29 research outputs found

    Review of machine learning methods in soft robotics

    Get PDF
    Soft robots have been extensively researched due to their flexible, deformable, and adaptive characteristics. However, compared to rigid robots, soft robots have issues in modeling, calibration, and control in that the innate characteristics of the soft materials can cause complex behaviors due to non-linearity and hysteresis. To overcome these limitations, recent studies have applied various approaches based on machine learning. This paper presents existing machine learning techniques in the soft robotic fields and categorizes the implementation of machine learning approaches in different soft robotic applications, which include soft sensors, soft actuators, and applications such as soft wearable robots. An analysis of the trends of different machine learning approaches with respect to different types of soft robot applications is presented; in addition to the current limitations in the research field, followed by a summary of the existing machine learning methods for soft robots

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Fiber bragg gratings for medical applications and future challenges: A review

    Get PDF
    In the last decades, fiber Bragg gratings (FBGs) have become increasingly attractive to medical applications due to their unique properties such as small size, biocompatibility, immunity to electromagnetic interferences, high sensitivity and multiplexing capability. FBGs have been employed in the development of surgical tools, assistive devices, wearables, and biosensors, showing great potentialities for medical uses. This paper reviews the FBG-based measuring systems, their principle of work, and their applications in medicine and healthcare. Particular attention is given to sensing solutions for biomechanics, minimally invasive surgery, physiological monitoring, and medical biosensing. Strengths, weaknesses, open challenges, and future trends are also discussed to highlight how FBGs can meet the demands of next-generation medical devices and healthcare system

    Design and Implementation of Innovative Robotic Devices Using Twisted String Actuation (TSA) System

    Get PDF
    The twisted string actuation system is particularly suitable for very compact, low-cost and light-weight robotic devices, like artificial limbs and exoskeletons, since it allows the implementation of powerful tendon-based driving systems, based on small-size DC motors characterized by high speed, low torque and very limited inertia. The following activities has been done using the Twisted String Actuation System: - The basic properties of the twisted string actuation system. - An ongoing work for verifying the behavior of a twisted string actuator in contact with a sliding surface or guided through a sheath. - The implementation of a variable stiffness joint actuated by a couple of twisted string actuators in antagonistic configuration. - The design and the implementation of a force sensor based on a commercial optoelectronic component called light fork and characterized by the simple construction process. - A twisted string actuation module with an integrated force sensor based on optoelectronic components. - The preliminary experimental study toward the implementation of an arm rehabilitation device based on a twisted string actuation module. - A 6 DoF cable-driven haptic interface for applications in various robotic scenarios. - A wearable hand haptic interface driven by a couple of twisted string actuators

    Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review

    Full text link
    [EN] In the last decades, fiber Bragg gratings (FBGs) have become increasingly attractive to medical applications due to their unique properties such as small size, biocompatibility, immunity to electromagnetic interferences, high sensitivity and multiplexing capability. FBGs have been employed in the development of surgical tools, assistive devices, wearables, and biosensors, showing great potentialities for medical uses. This paper reviews the FBG-based measuring systems, their principle of work, and their applications in medicine and healthcare. Particular attention is given to sensing solutions for biomechanics, minimally invasive surgery, physiological monitoring, and medical biosensing. Strengths, weaknesses, open challenges, and future trends are also discussed to highlight how FBGs can meet the demands of next-generation medical devices and healthcare system.This work was supported in part by INAIL (the Italian National Institute for Insurance against Accident at Work), through the BRIC (Bando ricerche in collaborazione) 2018 SENSE-RISC (Sviluppo di abiti intelligENti Sensorizzati per prevenzione e mitigazione di Rischi per la SiCurezza dei lavoratori) Project under Grant ID10/2018, in part by the UCBM (Universita Campus Bio-Medico di Roma) under the University Strategic HOPE (HOspital to the PatiEnt) Project, in part by the EU Framework Program H2020-FETPROACT-2018-01 NeuHeart Project under Grant GA 824071, by FCT/MEC (Fundacao para a Ciencia e Tecnologia) under the Projects UIDB/50008/2020 - UIDP/50008/2020, and by REACT (Development of optical fiber solutions for Rehabilitation and e-Health applications) FCT-IT-LA scientific action.Lo Presti, D.; Massaroni, C.; Leitao, CSJ.; Domingues, MDF.; Sypabekova, M.; Barrera, D.; Floris, I.... (2020). Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access. 8:156863-156888. https://doi.org/10.1109/ACCESS.2020.3019138S156863156888

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Adaptive robust interaction control for low-cost robotic grasping

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When a gripper starts interacting with an object to perform a grasp, the mechanical properties of the object (stiffness and damping) will play an important role. A gripper which is stable in isolated conditions, can become unstable when coupled to an object. This can lead to the extreme condition where the gripper becomes unstable and generates excessive or insufficient grip force resulting in the grasped object either being crushed, or falling and breaking. In addition to the stability issue, grasp maintenance is one of the most important requirements of any grasp where it guarantees a secure grasp in the presence of any unknown disturbance. The term grasp maintenance refers to the reaction of the controller in the presence of external disturbances, trying to prevent any undesired slippage. To do so, the controller continuously adjusts the grip force. This is a challenging task as it requires an accurate model of the friction and object’s weight to estimate a sufficient grip force to stop the object from slipping while incurring minimum deformation. Unfortunately, in reality, there is no solution which is able to obtain the mechanical properties, frictional coefficient and weight of an object before establishing a mechanical interaction with it. External disturbance forces are also stochastic meaning they are impossible to predict. This thesis addresses both of the problems mentioned above by:Creating a novel variable stiffness gripper, capable of grasping unknown objects, mainly those found in agricultural or food manufacturing companies. In addition to the stabilisation effect of the introduced variable stiffness mechanism, a novel force control algorithm has been designed that passively controls the grip force in variable stiffness grippers. Due to the passive nature of the suggested controller, it completely eliminates the necessity for any force sensor. The combination of both the proposed variable stiffness gripper and the passivity based control provides a unique solution for the stable grasp and force control problem in tendon driven, angular grippers.Introducing a novel active multi input-multi output slip prevention algorithm. The algorithm developed provides a robust control solution to endow direct drive parallel jaw grippers with the capability to stop held objects from slipping while incurring minimum deformation; this can be done without any prior knowledge of the object’s friction and weight. The large number of experiments provided in this thesis demonstrate the robustness of the proposed controller when controlling parallel jaw grippers in order to quickly grip, lift and place a broad range of objects firmly without dropping or crushing them. This is particularly useful for teleoperation and nuclear decommissioning tasks where there is often no accurate information available about the objects to be handled. This can mean that pre-programming of the gripper is required for each different object and for high numbers of objects this is impractical and overly time-consuming. A robust controller, which is able to compensate for any uncertainties regarding the object model and any unknown external disturbances during grasping, is implemented. This work has advanced the state of the art in the following two main areas: Direct impedance modulation for stable grasping in tendon driven, angular grippers. Active MIMO slip prevention grasp control for direct drive parallel jaw grippers
    corecore