2,719 research outputs found

    Identification of time-varying systems using multiresolution wavelet models

    Get PDF
    Identification of linear and nonlinear time-varying systems is investigated and a new wavelet model identification algorithm is introduced. By expanding each time-varying coefficient using a multiresolution wavelet expansion, the time-varying problem is reduced to a time invariant problem and the identification reduces to regressor selection and parameter estimation. Several examples are included to illustrate the application of the new algorithm

    Time-varying Autoregressive Modeling of Nonstationary Signals

    Get PDF
    Nonstationary signal modeling is a research topic of practical interest. In this thesis, we adopt a time-varying (TV) autoregressive (AR) model using the basis function (BF) parameter estimation method for nonstationary process identification and instantaneous frequency (IF) estimation. The current TVAR model in direct form (DF) with the blockwise least-squares and recursive weighted-least-squares BF methods perform equivalently well in signal modeling, but the large estimation error may cause temporary instabilities of the estimated model. To achieve convenient model stability monitoring and pole tracking, the TVAR model in cascade form (CF) was proposed through the parameterization in terms of TV poles (represented by second order section coefficients, Cartesian coordinates, Polar coordinates), where the time variation of each pole parameter is assumed to be the linear combination of BFs. The nonlinear system equations for the TVAR model in CF are solved iteratively using the Gauss-Newton algorithm. Using the CF, the model stability is easily controlled by constraining the estimated TV poles within the unit circle. The CF model shows similar performance trends to the DF model using the recursive BF method, and the TV pole representation in Cartesian coordinates outperforms all other representations. The individual frequency variation can be finely tracked using the CF model, when several frequency components are present in the signal. Simulations were carried on synthetic sinusoidal signals with different frequency variations for IF estimation. For the TVAR model in DF (blockwise), the basis dimension (BD) is an important factor on frequency estimation accuracy. For the TVAR model in DF (recursive) and CF (Cartesian), the influences of BD are negligible. The additive white noise in the observed signal degrades the estimation performance, and the the noise effects can be reduce by using higher model order. Experiments were carried on the real electromyography (EMG) data for frequency estimation in the analysis of muscle fatigue. The TVAR modeling methods show equivalent performance to the conventional Fourier transform method

    Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multi-wavelets

    Get PDF
    A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The time-varying modelling problem is then reduced to regression selection and parameter estimation, which can be effectively resolved by using a forward orthogonal regression algorithm. Two examples, one for an artificial signal and another for an EEG signal, are given to show the effectiveness and applicability of the new TVAR modelling method

    Bayesian Nonstationary Spatial Modeling for Very Large Datasets

    Full text link
    With the proliferation of modern high-resolution measuring instruments mounted on satellites, planes, ground-based vehicles and monitoring stations, a need has arisen for statistical methods suitable for the analysis of large spatial datasets observed on large spatial domains. Statistical analyses of such datasets provide two main challenges: First, traditional spatial-statistical techniques are often unable to handle large numbers of observations in a computationally feasible way. Second, for large and heterogeneous spatial domains, it is often not appropriate to assume that a process of interest is stationary over the entire domain. We address the first challenge by using a model combining a low-rank component, which allows for flexible modeling of medium-to-long-range dependence via a set of spatial basis functions, with a tapered remainder component, which allows for modeling of local dependence using a compactly supported covariance function. Addressing the second challenge, we propose two extensions to this model that result in increased flexibility: First, the model is parameterized based on a nonstationary Matern covariance, where the parameters vary smoothly across space. Second, in our fully Bayesian model, all components and parameters are considered random, including the number, locations, and shapes of the basis functions used in the low-rank component. Using simulated data and a real-world dataset of high-resolution soil measurements, we show that both extensions can result in substantial improvements over the current state-of-the-art.Comment: 16 pages, 2 color figure

    Underdetermined-order recursive least-squares adaptive filtering: The concept and algorithms

    No full text
    Published versio
    corecore