1,245 research outputs found

    A New Spherical Harmonics Scheme for Multi-Dimensional Radiation Transport I: Static Matter Configurations

    Get PDF
    Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.Comment: 29 pages, 13 figures. Version matching the one in Journal of Computational Physic

    A class of Galerkin schemes for time-dependent radiative transfer

    Get PDF
    The numerical solution of time-dependent radiative transfer problems is challenging, both, due to the high dimension as well as the anisotropic structure of the underlying integro-partial differential equation. In this paper we propose a general framework for designing numerical methods for time-dependent radiative transfer based on a Galerkin discretization in space and angle combined with appropriate time stepping schemes. This allows us to systematically incorporate boundary conditions and to preserve basic properties like exponential stability and decay to equilibrium also on the discrete level. We present the basic a-priori error analysis and provide abstract error estimates that cover a wide class of methods. The starting point for our considerations is to rewrite the radiative transfer problem as a system of evolution equations which has a similar structure like first order hyperbolic systems in acoustics or electrodynamics. This analogy allows us to generalize the main arguments of the numerical analysis for such applications to the radiative transfer problem under investigation. We also discuss a particular discretization scheme based on a truncated spherical harmonic expansion in angle, a finite element discretization in space, and the implicit Euler method in time. The performance of the resulting mixed PN-finite element time stepping scheme is demonstrated by computational results

    Numerical analysis of a spherical harmonic discontinuous Galerkin method for scaled radiative transfer equations with isotropic scattering

    Full text link
    In highly diffusion regimes when the mean free path ε\varepsilon tends to zero, the radiative transfer equation has an asymptotic behavior which is governed by a diffusion equation and the corresponding boundary condition. Generally, a numerical scheme for solving this problem has the truncation error containing an ε1\varepsilon^{-1} contribution, that leads to a nonuniform convergence for small ε\varepsilon. Such phenomenons require high resolutions of discretizations, which degrades the performance of the numerical scheme in the diffusion limit. In this paper, we first provide a--priori estimates for the scaled spherical harmonic (PNP_N) radiative transfer equation. Then we present an error analysis for the spherical harmonic discontinuous Galerkin (DG) method of the scaled radiative transfer equation showing that, under some mild assumptions, its solutions converge uniformly in ε\varepsilon to the solution of the scaled radiative transfer equation. We further present an optimal convergence result for the DG method with the upwind flux on Cartesian grids. Error estimates of (1+O(ε))hk+1\left(1+\mathcal{O}(\varepsilon)\right)h^{k+1} (where hh is the maximum element length) are obtained when tensor product polynomials of degree at most kk are used

    Meshless Methods for the Neutron Transport Equation

    Full text link
    Mesh-based methods for the numerical solution of partial differential equations (PDEs) require the division of the problem domain into non-overlapping, contiguous subdomains that conform to the problem geometry. The mesh constrains the placement and connectivity of the solution nodes over which the PDE is solved. In meshless methods, the solution nodes are independent of the problem geometry and do not require a mesh to determine connectivity. This allows the solution of PDEs on geometries that would be difficult to represent using even unstructured meshes. The ability to represent difficult geometries and place solution nodes independent of a mesh motivates the use of meshless methods for the neutron transport equation, which often includes spatially-dependent PDE coefficients and strong localized gradients. The meshless local Petrov-Galerkin (MLPG) method is applied to the steady-state and k-eigenvalue neutron transport equations, which are discretized in energy using the multigroup approximation and in angle using the discrete ordinates approximation. The MLPG method uses weighted residuals of the transport equation to solve for basis function expansion coefficients of the neutron angular flux. Connectivity of the solution nodes is determined by the shared support domain of overlapping meshless functions, such as radial basis functions (RBFs) and moving least squares (MLS) functions. To prevent oscillations in the neutron flux, the MLPG transport equation is stabilized by the streamline upwind Petrov-Galerkin (SUPG) method, which adds numerical diffusion to the streaming term. Global neutron conservation is enforced by using MLS basis and weight functions and appropriate SUPG parameters. The cross sections in the transport equation are approximated in accordance with global particle balance and without constraint on their spatial dependence or the location of the basis and weight functions. The equations for the strong-form meshless collocation approach are derived for comparison to the MLPG equations. Two integration schemes for the basis and weight functions in the MLPG method are presented, including a background mesh integration and a fully meshless integration approach. The method of manufactured solutions (MMS) is used to verify the resulting MLPG method in one, two and three dimensions. Results for realistic problems, including two-dimensional pincells, a reflected ellipsoid and a three-dimensional problem with voids, are verified by comparison to Monte Carlo simulations. Finally, meshless heat transfer equations are derived using a similar MLPG approach and verified using the MMS. These heat equation are coupled to the MLPG neutron transport equations, and results for a pincell are compared to values from a commercial pressurized water reactor.PHDNuclear Engineering & Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145796/1/brbass_1.pd

    Asymptotic Derivation and Numerical Investigation of Time-Dependent Simplified Pn Equations

    Full text link
    The steady-state simplified Pn (SPn) approximations to the linear Boltzmann equation have been proven to be asymptotically higher-order corrections to the diffusion equation in certain physical systems. In this paper, we present an asymptotic analysis for the time-dependent simplified Pn equations up to n = 3. Additionally, SPn equations of arbitrary order are derived in an ad hoc way. The resulting SPn equations are hyperbolic and differ from those investigated in a previous work by some of the authors. In two space dimensions, numerical calculations for the Pn and SPn equations are performed. We simulate neutron distributions of a moving rod and present results for a benchmark problem, known as the checkerboard problem. The SPn equations are demonstrated to yield significantly more accurate results than diffusion approximations. In addition, for sufficiently low values of n, they are shown to be more efficient than Pn models of comparable cost.Comment: 32 pages, 7 figure

    Least-Squares and Other Residual Based Techniques for Radiation Transport Calculations

    Get PDF
    In this dissertation, we develop several novel methods based on or related to least-squares transport residual for solving deterministic radiation transport problems. For the first part of this dissertation a nonlinear spherical harmonics (PN) closure (TPN) was developed based on analysis of the least-squares residual for time-dependent PN equations in 1D slab geometry. The TPN closure suppresses the oscillations induced by Gibbs phenomenon in time-dependent transport calculations effectively. Simultaneously, a nonlinear viscosity term based on the spatial and temporal variations is realized and used in the extension to filtered PN method (NFPN). NFPN determines the angular viscosity on the fly and potentially fixed the issue existed in linear FPN that filtering strength needs to be predefined by iteratively solving the problem. We further developed another type of NFPN and demonstrate both of the two NFPN preserve the thick diffusion limit for thermal radiative transfer problems theoretically and numerically. We also developed several novel methods along with error analyses for steady-state neutron transport calculations based on least-squares methods. Firstly, a relaxed L1 finite element method was developed based on nonlinearly weighting the least-squares formulation by the pointwise transport residual. In problems such as void and near-void situations where least-squares accuracy is poor, the L1 method improves the solution. Further, a non-converged RL1 still can present comparable accuracy. We then developed a least-squares method based on a novel contiguous-discontinuous functional. A proof is provided for the conservation preservation for such a method, which is significant for problems such as k-eigenvalue calculations. Also, a second order accuracy is observed with much lower error magnitudes in several quantities of interest for heterogeneous problems compared with self-adjoint angular flux (SAAF) solution. Lastly, we extended the CD methodology with 1/σt-weighted least-squares functional to derive a CD-SAAF method and developed a SN-PN angular hybrid scheme. The hybrid scheme can employ high order SN in regions with strong transport feature to couple with low order PN in regions with diffusive flux. In k-eigenvalue calculations, it shows superb accuracy with low degrees of freedom

    On a convergent DSA preconditioned source iteration for a DGFEM method for radiative transfer

    Full text link
    We consider the numerical approximation of the radiative transfer equation using discontinuous angular and continuous spatial approximations for the even parts of the solution. The even-parity equations are solved using a diffusion synthetic accelerated source iteration. We provide a convergence analysis for the infinite-dimensional iteration as well as for its discretized counterpart. The diffusion correction is computed by a subspace correction, which leads to a convergence behavior that is robust with respect to the discretization. The proven theoretical contraction rate deteriorates for scattering dominated problems. We show numerically that the preconditioned iteration is in practice robust in the diffusion limit. Moreover, computations for the lattice problem indicate that the presented discretization does not suffer from the ray effect. The theoretical methodology is presented for plane-parallel geometries with isotropic scattering, but the approach and proofs generalize to multi-dimensional problems and more general scattering operators verbatim

    Development of a 3D Modal Neutron Code with the Finite Volume Method for the Diffusion and Discrete Ordinates Transport Equations. Application to Nuclear Safety Analyses

    Full text link
    El principal objetivo de esta tesis es el desarrollo de un Método Modal para resolver dos ecuaciones: la Ecuación de la Difusión de Neutrones y la de las Ordenadas Discretas del Transporte de Neutrones. Además, este método está basado en el Método de Volúmenes Finitos para discretizar las variables espaciales. La solución de estas ecuaciones proporciona el flujo de neutrones, que está relacionado con la potencia que se produce en los reactores nucleares, por lo que es un factor fundamental para los Análisis de Seguridad Nuclear. Por una parte, la utilización del Método Modal está justificada para realizar análisis de inestabilidades en reactores. Por otra parte, el uso del Método de Volúmenes Finitos está justificado por la utilización de este método para resolver las ecuaciones termohidráulicas, que están fuertemente acopladas con la generación de energía en el combustible nuclear. En primer lugar, esta tesis incluye la definición de estas ecuaciones y los principales métodos utilizados para resolverlas. Además, se introducen los principales esquemas y características del Método de Volúmenes Finitos. También se describen los principales métodos numéricos para el Método Modal, que incluye tanto la solución de problemas de autovalores como la solución de Ecuaciones Diferenciales Ordinarias dependientes del tiempo. A continuación, se desarrollan varios algoritmos del Método de Volúmenes Finitos para el Estado Estacionario de la Ecuación de la Difusión de Neutrones. Se consigue desarrollar una formulación multigrupo, que permite resolver el problema de autovalores para cualquier número de grupos de energía, incluyendo términos de upscattering y de fisión en varios grupos de energía. Además, se desarrollan los algoritmos para realizar la computación en paralelo. La solución anterior es la condición inicial para resolver la Ecuación de Difusión de Neutrones dependiente del tiempo. En esta tesis se utiliza un Método Modal, que transforma el Sistema de Ecuaciones Diferenciales Ordinarias en uno de mucho menor tamaño, que se resuelve con el Método de la Matriz Exponencial. Además, se ha desarrollado un método rápido para estimar el flujo adjunto a partir del directo, ya que se necesita en el Método Modal. Por otra parte, se ha desarrollado un algoritmo que resuelve el problema de autovalores de la Ecuación del Transporte de Neutrones. Este algoritmo es para la formulación de Ordenadas Discretas y el Método de Volúmenes Finitos. En concreto, se han aplicado dos tipos de cuadraturas para las Ordenadas Discretas y dos esquemas de interpolación para el Método de Volúmenes Finitos. Finalmente, se han aplicado estos métodos a diferentes tipos de reactores nucleares, incluyendo reactores comerciales. Se han evaluado los valores de la constante de multiplicación y de la potencia, ya que son las variables fundamentales en los Análisis de Seguridad Nuclear. Además, se ha realizado un análisis de sensibilidad de diferentes parámetros como la malla y métodos numéricos. En conclusión, se obtienen excelentes resultados, tanto en precisión como en coste computacional.The main objective of this thesis is the development of a Modal Method to solve two equations: the Neutron Diffusion Equation and the Discrete Ordinates Neutron Transport Equation. Moreover, this method uses the Finite Volume Method to discretize the spatial variables. The solution of these equations gives the neutron flux, which is related to the power produced in nuclear reactors; thus, the neutron flux is a paramount variable in Nuclear Safety Analyses. On the one hand, the use of Modal Methods is justified because one uses them to perform instability analyses in nuclear reactors. On the other hand, it is worth using the Finite Volume Method because one uses it to solve thermalhydraulic equations, which are strongly coupled with the energy generation in the nuclear fuel. First, this thesis defines the equations mentioned above and the main methods to solve these equations. Furthermore, the thesis describes the major schemes and features of the Finite Volume Method. In addition, the author also introduces the major methods used in the Modal Method, which include the methods used to solve the eigenvalue problem, as well as those used to solve the time dependent Ordinary Differential Equations. Next, the author develops several algorithms of the Finite Volume Method applied to the Steady State Neutron Diffusion Equation. In addition, the thesis includes an improvement of the multigroup formulation, which solves problems involving upscattering and fission terms in several energy groups. Moreover, the author optimizes the algorithms to do calculations with parallel computing. The previous solution is used as initial condition to solve the time dependent Neutron Diffusion Equation. The author uses a Modal Method to do so, which transforms the Ordinary Differential Equations System into a smaller system that is solved by using the Exponential Matrix Method. Furthermore, the author developed a computationally efficient method to estimate the adjoint flux from the forward one, because the Modal Method uses the adjoint flux. Additionally, the thesis also presents an algorithm to solve the eigenvalue problem of the Neutron Transport Equation. This algorithm uses the Discrete Ordinates formulation and the Finite Volume Method. In particular, the author uses two types of quadratures for the Discrete Ordinates and two interpolation schemes for the Finite Volume Method. Finally, the author tested the developed methods in different types of nuclear reactors, including commercial ones. The author checks the accuracy of the values of the crucial variables in Nuclear Safety Analyses, which are the multiplication factor and the power distribution. Furthermore, the thesis includes a sensitivity analysis of several parameters, such as the mesh and numerical methods. In conclusion, excellent results are reported in both accuracy and computational cost.El principal objectiu d'esta tesi és el desenvolupament d'un Mètode Modal per a resoldre dos equacions: l'Equació de Difusió de Neutrons i la de les Ordenades Discretes del Transport de Neutrons. A més a més, este mètode està basat en el Mètode de Volums Finits per a discretitzar les variables espacials. La solució d'estes equacions proporcionen el flux de neutrons, que està relacionat amb la potència que es produïx en els reactors nuclears; per tant, el flux de neutrons és un factor fonamental en els Anàlisis de Seguretat Nuclear. Per una banda, la utilització del Mètode Modal està justificada per a realitzar anàlisis d'inestabilitats en reactors. Per altra banda, l'ús del Mètode de Volums Finits està justificat per l'ús d'este mètode per a resoldre les equacions termohidràuliques, que estan fortament acoblades amb la generació d'energia en el combustible nuclear. En primer lloc, esta tesi inclou la definició d'estes equacions i els principals mètodes utilitzats per a resoldre-les. A més d'això, s'introduïxen els principals esquemes i característiques del Mètode de Volums Finits. Endemés, es descriuen els principals mètodes numèrics per al Mètode Modal, que inclou tant la solució del problema d'autovalors com la solució d'Equacions Diferencials Ordinàries dependents del temps. A continuació, es desenvolupa diversos algoritmes del Mètode de Volums Finits per a l'Estat Estacionari de l'Equació de Difusió de Neutrons. Es conseguix desenvolupar una formulació multigrup, que permetre resoldre el problema d'autovalors per a qualsevol nombre de grups d'energia, incloent termes d' upscattering i de fissió en diversos grups d'energia. A més a més, es desenvolupen els algoritmes per a realitzar la computació en paral·lel. La solució anterior és la condició inicial per a resoldre l'Equació de Difusió de Neutrons dependent del temps. En esta tesi s'utilitza un Mètode Modal, que transforma el Sistema d'Equacions Diferencials Ordinàries en un problema de menor tamany, que es resol amb el Mètode de la Matriu Exponencial. Endemés, s'ha desenvolupat un mètode ràpid per a estimar el flux adjunt a partir del directe, perquè es necessita en el Mètode Modal. Per altra banda, s'ha desenvolupat un algoritme que resol el problema d'autovalors de l'Equació de Transport de Neutrons. Este algoritme és per a la formulació d'Ordenades Discretes i el Mètode de Volums Finits. En concret, s'han aplicat dos tipos de quadratures per a les Ordenades Discretes i dos esquemes d'interpolació per al Mètode de Volums Finits. Finalment, s'han aplicat estos mètodes a diversos tipos de reactors nuclears, incloent reactors comercials. S'han avaluat els valor de la constat de multiplicació i de la potència, perquè són variables fonamentals en els Anàlisis de Seguretat Nuclear. Endemés, s'ha realitzat un anàlisi de sensibilitat de diversos paràmetres com la malla i mètodes numèrics. En conclusió, es conseguix obtenir excel·lents resultats, tant en precisió com en cost computacional.Bernal García, Á. (2018). Development of a 3D Modal Neutron Code with the Finite Volume Method for the Diffusion and Discrete Ordinates Transport Equations. Application to Nuclear Safety Analyses [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112422TESI
    corecore