5 research outputs found

    Learning-based superresolution land cover mapping

    Get PDF
    Super-resolution mapping (SRM) is a technique for generating a fine spatial resolution land cover map from coarse spatial resolution fraction images estimated by soft classification. The prior model used to describe the fine spatial resolution land cover pattern is a key issue in SRM. Here, a novel learning based SRM algorithm, whose prior model is learned from other available fine spatial resolution land cover maps, is proposed. The approach is based on the assumption that the spatial arrangement of the land cover components for mixed pixel patches with similar fractions is often similar. The proposed SRM algorithm produces a learning database that includes a large number of patch pairs for which there is a fine and coarse spatial resolution representation for the same area. From the learning database, patch pairs that have similar coarse spatial resolution patches as those in input fraction images are selected. Fine spatial resolution patches in these selected patch pairs are then used to estimate the latent fine spatial resolution land cover map, by solving an optimization problem. The approach is illustrated by comparison against state-of-the-art SRM methods using land cover map subsets generated from the USA’s National Land Cover Database. Results show that the proposed SRM algorithm better maintains the spatial pattern of land covers for a range of different landscapes. The proposed SRM algorithm has the highest overall accuracy and Kappa values in all these SRM algorithms, by using the entire maps in the accuracy assessment

    Super-resolution land cover mapping by deep learning

    Get PDF
    Super-resolution mapping (SRM) is a technique to estimate a fine spatial resolution land cover map from coarse spatial resolution fractional proportion images. SRM is often based explicitly on the use of a spatial pattern model that represents the land cover mosaic at the fine spatial resolution. Recently developed deep learning methods have considerable potential as an alternative approach for SRM, based on learning the spatial pattern of land cover from existing fine resolution data such as land cover maps. This letter proposes a deep learning-based SRM algorithm (DeepSRM). A deep convolutional neural network was first trained to estimate a fine resolution indicator image for each class from the coarse resolution fractional image, and all indicator maps were then combined to create the final fine resolution land cover map based on the maximal value strategy. The results of an experiment undertaken with simulated images show that DeepSRM was superior to conventional hard classification and a suite of popular SRM algorithms, yielding the most accurate land cover representation. Consequently, methods such as DeepSRM may help exploit the potential of remote sensing as a source of accurate land cover information

    Superresolution Land Cover Mapping Using a Generative Adversarial Network

    Get PDF
    Superresolution mapping (SRM) is a commonly used method to cope with the problem of mixed pixels when predicting the spatial distribution within low-resolution pixels. Central to the popular SRM method is the spatial pattern model, which is utilized to represent the land cover spatial distribution within mixed pixels. The use of an inappropriate spatial pattern model limits such SRM analyses. Alternative approaches, such as deep-learning-based algorithms, which learn the spatial pattern from training data through a convolutional neural network, have been shown to have considerable potential. Deep learning methods, however, are limited by issues such as the way the fraction images are utilized. Here, a novel SRM model based on a generative adversarial network (GAN), GAN-SRM, is proposed that uses an end-to-end network to address the main limitations of existing SRM methods. The potential of the proposed GAN-SRM model was assessed using four land cover subsets and compared to hard classification and several popular SRM methods. The experimental results show that of the set of methods explored, the GAN-SRM model was able to generate the most accurate high-resolution land cover maps

    Spatial-temporal super-resolution land cover mapping with a local spatial-temporal dependence model

    Get PDF
    The mixed pixel problem is common in remote sensing. A soft classification can generate land cover class fraction images that illustrate the areal proportions of the various land cover classes within pixels. The spatial distribution of land cover classes within each mixed pixel is, however, not represented. Super-resolution land cover mapping (SRM) is a technique to predict the spatial distribution of land cover classes within the mixed pixel using fraction images as input. Spatial-temporal SRM (STSRM) extends the basic SRM to include a temporal dimension by using a finer-spatial resolution land cover map that pre-or postdates the image acquisition time as ancillary data. Traditional STSRM methods often use one land cover map as the constraint, but neglect the majority of available land cover maps acquired at different dates and of the same scene in reconstructing a full state trajectory of land cover changes when applying STSRM to time series data. In addition, the STSRM methods define the temporal dependence globally, and neglect the spatial variation of land cover temporal dependence intensity within images. A novel local STSRM (LSTSRM) is proposed in this paper. LSTSRM incorporates more than one available land cover map to constrain the solution, and develops a local temporal dependence model, in which the temporal dependence intensity may vary spatially. The results show that LSTSRM can eliminate speckle-like artifacts and reconstruct the spatial patterns of land cover patches in the resulting maps, and increase the overall accuracy compared with other STSRM methods

    Principles and methods of scaling geospatial Earth science data

    Get PDF
    The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V
    corecore