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Abstract: Super-resolution mapping (SRM) is a technique for generating a fine spatial resolution land cover

map from coarse spatial resolution fraction images estimated by soft classificatioptidrheodel used to

describe the fine spatial resolution land cover pattern is a key issue in SRM. Herel lgaaroing based SRM

algorithm, whos prior model is learned from other available fine spatial resolution land cover isppgosed.

The approach is based on the assumption that the spatial arrangement of the land cover compoierds for m

pixel patches with similar fractioris often similar. The proposed SRM algorithm produces a learning database

that includes a large number of patch pairs for which there is a fine and coarse spatiadnmespitdsentation

for the same area. From the learning database, patch pairs that have similar coarsesgpatiah patches as

those in input fraction images are selected. Fine spatial resolution patches in these pletiedirs are then

used to estimate the latent fine spatial resolution land cover map, by solving an optinpzablem. The

approach is illustrated by comparison against state-of-the-art SRM methods using land cover map subsets

generated from the USA’s National Land Cover Database. Results show that the proposed SRM algorithm better

maintains the spatial pattern of land covers for a range of different landscapes. The proposed SiRM bhigori

the highest overall accuracy and Kappa values in all these SRM algorithms, by using theagpgiie the

accuracy assessment.

Index Terms: Super-resolution mapping; Learning database; Patch pairs; Neighboring patches



l. Introduction
Super-resolution mapping (SRM), which is also refetceslib-pixel mapping, is a method to generate fine
spatial resolution land cover maps from coarse spatial resolution remote sensing imagean3ReMiewed as

the post-processing of soft classification to further address the mixed pixel problem that isncionuoarse

spatial resolution imaggs|[1} 2]. In general, soft classification estimates the fradges that illustrate the area

percentage cover of land cover classes within coarse spatial resolution mixed pixels. The fractiomaydges

input to a SRM analysis to predict the spatial locations of the land cover class at a fingesatiiibn. The

output of the SRM analysis is a hard classification land cover map, which has a finer epaligion than that

of input fraction images. At present, SRM has become a promising method to reduce the mixedlgieml pr

that is widely encountered with coarse spatial resolution images, and has been successfully @sgd in m

applications, such as mapping waterlines [[3-5], Is [6], urban buiIngs [71, urba reesem@r, as well

as in ground control point refinemlO] and the calculation of landscape pattern ices [11].

A large number of SRM algorithms have been propgsed [12-27]. Generally, SRM is an ilppoisiedn

, and the prior information about the spatial pattern of different land cover clasdes fatet spatial
resolution scale needs be known before SRM is performed. Therefore, in order to estimate tiieelsigatial
resolution land cover map from input coarse spatial resolution fraction images, onekef ttssues is the
definition of the prior model. The latter has been described from different perspekbtithe simplest case,

when only the coarse spatial resolution fraction images are available, the prior model is often based on the spatial
dependence principle, which aims to make the fine spatial resolution land cover map have the spakehal
dependencHl]. In practice, the spatial dependence of a certain fine spatial resolution pixel can be bglculated
comparing it with its neighboring fine spatial resolution pi [14], fractions ofeitghboring coarse spatial

resolution pixels], or both of therﬂSO]. Moreover, anisotropic land cover dependences habveealso



proposed to describe the spatial land cover pattern more prIy [31], especially for snahdaspecover
classeSEHEZ]. The spatial dependence model is a popular model for use in SRM due to itsysanglicit
absence of requirements for additional information about the spatial pattern of the land cover. Hinever
model can be inappropriate for areas with complex land cover patterns. The use of the wrangdsion a

SRM analysis can result in an inappropriate and inaccurate land cover representation, possiblyseviramvor

that of a standard hard classification of the coarse resolution image in some cages [6, 33].

A promising approach to improve the effectiveness of the prior model is through the incorpofati

additional information on the land cover to inform the SRM analysis. Various approachesbavesed. An

intuitive additional dataset to use in a SRM analysis is another kind of fine spatialioesihatges, such as a

panchromatic band imade [34{37] or a fine spatial resolution synthetic aperture radalrir(&gél]. Fine

spatial resolution digital elevation mocHH, 5] and light detection and ranging (lea], and vector

dataset@] have also been successfully used to refine SRM analyses. Multiple sub-pixel shiftepaiierse

resolution images which are used as an alternation datasets to provide additional informatitmeadymatial

land cover patter@l] for SRM, and this method has been further develaﬂped [6, 42-45].i¢ahifser spatial

resolution land cover map can also be used to help the SRM anal

l/si [9} 46, 47]. Adding siteasjmbtidhal

datasets can increase the accuracy of SRM, however, this kind of approach is often limited because the

additional dataset should cover the same area, in its entirety, as the input fractionamzgeis, may often not

be the case with the additional data only available for part of the region being mapped.

In addition to the aforementioned approaches, the spatial land cover pattern can also be leathed from

training image, which is often a fine spatial resolution land cover map that hasla sipaitial land cover

pattern to the objective fine spatial resolution land cover map. In this situation, SRM pitegifiteetspatial

resolution land cover map from input coarse spatial resolution fraction images with thetlagdposfor model



that is learned from these training fine spatial resolution land cover maps. One keainifid based SRM

algorithm uses a model to describe the fine spatial resolution land cover pattern, and thesacdiiet prior

model are learned from the training maps [48-50]. Central to this kind of approach igettiersef the prior

model. Presently, a popular approach is to use a semi-variogram based approach in which th@sS®M ai

produce a fine spatial resolution land cover map that has the same spatial pattern aseti®itedpby the

semi-variogram fitted to the available fine spatial resolution land cover map. daladitawback of this category

of SRM algorithms is, however, that the geo-statistical methodologies are constructed based sumibtoas

of spatial stationary, and they are limited for complex land cover patterns which are often non-stationary.

Another kind of learning based SRM algorithms directly learns the relationship between coarse spatial

resolution fraction images and the fine spatial resolution land cover maps without a precheiite{51-54].

The basic assumption of this method is that the fine spatial resolution spatial land cevaripaimilar for a

mixed pixel patch, which is basically a block of coarse resolution pixels, with similar landatas®fractional

composition. Several algorithms have been proposed to learn the relationship, including the back-propagatio

(BP) neural networks [51-%4], and the support vector regression algos [55]. The SRM aldweltnmgsg

to this category often include two steps. In the first step, a fine spatial resaiudigeis estimated for each land

cover class using the learned relationship. In the second step, fine spatial resolution pixel labels are assigned with
the maximum a posteriori principle using all of these estimated fine spatial i@sahdges and input fraction

images as constraints. This kind of learning based SRM algorithm are special cases of the ionebpsizd

SRM algorithm]; only the interpolation step is performed by the learning based methodeesidt,ahe

limitation of the interpolation-based SRM algorithm, notably aatipepper and linear artifacts, is unavoidable

for this category of learning based SRM algorithm.

In this paper, we propose a novel SRM algorithm, which is also based on the assumption that ciahrse spat



resolution mixed pixel patches with similar fractions have a similar fine spatiatitiesoland cover pattern.
Different to other learning based SRM algorithms, the novelty of the proposed learning basedgSmim
lies in the way the coarse spatial resolution and fine spatial resolution patches avéhisdtie analysis. The
proposed method does not need the additional label assignment step and patch outliers sty eifielcégsed
during the analysis, avoiding commonly encountered error sources in other two-step learning Bhased SR
algorithms. The remainder of this paper is organized as follows. Séctietails the proposed learning based
SRM algorithm. Sectioll validates the performance of the proposed algorithm through several experiments.
SectionlV discusses some issues about the proposed algorithm and Section V concludes this paper.

Il. Methods

A Problem description

Suppose that the original coarse spatial resolution remotely sensed imadé xhspixels and the
number of land cover classes in the whole imag€ islt is assumed that the fraction imag€s for all classes
have been estimated by soft classification. The SRM analysis aims to generate a fine splatiainréend
cover mapH using F as input. By setting the zoom factor to ke each coarse spatial resolution pixel is
divided into zx z fine spatial resolution pixels. All fine spatial resolution pixels are considered to be pure
pixels and each one should be assigned to a single land cover class. The resulting fine shatt@h ftead
cover map thus containgzx M)x(zx N) pixels, whose labels are defined to a unique class of

In this paper, it is assumed that fraction imagesare exactly estimated without error. In each coarse
spatial resolution pixelV , the number of fine spatial resolution pixe3.(V) assigned to the class
ce (2L ,C) is computed according to the equation:

Q (V) =round(f ¥ xz*) (1)

where f. (V) is the fractional abundance of the classwithin the area represented by the coarse spatial



resolution pixelV in the fraction imagesF, round(x) returns the value of the closest integerxo In this
situation, the objective of the SRM analysis is to arrange these fine spatial resolution phieleach coarse
spatial resolution pixel to make the fine spatial resolution land cover map honodefipest spatial pattern
model.

For the proposed learning-based SRM algorithm, it is assumed that there are ansesptial resolution
land cover maps available. These fine spatial resolution maps could be historical land coverlampsaxer
maps derived from fine spatial resolution remote sensing images. These available fineegmititabn land
cover maps are used to provide information about the spatial land cover patterns at theidineesplation.
Then, assuming that a mixed pixel patch with similar fractions has similar spatatdaer pattern, the SRM

analysis may yield a fine spatial resolution map.
B. The fine and coarse spatial resolution patch pair

For the land cover class, the spatial land cover pattern is represented by the patclixpayt] , in which
y. is a coarse spatial resolution patch and its corresponding fine spatial resolution pgtcliHese, square
patches of sizep are used with a coarse spatial resolution patch incluging coarse spatial resolution
pixels. The coarse spatial resolution patch is represented by the wectdrf (1), f.(2)L ,f. 0 xp)], where
f.(V) is the fraction value of the coarse spatial resolution pixelof the classc. The corresponding fine
spatial resolution patch includesx px zx p fine spatial resolution pixels, and is represented by the vector
x. =[1.0,1.(2.L |.expxzxp)], where I_(v) is an indicator number showing whether a fine spatial
resolution pixel v belongs to the class, and is defined as:

()

| )= 1 if fine spatial resolution pixel labelled withettand cover class
7o otherwise

Thus, x, represents the spatial distribution of fine spatial resolution pixels of the class
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Fig. 1. A patch pair example, where the zoom factor is 4 andddese spatial resolution patch size is 3. (a) is a fine spatial
resolution land cover map including 12xpixels of two land cover classes, 1 (black) and 2 (white); (b) isdhesponding fine
resolution patch of the classwhere the number 1 indicates that the fine resolution pixel beloriye tass 1, and 0 indicates that
the fine resolution pixel belongs to other classes; (c) is the corresgaraiirse resolution patch, where the number within pigels

the area percentages of the class 1 in each coarse spatial resolafion pix

Fig. 1 shows a patch pair example wifh=3 and z=4. Fig. 1(a) is a fine spatial resolution land cover
map including two classes. For the land cover class 1, as shown in black in Fig. 1(a),dhd finarse spatial
resolution land cover patches are shown in Fig. 1(b) and Fig. 1(c), respectively. The fineesgumtiibn patch
is an indicator map [Fig. 1(b)], where a label 1 means that the fine pixel belongs to tHe atas® means that

the fine spatial resolution pixel belongs to other classes. Therefore, the indicator map

% =[94%0 448 - QAR Aa kAt A9 Qfp Shows the spatial pattern of the class 1. The coarse patch is

The first line The 5th line The 12th line

the fraction image of the class, where the value represents the area percentages within each coanseipixel
1 .1.3 .3 3. . .
represented agy, =[0,~,0,~,1~ ,0~ — .. Together[x, y,] is a patch pair for the class 1.
4 4 8 816
Once a large number of patch pairs available, the SRM problem can then be solved by using a pattern
matching method. Given a coarse spatial resolution patch in the input fraction images;hhmpatthat have
similar coarse spatial resolution patches are ssléaim those available patch pairs. These setbpatch pairs
are called as neighboring patch pairs, because if all patch pairs are listed in order accordimgdtiothedlues,

they are located in neighboring sites. It is noted that these neighboring patch pairs allanchzise spatial

resolution patch and a fine spatial resolution patch. Because coarse spatial resolution pHitcbiesiay



fraction values often have similar spatial land cover patterns, the latent fine spatial resolution patch for the coarse
spatial resolution patch in the input fraction images should be similar with thedai@l resolution patch
included in the neighboring patch pairs. Thus, the SRM seeks to make the spatial land cover pattern of the
resultant fine spatial resolution land cover map match those of neighboring patch pairs.

In general, in the proposed learning based SRM algorithm, the fine and coarse spatial rgsatitipairs
are first extracted from available fine spatial resolution land cover maps to produgdrayldatabase. Similar
patch pairs are then found for each coarse spatial resolution patch in input fraction imaghs. tirésal
available patch pairs in the learning database are used to reconstruct the final fine spatianrésad cover

map. All these steps are described in detail as follows.

C. Generating the training database

Finding the relationship between the fine spatial resolution land cover maps and coarseespaitair
fraction images, which is represented by patch pairs in the training database, is one ofissadsepf the
proposed learning based SRM algorithm. Here, the patch pairs are generated class by classeGofdina
spatial resolution land cover maps, a corresponding set of coarse spatial resolution patdes land cover
class can be produced from them.

An example fine spatial resolution land cover map which includes three land cover claskesjram Fig.

2(a), is used to illustrate the training database generation procedure. Before the training databasgeis, gener
the zoom factorz and the coarse spatial resolution patch sizeare set. In this examplez is set to be 4,

and p is set to be 3. A fine spatial resolution patch then includepx z< p fine spatial resolution pixels
(equals to 1X 12 in this example). In order to generate a patch pair, a fine spatial resolution land cover map
with the size of zx px zx p is first exacted. Generally, by moving a fixed window containingpx zx p

rows and columns within the original land cover map, various fine spatial resolution maps eatracted.



These extracted fine spatial resolution maps can be overlapped, thus the fine spatial resolution lpatterover
included in the original land cover map is fully exploited. For an extracted fine spatiatics map, as shown
in Fig. 2(b), one fine spatial resolution patch, that is, one indicator map was then generasett fand cover
class, as shown in Fig. 2(c)-(e). For each fine spatial resolution patch, the correspondmgpatal resolution
patch consists of fraction values of all coarse spatial resolution pixels. Each coarse spati@rgsneit
corresponds tozx z fine spatial resolution pixels, and the fraction valéie(V) , which is the percentage dfet

fine spatial resolution pixels assigned to the clasin the coarse spatial resolution pixel, is calculated as:

fc(\/)=Z|c(\/)/Z2 ®3)

veV

Fine resolution
land cover map

Extracted fine  ,..... .
resolution map

T
T[T
(NENEA
Fine
resolution
patches > > >
3 3 5
i 3 2 K
tl w2z fofofoflzfofo 2|z
Coarse - - bt
resolution | 1 781 0 0 0 0 0 (18] 1
patches
1 38| 0 0 | 58 |7/16 0 0 [9/16

o ® o
Fig. 2. An example of the training database generation proceduees the zoom factor is 4 and the coarse resolution patch size is
3. (a) is the original fine resolution land cover map; (b) is oneréiselution land cover map including2x 12 fine resolution
pixels extracted from the original fine resolution land cover map. (cand (e) are fine resolution patches of different land cover
classes, which are generated from the extracted fine resolution land cpvarhmanumber 1 indicates that the fine resolution pixel
belongs to the class, and 0 indicates that the fine resolutiehli@longs to other classes; (f), (g) and (h) are corresponding coarse
resolution patches generated from (c), (d) and (e), where the numbigr pixiels means the area percentages of different class in
each coarse resolution pixel. One fine resolution patch and ansec@solution patch form a patch pair, including (c) and (f), (d)

and (g), and (e) and (h) for three different land cover classes.



Each extracted fine spatial resolution map (Fig. 2) can generate one patch pair for each land sover clas
Supposed thatk different fine spatial resolution maps are extracted from the original fine speg@ltion
land cover map,K patch pairs can be generated for each class. Those patch pairs comprise the training
database, where the fine spatial resolution patches are represenied aéx; } &, and the coarse spatial

i=1

resolution patches are representedvas={y; } ., for classc.

D. Searching neighboring patch pairs

Once the training database has been built, it is used to provide land cover infotmastmate the latent
fine spatial resolution land cover map with input coarse spatial resolution fraction irkage=ach coarse
spatial resolution patch in the input fraction images, neighboring training patch pairs thatirhdar coarse
spatial resolution patch are searched from the training database. Since the training database is gegsebgted cl
class, the search procedure is also performed class by clas¥, Le{y; }T, be coarse spatial resolution

patches in the input fraction images for class c. For the ith coarse spatial resolution patcj ., its

neighboring training patch pairs are chosen according to the following criterion:

AT (ye oY) = \/ﬁz(f;cw)—f GV <T (@)

where Af (y; ., Yy,) is the difference of fraction values between coarse spatial resolution patctin the
fraction image andhe jthcorresponding patchy;’, in the training databasef; .(V) is the fraction value of
the classc of the coarse spatial resolution pixeél in vy, and f!(V) is the fraction value of the class

of the corresponding coarse spatial resolution pixelin y;’. The more similar the coarse spatial resolution
patches are, the lower the value &f . The thresholdT, is the tolerable fraction difference between two
patches. If the value of\f (y; .,y}.) is no more than that of, , yiT'fC is thus considered the similar patch of

Yr., and the patch pair that includeyﬁr"jC is the neighboring training patch paifhe value of T, is an



important parameter for searching neighboring patch pairs. If it is too large, the neiglpaacimgairs atoo

different with that of the input fraction images to provide accurate land cover infonm@n contrast, ifT, is
too small, only few neighboring patch pairs can be found, leading to insufficient land coveraindor The
effect of the value ofT, will be assessed in our later experiments.

The k-dimensional (K-Dtree algorithm is applied to find neighboring training patch pairs in the present
work, due to its efficient and successful application in the image super-resolutiold’he K-D tree
organizes coarse spatial resolution patches in the training database off-line to enaldeadadty defining a
binary tree of thresholds, which are chosen optimally so as to expedite the search. More&vErtribe relies

on a special high dimensional data structure and thus the neighbors searching step canebeugpeed

significantly. More detadéd information about the K-D tree can be found in refers{i£g| 59].

For each coarse spatial resolution patch in the input fraction imBgethe neighboring coarse spatial
resolution patches and their corresponding fine spatial resolution patches are searched fagmmthdatabase
using the K-D tree algorithm. A simple example for a two class situation given iB8 Eigised to illustrate the
neighboring training patch pairs searching procedure. In this example, the coarse spatial restthtisize p
is set to be 3, and one coarse spatial resolution patch then includes 3 x 3 coarsespatiah pixels. For a
coarse spatial resolution pixel in the fraction image, all nine coarse spatial resolution patlimdude this
coarse spatial resolution pixel are extracted, by scanning the entire fraction ifhades each coarse spatial
resolution patchy; ., we search the neighboring coarse spatial resolution patches from the training database.
The neighboring training patch paifsc?, y;'}",, where k is the number of the searched patches, are then

used to estimate the latent fine spatial resolution land cover map, as described below.
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for all coarse resolution patches

Searched neighbouring patch pairs
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resolution pixel with all
searched patch pairs
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Fig. 3. An example of the fine resolution land cover map estimgtiocedure, where the coarse resolution patch size is 3. Tavo lan
cover classes are included. For one pixel, all relative coarse resqiatidres are extracted for the input fraction images for each
class. The neighboring patch pairs are selected from the training databasehcexacted coarse resolution patch. All selected
patch pairs are then used to estimate the resultant fine resoluticcolardnap, which shows the distribution of the classessand

still in correct proportion in the input fraction images (9/16 an@, t&spectively.

E. Estimating the fine spatial resolution land cover map

The fundamental assumption of the proposed learning based SRM algorithm is that coarse spatial resolution
patches with similar class fraction values have similar fine spatial resolutiorcdaed patterns. In order to
estimate the latent fine spatial resolution land cover map, the proposed SRM algarithito anake the fine

spatial resolution patches in the latent fine spatial resolution land cover map sithlathe fine spatial



resolution patches identified from the selected neighboring training patch pairs. Thehefabjective of the

SRM is to obtain a minimal difference between the fine spatial resolution patch in thatestime spatial

resolution land cover map and corresponding fine spatial resolution patches in the neighboringpagihing

pairs. During the estimation process, all coarse spatial resolution pixels in the inpoi firaeies are handled

simultaneously, and SRM can be addressed by using the following minimization optimization model:

vin oy =35 iw (1) *E G4 4, ) )
E(XL %) = \/ﬁ )1, 0 (6)
W) =1 AT (0 Yy )= 1A 67, i) @)
Sulject to
glmc(\’) =1, (8)
ZIMC(v) =f . V)xz* forall VeF. 9)

veV

where Kt is the fine spatial resolution land cover map that we aim to estimate. Satingpdrse spatial

resolution patch size to be odd without loss of generafity, is the coarse spatial resolution patch in which the

ith coarse spatial resolution pixel is located in the patch center in the fraction ifRagéste that y; . is the

same asy‘m because the values i are preserved inMt as (1). x:% is the corresponding fine spatial
resolution patch ofyim in M for the classc. {x'} ‘J?:l are fine spatial resolution patches corresponding to
the coarse spatial resolution patcHes’} ‘}:1 in the selected neighboring training patch paE:{x;fc,ﬁl’C) is

the difference between two fine spatial resolution patcfx'gé, and x, and is computed as (6), where
I‘MC(V) is the indictor of the fine spatial resolution pixel within x‘m, and Iy (v) is the indicator of the fine
spatial resolution pixelv within x., respectively.w, () is the weight value assigned to the fine spatial
resolution patchx’,, and is computed in the coarse spatial resolution scale by comparing the fraction difference

between two corresponding coarse spatial resolution patches as (7). The larger the fraatimeeliffower the



weight value. Moreover, Equation (8) ensures that each fine spatial resolution pixel is asseggaad only one
land cover class, and Equation (9) is the area constraint provided by the input coarseesphitia fractions
for all coarse spatial resolution pixels.

The minimization problem has a large solution space, which increases with the numbighbbringfine
spatial resolutionpatches, land cover classes, and the image size. To solve the problem within a short
computational time, this work usessimulated annealing algorithm to find the solution. A power-law annealing
schedule is used in the simulatadrealing algorithm], where the temperatufem at iteration n is
modified according to

Tem =o-Tem, 10
where o <(0,1) controls the decrease rate of temperattieen, .

In the initialization step, the fine spatial resolution pixels of each class within each sjpatiakresolution
pixel are randomly labeled according to the input coarse spatial resolution fractionss bituhtion, the
constraints in (8) and (9) are naturally satisfied. In each iteration, two fine spatialtion pixels with different
land cover labels are randomly selected in each coarse spatial resolution pixel. The values are thed bglculat
using equation (5) according to the current fine spatial resolution land cover map configuratieapping
these two fine spatial resolution pixels decreases the object function value in equatloeséhwb fine spatial
resolution pixels are swapped. Otherwise, the swap can only be accepted with a small tgrabeditiing to
the current temperature in equation (10). The algorithm stops when the previously fixed nungratiafistis

achieved.
F. Patch outlier rejection

The above-proposed minimization optimization model should be generally considered as a simple fine

spatial resolution pixel averaging method. This model has limitations, notably that the devivegbatial



resolution map may be disrupted because of the problem of patch outliers. In general, a heesphiiion
patch only corresponds to one coarse spatial resolution patch, and their relationship is showmin(8yuatit
on the contrary, given a coarse spatial resolution patch, many different fine spatiaticesohtches can

correspond to it, making SRM be an underestimated inversion prm [28].

0 0) 12

(h) 6] ()
Fig. 4. An example of patch outliers in selected neighboring gadais. (a) is a patch pair for one land cover class. The fine
resolution patch includeks x 15 pixels and the coarse resolution patch includes 3x3 pixels. Theeolution pixel filled by grey
color indicates thait belongs to the class. The number within pixels means the aremagres of class in each coarse resolution
pixel of the class. (b) to (j) are searched neighboring patch pairs u$i(e) the tolerable fraction difference value. The fraction
values in (b) to (j) are similar with the fraction values in (a), h@neonly fine spatial resolution patches in (b) and (c) are similar

with that in (a). Fine spatial resolution patches in (g)-(j) are rdiftdrent with that in (a).

Fig. 4 presents an example of a patch outlier. In Fig. 4(a), a patch pair is taken &rpeament reported
below. This patch pair includes a coarse spatial resolution patch of size 3 x 3, and aifiheesphttion patch
of size 15 x 15. The numbers within coarse spatial resolution pixels mean the fraties of the class. Grey

fine spatial resolution pixels represent the pixels belonging to this class, and white fiakerspalition pixels



represent the pixels belonging to other classes. Searching in a training database including 120,p8i0spiaych
using the coarse spatial resolution patch in Fig. 4(a) as the reference, the resultant 9 nejggaicbripgjrs are
simultaneously shown in Figs. 4(b)-(j). As the neighboring patch pairs are searched by corhpatiiagtion
different between coarse spatial resolution patches, coarse spatial resolution patches in thesenggigtdbori
pairs are all much similar to the coarse spatial resolution patch in the reference patwtheaicomparing the
fine spatial resolution patches, it is noticed that only fine spatial resolution patchgs4(blrand Fig. 4 (c) are
very similar with those in Fig. 4(a). Fine spatial resolution patches in Figs(jégg very different with those
in Fig. 4(a), and are then not suitable to be applied to estimate the fine spatial regelidiorrherefore, in
order to improve the performance of the learning based SRM algorithm, only the patch pairsavhisimilar
fine spatial resolution patches with the reference should be applied to estimatienhdéie spatial resolution
land cover map, and other patch pairs should be considered as outliers.

For the fine resolution patchx;’, within the neighboring training patch pairs, it is defined as the outlier

patch according to the following criterion:

X px2< p

Af (x%,L,xiH,c>=\/; > (L)1 0)7 2T, LD

Zx px zZx P 3
where Af (x;1,%,, ) is the difference between two fine spatial resolution patches, and is computed as same as
E(X%.%, ) is equation (6).x, . is the fine spatial resolution patch in the latent fine spatial resolution land
cover map, andx’, is the fine resolution patch within the neighboring training patch pairs. The more similar
the fine resolution patches are, the lower the valuafdfk;’,x,, .) . The thresholdT, is the tolerable difference
between two fine spatial resolution patches. If the valuefuff;’,x,, .) is no lesshan that of T,, the fine
spatial resolution patchk’, is considered aanoutlier patch

In the object function (5)w, (x'}) is used to give the weight values. However, this weight value is

computed by comparing coarse spatial resolution patches and is then not sufficient to distinguisHroutlier



the selected neighboring patch pairs. In order to consider the outlier patches, an additional patch weight

W, () that is computed at the fine spatial resolution is added in the object function of the prSRdsed

algorithm as:

W () oW (%) s EQ %, ) (12)

MxN Kk
=1

c=1l i=1 j

0 If Af(x%,x, .)2T,, the patch is an outlit

13
1 Otherwise, the patch is not an outlier (13)

WH ()('il",jc) ={
In general, if the patchx. is an outlier, the weight valuey, (x;),) is set to be zero, meaning that this

fine spatial resolution patch no longer used during the estimation procedure. Otherwise,gthitevaleie

W, (%) is setto be one, if the patch is not the outlier.
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Fig. 5. The flowchart of the iterative patch outlier handlinacpdure.

Setting an appropriate value @f is important if patch outliers are to be addressed effectively. In the
present work, an iterative method is used. The main iteration procedure is shogarén F=i At first, a fine
spatial resolution land cover map is estimated according to the minimization optimization(f)pdsing all

searched neighboring learning patch pairs. Because all neighboring patch pairs are searched by using a tolerant

fraction value T, as (4), it is expected that the estimated fine spatial resolution land cover mapais withil



the latent fine spatial resolution land cover map. Then, we begin to refine the estimated ifheesodition

land cover map, by decreasing the valueTpfstep by step, from the maximal threshadig®™* to the minimal
threshold T . With each value ofT,, a new fine spatial resolution land cover map is estimated according to
(12). At the beginning, with a larg&, value, only a relatively small amount of neighboring patches, whose fine
spatial resolution patches are markedly different to the current estimated fine spatial resolution landmover
are considered as outlier. Without these patch outliers, a more accurate fine spatial resolutiovelamap is
expected to be estimated. The valueTpf decreases iteratively and more patches are considered as outliers.
Then, the estimated fine spatial resolution land cover map is expected to be more accurate. At liee end, t
iteration converges to a stable solution until the minimal vaijf¢ is reached, and the estimated fine spatial

resolution land cover map is considered as the result of SRM.

G. The proposed algorithm

According to the aforementioned principles, we summarize the proposed learning based SRivinalgori
Algorithm 1. In brief, a fine spatial resolution land cover map is first randomly gedeuaing input coarse
spatial resolution fraction images in the initialization step. Meanwhile, the patch pairs in the training database are
constructed according to the zoom factor and the coarse spatial resolution patch size. The input dakrse spat
resolution fraction images are then scanned and neighboring patch pairs are searched byréeealigrithm,
for all coarse spatial resolution patches in fraction images class by class. Using tlubssl sesghboring patch
pairs, the initial fine spatial resolution land cover map is estimated by using thiatetinannealing algorithm.
Outliers in these neighboring patch pairs are then found and the fine spatial resolution lanchayuer
re-estimated, by changing the threshold valje Once T, reachesT"", the iteration is finished, the estimated

fine spatial resolution land cover map is the result of the learning based SRM algorithm.




Algorithm |

Objective: Estimate fine spatial resolution land cover mép
Input: Coarse spatial resolution fraction imagés, zoom factor z, land cover class

number C, coarse spatial resolution patch size, coarse spatial resolution fraction
threshold T, , the maximal and minimal fine spatial resolution thresholf€* and
ThN"”, fine spatial resolution threshold change valdd, , parameters of the simulated

annealing algorithm:Temy, o, and Ite.

1. Initialization:

1) For each coarse spatial resolution pixel, calculate the numbiereasfatial resolution
pixels for each class as (1);

2) Randomly set class label for all fine spatial resolution pixels usingumber as the
constraints;

2. Training database gener ation

1) Extract fine spatial resolution patches from available land cover maps;

2) Estimate the corresponding coarse spatial resolution patch for eashdtres resolution
patch and generate patch pairs in the training database;

3. Similar Patch Finding

1) Build the K-D tree for all coarse spatial resolution patches itraireng database;

2) Scan F , and extract all coarse spatial resolution patches;

3) Search neighboring patch pairs from the training database for aibecpatial
resolution patches inF .

4. Generating initial high resolution land cover map

1) Reconstruct™M' by minimizing the objective function in (5) using the simulated
annealing algorithm.

5. Iterative patch outlier rejection
1) Set T, =T
2) Do {

[1] Calculate the weight values using currefi and T, , according to (18

[2] Reconstruct Mt according to (1R
B8] T, =T,—dT,;

}Uniil T, <TM"

Result: Output the fine spatial resolution land cover mif}.

. EXAMPLE
The National Land Cover Database 2001 (NLCD 2001) that shows the land cover for the conterminous

USA was used to test the proposed learning based SRM algorithm. NLCD 2001 is basextet-6-class land



cover map over all 50 US states and Puerto Rico at spatial resolution of 30 m, and itym@narated from
the unsupervised classification of Landsat Enhanced Thematic Mapper Plus circa 2001 satelli taset
simplify the experiment, the original 16 classes of the NLCD images were convertadripte class scheme

which includes four general land cover classes: water, urban, forest and agriculture.

B o N urhon [ forest | agriculture

Fig. 6. All 12 subsets of NLCD land cover maps used to generate the trdimiaigase. &hsubset has 400 x 400 pixels and four

land cover classes.

Test map 111 Test map 1V
I vater | urban forest

| agriculture

Fig. 7. Four subset NLCD land cover maps (with X2@0 pixels) used to test the proposed algorithm.



We select twelve subsets of NLCD maps (each contains 400 x 400 pixels) as shown i [ggnérate

the coarse and fine spatial resolution patch pairs, which formed the training database. Acurrthebsets of

NLCD maps (each contains 120 x 120 pixels; Fig.7), were used to assess the proposedo8tRih.alhese

twelve subsets are called as training maps and the four subsets are called as test maps. The locations of these four

test maps are different to those of the twelve training msgd to construct the training datab&se.each of

the four test maps, we generate synthetic coarse fraction images by linear averagireg dpatiaal resolution

pixel number within the coarse spatial resolution pixel according to different zoom facsing. simulated

fraction images as input, as well as the constructed training database, the proposedoBiRivh édgapplied to

estimate a fine spatial resolution land cover map. In order to assess the accuracyopiodeddearning based

SRM algorithm, by using the test land cover maps as the reference, the overall accuraandQ#gppa

coefficient are used to evaluate the accuracy of the estimated land cover maps, by comparing the entire estimated

map with the corresponding reference map.

The proposed learning based SRM algorithm was also compared with the pixel-based hard classification

method (HC) and several popular SRM algorithms including the pixel swapping algorithm based ordimulat

and Bl algorithms includes only coarse spatial resoluliaction images, because all these SRM algorithms

describe the land cover distribution using the spatial dependence principle. By contrast, thef iBput

algorithm includes not only the coarse spatial resolution fraction images, butnasepétial resolution land

cover maps that are used to learn prior land cover information. In the experiments, altitsveing maps are

usedin the BP algorithm.



water urban forest agriculture
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Fig. 8. Simulated fraction image generated from the test map loassh Fig. 7. The top row presents the fraction images at

z=5, and the bottom row presents the fraction imageg at8.

The test map | as shown in Fig. 7(a), was first used to assess the impact of pamiEenposed SRM
algorithm. Synthetic fraction images, as shown in Fig. 8, were simulated from the fiaérggatution test map
I. Two zoom factors,z=5 and z=8, were applied. The fine and coarse spatial resolution patch pairs in the
training database were generated from all twelve training maps as shown in Fig. 6 wittacioosnof 5 and 8,
respectively.

When the proposed learning based SRM algorithm is performed, the resultant fine spaliigion land
cover map is affected by parameters used in the algorithm. According to our experiments, theatcarseze
p was set to be 3, because a largevalue makes the spatial structure of a coarse patch too complex to find
enough similar image patche3,™ was set to 1, meaning that no fine spatial resolution neighboring patches
are considered as outliers at the beginnid@, was set to 0.05, in order to decrease the valug o§radually.
Moreover, to further assess the impact of parameter values on the performance of the proposechreethod, t
most important parameters including the number of patch pairs in the training database, thepatiatse
resolution fraction difference threshold valde and the minimal fine spatial resolution difference threshold

value T are discussed in the following sections, respectively.
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Fig. 9. Kappa values of the resultant fine resolution land covps withe proposed learning based SRM algorithm with different

numbers of training patch pairs. (a) is the resulizat 5; (b) is the result atz=8.

1) Impact of the number of patch pairs in the training database: To #ssdsgpact of the number of
patch pairs in the training database, the analysis was repeated 8 times over the faat@ af5< 10 © with an
interval of 2x10'. Fig. 9 indicates the Kappa values of resultant fine spatial resolution land cover maps
produced by the learning based SRM algorithm with different numbers of patch pairs in thg ttailmbase, at
zoom factors of 5 and 8, respectively. When the number is less3ha@f, the Kappa values of the results at
z=5 and z=8 are both at a low level. This is because the use of only a few patch pairs cannot provide
enough information about the spatial land cover patterns. With the increment of the number, both Kappa values
at z=5 and z=8 increase rapidly until the number reaches to alddut1d’, and then the Kappa values
maintain stable, as shown in Figs. 9 (a) and (b). It is also noticed that the incremappafdlues atz=5 is
more rapid than that az =8, when the number is in the range [@x 10", 9x 10 ]. The reason is that more patch
pairs are needed in order to decrease the uncertainty caused by a large zoom factor. According to the experiment,
a number of patch pairs larger thanx1d is reasonable. As more patch pairs may increase the calculation
burden, the number of patch pairs in the training database is seti@x<i€ in our latter experiments.

2) Impact of the threshold, : The threshold valuel, is a pre-defined parameter that represents the
tolerable fraction difference between two coarse spatial resolution patches. This pagaietetees that the

searched coarse spatial resolution patch which has a fraction diffeséndarger thanT, cannot be accepted

as the candidate image patch. Fig. 10 shows the Kappa values of the resultant fine spatial tasdlutomer



maps produced by the proposed learning-based SRM algorithm with différesalues. WhenT, is in the

range of[0.02,0.14 at z=5 and in the range 0f0.02,0.12 at z=8, the Kappa values increase with the
increment of the value off, . This is because that the number of candidate patch pairs is too small to provide
enough land cover pattern information for SRM,Tjf is set to be a too low value. Far=>5, as shown in Fig.

10(a), if the value ofT, is larger than 0.14, the Kappa values are kept at a stable levet -F&r however, the

Kappa values begin to decrease until a stable valug, ifs larger than 0.12. In general, with a larger value of

T, more patch pairs with larger fraction errors are considered as candidate patches, which indeeg generall
provide erroneous information and make the estimated fine spatial resolution lanthap\differ significantly

from the latent map. Setting too large a valueTpf may degrade the estimated fine spatial resolution map.

However, the result is only slightly different because of the additional patch outlier rejection procedure.

a) 0.7 b) 057
(a) 075 & (b)

Fig. 10. Kappa values of the resultant fine resolution land coves wiahe proposed learning based SRM algorithm with different

values of coarse resolution threshold . (a) is the result atz=5; (b) is the result atz=8.
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Fig. 11. Kappa values of the resultant fine resolution land coves ofathe proposed learning based SRM algorithm with different

minimal fine resolution thresholdl'h'\’Iin . (@) isthe result az=5; (b) is the result atz=8.
3) Impact of the minimal fine spatial resolution thresholdTgf' : The value of ' is denoted ashe

minimal threshold value, which is used to distinguish the outlier patches from all neighpatéhgs in the



estimation procedure. To assess the impact of & value, the learning based SRM algorithm was applied
with different values ofT™ in the range of[1.0,0.1] with an interval of -0.1. The Kappa values of the
resultant fine spatial resolution land cover maps produced by the proposed learning based SRiwh afgor
z=5 and z=8 are shown in Fig. 11. With the decrement of the valued ¥§f, the corresponding Kappa
values of the resultant fine spatial resolution land cover maps increase, because more ciadnssaiodion
patches are considered as outlier patches and not used in the estimation procedurg!"Wietarger than 0.2

at z=5 and 0.3 atz=8, however, the Kappa values begin to decreasthe value of T, decreases. The
reason is that most neighboring patches are considered as outliers if the valudsofoo low, and the

remaining neighboring patches can not provide enough information for SRM.

Retueme f = () 2

Fig. 12. Resultant fine resolution land cover maps produced bydheged learning based SRM algorithm. (a) is the result without
patch outlier handling procedure and (b) is the result using pattibrcuandling procedure az=5. (c) is the result without
patch outlier handling procedure and (d) is the result using patch cuhelling procedure az =8. Using the patch outlier
handling procedure reduces the salt-and-pepper artifacts an ghttve enlarged part A, and the linear discontinuities as shown i

the enlarged part B.

A visual comparison, as shown in Fig. 12, is used to further assess the impacvalfithef T'". For
z=5, as shown in Fig. 12(a), many salte-pepper artifacts appear and the spatial continuities of some linear
features are interrupted wheR™ =1.0, which means that all patches are accepted and no outliers exist. In

contrast, with patch outlier rejection (whef{"" =0.2), most of the salandpepper artifacts are eliminated and



the spatial continuities are well maintained, as shown in Fig. 12(b). The impagt"ofon the resultant fine
spatial resolution land cover map is more obvious wher8. Many saltandpepper artifacts and linear
discontinuities that appear in the fine spatial resolution land cover map, as showrlR(djigare eliminated by

the outlier rejection, as shown in Fig. 12(d).

Proposed

Reference

d

Fig. 13. Resultant land cover maps generated by different methodsawith and z=8 for the test map |. HC produces jagged
boundaries (such as the area A); PS produces isolated patches (hechraa B); SPA and Bl produce linear artifacts (such as the

area C); and BP produces salt-and-pepper artifacts and isolategsp@ieth as the area D).

4) Comparison with other methods: According to aforementioned discussion about parametershesed in t
proposed learning based SRM method, the optimal parameter values were used to produce thdimesultant
spatial resolution land cover maps. In particular, the number of patch pairs in the learabagelat12x 10 ,
the value 6 T, is 0.12, and the value ofi"™ is 0.2 for z=5 and 0.3 for z=8, respectively. By using the
same aforementioned simulated coarse fraction images used for the proposed learning based SRd method
input, the resultant land cover maps of HC, PS, SPA, BI, BP and the proposed learning based SRM are all shown
in Fig. 13. Additionally, the Kappa and OA values of all these maps produced by different methsiutsvar in

Table. I.



Table 1.Kappa and Overall AccuracyD@) values of the resultant land cover maps produced by differetfitoats atz=5 and

z=28 for the test map I.

HC PS SPA Bl BP Proposed

Kappa 0.6223 0.6525 0.6780 0.6856 0.7050 0.7348
z=5
OA 0.7735 0.7890 0.8045 0.8091 0.8209 0.8390

Kappa 0.4811 0.4739 0.5068 0.5148 0.5264 0.5561
z=8
OA 0.6957 0.6806 0.7006 0.7054 0.7124 0.7305

In general, for all SRM algorithms, the zoom factor plays an important role on the accurasylofThe

key point of SRM is to determine the class labels of the fine spatial resolution \piitets the coarse spatial

resolution pixel. For a given zoom factar, there will be zx z fine spatial resolution pixels within the coarse

spatial resolution pixel to be estimated. With the increase ,othe number of fine spatial resolution pixels

would be increased exponentially, and more fine spatial resolution pixels within the coaiserepalution

pixel need to be estimated. Therefore, the uncertainty of the estimation would be expectezhs$e,imerd the

performance of the algorithm would decrease.

For the results of HC, as shown in Fig. 13 and Fig. 13, the land cover boundarieggace gnd many

spatial details are missed. The Kappa and OA values of the results of HC, as shown in Stallat the lowest

level. This is because that HC is based on the pixel scale, and does not consider the spatiardstiifagses

at sub-pixel scale. By contrast, more land cover details at the sub-pixel scale are maint&Réd ibgluding

PS, SPA, BI, BP and the proposed learning-based SRM method. Visual comparison of the finesplatiah

maps obtained from the various SRM analyses highlighted differences in the way they represented the land cover.

For the results of PS, many land cover features are mapped as isolated rounded patchesspatiadl the

continuities are interrupted. This shortcoming becomes more serious with the increment of thlactoom



When z=8, the Kappa and OA values of PS are 0.4739 and 0.@8@bare even lower than those of HC

because the uncertainty of the fine spatial resolution pixel distributiotiee resultant fine spatial resolution

land cover map generated by PS is serious when the zoom factor is large. The fine spatiahrésnd cover

maps produced by SPA and BI visually differed from that obtained with PS with moral sjzail are

maintained. The Kappa and OA values of fine spatial resolution land cover maps produced by SPArand Bl

also higher than those of PS. However, numerous linear artifacts are found near the land cover biouthearies

obtained fine spatial resolution land cover maps produced by SPA and BI, and the linear artifactsnbe@om

serious with the increment of the zoom factor. The fine spatial resolution land cover ody=edrby PS, SPA

and BI are, therefore, less than ideal. This is because these SRM methods just apply the spatial dependence

assumption to describe the land cover pattern, and this assumption will often be too simplidéo grough

information for SRM in areas with complex land cover patterns.

Compared with the results of PS, SPA and Bl, the linear artifacts in the redBRsané eliminated and the

spatial continuities are maintained to some extent. The Kappa and OA values of the resaltapatial

resolution land cover maps produced by BP at zoom factor of 5 and 8 are both higher thahRBo&PA and

BIl. This improvement arises from the use of additional information about the spati@iohsgrdpattern that is

learned from the training database in the SRM procedure. However, in the resultant fineesudditdm land

cover maps produced by BP, many salttpepper artifacts are found and many linear land cover features are

also mapped as isolated small-sized patches. Moreover, with the increment of the zoom factor, the geometri

integrity of featuress more difficult to be maintained by the BP based SRM method. The shortcoming of the BP

based SRM method is mainly caused by its two-step procedure and the impact of outlierthdugaging

procedure.

The resultant fine spatial resolution land cover maps produced by the proposed learning-based SRM method



are more similar to the reference (Fig. 7) at both zoom factors than the maps prodocéefiother SRM

methods. Isolated land cover patches, jagged shapes and linear artifacts, which are commonuitatidimes

spatial resolution land cover maps produced by aforementioned methods, are effectively elimindged by

proposed learning based SRM method. More spatial details, especially the linear features and thendpatial

cover continuities are maintained. The Kappa and OA values of the resultant fine spatialoresahaticover

maps produced by the proposed learning based SRM method are all the highest at both zoom fdctibres.. Bot

visual comparison and accuracy analysis indicate that the proposed learning-based SRM method isosuperior

the SRM algorithms used for comparison.

The test maps Il to IV, as shown in Figs. 7(b) to (d), were used to further validgberformance of the

proposed learning-based SRM method. As with the analyses focused on test map |, with tfectoosrof 5

and 8, the three fine spatial resolution test maps were degraded to produce the simulated talarssodpiEon

fraction images. These simulated coarse spatial resolution fraction images are then usedti@shiegsikRM

methods in order to produce the resultant fine spatial resolution land cover maps. The samerpaahrast

used in the experiment of the test map | were applied for test maps Il to IV. Thameknid cover maps

produced by HC, PS, SPA, BIl, BP and the proposed learning based SRM algorithm at zoom facime &f

are all shown in Fig. 14 and Fig. 15, respectively. By using the original fine spatial resolution land cover maps as

the reference, the accuracy analysis of three land cover maps@&tand z=8 are shown in Table II.

A similar trend as the experiment of the test map | is found by visually compagimgsihitant fine spatial

resolution land cover maps produced by different methods. The resultant land cover maps produckedvey HC

jagged boundaries and many spatial details are missed. By contrast, the fine spatial remotutondr maps

produced by SRM methods have smooth boundaries and more spatial details are maintained. Thalfine spati

resolution land cover maps produced by PS are locally smooth and many linear land cover featuiappeal



into individual round patches for all three test maps. The spatial land cover pattern of tisepresiuiced by

SPA and BI are much improved, however, numerous irregular linear artifacts exist near the boundaries

Moreover, more linear artifacts appear in the SPA and BI results of the test riregmIthose of the test map I

and IV, due to the complex land cover features of the test map lll, especially the urban class. The BP based SRM

method can reconstruct more spatial details, and eliminate linear artifacts in the reSBlfs arfid Bl to some

extent, due to additional spatial land cover information is learned from the extra fine spatial resolution land cover

maps. However, many salt-and-pepper artifacidisolated small-sized patches are still unavoidable due to the

errors caused by the two-step process. By contrast, the fine spatial resolution landagsveraduced by the

proposed learning-based SRM method, as shown in Fig. 14 and Fig.zZt55tand z=8, are more similar to

the reference fine spatial resolution land cover maps as shown in Fig. 7. The fine spati&@mdsolditcover

maps produced by the proposed algorithm are smoothaiShftepper artifacts, isolated patches and irregular

linear artifacts that appear in the results of some of the other SRM analyses are mausiyeeli For all of the

three testing land cover maps at both zoom factors of 5 and 8, more spatial detail, espediaéar features,

are well maintained in the results of the proposed learning based SRM algorithm.
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Fig. 14. Resultant land cover maps generated by different methagstfonaps 11V with z=5. HC produces jagged boundaries
(such as the area A); PS produces isolated patches (such as the area B)f BRgx@duce linear artifacts (such as the area C); and

BP produces salt-and-pepper artifacts and isolated patches (such aa fbg are
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Fig. 15. Resultant land cover maps generated by different methogstonaps IV with z=8. HC produces jagged boundaries
(such as the area A); PS produces isolated patches (such as the area BJ; BR#&aduce linear artifacts (such as the area C); and

BP produces salt-and-pepper artifacts and isolated patches (such aa fhe are

Tablell. Kappa and Overall AccuracD@) values of the resultant land cover maps produced by differenodse#tt z=5 and

z=38 for test maps IIV.

HC PS SPA Bl BP Propose:

Kappa 0.6576 0.7157 0.7466 0.7392 0.7465 0.7790

z=5

OA 0.8126 0.8381 0.8556 0.8514 0.8556 0.8741
Test magl

Kappa 0.5746 0.5770 0.6190 0.6232 0.6230 0.6441

z=8
OA 0.7690 0.7590 0.7829 0.7853 0.7852 0.7972
Kappa 0.6006 0.6273 0.6547 0.6453 0.6596 0.6939

z=5
Test magll OA 0.7481 0.7599 0.7776 0.7715 0.7808 0.8028

z=8 Kappa 0.4922 0.4388 0.5027 0.5144 0.5033 0.5271



OA 0.6791 0.6385 0.6797 0.6872 0.6801 0.6954

Kappa 0.6903 0.7592 0.7745 0.7802 0.7820 0.8131
z=5
OA 0.8127 0.8503 0.8599 0.8634 0.8645 0.8838
Test mapV
Kappa 0.6134 0.5972 0.6567 0.6677 0.6737 0.6863
z=8
OA 0.7684 0.7497 0.7867 0.7935 0.7972 0.8051

The accuracy statistics of different methods for three testing land cover maps at zomroféetand 8 are

shown in Table. Il. Whenz=5, the Kappa and OA values of the results of HC are the lowest. It is also noted

that both Kappa and OA values of the fine spatial resolution land cover maps produced bthfe® fest maps

are lower than those of HC a =8, indicating that PS is inappropriate to be applied when zoom factor is large.

For z=5 and z=8, the Kappa and OA values of the fine spatial resolution land cover maps produced by SPA

and BI for three test maps almost stay at the same level. The Kappa valuesired gpafial resolution land

cover maps produced by BP is higher than those of SPA and Bl whén however, there is no improvement

of the Kappa and OA values when= 8. By contrast, the proposed learning based SRM algorithm produces the

fine spatial resolution land cover maps with the highest Kappa and OA values, at botfacimosnof 5 and 8

for all three test maps, showing the advantage of the proposed learning-based SRM method.

V. Discussions

The general principle for learning based SRM algorithms is that the spatial pattéen egtimated fine

spatial resolution land cover map should be similar as that of existing fine spatliatioesland cover maps.

The variation lies in the method used to represent the spatial land cover pattern.pfopaked learning based

SRM algorithm, the assumption thatcoarse spatial resolution mixed pixel patch with similar fractions has

similar fine spatial resolution land cover pattern provides the basis for leah@ngrior spatial land cover

pattern model. Noted that the similarity relationship only exists for patches, bat &pplied for individual



coarse spatial resolution mixed pixel. The first reason is that the distributioffestrli land cover classes

within a coarse spatial resolution pixel is always dependent with its surrounding coarseesutiabn pixels.

Secondly, determining the fine spatial resolution map within a coarse spatial resolution pixglooeealways

leads to spatial discontinuity near coarse resolution pixel boundaries. By contraspaiisies can preserve the

spatail continuity because these patches are overlapped.

Learning based SRM algorithms aim to make the estimated fine spatial resolutisimit@pwith existing
land cover maps. Therefore, how to measure their similarity is a key problem and diffeteotls should lead
to different SRM algorithms. In the proposed SRM algorithm, the similarity betweefingvoesolution land
cover patches is computed by directly comparing their indicator maps. The objective fun¢tierpofposed
SRM algorithm, as shown in equatidl®), is then minimizing the difference between the estimated fine spatial
resolution patch and corresponding fine spatial resolution patchissoljjactive function is indeed a spatially
implicit model, as the spatial pattern is not represented by popular two-point statiskiteds, such as
semi-variogram, but is directly represented by fine resolution patches themselves. Bbeafise spatial
resolution patch is a high dimensional vector, the effectiveness of similarity calculation showidhbe
improved by extracting features from fine spatial resolution patches. Given the degeltpment of multiple
point geo-statistics for spatial patterns reproduc [62], some approaches ssadlate spatial patterns in
the multiple point geo-statistics commun 64] should be applied for the improveidr@ proposed
learning based SRM algorithm in the further research.

In the proposed learning based SRM algorithm, the spatial land cover pattern is representeddarpatch
generated class by class. For each land cover class, the indicator map only considers whetlspatafine
resolution pixel belongs to a certain land cover class or not, and does not diffehgatand cover classes

any more. The inter-class relationship can be well presented by this method if onantivcolver classes are


javascript:void(0);

considered; however, more information about inter-class relationships is lost in indicatorwittapbe
increment of land cover classes. In genaaglatch often includes limited land cover clasaedthe inter-class
relationship within a patch is not complex. Generating patch pairs class by class can pligntsaralgorithm
without losing too much inter-class information. In complex areas, however, considering ehelaiss
relationships of different land cover classes can provide additional information, and needs further study.

The selected neighboring patch pairs are crucial to the proposed learning based SRM algorithmtdn order
ensure the quality of those neighboring patch pairs, they are chosen from the learning database with tw
threshold values at different scales. Threshgldindicates the difference of fraction values between paigh
the coarse spatial resolution scale, and threshpldndicates the difference of indicator values between patch
at the fine spatial resolution scale. Both of them play important roles opetfimance of the proposed
learning based SRM algorithm. From the experiment result, to be more specific, a relative large Taluandf
a relative small value off, are more likely to obtain fanspatial resolution land cover maps with higher
accuracies. This implies that a good neighboring patch pair searching strategy is tolstatawié number of
candidate patch pairs and refine to a few best patch pair candidates. In practice, howevewalpgmaf T,
and T, may differ between studies, and their values need to be optimized with the use of appieniag
samples. Automatic estimation of optimal threshold values could alsortselered; however, it is a difficult

issue and needs further study.

Table Ill. Computation time for different steps of the proposed SRM algoviittnzoom factors 5 and 8 for the test map I.

Zoom Building Initial map Outlier
Total
Factor  databases Generation rejection

z=5 183 s 776 s 785 s 1744 s
z=8 129 s 473 s 619 s 1221's

Program run time influences the application of the proposed learning based SRM algbrittima.



experiments, the algorithmastested on an Intel Core 5 Processor 3.20-GHz Duo CPU with 4 GB RAM using
MATLAB version 7.3. In general, building datasets and optimizing with the simulated anneglnighah are
very time consuming. In the experiments, for building datasets, the number of patch pairs in the training database
is set to be12x1d . For the simulated annealing algorithm, the iteration number is set to be 1000 to ensure the
convergence. The iteration number is set to be 100 in outlier rejection, however, to enhance thegcomput
efficiency. With the aforementioned algorithm parameters and the implementation code withmoigatipta,
the running time was shown in Tablé It is observed that the running time used for building databases is much
less than the initial map generation and outlier rejection steps, and less time is needed for a lower zoom factor.
V. Conclusions

In this paper, a novel learning based SRM algorithm was proposed and tested relativeotesiaelished
SRM methods. Compared with the simple spatial dependence prior model, the learning method can more
effectively describe the spatial land cover pattern, and make the resultant fine epalidian land cover map
more accurate. In the proposed learning based SRM algorithm, the spatial land cover pattern is refpyesented
the patch pairs, which include a fine spatial resolution patch and a coarse spatial resolution patch. ifime algori
first generates a learning database including a large amount of patch pairs. The K-D tree algosiunto
search neighboring patches for coarse spatial resolution patches in the input fraction imagles feamming
database. These searched neighboring patches are used to estimate the latent fine spatiallaagobatien
map by solving an optimization problem, which aims to make the estimated fine spsdiation land cover
map have similar spatial land cover pattern as these neighboring patches. Moreover, anpitchtioatlier
finding procedure is applied to reject outliers during the estimation procedure in order to enhance the result.

The performance of the proposed SRM algorithm was assessed with several experiments that used the

NLCD land cover maps as the reference. Some important parameters including the number ofrpatcthpai



training database, the coarse spatial resolution scale fraction difference threshold value andniefine
spatial resolution difference threshold value are discussed, and the optimal values are suggetitegltadber
experiment results. The proposed learning based SRM algorithm is also compared with severaSpdpular
algorithms. The results shows that the proposed learning based SRM algorithm better nuhifeteens land
cover patterns in all experiments. Notably, salttpepper artifacts, isolated patches and irregular linear artifacts
that often appear in the resultant land cover maps produced by the popular SRM algorithms canabedetiyn
the proposed learning based SRM algorithm to a large extent. Moreover, the highest Kappa aratowveayl
values are also derived by the proposed learning based algorithm.
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