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ABSTRACT 
 
      Nonstationary signal modeling is a research topic of practical interest.  In this thesis, 

we adopt a time-varying (TV) autoregressive (AR) model using the basis function (BF) 

parameter estimation method for nonstationary process identification and instantaneous 

frequency (IF) estimation.  The current TVAR model in direct form (DF) with the 

blockwise least-squares and recursive weighted-least-squares BF methods perform 

equivalently well in signal modeling, but the large estimation error may cause temporary 

instabilities of the estimated model. 

 

      To achieve convenient model stability monitoring and pole tracking, the TVAR 

model in cascade form (CF) was proposed through the parameterization in terms of TV 

poles (represented by second order section coefficients, Cartesian coordinates, Polar 

coordinates), where the time variation of each pole parameter is assumed to be the linear 

combination of BFs.  The nonlinear system equations for the TVAR model in CF are 

solved iteratively using the Gauss-Newton algorithm.  Using the CF, the model stability 

is easily controlled by constraining the estimated TV poles within the unit circle.  The CF 

model shows similar performance trends to the DF model using the recursive BF method, 

and the TV pole representation in Cartesian coordinates outperforms all other 

representations.  The individual frequency variation can be finely tracked using the CF 

model, when several frequency components are present in the signal. 

 

      Simulations were carried on synthetic sinusoidal signals with different frequency 

variations for IF estimation.  For the TVAR model in DF (blockwise), the basis 

dimension (BD) is an important factor on frequency estimation accuracy.  For the TVAR 

model in DF (recursive) and CF (Cartesian), the influences of BD are negligible.  The 

additive white noise in the observed signal degrades the estimation performance, and the 

the noise effects can be reduce by using higher model order.  Experiments were carried 

on the real electromyography (EMG) data for frequency estimation in the analysis of 

muscle fatigue.  The TVAR modeling methods show equivalent performance to the 

conventional Fourier transform method. 
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CHAPTER I 

Nonstationary Signal Modeling and Analysis 
 

1.1    Introduction 

      Nonstationary signal modeling is a research topic of practical interest, because most 

temporal signals encountered in real applications, such as speech, biomedical, seismic 

and radar signals, have time-varying statistics.  The problem of time dependency was 

usually circumvented by assuming local stationarity over a relatively short time interval, 

in which stationary system identification and analysis techniques are applied.  However, 

this assumption is not always suitable, and methods for nonstationary processes are 

needed.  

 

      Nonstationary signal analysis methods can be categorized into nonparametric and 

parametric.  The nonparametric approaches are based on time-dependent spectral 

representations, and include the short-time Fourier transform [FG1992], the time-

frequency distribution [LC1989], and the evolutionary spectrum [MBP1988].  Due to the 

uncertainty principle [SJO1996], one can not get both high time and frequency 

resolutions using these nonparametric methods.  The parametric approaches are based on 

time-varying (TV) linear predictive models, including autoregressive (AR), moving 

average (MA) and autoregressive moving average (ARMA).  As with the time-invariant 

case, more parsimonious representation of signals and higher resolution of time-

frequency spectra can be obtained using parametric methods.  Moreover, the parametric 

approaches can be used to track relatively fast TV dynamics, which can not be achieved 

by the nonparametric approaches.  The model parameters can be estimated using 

gradient-based adaptive algorithms, Kalman filtering and basis function methods 

[MN2000].   
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1.2    Nonparametric Approaches 

      Presently, three main nonparametric approaches, namely the short-time Fourier 

transform, time-frequency distribution and evolutionary spectrum, are used to analyze the 

time-dependent spectrum of a nonstationary signal. 

 

      The short-time Fourier transform (STFT) [FG1992] is the most common technique 

for computing a time-varying (TV) spectrum, which is based on the assumption that the 

signal can be considered stationary in a short time interval.  In this approach, the signal is 

divided into small segments fitting into a sliding window, the Fourier transform of the 

windowed signal is used to obtain the energy distribution v.s. frequency at a given time 

corresponding to the center of the window (spectrogram).  Since the window length 

affects the time and frequency resolutions in an opposite manner, the joint time-

frequency resolutions of the STFT are inherently limited.  Specifically, improving the 

time resolution by using a short window results in a loss of frequency resolution, and vice 

versa.  To alleviate this trade-off problem, the use of TV window was proposed to 

achieve desired frequency resolution at different times [DT1990]. 

 

      The time-frequency (TF) distribution [LC1989], which devises a bilinear distribution 

to describe the energy or intensity of a nonstationary signal simultaneously in time and 

frequency, has been widely used and yields higher TF resolutions than the STFT since 

the signal is not windowed.  The three dimensional TF distribution plot gives a more 

revealing picture of the temporal localization of a signal’s spectral components and 

enables the analysis of frequency variations with time [FG1992].  Depending on the 

specific kernel function used for the bilinear transformation, various TF distributions 

have been proposed.  In particular, the Wigner distribution has received more attention as 

a convenient tool for the analysis of signals with single TF component.  However, in the 

case of signals with several TF components, the bilinear distribution suffers from 

artifacts such as cross-terms, which makes the energy distribution difficult to interpret.  

Moreover, the positivity of the spectral density is not guaranteed.  The cross-term can be 

reduced by the use of smoothing kernels [HW1989] [YLI1990]. 
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      The evolutionary spectrum [MBP1988] was proposed to define a meaningful time-

varying (TV) spectrum, which avoids many of the pitfalls of the bilinear distribution.  In 

the evolutionary spectral theory, nonstationary signals are represented using sinusoids 

with slowly varying amplitudes (oscillatory processes) and the spectrum is defined on 

this representation.  It assumes that at each frequency the TV amplitudes of a signal can 

be represented by a set of orthonormal expansion functions, so the time-frequency 

resolutions can be manipulated by changing the number of expansion functions.  

Although it is mathematically well grounded, it has suffered from a shortage of 

estimators.  The evolutionary periodogram [AAL1994] and the data-adaptive 

evolutionary spectrum [AAL1995] were proposed to provide better spectral estimates. 

 

1.3    Parametric Approaches 

      The parametric approaches are based on the linear time-varying (TV) model, in 

which a nonstationary process is represented using an AR, MA or ARMA model with 

parameters changing with time. The TV spectrum can be estimated from the TV model 

parameters, and the instantaneous frequency [BB11992] of the nonstationary signal can 

be extracted.  In contrast with nonparametric approaches, good accuracy in signal 

representation and high frequency resolution in spectral estimation can be obtained by 

using parametric approaches even for short data sequences.  To estimate the TV model 

parameters, some assumptions need to be made on the time variations, and the adaptive 

algorithms, Kalman filtering and basis function methods can be used. 

 

      When the time evolution of the model parameters is relatively slow, a gradient-based 

adaptive algorithm, such as steepest decent, least mean squares (LMS) or recursive least 

squares (RLS) [SH1986], can be used to update the TV parameters based on the local 

gradient estimation.  These adaptive algorithms work reasonably well for slow time 

variations, but they are sensitive to noise due to the local estimation.  The sensitivity may 

be reduced by increasing the step size, but the convergence rate will be decreased too.  If 
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the TV parameters change relatively fast, compared to the algorithm’s convergence 

speed, the common adaptive algorithms will fail to track the parameter’s time evolution. 

 

      Identification of fast-varying nonstationary process can be handled successfully only 

in the case of structured nonstationarity, where an explicit mathematical description of 

model parameter variations is adopted.  Based on the assumption of stochastic or 

deterministic parameter changes, the Kalman filtering [SH1996] or the basis function 

method [MN2000] can be used correspondingly.  Generally, the faster the model 

parameters change with time, the more detailed should be the prior knowledge on their 

variations to guarantee good estimation results. 

 

      Kalman filtering imposes a probabilistic structure on a parameter trajectory and 

regards it as a stochastic process (i.e. random walk).  Because of its recursive structure, 

Kalman filtering allows on-line processing even of huge data sets, which avoid interval-

related computations [MWHRC1998].  However, it is not an appropriate model when 

parameter changes do not fit into a probabilistic structure, and the proper state transition 

matrix is also difficult to estimate. 

 

      The basis function (BF) method assumes that the parameter variations can be 

approximated by a linear combination of known BFs, which allows relatively fast 

parameter evolution in a somewhat deterministic way, and the estimation is the 

calculation of those unknown basis coefficients.  The BF method was pioneered by Rao 

[TSR1970] and Liporace [LAL1975].  Previous studies on the BF methods were reported 

in [FK1977] [MAA1983] [YG1983] [KB1984] [ML1985] [RMGJ1987] and [MN1988], 

and some current research has been presented in [MG1993] [AL1994] [JP1996] 

[JFADF1998] [RHK2003].  The parameters can be obtained by either the blockwise 

processing of all the data at one time or the recursive processing of each datum 

sequentially [GMJ1986] [MN1987].  Each data block can be of any length, provided that 

computational complexity and time are not restricted.  Various types of BFs can be used, 

such as power time functions, Fourier series and Legendre polynomials [CD1974], 
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selecting suitable BFs partially depends on the dynamics of a nonstationary signal and no 

uniform rule exists.  Proper basis dimensions also need to be chosen, which influence the 

accuracy and robustness of parameter estimates.   

 

1.4    Motivations for Time-varying AR model in Cascade Form 

      In this study, we concentrate on the time-varying (TV) AR model using the basis 

function (BF) method to identify a nonstationary process and estimate the instantaneous 

frequency.   

 

      One of the problems with the TVAR model is the possible temporary instability 

[MAA1983], that is, the TV poles of the estimated model are not guaranteed to remain 

inside the unit circle on the z -plane.  The TV synthesis filter, which is obtained from the 

unstable model, is usually of no practical value as its impulse response becomes 

excessively large [SJO1996].  To monitor the pole locations, the transfer function 

denominator of the TV filter in direct form (DF) needs to be factorized using a 

computationally demanding root-finding algorithm, which is generally impractical for 

real-time processing.  In addition, the parameters of a TVAR model in DF may not 

provide the most convenient information for some applications, where the TV poles 

contain the physical information of the system.  Moreover, the parameterization of a 

TVAR model in terms of polynomial coefficients is not a natural representation for the 

frequency variations over time.   

 

      The time-invariant (TIV) filter in cascade form (CF) has been studied in [LS1978] 

[SL1986] [YPY1987], and the parameterization of the TIV model in terms of poles and 

zeros has also been explored in [SL1986][AD1990].  Using the CF, the poles or zeros can 

be estimated directly from the data and the constraints can be easily imposed during the 

estimation.  In order to achieve convenient stability monitoring and better frequency 

estimation, we propose to formulate the TVAR model in CF through the parameterization 

in terms of TV poles. 
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1.5    Thesis Outline 

      The rest of the thesis is organized as follows.  Chapter II provides a review on the 

current time-varying (TV) AR model in direct form using the blockwise and recursive 

basis function parameter estimation methods and demonstrates their performances 

through simulations on synthetic data.  Chapter III presents the proposed TVAR model in 

cascade form, with different forms of TV pole representation, using the BF method.  

Performances of the TVAR model in cascade form are evaluated via simulations on 

synthetic data and compared with those of the TVAR model in direct form.  Chapter IV 

explores the performance characteristics of the instantaneous frequency estimation via the 

TVAR modeling in direct form and cascade form through simulations on synthetic 

sinusoidal signals with different frequency variations.  Experiments are also carried on 

real surface electromyography (EMG) data for frequency estimation in the analysis of 

muscle fatigue.  Chapter V summaries the work in this thesis and provides suggestions 

for further research. 
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CHAPTER II 

Time-varying Autoregressive Modeling in Direct Form 
 

      In this chapter, the stochastic process modeling is described firstly.  Then, the time-

varying (TV) AR model in direct form using blockwise and recursive basis function 

parameter estimation methods are briefly reviewed.  Finally, the performance 

characteristics of TVAR modeling in direct form are illustrated via simulations on 

synthetic data.  

 

2.1    Stochastic Process Modeling 

2.1.1    Modeling Essentials  

      Wold’s decomposition theorem [SH1996] states that any stationary discrete-time 

stochastic process can be decomposed into the sum of a linear predictable process and a 

general linear process )()()( nxnxnx gp += , with the two components uncorrelated with 

each other.  The first component  is deterministic, which can be calculated from 

infinitely many of its previous values  with zero prediction 

variance.  The second component  is nondeterministic, which can be estimated as 

, where  and  denotes a white noise sequence.  
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      According to the Wold’s decomposition, any wide-sense stationary process  

can be regarded as a result of passing a series of statistically independent random inputs 

, such as white Gaussian noise, through a linear causal time-invariant filter with 

, where  [SH1996], as shown in Figure 2.1.  Here,  is an 

innate part of the model, and gives rise to the random nature of the observed process. 
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Figure 2.1:  Stochastic process modeling. 
 
 

     The filter postulated by the Wold’s decomposition is characterized using infinitely 

many coefficients, which is not suitable for practical system modeling.  The parsimonious 

representation of a stochastic model may be expressed as [SH1996] 

                                                                      (2.1) ∑∑
==

−+=−+
ba N

j
j

N

i
i jnvbnvinxanx

11
)()()()(

where  and are time-invariant model parameters.  According to the manner in which 

the linear combinations indicated in (2.1) are formulated, three types of linear stochastic 

models can be categorized as follows [SH1996]: 

ia jb

• AR: no past values of the model input are used ( bj Njb ≤≤= 1,0 ). 

• MA: no past values of the model output are used ( ai Nia ≤≤= 1,0 ). 

• ARMA: both past values of the model input and output are used ( 0,0 ≠≠ ji ba ). 

 

      In system identification, the presence of poles in an AR or ARMA model can give 

better performance than an MA model, but the main drawback is the possible instability.  

In addition, an AR model is more popular than an MA or ARMA model for 

computational reasons.  Specifically, the computation of the AR parameters involves a set 

of linear equations, while the computation of the MA and ARMA parameters require 

solving sets of nonlinear equations and are thus more complicated.   

2.1.2    Model of Nonstationary Process  

       A nonstationary stochastic process has the probability distribution that is not time 

shift invariant.  A practical nonstationary process comprises signals with time-varying  

(TV) mean [ ] )()( nmnx x=Ε  and/or TV covariance 

[ ),())()())(()(( inrinminxnmnx xxx ] =−−−−Ε .  In practice, the TV mean can be 
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eliminated from the signals by subtracting the local average.  Here, we concentrate on 

zero-mean nonstationary covariance processes. 

 

      Similar to the stationary case, the Cramer-Wold’s decomposition [HC1961] states that 

a purely nondeterministic second-order, zero-mean nonstationary covariance process 

 possesses a one-sided linear representation )}({ nx

              ,                                                                                     (2.2) ∑
∞

=

−=
0

)()()(
i

i invnhnx

where  denotes white noise and , )(nv ∞<∑
∞

=0

2 )(
i

i nh n∀ .  

 

      According to (2.2), the nonstationary process can be viewed as a result of passing 

white noise through a causal filter with the time-varying (TV) transfer function 

.  Since the noise shaping filter is characterized in terms of 

infinitely many impulse response coefficients, the Cramer-Wold’s decomposition can not 

be used for practical modeling.  Similar to the stationary case, one can obtain a finite-

order stochastic model for a nonstationary process as [MN2000] 
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where  and  are the TV model parameters.  The corresponding TV system 

transfer function in direct form can be represented as 

)(nai )(nbj

           
∑
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=

−

=

−
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b

N

i

i
i

N

j

j
j

zna

znb
znH

1

1

)(1

)(1
),(  .                                                                                  (2.4)           

A general framework of modeling nonstationary signals through time-dependent ARMA 

model has been presented in [YG1983].   
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2.2    Time-varying AR Model in Direct Form 

      Considering the advantages and simplicity of the AR model, the time-varying (TV) 

AR model is adopted for the nonstationary signal modeling and analysis in our study. 

2.2.1    Modeling in Direct Form 

      The nonstationary process  can be represented by a TVAR model as (shown in 

Figure 2.2) 

)(nx

           ,                                                                           (2.5) )()()()(
1

nvinxncnx
p

i
i +−−= ∑

=

where  are the TVAR model parameters, )(nci p  is the model order and  is the input 

white Gaussian noise with zero mean and variance .   

)(nv

2
vσ

 

      The signal generating system, can be considered as a linear all-pole time-varying 

filter with the transfer function in direct form           

              
),(

1

)(1

1),(

1

znPznc
znH p

i

i
i

=
+

=

∑
=

−

.                                                                  (2.6) 

It is assumed that  has all the poles within the unit circle on the ),( znH z -plane, which 

guarantees it is a stable filter.  Without this assumption,  given by (2.5) will not be a 

valid description of the signal [MN2000]. 

)(nx

 

 
∑
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Figure 2.2:  Time-varying AR model in direct form. 
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2.2.2    Time-varying Model Parameterization   

      If arbitrary variations in the TVAR model parameters are allowed, then the system 

identification will become an ill-posed problem, so appropriate assumptions on the nature 

of time variations are essential.  Using basis function methods, the model parameters are 

constrained to a subspace spanned by a set of time functions.   

 
      The parameters of the TVAR model in direct form are formed as  

            , )()(
0

nfcnc j

q

j
iji ∑

=

= pi ≤≤1 , Nn ,...,1=  ,                                                       (2.7) 

where }0),({ qjnf j ≤≤  is a set of linearly independent basis functions (BFs) defined on 

the analysis interval ] ,  is the basis dimension and  is a set of ,...,1[ N q }{ ijc )1( +qp  basis 

coefficients.  Without a loss of generality, it is assumed that , which accounts 

for the stationary portion of model parameters.  The projection of the nonstationary 

signals onto the BFs allows a transformation of the TV parameters into a subspace, where 

they can be represented by the time-invariant basis coefficients.  In this way, the 

estimation of TV parameters converts to the estimation of time-invariant basis 

coefficients.  A wide variety of parameter variations can be approximated by using 

suitable BFs with proper basis dimensions. 

1)(0 =nf

 

2.3    Time-varying AR Parameter Estimation in Direct Form 

2.3.1    Prediction Error Identification in Direct Form 

      The time-varying (TV) AR process can also be considered as the TV linear prediction 

in direct form, as shown in Figure 2.3.  The TV linear predictor is given as 

            ,                                                                                    (2.8) 

and the prediction error is defined as          

∑
=

−−=
p

i
i inxncnx

1

)()()(ˆ

             )(ˆ)()( nxnxn −=ε .                                                                                            (2.9) 
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Figure 2.3:  Time-varying linear prediction in direct form. 

 

      The parameter estimation can be obtained through the minimization of the squared 

prediction error using two basis function (BF) methods.  One is the blockwise least-

squares (LS) BF method [MAA1983], in which the parameter estimation is performed 

over a block of data at one time.  The other is the recursive weighted-least-squares (WLS) 

BF method [MN1987], in which the parameter estimation is updated through the 

processing upon each datum sequentially. 

2.3.2    Blockwise Least-Squares Basis Function Method  

      For the blockwise least-squares processing, the criterion of optimality is the 

minimization of the squared prediction error in the whole block 

              ,                                                       (2.10) 
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)(εξ

where different limits of summation over  yields two estimation methods [MAA1983], 

namely the covariance method with the squared error summed only over those signal 

samples that can be predicted from the past 

n

p samples and the autocorrelation method 

with the error summed over the entire time interval.  Only the covariance method is used 

here, since it yields better performance than the autocorrelation method [MAA1983].   

 

      The total squared error is minimized with respect to each basis coefficient  
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ql
pk

≤≤
≤≤

0
1

where  and  are the indices of time delay, and  and l  are the indices of basis 

functions.  Since the squared error 

i k j

ξ  is a quadratic form of basis coefficients ,  the 

minimization will lead to a set of linear system equations for solving basis coefficients. 

}{ ijc

 

      Rearranging (2.11) and changing the order of summation, the system equations 

become 

           ,                  (2.12)         ∑∑ ∑∑
+== +==
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where the cross-correlation function is defined as  

            ,                                                        (2.13) ∑
+=

−−=
N

pn
ljlj knxinxnfnfik

1
)()()()(),(φ

which has the symmetric property with ),(),(),(),( kikiikik jlljjllj φφφφ === . 

 

      Using the definition in (2.13), the system equations (2.12) can be written as 

              ,   )0,(),( 0
01

kikc l

q

j
ljij

p

i
φφ −=∑∑

== ql
pk

≤≤
≤≤

0
1

,                                                      (2.14) 

and the basis coefficients   are calculated by solving the }{ ijc )1( +qp  linear equations.  

 

      To solve the equations in (2.14) in a systematic manner, a certain ordering for the 

basis coefficients need to be established.  The basis coefficient vectors are defined as 

          [ ]iqii ccC ...0= ,    pi ≤≤1 ,                                                                         (2.15a) 

          [ ] [ ]Tpqpq
T

p ccccCCC ,..,...,..,..., ,01101 == .                                    (2.15b) 

The cross-correlation vectors are defined as 

          [ ])0,(,...),0,( 000 kkr qk φφ= ,   pk ≤≤1 ,                                                      (2.16a)                         
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          .             (2.16b) [ ] [ )0,(,..),0,(,...),0,1(.,.),0,1(.,., 0000001 pprrr qq
T

p φφφφ== ]
 

      Following the above ordering, the covariance matrix kiΦ  is defined as  

              , 
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pki ≤≤ ,1 ,                                     (2.17a) 

where .  The block covariance matrix T
kiikki Φ=Φ=Φ R  is defined as 

                   ,                                                                         (2.17b) 
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⎥
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R

..
...
...

..

1

111

where R  is a pp×  block symmetric matrix with )1()1( +×+ qq symmetric blocks.  

 

      Using the equations (2.15) to (2.17), the system equations (2.14) can be finally 

written in the matrix form as   

                     .                                                                                                 (2.18) rRC −=

 

      The computational complexity of the blockwise least-squares basis function method 

depends on the model order and basis dimension.  Most of the computational effort is 

involved with calculating the elements of the covariance matrix R  and cross-correlation 

vector r .  The symmetric property of  R  can be utilized to reduce the number of 

elements to be calculated, and many elements can be calculated recursively from 

previously computed elements [MAA1983].   

 

      The direct or iterative method can be used to solve the system matrix equation (2.18) 

for the basis coefficients.  The direct method, such as Gaussian elimination, orthogonal-

triangular decomposition (QR) and singular value decomposition (SVD) [SH1996], 
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involves a finite number of calculation steps before the solutions are obtained.  The 

iterative method, as in  [LAL1975], [MBTA1977] and [LM1985], calculates a sequence 

of approximations to the solution without inverting the covariance matrix, and the 

iteration can be stopped whenever a desired accuracy is achieved or a number of iteration 

steps are completed.   

 

2.3.3    Recursive Weighted-Least-Squares Basis Function Method 

      To achieve on-line tracking, the recursive weighted-least-squares (WLS) basis 

function (BF) method can be used, which is regarded as a combination of the common 

WLS with the BF method [MN1987].  It has the parameter matching ability due to 

additional degrees of freedom offered by the BFs and the parameter tracking ability due 

to the adaptive nature offered by the recursive WLS.  When the BF set consists of just 

one constant function , the WLS BF method reduces to the common WLS.  The 

greater versatility of the WLS BF estimator is achieved at the cost of the moderately 

increased computational complexity.  

1)(0 =nf

 

      Following the derivations in [MN2000], the observation vector 

 is defined by projecting the  into the subspace 

spanned by the basis functions, and the generalized regression vector is denoted as 

[ T
qn nfnxnfnxX )()(),...,()( 0= ] )(nx

[ ]T
pn

T
n

T
n XXY −−− = ,...,11 .  The time-varying (TV) AR model of order p  can be represented 

by a time-invariant AR model of order )1( +qp as 

                 ,                                                                               (2.19) )()( 11 nvCYnx n
T

n +−= −−

where  is the basis coefficients estimate at the time 

instant . 

[ T
npqpqn ccccC

1,01101 ,..,...,..
−− = ]

1−n

 

      The corresponding TV linear predictor equation is given as [MN2000] 

              ,                                                                                            (2.20) 11)(ˆ −−−= n
T

n CYnx

 and the prediction error for the time instant  is denoted as n nε .                                                                 
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      The weighted squared prediction error given the observations up to the time instant n  

is defined as 
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where 10 <<< λ  is called the forgetting factor, which is used to localize the estimation, 

namely to make the estimation less sensitive to the observations of the distant past.  

 

      The weighted error is minimized with respect to the basis coefficients 
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and the system equations can be obtained as  
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      The covariance matrix is denoted as 

           ,                                                                                            (2.24)                        

and the cross-correlation vector is denoted as 

T
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n
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n YYR 11
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           .                                                                                            (2.25) )(1
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Both of them can be calculated recursively as 

            ,                                                                                       (2.26a) T
nnnn YYRR 111 −−− += λ

            )(11 nxYrr nnn −− += λ .                                                                                       (2.26b) 

 

      Using the above notations, the basis coefficients estimate at the time instant  can be 

calculated as 

n
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      To avoid direct matrix inversion, the matrix inversion lemma [MN2000] will be used  

           [ ] [ ] 1111111 −−−−−−− +−=+ WZVUWZUZZUVWZ ,                                              (2.28) 

where  and W  are matrices of appropriate dimensions,  VUZ ,, Z  and V  are 

nonsingular.  Let us denote  as the inverse of   nP nR
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by choosing ,  and 1
1

−
−= nPZ λ 1−== n

T YWU 1=V  for the matrix inverse lemma. 

 

      Using the recursive weighted-least-squares basis function method, the basis 

coefficients estimate is updated upon each data sample, which is summarized as follows:        

IP δ=0   (δ : positive constant, I : identity matrix) 

0C  initialized to random values 
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2.4    Time-varying Spectrum and Instantaneous Frequency Estimation 

      A common type of nonstationary process is a pseudo-sinusoidal or narrowband signal 

with time-varying (TV) frequencies [KB1984].  Once the model parameters are obtained, 

the TV spectrum can be estimated and the instantaneous frequencies of the signal can be 

extracted by the peak-picking or root-finding method. 

 
      The power spectral density )  of a TVAR process is defined as [KB1984] ,( fnSx

             2
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σ ,                                                                        (2.30) 

where  with the sampling frequency .  In practice, the input noise 

variance is unknown and approximated by 

sff 5.00 ≤≤ sf
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      The peak-picking method is to locate the spectral peak from the TV spectrum, where 

the instantaneous frequency (IF) is the corresponding peak frequency.  When there are m  

frequency components in the signal, the IFs can be obtained from the  largest spectral 

peaks.  However, the closely spaced frequencies may not be differentiated by the peak-

picking method.  The root-finding method is to factorize the denominator polynomial 

 and calculate the poles at each time instant [KB1984], where the IF is obtained 

from the angle of the pole as 

m

),( znP

s
i fnz
π2

)(∠ .  When there are m  frequency components in the 

signal, the IFs can be obtained from the  closest poles to the unit circle.  However, the 

correct IFs may not be obtained when the unreasonable pole locations are obtained from 

the polynomial factorization. 

m
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2.5    Model Order and Basis Function Selection 

      Appropriate model order and basis functions are important for the time-varying (TV) 

AR model.  According to the principle of parsimony [MN2000], one should not use extra 

parameters if not necessary when describing a dynamic process.  The rule of thumb is to 

build a model with the number of estimated parameters less than 0.2×number of 

observations. 

2.5.1    Model Order  

      The accuracy of the TVAR model is sensitive to the choice of model order.  If the 

model order is not appropriate, the model parameters will not characterize the underlying 

nature of the process and the representation of the signal will be inaccurate.  For the 

model based spectral analysis, a model order that is too low will result in a smoothed 

spectral estimate and a model order that is too high will cause spurious spectral peaks.  

The common criteria for determining model order are the Akaike’s information criterion 

(AIC) and the minimum description length (MDL) [SH1996], which are based on 

asymptotic results and originally created for the time-invariant systems.  Some 

approaches were proposed for the TV case, such as the AIC for a class of TVAR models 

in [FF1980], the Bayesian approach in [JP1996], and the maximum likelihood estimation 

in [KBE1999].   

2.5.2    Basis Function 

      The goodness of fitting achieved using the basis function (BF) method partly depends 

on the subspace spanned by the chosen time functions, because it influences the 

smoothness and variations of parameter estimate.  If some prior information about the TV 

process is available, the BF should be chosen to capture the dominant trends of parameter 

variations.  When applied to a general TV system, the BFs which give general 

approximation (i.e. the power time functions and Fourier series), should be chosen 

[MN2000].  In practice, the BF is adopted because of its greater matching flexibility 

rather than the detailed prior knowledge of time variations.  In addition, proper basis 

dimension is important to avoid the over-fitting or the insufficient representation. 
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2.6     Performances of Time-varying AR Model in Direct Form 

      The general performance characteristics of the time-varying (TV) AR modeling in 

direct form are obtained through simulations on synthetic data, in terms of parameter 

estimation error, prediction gain, frequency estimation error and estimated pole 

trajectory. 

2.6.1    Simulations on Synthetic Data  

      The synthetic data set of length 256=N  is generated as the output of a second-order 

all-pole TV filter  

            2
2

1
1 )()(1

1),( −− ++
=

zncznc
znH ,                                                                     (2.32) 

driven by a white Gaussian noise with zero mean and unit variance.  The model 

parameter [ )(2cos2)(1 nfnc ]π−= , where the normalized frequency is 
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And , which can be considered as the radius of the pole in this case. 1)(2 =nc

 

      The model order  is assumed to be known for the analysis process.  The simple 

and commonly used power time functions 

2=p

j

j N
nnf ⎟
⎠
⎞

⎜
⎝
⎛=)(  ( =j 0 to 8)  [LAL1975] are 

chosen as basis functions (BFs), as shown in Figure 2.4.  Both the blockwise and 

recursive ( 96.0=λ ) BF methods are used for parameter estimation.  The simulations are 

performed over 200 independent realizations to obtain the average performance. 

2.6.2    Performance Measures 

2.6.2.1    Parameter Estimation Error 

      Let  ( ) denote the model parameter estimates based on a set of data in 

one realization,  then the expected path of parameter estimates is denoted as [MN1988]                             

)}(ˆ{ nci pi ≤≤1
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Figure 2.4:  Power time functions  ()(nf j =j 0 to 8). 

 

         )](ˆ[)( ncnc ii Ε= ,                                                                                                   (2.34) 

which gives the average trend of parameter evolutions.  If the true parameter trajectory 

can be exactly represented as a linear combination of BFs, we will have unbiased 

estimate )()( ncnc ii = .  However, the actual parameters do not vary in a totally 

predictable way, so there is bias 

         )()()( ncncnb iici
−= ,                                                                                         (2.35a) 

in the estimate, which indicates the difference between the expected path of the parameter 

estimates  and the true parameter trajectory.  In addition, the variance of the parameter 

estimate is  

        ]))()(ˆ[()( 22 ncncn iic i
−Ε=σ ,                                                                     (2.35b) 

which represents the spread of the estimates about the expected path.   

 

      The mean squared error (MSE) of parameter estimates is expressed as 

           [ ]2)(ˆ)()( ncncnMSE iici
−Ε= ,                                                                         (2.36a) 

which shows the overall model parameter estimation accuracy and can be decomposed 

into the bias and variance components as  

          .                                                                              (2.36b)                         )()()( 22 nnbnMSE
iii ccc σ+=
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2.6.2.2    Prediction Gain 

      Effective model-based linear prediction is one goal of modeling.  Thus, a direct 

quality indicator of the TVAR modeling is the average prediction gain PG , given by the 

ratio (in dB) between the average signal energy and prediction error energy as 

[RMGJ1987] 

             ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

10log10
εσ

σ xPG ,                                                                                        (2.37) 

where ⎥
⎦

⎤
⎢
⎣

⎡
Ε= ∑

=

N

n
x nx

1

22 )(σ  and ⎥
⎦

⎤
⎢
⎣

⎡
Ε= ∑

=

N

n
n

1

22 )(εσε .  This criterion shows the goodness of 

fit between the predicted and true signal, which can be used to evaluate the model’s 

adequacy for choosing the appropriate basis dimension. 

 

2.6.2.3    Frequency Estimation Error         

      Model-based spectral analysis and frequency estimation is another goal of modeling.  

The expected path of the TV frequency estimates is denoted as 

            )](ˆ[)( nfnf Ε= ,                                                                                                (2.38) 

which gives a general trend of frequency variation. The average frequency estimation 

error FE  is defined as 

         ∑
=

−=
N

n
nfnf

N
FE

1

)()(1 ,                                                                                    (2.39) 

which indicates the average frequency estimation accuracy at each time instant. 

 

2.6.2.4    Pole Trajectory 

      In addition to the quantitative measures, the average estimated TV pole trajectory, 

which plots the real part of each pole on the ordinate and the imaginary part on the 

abscissa, gives a qualitative view of dynamic system behavior [MAA1983].   The 

unconstrained TV poles of the estimated model might be outside the unit circle in the -

plane, and the unstable output could lead to failure of the system.  The average number of 

z
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TV poles that are outside the unit circle is counted as unstableN , which is used to indicate 

the degree of the possible instability for the estimated TVAR model. 

2.6.3    Results and Discussions 

      The performances of the time-varying (TV) AR modeling in direct form using the 

blockwise and recursive basis function parameter estimation methods are evaluated in 

terms of the aforementioned measures. 

 

      Figure 2.5 compares the expected path of parameter estimates (a) )(1 nc  and (b) )(2 nc  

of the TVAR model in direct form using blockwise and recursive basis function methods 

with a medium basis dimension ( 4=q ), where the true parameter trajectory is also 

shown for comparison.  The blockwise method works as parameter matching, with the 

global optimization over the whole block of data.  Actually, there is an implicit average 

embedded in estimation using the blockwise method.  The recursive method works as 

parameter tracking, with the local approximation adjusted upon each data sequentially.  

For an abrupt parameter change, the blockwise method gives a smooth approximation 

while the recursive method catches up with the new trend with an overshoot.  The value 

of )(2 nc  (squared radius of pole) exceeds one at some time instants, where the estimated 

model becomes temporarily unstable. 

 

      Figure 2.6 shows ∑i c nMSE
i

)( ( 2,1=i ) of the TVAR model in direct form using 

blockwise and recursive basis function (BF) methods with various basis dimensions 

( 8 ).  In Figure 2.6 (a), the blockwise BF method with ,4,2,0=q 0=q , which corresponds 

to the time-invariant approach, totally fails for the nonstationary case with very large 

MSE.  In Figure 2.6 (b), the recursive BF method with 0=q , namely the common 

weighted-least-squares (WLS), has acceptable MSE before the abrupt change. However, 

the MSE becomes larger than those of the WLS BF method ( ) after the abrupt 

change, which shows that the common WLS is only suitable for slow time variations.  

The error is larger at both ends of the interval than the inner part for the blockwise  

1≥q
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(a) Expected path of parameter estimate )(1 nc  
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(b) Expected path of parameter estimate )(2 nc  

Figure 2.5:  The expected path of parameter estimates of the TVAR model in direct form 

                    using blockwise and recursive basis function methods with basis dimension  

                    . 4=q
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(b) Recursive basis function method 

Figure 2.6:   ) of the TVAR model in direct form using blockwise   ∑i c nMSE
i

)( ( 2,1=i

                    and recursive basis function methods with various basis dimensions 

                   ( ). 8,4,2,0=q
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method due to the discontinuity of the data.  The error is large at the beginning for the 

recursive method due to the transient stage.  At the abrupt change point, the MSE of both 

methods increases immediately, where the error is relatively small for larger  because 

higher basis dimensions give more freedom to approximate the jump. 

q

 

      Figure 2.7 shows the average prediction gain PG  via the TVAR modeling in direct 

form using blockwise and recursive basis function methods with various basis 

dimensions ( 0 to 8).  For =q 0=q , the PG  is about 2dB and 9dB for the blockwise and 

recursive methods respectively, showing again that the time-invariant modeling, 

especially when using the blockwise estimation,  does not work for the time-varying 

condition.  For smaller , the q PG  improves quickly with the increasing , and the 

recursive method has higher 

q

PG  than the blockwise method for .  For larger q , the   5≤q
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Figure 2.7:  PG  via the TVAR modeling in direct form using blockwise and recursive 

  basis function methods with various basis dimensions ( 0 to 8). =q
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improvement in PG  is negligible for the recursive method, while the PG  for the 

blockwise method still increases and becomes larger than that of the recursive method for 

.  Hence, the medium basis dimension (6>q 4=q ) is enough for the recursive method to 

achieve suitable tracking performance, while the blockwise method needs a relatively 

large basis dimension to obtain good matching performance.  

 

      Figure 2.8 shows the expected path of the frequency estimate )(nf  via the TVAR 

modeling in direct form using blockwise and recursive basis function methods by root-

finding, where the true frequency trajectory is also shown for comparison.  The frequency 

estimates obtained from the peak-picking are almost the same and thus not shown here.  

Similar to the parameter estimate in Figure 2.5 (a), the blockwise method behaves as 

frequency matching and the recursive method behaves as frequency tracking. 

 

      Figure 2.9 compares the average frequency estimation error FE  of the TVAR 

modeling in direct form using blockwise and recursive basis function methods with 

various basis dimensions ( =q 0 to 8).  The FE  for the blockwise method is much larger 

than that for the recursive method for small .  With increasing , q q FE  for the blockwise 

approaches to that for the recursive method but still remains slightly larger.  This shows 

that the recursive method performs better than the blockwise method when there are 

abrupt changes in the frequency variations. 

 

      Figures 2.10 (a) and (b) show the average estimated pole trajectories of the TVAR 

model in direct form using blockwise and recursive basis function methods ( 4=q ). The 

true pole trajectory and the unit circle are also shown for comparison.  In Figure 2.10 (a), 

the estimated pole trajectory using the blockwise method matches the general trend of the 

true trajectory, with smooth movement through the jump point.  Some estimated poles 

leave the unit circle at both ends due to the poor estimation accuracy.  In Figure 2.10 (b), 

the pole trajectory using the recursive method follows the true trajectory and catches up 

with the abrupt change.  Some estimated poles leave the unit circle at the transient stage  
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Figure 2.8:  The expected path of frequency estimates )(nf  via the TVAR modeling in 

                  direct form using blockwise and recursive basis function methods with basis 

                    dimension . 4=q
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Figure 2.9:  FE  via the TVAR modeling in direct form using blockwise and recursive  

                    basis function methods with various basis dimensions ( 0 to 8). =q
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Figure 2.10:  The average estimated pole trajectories of the TVAR model in direct form  

                       using blockwise and recursive basis function methods with basis dimension  

                       . 4=q

 

especially after the abrupt change due to the overshooting in the estimates.  In general, 

the TV synthesis filter, which is obtained from the estimated TVAR model, with poles 

outside the unit circle would be of no practical value.  Thus, the possible temporary 

instability of the TVAR model is a limitation for its application. 

 

       Figure 2.11 shows the unstableN  for the TVAR model in direct form using blockwise 

and recursive basis function (BF) methods with various basis dimensions ( =q 0 to 8).  

The unstableN  becomes larger with increasing q  and stabilizes for larger q , which shows 

that the instability is brought by the use of BFs.  The estimated TVAR model using the 

recursive BF method is much more easily to become unstable than that using the 

blockwise BF method.  The oscillation in unconstrained local estimations makes the 

recursive method become unstable more easily, while the implicit average embedded in 

the blockwise method helps reduce the unreasonable estimates thus possible instability. 
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Figure 2.11:  unstableN  of the TVAR model in direct form using blockwise and recursive        

                      basis function methods with various basis dimensions ( 0 to 8). =q

 

2.7    Chapter Summary 

      The time-varying (TV) AR model in direct form was reviewed, where the blockwise 

least-squares and recursive weighted-least-squares basis function (BF) parameter 

estimation methods were described.  Simulations on synthetic data demonstrate that the 

TVAR model in direct form performs well in identifying the nonstationary process and 

estimating the TV frequencies, with equivalent overall performance achieved by the two 

BF methods.  The blockwise BF method works as parameter matching, and a relatively 

large basis dimension is needed to obtain good global optimization.  The recursive BF 

method works as parameter tracking, and a relatively small basis dimension is enough to 

follow the local changes. 

 

      The estimated TVAR model may become temporarily unstable, which is mainly 

caused by the large estimation error at both ends of the analysis interval and the abrupt 

change points.  Due to the oscillation in unconstrained local estimations, the recursive BF 
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method is more easily to become unstable than the blockwise BF method.  Thus, reliable 

and convenient stability monitoring is needed for the current TVAR model in direct form.  
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CHAPTER III 

Time-varying Autoregressive Modeling in Cascade Form 
 
 
      In this chapter, the motivations for cascade formulation for the time-varying (TV) AR 

model are given firstly.  The proposed TVAR model in cascade form (CF) is then 

formulated through the parameterization in terms of TV poles, with four possible forms 

of pole representation, using the basis function method.  Next, the error-gradient 

generating and basis coefficients calculation processes are described for the TVAR 

parameter estimation in CF.  Finally, the performance characteristics of the TVAR model 

in CF with different pole representations are explored and compared with those of the 

TVAR model in direct form via simulations on synthetic data. 

 

3.1    Motivations for Cascade Formulation     

      The limitations of the time-varying (TV) AR model in direct form motivate 

formulating the TVAR model in cascade form through the parameterization in terms of 

TV poles. 

 

      First, the possible temporary instability of the estimated TVAR model in direct form 

(DF) is a major limitation for its application, thus reliable and convenient stability 

monitoring is needed.  The clipping technique in [MNI1987] tries to reduce the possible 

instability at both ends of the analysis interval by estimating the model parameters with 

the data on the whole interval and using the estimates for modeling on a smaller 

subinterval.  However, this method can not completely eliminate the possible instability.  

Another method in [MJJ1998] adds constraints on the parameters of the TVAR model in 

DF through moving the estimated poles to the stable region. Due to highly nonlinear 

mapping of the polynomial coefficients to the poles, it is solved iteratively to sequentially 

linearize the nonlinear constraints, which is computationally expensive.  
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      Second, the parameters of the TVAR model in direct form (DF) may not provide the 

most convenient information for some applications, while the poles of the system transfer 

function usually contain the physical information of the underlying process.  For 

example, the positions of poles determine the formant frequencies and bandwidths in 

speech processing [LS1978] and the frequency information of sinusoid signals is also 

contained in the poles [KB1984].  The TV poles can be obtained by identifying the 

spectral peaks or factorizing the transfer function polynomial in DF, but these methods 

are computationally intensive and not suitable for TV pole tracking. 

 

      Third, the parameterization of the TVAR model in terms of transfer function 

coefficients may not yield a natural representation for frequency variations of the 

nonstationary process.  A monotonic evolution of TVAR parameters may not convey a 

smooth transition in the signal frequency.  The parameterization of the TVAR model in 

terms of TV poles may provide a more appropriate representation of the nonstationary 

process.  

 

3.2    Time-varying AR Model in Cascade Form 

3.2.1    Modeling in Cascade Form 

      To allow the pole locations to be readily estimated and constrained, the time-varying 

(TV) AR model is formulated in cascade form (CF), as shown Figure 3.1.  The TV 

transfer function  is represented as the product of cascade sections [LS1978] ),( znH
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,                                                                       (3.1) 

where  is the transfer function denominator in each 

cascade second-order section, is the transfer function 

denominator of direct form, and the model order 

21 )(2)(11),( −− ++= znpznpznP kkk

∑
=

−+=
p

i

i
i zncznP

1
)(1),(

p  is assumed to be a even number.   
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Figure 3.1:  Time-varying AR model in cascade form. 

 

      Let us denote the direct form (DF) model parameters as  

and the parameters of each cascade section as 

)}(),...,(,1{)}({ 1 ncncnP p=

)}(2),(1,1{)}({ npnpnP kkk = .  The DF 

parameters can be calculated through a multiple convolution of CF parameters 

               ,                                                                                (3.2) { )()}({
2/

1
nPnP k

p

k
Conv

=

= }

which shows the nonlinear mapping between the model parameters of DF and CF. 

 

            Compared with the model in DF, the model in CF has certain advantages:  

• It is convenient to control stability by checking the pole locations in each cascade 

section and projecting the unstable poles into the admissible regions. 

• The poles can be directly estimated and more finely adjusted from the data rather 

than from the estimated model parameters.  

• It is a more natural representation of the nonstationary process, with the variations 

in the frequency domain easily related to the pole movements.   

3.2.2     Time-varying Parameterization in Cascade Form 

3.2.2.1    Parameterization in terms of Time-varying Pole 

      Assume that each cascade section consists of a TV conjugate complex pole pair 

{ })(),( * nznz kk , so the transfer function denominator in each section can be expressed as 

          , 
221

1*1

|)(|)](Re[21
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znzznzznP
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which is appropriate when the signals and model parameters are real-valued.  Each pole 

pair may be represented in form of second-order section coefficients, Cartesian 

coordinates or polar coordinates. 

 

      Let )(nkω  denote a general representation of each parameter related to the TV pole in 

the th cascade section, and the time variation of k )(nkω  is assumed to be the linear 

combination of time functions as 

                ,                                                                                       (3.4) ∑
=

=
q

j
jkjk nfn

0
)()( ωω

where }0),({ qjnf j ≤≤  is a set of basis functions  and }{ kjω  is a set of basis coefficients.  

In this way, it can be viewed as transforming the TV poles into a sub-space where they 

can be represented by the time-invariant basis coefficients.  Four possible types of TV 

pole representation are described respectively in the following sections.                                                     

3.2.2.2   Parameterization using Second-order Section Representation 

      The second-order section coefficients are related to each TV complex pole pair as 
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, Nnpk ,...,1,2/1 =≤≤ ,                                                  (3.5) 

so the denominator of the TV transfer function for each second-order section can be 

expressed as 
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where the TV parameters are formed as a linear combination of basis functions    
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and the corresponding basis coefficient vectors are denoted as        
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3.2.2.3    Parameterization using Cartesian Coordinate Representation 

      In Cartesian coordinates, each TV complex pole pair is represented as 

          ,)()()}(),({ * njdyndxnznz kkkk ±= Nnpk ,...,1,2/1 =≤≤ .                                  (3.9) 

so the denominator of the TV transfer function for each cascade section with Cartesian 

coordinate representation can be expressed as 
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where the real and imaginary parts are formed as a linear combination of basis functions         
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3.2.2.4    Parameterization using Polar Coordinate Representation ( θ,r )  

         In polar coordinates ( θ,r ), each TV complex pole pair is represented as 

        ,))(sin)()(cos()}(),({ * njnnrnznz kkkkk θθ ±= Nnpk ,...,1,2/1 =≤≤ .                (3.13)    

so the denominator of the TV transfer function for each section with ( θ,r ) representation 

can be expressed as 
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where the pole radius and angle are formed as a linear combination of basis functions     
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and the corresponding basis coefficient vectors are denoted as 

              
[ ]
[ kqkk

kqkk rrR

θθ ,...,

,...,

0

0

=Θ

=

]
]

,                                                                                          (3.16a) 

               .                                                                       (3.16b)                [ T
ppRR 2/12/1 ,...,,,..., ΘΘ=η

 

3.2.2.5    Parameterization using Polar Coordinate Representation ( βα , )  

       In polar coordinates ( βα , ), each TV complex pole pair can also be represented as 

        ( ))(1)()()}(),({ 2* njnnnznz kkkkk ββα −±= , Nnpk ,...,1,2/1 =≤≤ ,                  (3.17) 

where  and )()( nrn kk =α )(cos)( nn kk θβ = .  The denominator of the TV transfer 

function for each section with ( βα , ) representation can be expressed as  
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where the radius and cosine-angle are formed as a linear combination of basis functions 
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3.3    Time-varying AR Parameter Estimation in Cascade Form 

3.3.1    Prediction Error Identification in Cascade Form 

      Using the model in cascade form, the time-varying (TV) AR process can be 

considered as the TV linear prediction in cascade form, as shown in Figure 3.2.  The 

prediction error )(nε  is generated by passing  through all the cascade sections 

[LS1978], which can be expressed in 

)(nx

z -domain as                                

         ,                                                                                  (3.21) ∏
=

=
2/

1
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k
k znPzXznE

where the -domain representation can be considered as a short-hand form for the time-

domain operation.   

z

 

      The system equations for parameter estimation are obtained by minimizing the 

squared prediction error ∑=
n

n)(2εξ  with respect to each basis coefficient kjω   
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where the error gradient component is denoted as 
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      Figure 3.2:  Time-varying linear prediction in cascade form. 
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3.3.2    Error Gradient Generation in Cascade Form 

      The general error-gradient generating process for each basis coefficient is first 

described.  The gradient components for four possible forms of pole representation are 

then given in the following sections respectively.   

3.3.2.1    General Error Gradient Generating Process                                                                

      The gradient component can be directly calculated by taking the partial derivatives of 

the prediction error with respect to kjω  
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which can be represented by a linear combination of the input samples 

 as [ ])(),...,1( pnxnx −−

            ,                                                                          (3.24b) ∑
=

−=
p

i
i inxnwng

kjkj
1

, )()()( ωω

 where  

           
{ })()}({

)}({)}({

2/

1

,

nPnP

nPnw

m

p

km
mkj

k

kj
i

Conv

kj

≠
=

∗
∂

∂
=

∂
∂

=

ω

ωω

.                                                      (3.24c) 

When the number of cascade sections is large, the computational complexity for this 

gradient generating process will be much higher than that for the model in direct form.    

 

      Similar to that in [LS1978], another computationally more efficient gradient 

generating process can be obtained as 
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Figure 3.3:  Error gradient generating process for the time-varying AR model in cascade  

                   form. 

 

where  is the inverse transfer function of the th cascade section.  In this way, 

the gradient component can be generated by passing 

),(1 znPk
− k

)(nε  through the inverse filter of the 

-th section and linearly combining the outputs according to the partial derivative of  

 with respect to 

k

),( znPk kjω , as shown in Figure 3.3.   

3.3.2.2    Error Gradient for Second-order Section Representation 

      The error-gradient components for the second-order section representation are 

denoted as 
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and the corresponding gradient vectors are 
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      The direct gradient calculation is 
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and the efficient gradient calculation is 
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3.3.2.3    Error Gradient for Cartesian Coordinate Representation 

      The error-gradient components for the Cartesian coordinate representation are 

denoted as 
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   and the corresponding gradient vectors are 
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      The direct gradient calculation is 
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3.3.2.4    Error Gradient for Polar Coordinate Representation ( θ,r ) 

      The error-gradient components for the ( θ,r ) representation are denoted as 
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and the corresponding gradient vector is 
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        The direct gradient calculation is  
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3.3.2.5    Error Gradient for Polar Coordinate Representation ( βα , )  

      The error-gradient components for the ( βα , ) representation are denoted as 
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 and the corresponding  gradient vectors are 
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      The direct gradient calculation is 
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3.3.3    Basis Coefficients Calculation in Cascade Form 

        Let  denote a general basis coefficient vector, the corresponding error gradient 

vector can be expressed as 

Ω

                  
Ω∂

∂
=ΨΩ

)(nε ,                                                                                             (3.42) 

and the system equations (3.22) can be written in vector form as 

                    .                                                                                         (3.43) ∑ =ΨΩ
n

n 0)(ε

Due to the gradient generating process in cascade form (CF), the gradient components are 

necessarily coupled, so the gradient vector ΩΨ  depends on Ω .  Thus, the system 

equations for the TVAR model in CF are nonlinear with respect to basis coefficients.   

 

      The error surface for the direct form (DF) model in the least squares identification is 

quadratic and possesses a unique global minimum, while the error surface for the cascade 

form (CF) model is non-quadratic and possesses multiple minima [JJS1987].  In fact, this 

is a consequence of cascading individual sections without affecting the overall transfer 

function, keeping the value of corresponding error signal unaltered.  By reordering the 
2
p  

second-order sections, there can be as many as !
2
p  equivalent configurations [MW1989].  

The solution to the nonlinear equations for the CF corresponds to the same point on the 

error surface of DF (with respect to the new coordinated system).  Thus, the nonlinear 

system equations for the model in CF also possess a unique solution. 

 

        To solve the set of nonlinear system equations, the Gauss-Newton algorithm 

[LT1983] is used, where the minimization of the prediction error is obtained by 

performing searches in the Newton direction using the error gradient and the inverse of 

the estimated Hessian matrix.  The basis coefficients estimate is updated as 
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where γ  is the step size to control the convergence rate and nP~  is the inverse of the 

estimated Hessian matrix, updated according to 
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The form of the Gauss-Newton algorithm is the same for different forms of pole 

representation, and the essential difference lies on the corresponding basis coefficients 

and gradient vectors.  The model stability is checked after each basis coefficient update. 

The pole with radius greater than one will be projected back into the unit circle, by 

multiplying each unstable pole  by )(nzk
2)( −nzk .  The poles too close to the origin will 

also be avoided, because the pole angle may be arbitrary when the radius is too small.   

 

     The basis coefficients calculation process in cascade form is summarized as follows 

IP δ=0
~ (δ : positive constant, I : identity matrix)  

0Ω  initialized to random values 
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Check the stability and adjust nΩ  to project unstable poles into admissible regions. 
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3.4    Performances of Time-varying AR Model in Cascade Form 

      Simulations are performed on synthetic data for the single and double pole pairs 

cases, to illustrate the performance characteristics of the time-varying (TV) AR model in 

cascade form and compare with those of the TVAR model in direct form.  The model 

order is assumed to be known for the analysis process, the power time functions are used 

for basis functions, and the simulations are performed over 200 independent realizations. 

3.4.1    Test1: Single Pole Pair Case 

      The single-pole-pair case is mainly used to explore the performance characteristics of 

the TVAR model with parameterization in TV poles and benefits of constrained 

estimation.  The synthetic data of length 256=N  are generated by the second-order all-

pole TV filter described by the equations (2.32)-(2.33) in Chapter II.  04.0=γ  is used in 

the Gauss-Newton algorithm.   

 

      Figure 3.4 shows the average estimated pole trajectory of the TVAR model in cascade 

form with the Cartesian coordinate pole representation with a medium basis dimension 

( ).  The estimated pole moves along the true trajectory and follows the abrupt 

change.  All the estimated TV poles remain inside the unit circle, due to the stability 

monitoring after each basis coefficients update. 

4=q

 

      Figure 3.5 compares the PG  via the TVAR modeling in direct form (DF, blockwise 

and recursive) and cascade form (CF, four forms of pole representation) with various 

basis dimensions ( 0 to 8).  The =q PG  of the CF show similar trends to that of the 

recursive DF, because the basis coefficients of the CF are also updated sequentially as the 

recursive DF.  The TV pole representation in Cartesian coordinate shows its superior 

performance with the PG   about 1dB higher than those of other pole representations, 

which are all close to that of the recursive DF.  The orthogonality between the real and 

imaginary parts of the Cartesian pole representation makes it more robust to estimation 

errors.  When there is a 
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Figure 3.4:  The average estimated pole trajectory of the TVAR model in cascade form  

                    using the pole representation in Cartesian coordinate with basis dimension  

                     in test1. 4=q
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Figure 3.5:  PG  via the TVAR modeling in direct form (blockwise and recursive) and  

                    cascade form (four forms of pole representation) with various basis  

                    dimensions ( 0 to 8) in test1. =q
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small error in one direction, it will have negligible effect on the other direction, and thus 

good pole estimate can still be obtained.  Although the radius and angle of the ( θ,r ) pole 

representation are orthogonal, it is sensitive to deviations of angle when the radius is 

large, because a small error in the angle estimate may bring the estimated pole far from 

its true position.  The parameters for the ( βα , ) pole representation are not orthogonal, so 

it doesn’t gain any advantage over the DF.  The second-order section representation is 

similar to the DF, because it is actually the DF with stability control for the single pole 

pair case. 

 

      Figure 3.6 shows the expected path of parameter estimates )(nci  ( 2 ) of the 

TVAR model in cascade form (CF, Cartesian), where the estimates of the TVAR model 

in direct form (DF, blockwise and recursive) and the true parameter trajectory are also 

shown for comparison.  In Figure 3.6 (a), the estimate of the Cartesian CF is similar to 

that of the recursive DF, but it has smaller overshooting and hence closer approximation 

after the abrupt change.  In Figure 3.6 (b), the estimates of the Cartesian CF do not 

oscillate around the true parameter trajectory and remain less than one, which again show 

the benefit of constrained estimation. 

,1=i

 

      Figure 3.7 compares the FE  via the TVAR modeling in direct form (DF, blockwise 

and recursive) and cascade form (CF, four forms of pole representation) with various 

basis dimensions ( 0 to 8).  The =q FE  of the CF with different forms of pole 

representation is similar to that of the recursive DF.  The FE  of the Cartesian and ( θ,r ) 

representations are slightly lower than that of the recursive DF due to better pole 

representation and adjustment. The FE  of the second order section and ( βα , ) 

representations are slightly higher than that of the DF, so using these pole representations 

gain no benefit in frequency estimation. 

 

      Figure 3.8 shows the expected path of the frequency estimate )(nf  via the TVAR 

modeling in cascade form (CF, Cartesian), where the estimates via the TVAR modeling  
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(a) Expected path of parameter estimate )(1 nc   
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(b) Expected path of parameter estimate )(2 nc  

Figure 3.6:  The expected path of parameter estimates of the TVAR model in direct form 

                    (blockwise and recursive) and cascade form (Cartesian) with basis dimension  

                     in test1. 4=q
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Figure 3.7:  FE  via the TVAR modeling in direct form (blockwise and recursive) and  

                    cascade form (four forms of pole representation) with various basis  

                    dimensions ( 0 to 8) in test1. =q
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Figure 3.8:  The expected path of frequency estimates )(nf  via the TVAR modeling in 

                    direct form (blockwise and recursive) and cascade form (Cartesian) with 

                    basis dimension 4=q  in test1. 
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in direct form (DF, blockwise and recursive) and the true frequency trajectory are also 

shown for comparison.  Again, the estimate for the CF is similar to that for the recursive 

DF, but it has closer approximation to the true frequency trajectory. 

3.4.2    Test2: Double Pole Pairs Case 

      The double-pole-pair case is used to explore benefits gained by individual TV pole 

estimation for the signal with multiple frequency components.  The synthetic data set of 

length  is generated as the output of a fourth-order all-pole TV filter  512=N

      
))()(1)()()(1(

1),( 2
22

1
21

2
12

1
11

−−−− ++++
=

zncznczncznc
znH  ,                             (3.46) 

driven by the white Gaussian noise with zero mean and unit variance.  The TV 

parameters of each cascade section are [ ])(2cos2)( 111 nfnc π−= , 1)(12 =nc , and 

[ ])(2cos2)( 221 nfnc π−=  and 1)(22 =nc , where the normalized TV frequencies are 
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      In the double-pole-pair case, model order 4=p  is assumed known. The two 

estimated frequencies cannot be categorized to their corresponding true trajectories, so 

the FE  cannot be calculated for the individual frequency.  The performances of the 

TVAR modeling in direct form ( 98.0=λ ) and cascade form ( 02.0=γ ) are evaluated by 

the average estimated pole trajectories and the expected paths of frequency estimates 

( 4 ) in Figure 3.9 and the =q PG in Figure 3.10.  

 

       In Figure 3.9 (a), the frequency estimates via the TVAR modeling in direct form 

(DF, blockwise) match the true frequency points, but the estimates give two separate and  
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(a) Direct form (blockwise) 
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(b) Direct form (recursive)     

Figure 3.9:  The average estimated pole trajectories and expected paths of frequency  

                    estimates via the TVAR modeling in direct form (blockwise and recursive)  

                    and cascade form (Cartesian) with basis dimension 4=q   in test2. 
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(c) Cascade form (Cartesian) 

Figure 3.9: Continued. 
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Figure 3.10:  PG via the TVAR modeling in direct form (blockwise and recursive) and  

                      cascade form (four forms of pole representation) with various basis  

                      dimensions ( =q 0 to 8) in test2. 

 53



smooth frequency trajectories without showing the actual abrupt change and crossing.  

The average estimated pole trajectories also show two distinct roundtrip pole movements, 

instead of the actual two one-way movements with crossing.  Similar phenomena were 

found in [KBE1999].  Thus, the frequency-varying trend may not be correctly revealed 

via the global optimization of the blockwise DF. 

 

      In Figure 3.9 (b), the frequency estimates via the recursive direct form (DF) closely 

track the true trajectories and show the frequency jump and crossing.  However, there is a 

large overshooting due to the unconstrained estimation after the frequency jump and 

crossing point, with the normalized frequency reaching the value of 0.5.  The 

overshooting causes obvious model instabilities, with the TV poles migrating outside the 

unit circle.   

 

      In Figure 3.9 (c), the frequency estimates via the cascade form (CF, Cartesian) is 

shown for comparison with the direct form, since it yields the best performance among 

four pole representations.  The frequency estimates obtained by the Cartesian 

representation closely follow the true frequency trajectories, with the jump and crossing.  

Since the constraints are placed on the poles during the estimation, the overshooting in 

estimates after the abrupt change is relatively small and within a reasonable range.  

Moreover, all the estimated TV poles remain inside the unit circle. 

 

        In Figure 3.10, the PG  via the TVAR modeling in direct form (DF, blockwise and 

recursive) are higher than those via the TVAR modeling in cascade form (CF, four forms 

of pole representation) in the double-pole-pair case.  This may be caused by the error 

propagation via the convolution between the cascade sections in gradient computations.  

In addition, constrained estimation in individual cascade section may reduce the overall 

signal prediction accuracy.  The CF with the Cartesian pole representation has higher 

PG  than the other forms of pole representation. 
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3.5    Chapter Summary 
 
      The proposed time-varying (TV) AR model in cascade form (CF) was formulated 

through the parameterization in terms of TV poles, where four possible forms of TV 

poles are represented and estimated using the basis function (BF) method.  Simulations 

were performed on synthetic data with single and double pole pairs to explore the 

performance characteristics of TVAR model in CF. 

 

      Using the TVAR model in cascade form (CF), the estimated TV poles can be easily 

constrained within the unit circle during the identification process, thus the model 

stability is guaranteed.  Due to the sequential basis coefficients estimate update, the CF 

model show similar performance trends to the direct form (DF) model using the recursive 

basis function method.  The TV pole representation in Cartesian coordinate gives a 

natural and robust approximation of time variations in frequencies, and outperforms other 

forms of pole representation, which all yield similar performances to the recursive DF.  

Since the poles are adjusted separately in each cascade section, the actual varying trend 

of individual frequency component can be clearly revealed by the TVAR modeling in CF, 

when several frequency components are present in the nonstationary signal.  In addition 

to stability control, the constraints placed on the estimated TV poles also help avoid the 

possible large overshooting in frequency estimates caused by the random oscillation in 

local estimations, as that occurs for the recursive DF.  
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CHAPTER IV 

Instantaneous Frequency Estimation via Time-varying 
Autoregressive Modeling 

 

      In this chapter, the basics of instantaneous frequency (IF) are first reviewed.  The 

performance characteristics of IF estimation via the time-varying AR modeling in direct 

form (blockwise and recursive) and cascade form (Cartesian) are then explored through 

simulations on synthetic sinusoidal signals with different frequency variations, where the 

influences of various basis dimensions, different basis functions and additive white noise 

are investigated.  Finally, experiments are carried on real electromyography (EMG) data 

for frequency estimation in the analysis of muscle fatigue. 

4.1    Instantaneous Frequency  

      In some situations, such as seismic, radar, sonar, communications and biomedical 

applications, the instantaneous frequency is a parameter of practical importance, which 

defines the location of the nonstationary signal’s spectral peak as it varies with time 

[BB11992].   

 

      The instantaneous frequency (IF) of a continuous-time signal  can be uniquely 

defined as the first derivative of the phase of the analytic signal [BB11992] 

)(tx

              
dt

tdtfi
)(

2
1)( ϕ
π

= ,                                                                                             (4.1) 

where )(tϕ  is the phase function of the analytic signal .   is generated 

from the real signal  as 

)()()( tjetatz ϕ= )(tz

)(tx

              ,                                                                                      (4.2) )]([)()( txjHtxtz +=

where  denotes the Hilbert transform.  Physically, IF has meaning only for 

monocomponent signals, where there is only one frequency or a narrow range of 

frequencies varying as a function of time.  For multicomponent signals, the notion of a 

single-valued IF becomes meaningless, and a break-down into its component is needed.   

][⋅H
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      Several methods may be used to estimate the instantaneous frequencies [BB21992], 

such as calculating the first-order central finite difference of the analytic signal, counting 

the number of zero-crossings, calculating the spectrogram from the short-time Fourier 

transform, computing the moments of the time-frequency distribution, and finding the TV 

poles via the TVAR modeling. 

4.2    Simulations on Sinusoidal Signals with Time-varying Frequencies 

       To explore the performance characteristics of instantaneous frequency estimation via 

the time-varying (TV) AR modeling, simulations are performed on the synthetic 

sinusoidal signals with different TV frequencies.       

4.2.1    Time-varying AR Model for Sinusoidal Signals  

      The sinusoidal signal )](2cos[)( sis nTfnTx π=  ( Nn ≤≤1 ) with a single frequency 

component has its TV pole on the unit circle at the angle corresponding to its 

instantaneous frequency (IF) [KB1984].  In simulations, the sampling frequency and 

interval are both normalized to unit ( 1=sF , 1=sT ).  Using the trigonometric identities, it 

can be shown that  satisfies a second order recursion as [KB1984] )(nx

            )2()()1()()( 21 −−−−= nxncnxncnx ,                                                                (4.3) 

where the TV parameters [ ])1(2cos2)(1 −−≈ nfnc iπ  and 1)(2 ≈nc .  This recursion is 

valid for the sinusoidal signal with different TV frequencies, such as linear, quadratic and 

periodic variations, which is shown in Appendix A.  Thus, the IF of a sinusoidal signal 

can be estimated via the TVAR modeling.   

 

      The following four sinusoidal signals with linear, quadratic, periodic and abrupt 

frequency changes are used in simulations.  

• Signal 1: a sinusoid with a normalized frequency piecewise linearly varying over 

   samples,  increasing from 256=N 1.00 =f  to 4.0max =f  over the first 128=cN  

    samples, then decreasing back to 1.00 =f  over the next 128 samples. 
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• Signal 2: a sinusoid with a normalized frequency nonlinearly varying over 

 samples in a quadratic manner, decreasing from  to 256=N 4.00 =f 1.0min =f  

over the first  samples then increasing back to   over the next 

128  samples. 

128=cN 4.00 =f
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• Signal 3: a sinusoid with a normalized frequency nonlinearly varying in a   

periodic manner over 256=N  samples, starting from 25.00=f  and oscillating   

            between  and4.0max =f 1.0min =f ,  with a sweeping rate of 
Nf
4

=µ . 
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πµ
πµ
µπ , 2561 ≤≤ n ,                              (4.6)     

            where 
2

minmax
3

ff −
=µ  and 2561),2sin()( 30 ≤≤+= nnfnf fi πµµ . 

 

• Signal 4:  a sinusoid with a frequency jump. The frequency remains constant  
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  at  for the first 127 samples and then it jumps to 1.00 =f 4.0=Nf  at the 128th 

  sample and remains constant over the next 128 samples. 

               ,                                                  (4.7) 
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      To have a general view of the frequency variations in the four sinusoidal signals, the 

short-time Fourier transform (STFT) is performed on the synthetic data, using 32 samples 

in each short interval with a overlapping of 27 samples between adjacent intervals.  The 

spectrograms of four signals, the squared magnitude of the STFT, are shown in Figure 

4.1.  The trends of frequency variations and rough frequency ranges can be seen from the 

spectrograms, but the time and frequency resolutions are relatively low due to the small 

number of analysis intervals and the short length of each analysis interval. 

4.2.2    Instantaneous Frequency Estimates  

      The instantaneous frequency (IF) estimates for the four synthetic sinusoidal signals 

are obtained via the TVAR modeling in direct form (DF, blockwise and recursive) and 

cascade form (CF, Cartesian), where the IF estimates from the DF model are extracted by 

root-finding.  Since the sinusoidal signals are real and have one frequency component, 

the model order  is used in the analysis process.  The power time functions are used 

as basis functions, and various basis dimensions (

2=p

10,7,4,1=q ) are used.  94.0=λ  is used 

for the recursive DF  and 08.0=γ  is used for the Cartesian CF.   

 

      The instantaneous frequency estimates for the four synthetic sinusoidal signals are 

shown in Fig. 4.2-4.5 respectively.  Compared with the rough frequency range on each 

short time interval shown in the spectrograms, a single frequency estimate is obtained at 

each time instant via the TVAR modeling, which gives both higher time and frequency 

resolutions. 
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(a) Signal 1 
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(b) Signal 2 
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(c) Signal 3 

n

f i(n
)

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 
(d) Signal 4 

Figure 4.1:  Spectrograms of four sinusoidal signals with time-varying frequencies. 
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(a) Direct form (blockwise)  
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(b) Direct form (recursive) 
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(c) Cascade form (Cartesian)  

Figure 4.2:  Instantaneous frequency estimates of the signal 1 via the TVAR modeling in  

                   direct form (blockwise and recursive) and cascade form (Cartesian) with  

                   various basis dimensions ( 10,7,4,1=q ). 
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(a) Direct form (blockwise)  
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(b) Direct form (recursive) 
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(c) Cascade form (Cartesian) 

Figure 4.3:  Instantaneous frequency estimates of the signal 2 via the TVAR modeling in  

                   direct form (blockwise and recursive) and cascade form (Cartesian) with  

                   various basis dimensions ( 10,7,4,1=q ). 
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(a) Direct form (blockwise)  
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(b) Direct form (recursive) 
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(c) Cascade form (Cartesian) 

Figure 4.4:  Instantaneous frequency estimates of the signal 3 via the TVAR modeling in  

                   direct form (blockwise and recursive) and cascade form (Cartesian) with  

                   various basis dimensions ( 10,7,4,1=q ). 
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(a) Direct form (blockwise)  
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(d) Direct form (recursive) 
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(c) Cascade form (Cartesian)  

Figure 4.5:  Instantaneous frequency estimates of the signal 4 via the TVAR modeling in  

                   direct form (blockwise and recursive) and cascade form (Cartesian) with  

                   various basis dimensions ( 10,7,4,1=q ). 

  64



      As shown in (a) of Figure 4.2-4.5, the instantaneous frequency (IF) estimates via the 

TVAR modeling in direct form (DF, blockwise) are based on the global matching, which 

heavily depends on the subspace spanned by the basis functions (BFs), so the basis 

dimension (BD) is an important factor on the estimation accuracy.  When the BD is 

small, the blockwise DF can not even give the approximate trend of frequency variations, 

while the IF estimates approach to the true frequency trajectories with increasing BD.  

However, the IF estimates do not have a good match for the abrupt frequency change 

points, even when the BD is large enough. 

 

      As shown in (b) of Figure 4.2-4.5, the instantaneous frequency (IF) estimates via the 

TVAR modeling in direct form (DF, recursive) are based on the local tracking, which 

does not completely rely on the whole subspace spanned by the basis functions, so the 

basis dimension (BD) is not a critical factor.  However, there are obvious delays between 

the IF estimates and true frequency trajectories when the BD is too small.  The BD 4=q  

is usually large enough, and further increase of BD will not improve but may degrade the 

performance due to over-parameterization.  The recursive DF can track the abrupt 

change, but some large overshooting may occur in the IF estimates due to the 

unconstrained parameter estimation, which may also cause possible temporary model 

instabilities. 

 

      As shown in (c) of Figure 4.2-4.5, the instantaneous frequency (IF) estimates via the 

TVAR modeling in cascade form (CF) (Cartesian) show similar trends to those of the 

recursive direct form, but the Cartesian CF gives a closer approximation and smaller 

estimation delay with small basis dimension (BD).  The parameterization in terms of TV 

poles enables a more direct approximation to the frequency variations than the 

parameterization in terms of transfer function coefficients, thus smaller BDs are needed 

by the Cartesian CF. Moreover, there is smaller overshooting in the IF estimates at the 

abrupt frequency change, since the constraints have been placed on the estimated poles. 

 
      Figure 4.6 (a)-(d) compares the frequency estimation error FE  via the TVAR  
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(a) Signal 1 
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(b) Signal 2 
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(c) Signal 3 
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(d) Signal 4 

Figure 4.6:  FE  of four sinusoidal signals via the TVAR modeling in direct form  

                    (blockwise and recursive) and cascade form (Cartesian) with various basis 

                    dimensions ( 0 to 10). =q
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modeling in direct form (DF, blockwise and recursive) and cascade form (CF, Cartesian) 

with various basis dimensions  (BDs)  ( =q 0 to 10) for four sinusoidal signals 

respectively.  With small BDs, the FE  of the blockwise DF is much higher than those of 

the recursive DF and the Cartesian CF, and the FE  of the Cartesian CF is slightly lower 

than that of the recursive DF.  With large BDs, the FE  of the recursive DF and the 

Cartesian CF are almost the same.  The FE  of the blockwise DF decreases lower than 

those of the recursive DF and Cartesian CF in the smooth frequency varying conditions 

but still keeps slightly higher in the frequency jump condition.  In addition, larger BD is 

needed for the blockwise DF to match the complex frequency variation than the simple 

change, while the effect of different BDs is not obvious for the recursive DF and the 

Cartesian CF. 

4.2.3    Effects of Different Basis Functions 

      To explore the influences of different basis functions (BFs) on the instantaneous 

frequency estimates, the following three types of common BFs ( ), as shown in 

Figure 4.7, are also used in simulations on the four sinusoidal signals. 

100 ≤≤ j

• Fourier series [MAA1983] 
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• Legendre polynomials [CD1974] 
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• Discrete prolate spheroidal sequence (DPSS) [DS1978] 

               is the)(nf j j th  sequence most concentrated in the frequency band Ww π2|| ≤   

         with half bandwidthW .                          
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(a) Fourier Series 
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(b) Legendre Polynomials 
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(c) Discrete prolate spheroidal sequence 

Figure 4.7:  Three types of basis functions ( =j 0 to 10). 
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      In addition to those commonly used BFs, some special BFs were used for certain 

conditions, such as the wavelet basis for obtaining multi-resolution [MG1993],  the 

discrete Karhuen-Loeve transform (DKLT) for energy compaction [JP1996], and the  

walsh functions for burst-like dynamics [RHK2003].  However, these BFs may not be 

suitable for general approximation and the computational load for them is relatively high.    

 

       Figure 4.8 and Figure 4.9 show the frequency estimation error FE  of the four 

sinusoidal signals via the TVAR modeling in direct form (DF, blockwise) and cascade 

form (CF, Cartesian) using different BFs with various basis dimensions (  0 to 10) 

respectively.            

=q

 

       For the blockwise direct form, as shown in Figure 4.8, only three lines can be seen on 

the plots for four basis functions (BFs), because the power time functions and the 

legendre polynomials have the same FE .  They are linearly related to each other and thus 

span the same subspace. When the basis dimension (BD) is relatively small, various BFs 

yield different estimation accuracy, because the subspace is not equally spanned.  For 

linear and quadratic frequency changes, the discrete prolate spheroidal sequence (DPSS) 

is better than the other BFs.  For periodic frequency changes, the Fourier series is slightly 

better than the others.  For frequency jumps, the DPSS is the worst and the other BFs are 

similar.  Therefore, there is no best BF suitable for all kinds of frequency variations, and 

the proper selection of BF partially depends on the dynamic characteristics of the 

nonstationary process being modeled.  When the BD is large enough, the difference in the 

estimation accuracy among various BFs becomes insignificant, because the BFs with 

large BD approximately span the subspace equally.   

 

      For the cascade form (CF, Cartesian), as shown in Figure 4.9, the difference of 

estimation accuracy among various basis functions (BFs) is not obvious when the basis 

dimension is small, because the difference in the entire subspace has little influence on 

the local approximation performance.  Moreover, the FE  of the power time functions 

and the legendre polynomials are not the same, which shows again that the subspace is no 

  69



0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

q

FE

Power
Fourier
Legendre
DPSS

 
(a) Signal 1 
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(b) Signal 2 
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(c) Signal 3 
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                 (d) Signal 4 

Figure 4.8:  FE  of four sinusoidal signals via the TVAR modeling in direct form  

                    (blockwise) using different basis functions with various basis dimensions  

                    ( 0 to 10). =q
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(a) Signal 1 
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(b) Signal 2 
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(c) Signal 3 
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                  (d) Signal 4 

Figure 4.9:  FE  of four sinusoidal signals via the TVAR modeling in cascade form  

                    (Cartesian) using different basis functions with various basis dimensions 

                    ( 0 to 10). =q
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longer a determinant factor as that for the direct form (blockwise).  Different BFs give 

similar frequency estimation accuracy for linear frequency change and frequency jump, 

while the performance of power time functions is worse than the other BFs for quadratic 

and periodic frequency changes. 

4.2.4    Influences of Additive White Noise 

       All the previous simulations are performed in the noise-free condition, in practice, 

there is additive white noise (AWN) in the observed signals.  Thus, the influences of 

AWN on the instantaneous frequency estimation are studied at different signal-to-noise 

ratios (SNRs) and the model order is increased to account for the noise factor. Here, the 

synthetic sinusoidal signal with periodic frequency change, as described in equation (4.6), 

is used as an example.   

 

      Figure 4.10 shows the instantaneous frequency (IF) estimates of the signal 3 via the 

TVAR modeling (model order 2=p ) in direct form (DF, blockwise and recursive) and 

in cascade form (CF, Cartesian) at different SNRs, where the basis dimensions 4,4,7=q  

are used for the three methods respectively.  The corresponding FE  is given in Table 4.1.  

For the three methods, there is negligible degradation on the IF estimates at high SNR 

(20dB) and the performance is acceptable at moderate SNR (10dB), while the 

performances deteriorate at low SNRs (5dB and 0dB).  With decreasing SNR, the 

dynamic ranges of IF estimates are largely reduced from that of the true trajectory, 

especially for the Cartesian CF.  The AR spectral estimate in the presence of additive 

white noise becomes a smoothed and flattened version of the AR spectral estimate under 

noise-free condition [SMK1988], so the ranges of peak frequencies (or the corresponding 

root frequencies) shrink.  Moreover, for the recursive DF, some extreme overshooting 

(i.e. the normalized frequency of 0 and 0.5), occurs in IF estimates due to the 

unconstrained parameter estimation.  Thus, the TVAR(2) model, which can sufficiently 

represent the sinusoidal signal with a single TV frequency under the noise-free condition, 

may no longer be valid for the signal with high noise.  
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(a) Direct form (blockwise) with basis dimension  7=q
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(b) Direct form (recursive) with basis dimension  4=q
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(c) Cascade form (Cartesian) with basis dimension  4=q

Figure 4.10:  Instantaneous frequency estimates of the signal 3 via the TVAR modeling  

                      (model order 2=p ) in direct form (blockwise and recursive) and cascade  

                      form (Cartesian) at different signal-to-noise ratios (0,5,10,20 dB). 
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Table 4.1: FE  of the signal 3 via the TVAR modeling (model order ) in direct 

form (blockwise and recursive) and cascade form (Cartesian) at different signal-to-noise 

ratios (0,5,10,20 dB). 

2=p

SNR\ FE  Direct form 

(blockwise, 7=q ) 

Direct form 

(recursive, 4=q ) 

 Cascade form 

(Cartesian, 4=q ) 

20dB 0.0077 0.0113 0.0125 

10dB 0.0119 0.0126 0.0131 

5dB 0.0206 0.0221 0.0233 

0dB 0.0390 0.0483 0.0535 

 

 

      Similar to the stationary case [SMK1988], a TVAR( p ) process in additive white 

noise (AWN) algebraically becomes a TVARMA( pp, ) process, which is shown in 

Appendix B.  Also, a TVAR(∞ ) model can be used to represent a  TVARMA( pp, ) 

process, which is shown in Appendix C.  To take into account the noise factor and reduce 

the bias in the IF estimates due to the model mismatch caused by the AWN, the TVAR 

model with higher order can be used to approximate the actual TVARMA(2,2) process.  

With the increasing model order, the desired IF estimate need to be chosen by picking the 

highest peak of the TVAR spectrum or finding the pole of the largest radius.  

 

      Figure 4.11 shows the instantaneous frequency (IF) estimates of the signal 3 via the 

TVAR modeling (model order 4=p ) in direct form (DF, blockwise and recursive) and in 

cascade form (CF, Cartesian) at different SNRs. The corresponding FE  is given in Table 

4.2.  Using the TVAR(4) model, the frequency estimation accuracy is significantly 

improved at low SNRs (5dB and 0dB), particularly for the Cartesian CF.  Increasing the 

model order at moderate or high SNR slightly improves the performance of the blockwise 

DF, however, it deteriorates the performances of the recursive DF and Cartesian CF.  

Particularly, the extreme overshooting appears again for the recursive DF at high SNR.  

The signal with low noise still approximates a TVAR(2) process, so the model of 
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(a) Direct form (blockwise) with basis dimension  7=q
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(b) Direct form (recursive) with basis dimension  4=q
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(c) Cascade form (Cartesian) with basis dimension  4=q

Figure 4.11:   Instantaneous frequency estimates of the signal 3 via the TVAR modeling  

                      (model order 4=p ) in direct form (blockwise and recursive) and cascade  

                      form (Cartesian) at different signal-to-noise ratios (0,5,10,20 dB). 
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Table 4.2: FE  of the signal 3 via the TVAR modeling (model order ) in direct 

form (blockwise and recursive) and cascade form (Cartesian) at different signal-to-noise 

ratios (0,5,10,20 dB). 

4=p

SNR\ FE          Direct form 

(blockwise, 7=q ) 

 Direct form 

(recursive, 4=q ) 

       Cascade form 

(Cartesian, 4=q ) 

20dB 0.0064 0.0221 0.0164 

10dB 0.0093 0.0245 0.0162 

5dB 0.0160 0.0191 0.0159 

0dB  0.0232 0.0219 0.0197 

 

over-determined order gives rise to spurious spectral peaks.  The spurious peak is easier 

to be the highest peak for the recursive DF and Cartesian CF due to the random error in 

the local approximation.  Moreover, using higher model order  will not further 

improve the performance even if at low SNR. 

6=p

 

4.3    Experiments on Electromyography Data 

      In addition to simulations, experiments are also carried on real electromyography 

(EMG) data for frequency estimation in the study of muscle fatigue.   

 

      Surface EMG signals represent a random summation of action potentials propagating 

from many motor units which are activated during a particular movement.  The surface 

EMG offers valuable information concerning the timing of muscular activity and its 

relative intensity [MJ1998].  It is commonly used in the study of muscle fatigue during 

sustained, isometric muscle contractions, as it can provide the electrophysiological 

properties of the muscle over time [ALG2003].  The myoelectric manifestations of 

muscle fatigue can be quantified by the time course of spectral variables of the EMG 

signal, and the most commonly used are the mean frequency (MNF) and median 

frequency.  The MNF is used in our study, since it has less oscillation than the median 

frequency.  
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4.3.1    Experiment Procedures 

4.3.1.1    Data Preprocessing 

       EMG data sampled at a rate of 50kHz were recorded from a healthy human object 

during voluntary isometric contractions at 60% MVC (maximum voluntary contraction) 

for 20 seconds.  Before performing the frequency estimation, the EMG data are 

preprocessed as follows  

• The original EMG data are down sampled with the new sampling rate of 2.5kHz, to 

reduce the data samples to be processed and thus the computational load.  

• The down-sampled EMG data are then band-pass filtered with cutoff frequencies of 

10Hz and 500Hz, in which the EMG signal contains most of its power, to eliminate 

the low and high frequency noise as well as other possible artifacts.  The butterworth 

filter of order 2 is used because of its smooth pass band. 

• The EMG data are finally segmented into consecutive and non-overlapping intervals 

of 0.5s (1250 samples).  The mean of the data on each interval is subtracted, since 

the TVAR method is suitable for processing the signals with zero mean.   

 

      The EMG signal after down sampling and bandpass filtering is shown in Figure 4.12. 
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Figure 4.12:  The EMG signal after down sampling and bandpass filtering (20s). 

  77



4.3.1.2    Mean Frequency Estimation 

      Using the short-time Fourier transform, the frequency spectrum of EMG signal in 

each interval is obtained through the Fourier transform, and the mean frequency (MNF) 

of each interval is computed as the average frequency of the power spectrum [ALG2003]  
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where  is the frequency spectrum of  EMG signal.  The time course of )( fH x f  provides 

the basic information about the changes of the power spectrum over time.  

 

      Using the time-varying (TV) AR modeling, the instantaneous frequency (IF) 

estimates of the EMG signal are obtained in each interval, and the MNF is calculated as 

the time average of IFs [BB11992] 
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where  is the data sample of EMG signal.  In [BB11992], it is stated that the average 

frequency in a signal’s spectrum is equal to the time average of the IFs, that is 

)(nx

iff = .  In 

experiments, the TVAR model in direct form (DF, blockwise) and cascade form (CF, 

Cartesian, 02.0=γ ) is used for IF estimates.  Since there is some undesired overshooting 

in the IF estimates of the recursive DF, it is not used here.  In experiments, the model 

order  and the Legendre polynomials are used as basis functions.  Basis dimension 

 are found suitable for the blockwise DF, and 

4=p

10=q 2=p  and  is suitable for the 

Cartesian CF.  To eliminate the effect of random error in the IF estimates, only the IF 

estimates within the passband (10-500Hz) are used to calculate the MNF. 

4=q

 

      The initial value and the fall rate of the MNF are calculated by fitting a least-square 

regression line to the estimated MNF points, where the intercept and slope of the linear 
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regression curve serve as fatigue indices, since the MNF decreases with the onset of 

muscle fatigue. 

4.3.2    Results and Discussions 

      Figure 4.13 shows the frequency spectrum via Fourier transform and the 

instantaneous frequency (IF) estimates via the TVAR modeling in direct form (DF, 

blockwise) and cascade form (CF, Cartesian) in one interval (0.5s).  In Figure 4.13 (a), 

the frequency spectrum shows that the EMG signal contains most of its power in 

frequencies less than 200Hz, mainly within the range of 50-100Hz.  However, the 

spectrum does not provide any information about the changes in the signal’s frequency 

content over the time.  In Figure 4.13 (b), the IF estimates via the TVAR modeling give a 

view of the frequency variations over the time.  The blockwise DF shows the average 

trend of frequency changes through its global matching and implicit averaging, while the 

Cartesian CF shows the frequency variations at each time instant through its local 

tracking.  Actually, the IF estimates obtained by the Cartesian CF gives the approximate 

frequency trajectories around the average trend obtained by the blockwise DF. 

 

      Figure 4.14 shows the frequency spectrum via Fourier transform and the probability 

distributions of instantaneous frequency (IF) estimates (within the passband) via the 

TVAR modeling in direct form (DF, blockwise) and cascade form (CF, Cartesian) over 

the entire EMG data interval (20s).  In Figure 4.14(a), the power distribution of the EMG 

signal shows that most of signal power is contained in the range of 0-200Hz and the 

power peak is about 60-80Hz.  In Figure 4.14(b), the probability distribution of the 

average frequency variations obtained by the blockwise DF is in the range of 50-100Hz.  

In Figure 4.14(c), the probability distribution of instant frequency variations obtained by 

the Cartesian CF is within a larger frequency range of 10-200Hz, which is fit with the 

power distribution in frequency spectrum. 

 

      Figure 4.15 shows the time course of the mean frequency (MNF) estimates via the 

short-time Fourier transform (STFT) and TVAR modeling in direct form (DF, blockwise)  
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(a) Frequency spectrum via Fourier transform 
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(b) Instantaneous frequency estimates via TVAR modeling in  

direct form (blockwise) and cascade form (Cartesian) 

Figure 4.13:  Frequency spectrum and instantaneous frequency estimates of the EMG  

                      signal in one interval (0.5s).        
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(a) Frequency spectrum  
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(b) Probability distribution of instantaneous frequency estimates (direct form, blockwise) 
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(c) Probability distribution of instantaneous frequency estimates (cascade form,Cartesian) 

Figure 4.14:  Frequency spectrum via Fourier transform and probability distributions of  

                      instantaneous frequency estimates via the TVAR modeling in direct form  

                      and cascade form over the entire EMG data interval (20s). 
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(a) Short-time Fourier transform 
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(b) TVAR modeling in direct form (blockwise) 

0 2 4 6 8 10 12 14 16 18 20
66

68

70

72

74

76

78

80

82

Time(s)

M
N
F(
H
z)

slope=-0.3313Hz/s
intercept=76.2804Hz

 
(c)  TVAR modeling in cascade form (Cartesian) 

Figure 4.15:  Time course of the mean frequency estimates via short-time Fourier  

                      transform and the TVAR modeling in direct form and cascade form. 
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and cascade form (CF, Cartesian).  The MNF estimates via the TVAR modeling in Figure 

4.15 (b) and (c) decrease with the time and have similar variations to that of the 

conventional STFT in Figure 4.15 (a).   Thus, the MNF can be correctly obtained via the 

TVAR modeling, which also verifies that the average frequency in a signal’s spectrum is 

equal to the time average of the instantaneous frequencies (Ifs).  The MNF estimates of 

the Cartesian CF are larger than those of the STFT and the blockwise DF, because there 

are some large IF values in the estimates.  The slope and intercept of the linear regression 

line obtained by the blockwise DF is closer to those of the STFT than those of the 

Cartesian CF.    

 

4.4    Chapter Summary 

      Simulations were performed on synthetic sinusoidal signals with different frequency 

variations for instantaneous frequency estimation via the time-varying (TV) AR modeling 

in direct form and cascade form.  Experiments were also carried on real EMG data for 

mean frequency estimation in the analysis of muscle fatigue.  

 

      Compared with the short-time Fourier transform (STFT), both higher time and 

frequency resolutions are achieved in IF estimates via the TVAR modeling.  For the 

TVAR model in direct form (DF, blockwise), the basis dimension (BD) is an important 

factor on frequency estimation accuracy and the relatively large BD is needed.  Various 

basis functions (BFs) yield different frequency estimation accuracy for small BD, and the 

difference becomes insignificant with increasing BD.  For the TVAR model in DF 

(recursive) and cascade form (CF, Cartesian), the influences of BD are negligible when 

the BD is not too small, and different BFs yield similar frequency estimation accuracy 

(except for the power time functions).  Large additive white noise (AWN) present in the 

signal reduces the accuracy and dynamic range of IF estimates.  The degradation caused 

by the AWN can be reduced by using the TVAR model of higher order, since it 

approximates the actual TVARMA process for the noisy signal.   
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        The average trend of frequency variations and instant frequency trajectories of the 

EMG signal were obtained via the TVAR modeling in direct form (DF, blockwise) and 

cascade form (CF, Cartesian) respectively.  The mean frequency (MNF) from the time 

average of IF estimates via the TVAR modeling in DF and CF are similar to that from the 

average of power spectrum via the conventional STFT. 
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CHAPTER V 

Thesis Summary and Further Research 
 

5.1 Thesis Summary 
 

      Nonstationary signal modeling is a research topic of practical interest, and the time-

varying (TV) signal can be analyzed using the nonparametric and parametric methods.  

The nonparametric approaches are based on time-dependent spectral analysis, including 

the short-time Fourier transform, time-frequency representation, and evolutionary 

spectrum, where tradeoff exists between the time and frequency resolutions. The 

parametric approaches are based on TV linear predictive models, which can achieve high 

time and frequency resolutions.  The model parameters can be estimated using the 

gradient-based adaptive algorithms, Kalman filtering and basis function (BF) methods.  

In this study, we adopt the TVAR model using the BF parameter estimation method to 

identify the nonstationary process and estimate the instantaneous frequencies. 

 

      The current TVAR model in direct form (DF) with two basis function (BF) methods 

was reviewed.  One is the blockwise least-squares (LS) BF method with parameter 

matching over a block of data at one time, where a relatively large basis dimension is 

needed to obtain good global optimization.  The other is the recursive weighted-least-

squares (WLS) BF method with parameter tracking upon each data sequentially, where a 

relatively small basis dimension is enough to obtain suitable local approximation.  

Simulations on synthetic data demonstrate that the TVAR model in DF with two BF 

methods performs well in system identification and instantaneous frequency estimation, 

with equivalent overall performance.  However, the large estimation error at the ends of 

the analysis interval and the abrupt change points may cause temporary instabilities of 

the estimated TVAR model, where using the recursive BF method is more easily to 

become instable than using the blockwise BF method.   
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      The limitations associated with the TVAR model in direct form (DF), i.e. possibly 

temporary instability, inconvenient pole tracking and unnatural representation of time 

variations in frequencies, motivate the proposition of the TVAR model in cascade form 

(CF).  The TVAR model in CF was formulated through the parameterization in terms of 

TV poles, with possible pole representations in form of second-order section coefficients, 

Cartesian coordinates or polar coordinates, where the time variation of each pole 

parameter is assumed to be the linear combination of basis functions.  Due to the 

cascaded error gradient generating process, the system equations for the TVAR model in 

CF are nonlinear with respect to basis coefficients, so the basis coefficient estimates are 

calculated iteratively using the Gauss-Newton algorithm.   

 

      Simulations on synthetic data generated by the TV filter of single pole pair are used 

to demonstrate the performances of the TVAR model in cascade form (CF) with different 

forms of TV pole representation.  During the analysis process, the estimated TV poles 

can be easily constrained within the unit circle, so the model stability is guaranteed.  The 

TVAR model in CF show similar performance trends to that in direct form (DF) using the 

recursive BF method, because of the sequential basis coefficients estimate update.  Due 

to its natural and robust approximation of time variations in frequencies, the Cartesian 

coordinate representation shows its superior performance among four forms of TV pole 

representation and outperforms the recursive DF.  The CF with other TV pole 

representations does not gain performance advantage over the DF.  Simulations are also 

carried on synthetic data generated by the TV filter of double pole pairs to explore the 

benefits of individual pole estimation in each cascade section.  Using the CF model, the 

poles are adjusted separately in each section, so the actual varying trend of each 

frequency can be finely tracked when there are several frequency components in the 

nonstationary signal.  In addition to stability control, the constraints placed on the 

estimated TV poles also help avoid the possible extreme overshooting in frequency 

estimates, as that occurred for the recursive DF, caused by the random oscillation in local 

estimations.   
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      The performance characteristics of instantaneous frequency (IF) estimation via the 

TVAR modeling in direct form (DF, blockwise and recursive) and cascade form (CF, 

Cartesian) were explored through simulations on synthetic sinusoidal signals with 

different frequency variations.  Compared with the spectrogram obtained by the short-

time Fourier transform, both higher time and frequency resolutions are achieved in IF 

estimates via the TVAR modeling.  The influences of various basis dimensions (BDs), 

different basis functions (BFs) and additive white noise (AWN) on the IF estimates of the 

three methods were investigated.  For the TVAR model in DF (blockwise), the BD is an 

important factor on frequency estimation accuracy and the relatively large BD is needed.  

Various BFs with small BDs yield different estimation accuracy, and the performance 

difference becomes insignificant with increasing BD.  For the TVAR model in DF 

(recursive) and CF (Cartesian), the influences of BD are negligible and different BFs 

yield similar frequency estimation accuracy (except for the power time functions), when 

BD is not too small.  The accuracy and dynamic range of IF estimates are reduced when 

there is large AWN present in the observed signal.  The degradation caused by the AWN 

can be reduced by using the TVAR model of higher order, since it approximates the 

actual TVARMA process for the noisy signal.   

 

      Experiments were carried on the real electromyography (EMG) data for frequency 

estimation in the analysis of muscle fatigue.  The average trend of frequency variations 

and instant frequency trajectories of the EMG signal were obtained via the TVAR 

modeling in DF (blockwise) and CF (Cartesian) respectively.  The time course of the 

mean frequency (MNF) estimates obtained from the time average of IF estimates via the 

TVAR modeling are similar to that obtained from the average of frequency spectrum via 

the conventional Fourier transform method. 

 

5.2 Further Research 
 
      In this thesis, the preliminary study has been done on the proposed time-varying (TV) 

AR model in cascade form, where some ideal assumptions are made to simplify the 
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modeling process.  Further research can be carried to explore the comprehensive 

characteristics of the TVAR modeling in cascade form. 

 

      In this study, the model order is assumed to be known for the analysis process.  In 

practice, the exact number of frequency components in the nonstationary process is 

unknown, so the model order determination is necessary, especially when the signal is 

noise-free or of very low noise.  For the noisy signal, the determination of model order is 

less required, because the TVAR model with higher order is suitable to reduce noise 

effects at low SNR.  Some current methods may be used to determine the proper model 

order, such as the maximum likelihood estimation in [KBE1999] and the optimal 

parameter search (OPS) method in [RHK2003].  

 
      Using the TVAR model of higher order is one simple method to account for the 

additive white noise factor in the observed signals, but the proper model order may not be 

easy to determine.  The additive white noise in the observed signal causes the bias in the 

parameter estimates, and the modified least-squares estimator may be derived to subtract 

the bias from the estimate, similar to the bias compensation method in [GMJ1986]. 

 
      In addition to the basic experiments on the real EMG data.  More investigations can 

be performed on the instantaneous frequency estimation of the EMG signal, such as using 

various analysis interval lengths and at different levels of MVC (maximal voluntary 

contraction).   Moreover, the TVAR modeling methods are not only useful to the muscle 

fatigue analysis, they may also be used in other applications, such as the predictive 

speech coding [MAA1983], ultrasound attenuation estimation [JFADF1998], and radar 

signature extraction [KBE1999].  
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A. Represent a sinusoidal signal with a single time-varying frequency using a 

second order recursion 

      Using the trigonometric identities, it can be shown that the sinusoid signal 

)](2cos[)( nfnx iπ=  with a single time-varying (TV) frequency satisfies the second order 

recursion as 

           )2()()1()()( 21 −−−−= nxncnxncnx ,                                                                (A.1) 

where [ ])1(2cos2)(1 −−≈ nfnc iπ  and 1)(2 ≈nc .  This recursion is valid for a sinusoidal 

signal with different frequency variations, such as linear, quadratic and periodic TV 

frequency, which is shown in the following. 

 

 A.1 Linearly TV Frequency  

      A sinusoidal signal with a linearly TV frequency can be expressed as 
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      From (A.3), 
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      Plugging (A.4) into (A.2),  
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where 
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      For sufficiently small value of µ ,  we can have the approximations  
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      Thus,  can be represented by the recursion as )(nx

         [ ] )2()1()1(2cos2)( −−−−≈ nxnxnfnx iπ ,                                                         (A.8) 

where the IF is 
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A.2 Quadratic TV Frequency  

      The sinusoid signal with a quadratic TV frequency can be expressed as 

                      (A.10) 
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      From (A.11), 
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      Plugging (A.12) into (A.10),  
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      For sufficiently small value of µ ,  we have the approximations  
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      Thus,  can be represented by the recursion as )(nx

        [ ] )2()1()1(2cos2)( −−−−≈ nxnxnfnx iπ ,                                                        (A.15) 

where the IF is 
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A.3 Periodic TV Frequency  

      The sinusoid signal with a periodic TV frequency can be represented as 
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      Add (A.17) and (A.18), we get 
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      For sufficiently small values of aµ  and fµ ,  1cos ≈fµ  and ff µµ ≈sin . Thus, we 

have the approximations 
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      Thus,  can be represented by the recursion as )(nx

       [ ] )2()1()1(2cos2)( −−−−≈ nxnxnfnx iπ  ,                                                        (A.21) 

where the IF is 
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B.  A TVAR( p ) process in additive white noise is equivalent to a 

TVARMA( pp, ) process  

       is the signal of a TVAR()(nx p ) process with the power spectral density 

(PSD) 
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      The observed signal  in additive white noise (AWN) is  )(ny

            ,                                                                                   (B.2) )()()( nwnxny +=

where  is the AWN with zero mean and variance .   )(nw 2
wσ

 

      The PSD of  can be calculated as  )(ny
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which is actually the PSD of a TVARMA ( pp, ) process.  

 

      Therefore, a TVAR( p ) process in AWN algebraically becomes a TVARMA( pp, ) 

process.  The coefficients in the numerator of the TVARMA transfer function depend on 

the PSD of the signal and noise variance. 

 

C.   A TVAR(∞ ) model validly represents a TVARMA( pp, ) process 

      The transfer function of a TVARMA( pp, ) process is  
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and the transfer function of a TVAR(∞ ) process is 
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      Let , then ),(),( znHznH ARARMA =
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thus 
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The parameters of the TVAR(∞ ) can be obtained through taking the inverse -transform 

of (C.4) and solving the equation.  

z

                                                                   

      Take the TVARMA( ) process as a example, we have 1,1
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and the TVAR parameters can be obtained as 

           .                                                        (C.6) ∞=−−= − ,...,1,)]()][()([)( 1
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      Hence, a TVAR( ) model validly represents a TVARMA(∞ pp, ) process. 
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