
UC Davis
IDAV Publications

Title
Lessons Learned from Exploring the Backtracking Paradigm on the GPU

Permalink
https://escholarship.org/uc/item/7w25q253

Authors
Jenkins, John
Arkatkar, Isha
Owens, John D.
et al.

Publication Date
2011

DOI
10.1007/978-3-642-23397-5_42
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

CORE Metadata, citation and similar papers at core.ac.uk

Provided by eScholarship - University of California

https://core.ac.uk/display/224400637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.org/uc/item/7w25q253
https://escholarship.org/uc/item/7w25q253#author
https://escholarship.org
http://www.cdlib.org/


Lessons Learned from Exploring the
Backtracking Paradigm on the GPU

John Jenkins1,2, Isha Arkatkar1,2, John D. Owens3, Alok Choudhary4, and
Nagiza F. Samatova1,2,5

1 North Carolina State University, Raleigh, NC 27695, USA
2 Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37830, USA

3 University of California, Davis, Davis, CA 95616, USA
4 Northwestern University, Evanston, IL 60208, USA

5 Corresponding author: samatova@csc.ncsu.edu

Abstract. We explore the backtracking paradigm with properties seen
as sub-optimal for GPU architectures, using as a case study the maximal
clique enumeration problem, and find that the presence of these prop-
erties limit GPU performance to approximately 1.4–2.25 times a single
CPU core. The GPU performance “lessons” we find critical to providing
this performance include a coarse-and-fine-grain parallelization of the
search space, a low-overhead load-balanced distribution of work, global
memory latency hiding through coalescence, saturation, and shared mem-
ory utilization, and the use of GPU output buffering as a solution to irreg-
ular workloads and a large solution domain. We also find a strong reliance
on an efficient global problem structure representation that bounds any
efficiencies gained from these lessons, and discuss the meanings of these
results to backtracking problems in general.

1 Introduction

The backtracking paradigm, a depth-first search method that finds solutions
in a memory efficient manner, is ubiquitous in computing. A few examples in-
clude constraint satisfaction in AI [11], frequent itemset mining in data min-
ing [6], maximal clique enumeration in graph mining [16], k-d tree traversal for
ray tracing in graphics [9], and logic programming languages such as Prolog.
Backtracking typically constructs optimal solutions from candidate solutions,
thus forming a search tree that the backtracking traverses. Backtracking is of-
tentimes at the core of the problems that are combinatorial by nature and,
therefore, compute-and-memory-intensive. For many such problems, performing
a breadth-first search of the search tree is infeasible due to memory requirements.
For instance, frequent itemset mining, as exhibited by the Apriori algorithm and
its variants [1], becomes infeasible for large input domains.

To reduce backtracking’s computational requirements, several strategies have
been explored. Pruning the search tree by eliminating non-candidate subtrees,
such as in α-β game-tree pruning, avoids unnecessary computation. Likewise, an
efficient data model for problem representation (e.g., bitmaps) enables efficient



use of intermediate data structures. Finally, parallel implementation of back-
tracking search on HPC multi-node, multi-core architectures offers scalability
for large problem domains (e.g., parallel maximal clique enumeration (MCE) in
graphs [16]).

Recent advancements in parallel computing architectures have opened up
possibilites for more computationally- and energy-efficient algorithms. In partic-
ular, graphics processing units (GPUs) have been maturing not only for graphics
applications, but also for general-purpose computations6 [14]. Some computa-
tional motifs perform effectively on a GPU, while the effectiveness of others is
still an open issue. For instance, Lee et al. note an average speedup of 2.5× of
various algorithms on the GPU vs. optimized Nehalem implementations, and
both Lee et al. and Vuduc et al. highlight memory-bound algorithms on the
GPU that perform at the same level or worse than the corresponding CPU im-
plementation [12, 18].

Despite some of the successes of recent computational dwarfs on GPUs, the
mapping of the backtracking paradigm onto the GPU architecture has been
recognized as a notoriously difficult problem for a number of reasons. Table 1
names a number of difficulties that a mapping of a backtracking problem to the
GPU could encounter, leading to a vastly inefficient use of the GPU memory
hierarchy and SIMD-optimized GPU multi-processors.

There have, however, been algorithms successfully mapped onto the GPU,
though with major departures from the general case of backtracking. The most
visible example is in ray tracing, where k-d tree acceleration structures are used
to compute ray intersections by traversing the tree in a depth-first fashion [5, 10].
The tree is computed in full before traversals, and the stack-based representation
is eliminated by explicitly computing transitions through the tree. However,
these properties cannot be assumed in many backtracking problems, much less
in the general case.

Our goal, therefore, is to investigate the parallelization of the backtracking
paradigm on the GPU. To do this, we analyze the components of difficult back-
tracking problems and propose tree-level and node-level parallelizations of search
space traversal, as well as buffer-based output. At best, given the performance
of other computational motifs and the nature of the backtracking problem, we
cannot expect an order of magnitude increase in performance. Rather, a more re-
alistic performance goal is to perform at one to two times the CPU performance,
which opens up the possibility of building future backtracking algorithms on
heterogeneous hardware (such as CPU-GPU clusters) and performing workload-
based optimizations.

2 Motivation

As mentioned, backtracking is a depth-first exploration of a problem space, where
states represent partial solutions. At each step, either the partial solution is ex-
panded to another possible solution, or it is determined that a solution cannot
possibly lie on this path, and the search backtracks to a previous state. Some

6 All further discussion will be based on Nvidia’s CUDA architecture.



backtracking problems are harder than others, and it is the characteristics of the
harder ones that are of the most interest. Table 1 summarizes these characteris-
tics compared to optimal GPU conditions.

Table 1: Opposing algorithm and hardware characteristics.

Backtracking GPU optimal

Problem Instance Irregular access Regular access with locality
Work Unit Memory, computation variable Constant size, perfectly SIMD
Output Exponential size (if enumerative), Polynomial size, apriori

hard to estimate
Search Space Tree-based, unbalanced Fixed, apriori (if applicable)

The problem instance can lend itself to irregular access patterns, making it
difficult for GPU algorithms to coalesce memory accesses. One example of this is
an adjacency list representation of graphs, where vertices may link to arbitrary
other vertices. This problem has been recognized by attempts to perform graph
algorithms such as breadth-first search on the GPU [8]. In many cases, graphs
are too large to use an adjacency matrix representation.

In many problems, the search node, or work unit, is variable in both mem-
ory and computational requirements, making load balancing, enforcing thread
convergence, and efficiently utilizing processors and storage mechanisms diffi-
cult. One example is an instance of constraint satisfaction, where solutions are
subsets of a very large set.

The output size of enumerative problems can be exponential with respect to
the problem size. For instance, finding all maximal cliques in a graph has a worst-
case exponential output size [13]. This can limit acceleration of a GPU-based
method due to overhead in CPU-GPU memory transfers.

Finally, the search tree in many backtracking problems is unpredictable, mak-
ing it difficult to divide the work evenly. For example, in the context of MCE,
current parallel methods rely on communication between compute nodes to load
balance and distribute [16], whereas on GPUs thread blocks are optimized to
perform independently of each other.

3 Backtracking Case Study: Bron-Kerbosch MCE

3.1 Algorithm Overview

A clique of a graph is a subset of the vertex set in which there is an edge con-
necting each pair of vertices in the set, and a maximal clique is a clique that is
not contained in any other, larger clique. Maximal clique enumeration (MCE)
is ubiquitous in real world problems. Examples of the uses of MCE include
identification of common secondary structure elements of proteins [7], detection
of protein-protein interaction complexes [19], clustering of similar mass spec-



trometry spectra [17], and detection of social heirarchy from email communica-
tions [15]. Thus, efficient MCE algorithms are of high value.

The MCE algorithm by Bron and Kerbosch (BK) employs a backtracking
strategy that embodies the properties in Table 1, constructively building maxi-
mal cliques of an input graph [3]. Each subtree being traversed has a compsub
list, or a list representing the current clique, and each search node consists of
two data structures, collectively known as a candidate path:

1. candidate—the vertices connected to all vertices in compsub: these may be
added to compsub to create a new clique; and

2. not—the vertices connected to all vertices in compsub that would create a
redundant clique if added.

Procedure 1: enum(cp stack, compsub): traverse subtree(s) in cp stack,
using global compsub. Both CPU and GPU use multiple stacks and split
among compute elements to achieve coarse-grain parallelism.
1 // process-per-stack on CPU, warp-per-stack on GPU

2 while not empty(cp stack) do
3 cp ← pop(cp stack)
4 update compsub
5 if empty(not(cp)) and empty(cand(cp)) then
6 output compsub
7 else
8 spawn(cp stack, cp)

9 // CPU -- steal work from other stacks

10 // GPU -- assign stack on CPU side to split work with

11 load balance(cp stack)
12 if not empty(cp stack) then
13 goto 2

Procedures 1 and 2 show the enumeration routine. The variable cp stack is a
stack data structure, pushing and popping candidate path structures in depth-
first fashion, in lieu of a recursive representation of backtracking. The stack(s)
are initially populated with size-one cliques, that is, a vertex and its neighbors,
where the not and candidate lists are determined lexicographically by vertex
label. Until the stack is empty, a process gets the current candidate path, and
either outputs its compsub in the case of a maximal clique, or iteratively creates
new candidate paths by choosing a vertex to expand (which is added to compsub
when the new candidate path is visited) and computing new candidate and not
lists based on adjacency to the selected vertex. Search tree pruning is performed
by the addition of fixv, reducing by a large degree the number of subtrees
leading to redundant cliques.



Procedure 2: spawn(cp stack, cp): expand candidate path cp onto stack
cp stack, the GPU splits the procedures in lines 2, 9, 10, 14 to achieve
fine-grain parallelism.
1 // finding fixv is warp-level parallel on GPU

2 fixv ← minimum disconnected vertex to vertices in cand(cp)
3 if fixv in not(cp) then
4 cv ← first vertex in cand(cp) not adjacent to fixv, or nil
5 else
6 cv ← fixv
7 while cv 6= nil do
8 // filter(cond fn, list) is warp-level parallel on GPU

9 not(newcp) ← filter(adjacent to fixv, not(cp))
10 cand(newcp) ← filter(adjacent to fixv, cand(cp))
11 push(cp stack,newcp)
12 move cv to not(cp)
13 // finding next cv is warp-level parallel on GPU

14 cv ← next vertex not adjacent to fixv, or nil

15 // CPU -- service load balance requests from other processes

3.2 Algorithm Parallelization

On both the CPU and GPU variants of the algorithm, coarse-grain paralleliza-
tion is achieved by performing Procedure 1 for many stacks, partitioned among
processes. For the GPU variant of the algorithm, fine-grain parallelization is per-
formed on the warp level by performing lines 2, 9, 10, and 14 of Procedure 2 in
parallel. To find the minimum disconnected vertex fixv, each thread in the warp
takes vertices in the not and candidate list in strides, recording the minimum
non-connectivity counts, then the warp performs a prefix-sum-like operation to
retrieve the global minimum. For instance, for a not and candidate list of total
size n, thread zero computes the local minimum of vertices at offsets 0, 32, etc.
thread one computes the local minimum at offsets 1, 33, etc. until all n vertices
have been processed. To perform the filter operation, the warp steps through
the not and candidate lists in strides, testing connectivity to fixv, and uses a
prefix-sum to compute the correct offsets to output connected vertices to fixv.
To determine the next cv, each thread in the warp takes a vertex of the remaining
candidate in strides, testing connectivity, and performs a prefix-sum-like oper-
ation to return the correct vertex. Shared memory is used to store warp-wide
variables such as candidate path information as well as buffers for performing
the prefix-sum operations. All shared memory accesses utilize the broadcasting
mechanism, where each thread accesses the same memory bank, and avoid bank
conflicts for operations such as the prefix-sum. candidate paths are also loaded
into shared memory in two ways: partially and in full. The partial load method is
used when finding fixv, loading the candidate and not lists in warp-level chunks
and iteratively testing connectivity between those vertices and the thread-local
vertex. Loading the candidate path in full allows performance of all operations



on it in shared memory, at the cost of lower occupancy from increased storage
requirements (the candidate path is size-bound by the maximum vertex degree).

Unlike CPUs, GPUs do not have the capability of outputting directly to
disk, so a more complex method of handling output data must be considered.
Furthermore, in enumerative problems such as MCE, it is infeasible to store all
output solutions in GPU memory at once, so there must be some intermediate
CPU-GPU transfers. Näıvely, each stack’s compsub could be transferred after
each expansion iteration to the CPU, where the valid solutions are extracted
and output. However, such a method would suffer from low density of usable
output. The more efficient way is to use atomic operations to reserve space from
a pre-allocated output buffer and allow blocks to continue expanding states until
the buffer is full, decoupling the strict expand-then-output algorithm structure.
This allows warps to run more independently of each other, expanding mul-
tiple states until a stopping condition is reached. If the output buffer is not
large enough, then the method reduces to the first solution, or worse. Also, the
need to atomically access and update a single variable across many warps (the
buffer “lock”) can incur a performance penalty, one that is offset by reducing the
amount of data sent to the CPU. For the GPU version of the BK algorithm, the
size of the output buffer is the number of concurrent subtrees times a heuristic
maximum clique size, determined using vertex degrees.

Load-balancing on the CPU is performed by adding work-stealing, requesting
work from other processes at the end of Procedure 1 and re-entering the loop if
work is recieved, and servicing work requests at the end of Procedure 2 if there is
work to give. On the GPU, a very simple method of load balancing is performed.
Each warp keeps a count of the number of nodes on its stack, stored contiguously
to the output buffer. At the end of each iteration (full buffer), this list is trans-
ferred to the CPU with the buffer, sorted, and then pairs of blocks with empty
stacks and blocks with large stacks share work, moving the bottommost half to
the block with a previously empty stack. Since the number of processes is not
large (typically in the hundreds), the cost of sorting and transferring the load-
balance pairs is very small compared to the algorithm (about a single percent),
so benefit gained from performing the sort on the GPU would be minimal. For
completeness, we expect to move this routine to the GPU in the near future.

4 Benchmarking

4.1 Input Graphs

To benchmark the parallelized BK algorithm, a few graphs of varying character-
istics have been chosen (see Table 2), including a functional gene-gene associa-
tion network (ava80), climate network with Sea Level Pressure profiles between
spatial grid points (slp) over the last 60 years, and a few synthetic graphs
(rmat-series) generated using GTgraph [2], under the Recursive Matrix Graph
Model (R-MAT) [4], a scale-free random graph generator.



Table 2: Input graphs.

Graph Origin # Vertices # Edges # Maximal Cliques

ava80 Biological 193,568 2,260,872 395,306
slp Climate 10,512 679,056 365,605
rmat1 Synthetic 8,192 723,849 5,823,741
rmat2 Synthetic 32,768 3,809,695 21,903,896

4.2 GPU vs. Multi-core CPU Timing

Two differing GPU implementations are shown in Fig. 1, representing partially
and fully loading a node into shared memory, compared to single-core and quad-
core CPU implementations. While the GPU methods outperform the single-core
CPU method in all cases, relative performance is varied against the non-load-
balanced CPU version and worse than the load-balanced method. The GPU
method with partial node loading performs between 1.4× and 2.25× the single-
core CPU method, but up to 3× worse than the load-balanced quad-core CPU
method (the speedup of ava80 is disregarded due to the very short run-time). In
terms of distribution of time, the GPU transferral of cliques and load balancing
accounted for between one and two percent of enumeration time, except in ava80,
which was closer to ten percent. The time taken to transfer the cliques is about
one percent of total time, so the buffering methodology is quite efficient compared
to the enumeration process.

ava80 slp rmat1 rmat2

CPU 4 cores w/o lb
CPU 4 cores with lb
GPU − partial
GPU − full

S
pe

ed
up

 a
ga

in
st

 s
in

gl
e 

co
re

0
1

2
3

4
5

ava80 slp rmat1 rmat2

CPU 1-core 3.6 15.7 24.6 108
CPU 4-core no lb 1.2 5.1 13.8 59
CPU 4-core w/ lb 1.1 3.8 8.19 33.2
GPU partial 0.9 11.5 10.9 60.5
GPU full 0.9 11.2 10.8 65.3

Fig. 1: Comparison of BK algorithm between CPU and GPU. NVIDIA Tesla C2050 for
GPU and Intel Xeon X5355 Quad Core 2.66GHz for CPU. Left: speedups relative to
single-core performance. Right: actual time (in seconds).



5 Lessons Learned

5.1 Coarse vs. Fine-Grain Parallelization

CPU parallelized backtracking methods utilize coarse-grain parallelization, where
multiple subtrees are explored in parallel, rather than parallelizing the work-unit
itself. CPU threads/processes are heavy-weight in comparison to GPU threads,
as they fully utilize the CPU when running and have higher context switch
overhead. They also have no direct hardware dependency on other threads, as
opposed to CUDA’s warp-based architecture.

Coarse-grain parallelization of backtracking algorithms on the GPU is, in a
näıve sense, simple to port. Call each unit executing a subtree a process and par-
tition the global memory of the GPU, one “stack” for each process. To saturate
the GPU hardware for a one-thread-per-process representation, a huge number
of processes would be needed, leaving little to no space per process. Since the
search tree and search nodes of many problems is non-uniform and cross-subtree
data is non-contiguous, there would be no coalescing and high divergence, both
bottlenecks to GPU performance.

For GPUs, fine-grain parallelization of the search nodes, or the performance
of lines 2, 9, 10, and 14, is essential. In fact, the fine-grain implementation of the
BK algorithm performs over 100× faster than the näıve coarse-grain method on
the GPU, due to the aforementioned divergence rate and lack of coalescing. The
fine-grain parallelization helps to prevent divergence by computing on similar
work-units and enables read/write coalescence on candidate paths.

In terms of warp-divergence, the algorithm is reasonably efficient, occuring
when candidate paths are small and when control code is run (such as thread zero
updating a warp-level variable in shared memory). When an adjacency matrix
data structure is used, the number of unique code paths for the algorithm is
at most three, but for other representations (see Sec. 5.3), the diverging paths
can be up to warp size. However, for the hash-table representation, this happens
rarely. As a raw percentage of total branches, diverging branches occur 15–20%
of the time.

A parallelization is useless if there is a poor work distribution strategy. Fig-
ure 2 shows the effect of the load-balancing strategy used in the GPU algorithm
on rmat2. The last iterations suffer from work of too small granularity to be ef-
fectively load-balanced. Also, the slp graph fails to be effectively load-balanced,
due to much larger cliques with relatively smaller branch factor than the other
graphs (that is, much of the tree consists of linear chains), explaining the poor
speedup compared to the CPU. Across all graphs, the effects of load-balancing
on the GPU are not nearly as beneficial as on the CPU.

5.2 Global Memory Latency Hiding

Global memory latency on the GPU poses a challenge for performing memory-
bound algorithms such as BK. Each CPU thread has a relatively large cache
space to work with, helping to hide memory latency. GPUs do not have this
luxury, as a large number of lightweight threads leave little thread-level caching
capability, so backtracking methods on the GPU have to rely on other strategies.



0 200 400 600 800

0
50

15
0

25
0

Iterations

T
hr

ea
ds

 A
ct

iv
e

With load balancing
W/o load balancing

Proc1 Proc2 Proc3 Proc4

With load balancing
W/o load balancing

N
um

be
r 

of
 S

ea
rc

h 
N

od
es

0.
0e

+0
0

6.
0e

+0
6

1.
2e

+0
7

Fig. 2: The effect of load balancing over the algorithm, performed on rmat2. Left: GPU
load-balancing. Right: CPU load balancing by process. Bars represent number of nodes
expanded by process.

Latency on GPU memory operations can be hidden through a combination
of coalescing, a large number of processes, and effective utilization of shared
memory. Having a large number of processes, and thus a high multiprocessor oc-
cupancy, allows for some to work on the same multiprocessor while others wait
for memory requests, pipelining memory operations. However, fully pipelining
requires a very large number of processes, which may not be feasible. Figure 3
shows the effect of adding more concurrent subtrees. While time is decreased,
the amount by which it is decreased is sub-linear, due to underutilization of
hardware for small numbers of processes, non-even distribution of work, ineffi-
ciencies in load-balancing and cache contention; cache misses increased roughly
proportional to the number of processes.

150 200 250 300 350 400

10
.0

11
.0

12
.0

13
.0

Number of Processors

E
nu

m
er

at
io

n 
T

im
e

Fig. 3: The effect of adding more processes to enumeration time on the GPU.

The coalescence rate of the algorithm is approximately 20% on average, a
very small number compared to optimal. One reason has to do with the global



graph data structure, see Sec. 5.3. Another is the nature of the algorithm. The
average size of candidate path structures for the graphs tested were no more than
six. This is easy to understand, as every candidate path representing maximal
and near-maximal cliques will be small in size. In other words, opportunities
for coalescence are small. This also explains the small change in performance
of loading full candidate paths into shared memory; only a few of the search
nodes actually recieve the benefit. Finally, the low coalescence rate contributes
greatly to the poor performance of the algorithm relative to the CPU. Since the
GPU relies on coalescing to optimize memory usage, a coalescence rate that low
cannot compete with the caching capabilities of the CPU.

5.3 A Reliance on Problem Instance Representation

Backtracking algorithms have control over itermediate structures and how they
are used, such as the candidate path, but unfortunately, there is little that can
be done in a problem-independent manner to optimize global problem instances
with irregular access patterns, such as graphs. This reliance on a sub-optimal
problem structure is a major impediment to GPU-based algorithms, where the
penalty of accessing memory without locality is much higher than on the CPU.

To minimize the penalty for accessing such structures, optimizations such as
variable-packing and wide reads (such as 16 byte vs. 4 byte) can help reduce the
number of these memory operations by packing data for use in register memory,
such as loading multiple vertices from a graph’s adjacency list. Also, utilizing
the texture and constant memory of the GPU, both of which are cached, can
lead to performance improvements, though the amount of each type of memory
is limited and thus cannot be used for large problem instances.

For the BK algorithm, three graph representations are used, depending on
memory requirements, to minimize the number of memory operations. An adja-
cency list and adjacency matrix are used for large and small graphs, respectively.
For graphs of sizes too large for an adjacency matrix, a hash-table of neighbor-
ing vertices is used, using a simple bitwise operation between the vertex label
and the table size. With the hash table, often a single index into the hash table
is required to determine connectivity of two vertices, being both memory and
size efficient and reducing divergence. Vertices with small degree (< 10) use a
list rather than a hash table to reduce the memory footprint. To increase the
chances of coalescence, parallel connectivity queries by a warp always have one
vertex in common, so a similar area of the data is being accessed.

In the BK algorithm, the number of accesses to the graph are directly propor-
tional to the number of memory operations performed on search nodes, so even
with a perfect, coalesced, non-diverging algorithm on the search nodes, about
50% of the memory operations are still uncoalesced and can cause divergence,
which is a large bottleneck to GPU performance. A small experiment run test-
ing random graph connectivity queries reported a 12% coalescence rate, smaller
than that in Section 5.2. It is expected that the memory inefficiency of the graph
data structures is a primary cause for poor performance relative to the CPU’s
higher tolerance of differing access patterns.



5.4 Generality of Backtracking Properties with Respect to GPU-
based Algorithms

Given a backtracking problem, the properties listed and the other lessons learned
from the study of the BK algorithm can bring about meaningful insights on
the feasibility of parallelizing the problem on the GPU. Having properties such
as a problem instance supporting locality of access, a more regular work unit,
or a more regular search tree would enable methods that would otherwise be
infeasible to perform. Of course, these properties are specific to the algorithm
and it is difficult to say whether a particular work unit can be parallelized in
a fine grain manner or not, but given a “baseline,” these algorithms can be
effectively analyzed with respect to their ability to be performed on the GPU.

For example, k-d tree construction is an application in the same class as ours;
Zhou et al.’s GPU implementation has important differences from our problem
that allows it to compete successfully with state-of-the-art CPU implementa-
tions [20]. First, their problem domain has sufficient space to perform the tree
construction in breadth-first order, eliminating the need for a stack-based rep-
resentation and allowing more parallel computations. They also stress the effect
of fine-grain parallelism on aspects of their algorithm, which we also find im-
portant. Finally, their algorithm has more computational requirements that can
help hide GPU memory latency with a large enough number of threads, un-
like our algorithm which is highly memory-bound. Given these properties, their
algorithm competes quite well with CPU-based implementations.

6 Conclusions / Future Work

An attempt at parallelizing the backtracking paradigm, presuming the worst-
case attributes against GPU performance, was presented. This problem inspires
a number of future directions, despite the inability to provide good performance
of MCE against a CPU. Like the k-d tree traversal algorithm on the GPU,
parallelizing depth-first algorithms that do not follow the worst-case character-
istics highlighted is a promising research question, one that can, under the right
representation, hope to compete with or even beat their CPU-based implemen-
tations. Furthermore, other computational motifs have yet to be examined for a
massively parallel machine such as a GPU. Also, as demand for general-purpose
computing support on current and next-generation GPU architectures continues
to grow, some of the bottlenecks (such as memory latency) may be sufficiently
dealt with, leading to algorithms that could not otherwise be effectively per-
formed on the GPU. Of course, CPU architectures continue to grow to support
more throughput and parallelism, while pushing cache sizes. In either case, eval-
uating new and well-worn computational paradigms on state-of-the-art hardware
architectures is a constant need for those who rely on them.

Acknowledgements We would like to thank Dr. W. Hendrix for useful discussions.
Experiments were conducted in part on the ARC cluster support in part by NSF-
CRI 0958311 and NVIDIA donations. This work was supported in part by the U.S.
Department of Energy, Office of Science (SciDAC SDM Center and SciDAC Institute
for Ultrascale Visualization), DOE DE-SC0005340, DOE DE-FG02-08ER25848, DE-



FC02-10ER26002/DE-SC0004935, NSF CCF-1029166, CCF-1017399, IIS-0905205, and
CCF-0938000. Oak Ridge National Laboratory is managed by UT-Battelle for the LLC
U.S. D.O.E. under contract no. DEAC05-00OR22725.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
of the 20th VLDB Conference, pages 487–499, 1994.

2. D. A. Bader and K. Madduri. GTgraph: A suite of synthetic random graph gen-
erators. URL: https://sdm.lbl.gov/~kamesh/software/GTgraph/.

3. C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973.

4. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph
mining. In SIAM International Conference on Data Mining, pages 442–446, 2004.

5. T. Foley and J. Sugerman. KD-Tree acceleration structures for a GPU raytracer.
In Graphics Hardware 2005, pages 15–22, July 2005.

6. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In Proc.
of the 2001 IEEE International Conference on Data Mining, pages 163–170, 2001.

7. H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett. Identification of
tertiary structure resemblance in proteins using a maximal common subgraph iso-
morphism algorithm. Journal of Molecular Biology, 229(3):707–721, 1993.

8. P. Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU
using CUDA. High Performance Computing, 4873:197–208, 2007.

9. V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Technical
University in Prague, 2001.

10. D. Horn, J. Sugerman, M. Houston, and P. Hanrahan. Interactive k-d tree GPU
raytracing. In Proc. of the 2007 Symposium on Interactive 3D Graphics and Games,
pages 167–174, 2007.

11. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine,
13(1):32–44, 1992.

12. V. W. Lee, C. Kim, et al. Debunking the 100X GPU vs. CPU myth: An evalua-
tion of throughput computing on CPU and GPU. Int’l Symposium on Computer
Architecture, pages 451–460, 2010.

13. J. Moon and W. Moser. On cliques in graphs. Israel J. of Math., 3:23–28, 1965.
14. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips.

GPU computing. Proceedings of the IEEE, 96(5):879–899, May 2008.
15. R. Rowe, G. Creamer, S. Hershkop, and S. J. Stolfo. Automated social hierarchy

detection through email network analysis. In 9th WebKDD and 1st SNA-KDD
2007 Workshop on Web Mining and Social Network Analysis, 2007.

16. M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park. A scalable, parallel
algorithm for maximal clique enumeration. JPDC, 69(4):417–428, 2009.

17. D. L. Tabb, M. R. Thompson, G. Khalsa-Moyers, N. C. VerBerkmoes, and W. H.
McDonald. Ms2grouper: group assessment and synthetic replacement of dupli-
cate proteomic tandem mass spectra. Journal of the American Society for Mass
Spectrometry, 16(8):1250–61, 2005.

18. R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure. On
the limits of GPU acceleration. Hot Topics in Paralellism, 35(5), 2010.

19. B. Zhang, B.-H. Park, T. Karpinets, and N. F. Samatova. From pull-down data
to protein interaction networks and complexes with biological relevance. Bioinfor-
matics, 24(7):979–986, 2008.

20. K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree construction on
graphics hardware. ACM Transactions on Graphics, 27(5):126:1–126:11, Dec. 2008.




