329,091 research outputs found

    Impact of anisotropy and fracture density on the approximation of the effective permeability of a fractured rock mass using 2D models

    Get PDF
    Imperial Users onl

    Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex

    Get PDF
    We reconstructed the energy and the position of the shower maximum of air showers with energies E100E \gtrsim 100 PeV applying a method using radio measurements performed with Tunka-Rex. An event-to-event comparison to air-Cherenkov measurements of the same air showers with the Tunka-133 photomultiplier array confirms that the radio reconstruction works reliably. The Tunka-Rex reconstruction methods and absolute scales have been tuned on CoREAS simulations and yield energy and XmaxX_{\mathrm{max}} values consistent with the Tunka-133 measurements. The results of two independent measurement seasons agree within statistical uncertainties, which gives additional confidence in the radio reconstruction. The energy precision of Tunka-Rex is comparable to the Tunka-133 precision of 1515 %, and exhibits a 2020 % uncertainty on the absolute scale dominated by the amplitude calibration of the antennas. For XmaxX_{\mathrm{max}}, this is the first direct experimental correlation of radio measurements with a different, established method. At the moment, the XmaxX_{\mathrm{max}} resolution of Tunka-Rex is approximately 4040 g/cm2^2. This resolution can probably be improved by deploying additional antennas and by further development of the reconstruction methods, since the present analysis does not yet reveal any principle limitations.Comment: accepted for publication by JCA

    Transverse gradients of azimuthal velocity in a global disk model of the Milky Way

    Full text link
    In this paper, we aim to estimate the vertical gradients in the rotational velocity of the Galaxy. This is carried out in the framework of a global thin disc model approximation. The predicted gradient values coincide with the observed vertical fall-off in the rotation curve of the Galaxy. The gradient is estimated based on a statistical analysis of trajectories of test bodies in the gravitational field of the disc and in an analytical way using a quasi-circular orbit approximation. The agreement of the results with the gradient measurements is remarkable in view of other more complicated, non-gravitational mechanisms used for explaining the observed gradient values. Finally, we find that models with a significant spheroidal component give worse vertical gradient estimates than the simple disc model. In view of these results, we can surmise that, apart from the central spherical bulge and Galactic halo, the gross mass distribution in the Galaxy forms a flattened rather than spheroidal figure.Comment: 11 pages, 18 figures, in v2 added explicit gradient calculation at z<0.1kpc, reorganized/extended intro and summary, in v3 language correction

    Characterizing the contaminating distance distribution for Bayesian supernova cosmology

    Full text link
    Measurements of the equation of state of dark energy from surveys of thousands of Type Ia Supernovae (SNe Ia) will be limited by spectroscopic follow-up and must therefore rely on photometric identification, increasing the chance that the sample is contaminated by Core Collapse Supernovae (CC SNe). Bayesian methods for supernova cosmology can remove contamination bias while maintaining high statistical precision but are sensitive to the choice of parameterization of the contaminating distance distribution. We use simulations to investigate the form of the contaminating distribution and its dependence on the absolute magnitudes, light curve shapes, colors, extinction, and redshifts of core collapse supernovae. We find that the CC luminosity function dominates the distance distribution function, but its shape is increasingly distorted as the redshift increases and more CC SNe fall below the survey magnitude limit. The shapes and colors of the CC light curves generally shift the distance distribution, and their effect on the CC distances is correlated. We compare the simulated distances to the first year results of the SDSS-II SN survey and find that the SDSS distance distributions can be reproduced with simulated CC SNe that are ~1 mag fainter than the standard Richardson et al. (2002) luminosity functions, which do not produce a good fit. To exploit the full power of the Bayesian parameter estimation method, parameterization of the contaminating distribution should be guided by the current knowledge of the CC luminosity functions, coupled with the effects of the survey selection and magnitude-limit, and allow for systematic shifts caused by the parameters of the distance fit.Comment: 17 pages, 5 figures; accepted for publication in the Astrophysical Journa
    corecore