176 research outputs found

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Towards Chapel-based Exascale Tree Search Algorithms: dealing with multiple GPU accelerators

    Get PDF
    International audienceTree-based search algorithms applied to combinatorial optimization problems are highly irregular and time consuming when it comes to solving big instances. Solving such instances efficiently requires the use of massively parallel distributed-memory supercomputers. According to recent Top 500 trends, the degree of parallelism in these supercomputers continues to increase in size and complexity, with millions of heterogeneous (mainly CPU-GPU) cores. Harnessing this scale of computing resources raises at least three challenging issues which are described and addressed in this paper. Indeed, as a step towards exascale computing, we revisit the design and implementation of tree search algorithms dealing with multiple GPUs, in addition to scalability and productivity-awareness using Chapel. The proposed algorithm exploits Chapel's distributed iterators by combining a partial search strategy with pre-compiled CUDA kernels for more efficient exploitation of the intra-node parallelism. Extensive experimentation on big N-Queens problem instances using 24 GPUs shows that up to 90% of the linear speedup can be achieved

    GSI: GPU-friendly Subgraph Isomorphism

    Full text link
    Subgraph isomorphism is a well-known NP-hard problem that is widely used in many applications, such as social network analysis and query over the knowledge graph. Due to the inherent hardness, its performance is often a bottleneck in various real-world applications. Therefore, we address this by designing an efficient subgraph isomorphism algorithm leveraging features of GPU architecture, such as massive parallelism and memory hierarchy. Existing GPU-based solutions adopt a two-step output scheme, performing the same join process twice in order to write intermediate results concurrently. They also lack GPU architecture-aware optimizations that allow scaling to large graphs. In this paper, we propose a GPU-friendly subgraph isomorphism algorithm, GSI. Different from existing edge join-based GPU solutions, we propose a Prealloc-Combine strategy based on the vertex-oriented framework, which avoids joining-twice in existing solutions. Also, a GPU-friendly data structure (called PCSR) is proposed to represent an edge-labeled graph. Extensive experiments on both synthetic and real graphs show that GSI outperforms the state-of-the-art algorithms by up to several orders of magnitude and has good scalability with graph size scaling to hundreds of millions of edges.Comment: 15 pages, 17 figures, conferenc

    Efficient Synchronization Primitives for GPUs

    Full text link
    In this paper, we revisit the design of synchronization primitives---specifically barriers, mutexes, and semaphores---and how they apply to the GPU. Previous implementations are insufficient due to the discrepancies in hardware and programming model of the GPU and CPU. We create new implementations in CUDA and analyze the performance of spinning on the GPU, as well as a method of sleeping on the GPU, by running a set of memory-system benchmarks on two of the most common GPUs in use, the Tesla- and Fermi-class GPUs from NVIDIA. From our results we define higher-level principles that are valid for generic many-core processors, the most important of which is to limit the number of atomic accesses required for a synchronization operation because atomic accesses are slower than regular memory accesses. We use the results of the benchmarks to critique existing synchronization algorithms and guide our new implementations, and then define an abstraction of GPUs to classify any GPU based on the behavior of the memory system. We use this abstraction to create suitable implementations of the primitives specifically targeting the GPU, and analyze the performance of these algorithms on Tesla and Fermi. We then predict performance on future GPUs based on characteristics of the abstraction. We also examine the roles of spin waiting and sleep waiting in each primitive and how their performance varies based on the machine abstraction, then give a set of guidelines for when each strategy is useful based on the characteristics of the GPU and expected contention.Comment: 13 pages with appendix, several figures, plans to submit to CompSci conference in early 201

    Parallelizing Maximal Clique Enumeration on GPUs

    Full text link
    We present a GPU solution for exact maximal clique enumeration (MCE) that performs a search tree traversal following the Bron-Kerbosch algorithm. Prior works on parallelizing MCE on GPUs perform a breadth-first traversal of the tree, which has limited scalability because of the explosion in the number of tree nodes at deep levels. We propose to parallelize MCE on GPUs by performing depth-first traversal of independent subtrees in parallel. Since MCE suffers from high load imbalance and memory capacity requirements, we propose a worker list for dynamic load balancing, as well as partial induced subgraphs and a compact representation of excluded vertex sets to regulate memory consumption. Our evaluation shows that our GPU implementation on a single GPU outperforms the state-of-the-art parallel CPU implementation by a geometric mean of 4.9x (up to 16.7x), and scales efficiently to multiple GPUs. Our code has been open-sourced to enable further research on accelerating MCE

    Optimisation massivement multi-tâche sur grappes de calcul hétérogènes – Application aux problèmes de permutation

    Get PDF
    Branch-and-Bound (B&B) is a frequently used tree-search exploratory method for the exact resolution of combinatorial optimization problems (COPs). However, in practice, only small problem instances can be solved on a sequential computer, as B&B generates often generates a huge amount of subproblems to be evaluated. In order to solve large COPs, we revisit the design and implementation of massively parallel B&B on top of large heterogeneous clusters, integrating multi-core CPUs, many-core processors and GPUs.For the efficient storage and management of subproblems an original data structure (IVM) dedicated to permutation problems is used. Because of the highly irregular and unpredictable shape of the B&B tree, dynamic load balancing between parallel exploration processes is one of the main issues addressed in this thesis. Based on a compact encoding of the search space in the form of intervals, work stealing strategies for multi-core and GPU are proposed, as well as hierarchical approaches for load balancing in distributed memory multi-CPU/multi-GPU systems. Three permutation problems, the Flowshop Scheduling Problem (FSP), the Quadratic Assignment Problem (QAP) and the n-Queens puzzle problem are used as test-cases.The resolution, in 9 hours, of a FSP instance with an estimated sequential execution time of 22 years demonstrates the scalability of the proposed algorithms on a cluster composed of 36 GPUs.L'algorithme Branch-and-Bound (B&B) est une méthode de recherche arborescente fréquemment utilisé pour la résolution exacte de problèmes d'optimisation combinatoire (POC). Néanmoins, seules des petites instances peuvent être effectivement résolues sur une machine séquentielle, le nombre de sous-problèmes à évaluer étant souvent très grand. Visant la resolution de POC de grande taille, nous réexaminons la conception et l'implémentation d'algorithmes B&B massivement parallèles sur de larges plateformes hétérogènes de calcul, intégrant des processeurs multi-coeurs, many-cores et et processeurs graphiques (GPUs). Pour une représentation compacte en mémoire des sous-problèmes une structure de données originale (IVM), dédiée aux problèmes de permutation est utilisée. En raison de la forte irrégularité de l'arbre de recherche, l'équilibrage de charge dynamique entre processus d'exploration parallèles occupe une place centrale dans cette thèse. Basés sur un encodage compact de l'espace de recherche sous forme d'intervalles, des stratégies de vol de tâches sont proposées pour processeurs multi-core et GPU, ainsi une approche hiérarchique pour l'équilibrage de charge dans les systèmes multi-GPU et multi-CPU à mémoire distribuée. Trois problèmes d'optimisation définis sur l'ensemble des permutations, le problème d'ordonnancement Flow-Shop (FSP), d'affectation quadratique (QAP) et le problème des n-dames sont utilisés comme cas d'étude. La resolution en 9 heures d'une instance du FSP dont le temps de résolution séquentiel est estimé à 22 ans demontre la capacité de passage à l'échelle des algorithmes proposés sur une grappe de calcul composé de 36 GPUs

    Solving large permutation flow-shop scheduling problems on GPU-accelerated supercomputers

    Get PDF
    Makespan minimization in permutation flow-shop scheduling is a well-known hard combinatorial optimization problem. Among the 120 standard benchmark instances proposed by E. Taillard in 1993, 23 have remained unsolved for almost three decades. In this paper, we present our attempts to solve these instances to optimality using parallel Branch-and-Bound tree search on the GPU-accelerated Jean Zay supercomputer. We report the exact solution of 11 previously unsolved problem instances and improved upper bounds for 8 instances. The solution of these problems requires both algorithmic improvements and leveraging the computing power of peta-scale high-performance computing platforms. The challenge consists in efficiently performing parallel depth-first traversal of a highly irregular, fine-grained search tree on distributed systems composed of hundreds of massively parallel accelerator devices and multi-core processors. We present and discuss the design and implementation of our permutation-based B&B and experimentally evaluate its parallel performance on up to 384 V100 GPUs (2 million CUDA cores) and 3840 CPU cores. The optimality proof for the largest solved instance requires about 64 CPU-years of computation-using 256 GPUs and over 4 million parallel search agents, the traversal of the search tree is completed in 13 hours, exploring 339 Tera-nodes

    Exploring Multi-Level Parallelism For Graph-Based Applications Via Algorithm And System Co-Design

    Get PDF
    Graph processing is at the heart of many modern applications where graphs are used as the basic data structure to represent the entities of interest and the relationships between them. Improving the performance of graph-based applications, especially using parallelism techniques, has drawn significant interest both in academia and industry. On the one hand, modern CPU architectures are able to provide massive computational power by using sophisticated memory hierarchy and multi-level parallelism, including thread-level parallelism, data-level parallelism, etc. On the other hand, graph processing workloads are notoriously challenging for achieving high performance due to their irregular computation pattern and unpredictable control flow. Therefore, how to accelerate the performance of graph-based applications using parallelism is still an open question. This dissertation focuses on providing high performance for graph-based applications. To take full advantage of multi-level parallelism resources provided by CPUs, this dissertation studies the characteristics of graph-based applications and matches their parallel solutions with the underlying hardware via algorithm and system co-design. This dissertation divides graph-based applications into three categories: typical graph algorithms, sequential graph-based applications, and applications with graph-based solutions. The first category comprises typical graph algorithms with available parallel solutions. This dissertation proposes GraphPhi as a new approach to graph processing on emerging Intel Xeon Phi-like architectures. The second category includes specialized graph applications without nontrivial parallel solutions. This dissertation studies a state-of-the-art 2-hop labeling approach named Pruned Landmark Labeling (PLL). This dissertation proposes Batched Vertex-Centric PLL (BVC-PLL), which breaks PLL\u27s inherent dependencies and parallelizes it in a scalable way. The third category includes applications that rely on graph-based solutions. This dissertation studies the sequential search algorithm for the graph-based indexing methods used for the Approximate Nearest Neighbor Search (ANNS) problem. This dissertation proposes Speed-ANN, a parallel similarity search algorithm that reveals hidden intra-query parallelism to accelerate the search speed while fulfilling the high accuracy requirement. Moreover, this dissertation further explores the optimization opportunities for computational graph-based deep neural network inference running on tiny devices, specifically microcontrollers (MCUs). Altogether, this dissertation studies graph-based applications and improves their performance by providing solutions of multi-level parallelism via algorithm and system co-design to match them with the underlying multi-core CPU architectures

    Lindsey the Tour Guide Robot: Adaptive Long-Term Autonomy in Social Environments

    Get PDF
    This project proposes a framework for online adaptation of robot behaviours deployed autonomously in social settings with the goal of increasing the overall users' engagement during the interactions. One of the most critical aspects to address for robots deployed in ``the real world'' is the necessity of interacting with people, whether intentionally or not. Interacting with people requires a wide range of capabilities, from perceiving the different people's intentions and emotional states to generating appropriate behaviours for the specific context of the interaction. Moreover, it requires that robots learn and adapt from experience while interacting with their users. In this project, a mobile robot is embedded in a long-term study in a public museum. The robot has been deployed for more than a year, to date, as an autonomous tour guide to the museum's visitors, with its tasks being guiding people to the position of various exhibits and giving a description of each item. The long-term scenario allows studying how people interact with a robot in an unconstrained setting and give the opportunity of improving the current state-of-the-art robotics autonomy in a social setting. The initial data collection shows that users' engagement during the robotised tours steeply declines after the initial moments of the interaction. The first main contribution of this project is to investigate whether it is possible to automatically assess the users' engagement from the robot point-of-view during the interactions. A dataset of robot ego-centric videos was collected and manually annotated by independent coders with continuous engagement values. From it, an end-to-end regression model was trained to predict engagement from the robot point of view from a single camera. Experimental evaluation shows that the model accurately estimates the engagement level of people during an interaction, even in diverse environments and with different robots. Once the robot can detect the engagement state of users during the interactions, it can potentially plan tangential behaviours to influence the users' attentional state itself. The second contribution of this work is devising an online reinforcement learning algorithm that allows the robot to adapt its behaviour online from the feedback obtained during the interactions. The feedback is obtained from users' engagement values estimated from the robot head camera. In the experimental evaluation, the robot delivers the usual tours to the users with the difference that the choice of some actions is left to the adaptive learning algorithm. Results show that after a few months of exploration, the robot successfully learns a policy that leads people to stay in the interaction for longer
    • …
    corecore