’13). The Internet Society, 2013.

[294] Yajin Zhou and Xuxian Jiang. “Dissecting Android Malware: Characteriza-
tion and Evolution”. In: Proc. 33rd IEEE Symposium on Security and Privacy
(SP’12). IEEE, 2012.

[295] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. “Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android Mar-
kets”. In: Proc. 19th Annual Network and Distributed System Security Symposium
(NDSS’12). The Internet Society, 2012.

[296] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. “Taming
Information-stealing Smartphone Applications (on Android)”. In: Proc. 4th
International Conference on Trust and Trustworthy Computing (TRUST’11). Springer,
2011.



168 Bibliography

[297] Philip Zimmermann. PGP Version 2.6.2 User’s Guide. ftp://ftp.pgpi.org/
pub/pgp/2.x/doc/pgpdoc1.txt. Oct. 1994.

ftp://ftp.pgpi.org/pub/pgp/2.x/doc/pgpdoc1.txt
ftp://ftp.pgpi.org/pub/pgp/2.x/doc/pgpdoc1.txt


169

Curriculum Vitae


