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A large number of people experience neurological disorders in their life time,

and these patients seek to regain their body functions with rehabilitation and assis-

tive devices. In this dissertation, we present the development of a hand exoskeleton,

called Maestro, which is designed to advance research in fields of hand rehabilitation

and hand assistive devices. Maestro is mechanically and electrically robust, accurate

in sensing and actuation, and compatible to various rehabilitation schemes, subjects,

hardware/software, and different operators. As a result of these features, Maestro

has led to research on adaptive control theories for diverse properties of hands, the

development of a hand-wrist exoskeleton, the development of a novel rehabilitation

framework, progress of hand muscle fatigues, and assistance for SCI patients. Par-

ticularly on the assistance for SCI patients, we present that the advantage of a

compliant hand assistive device may result in high success ratios for grasping various

objects required in activities of daily living (ADL) with surface EMG sensors. The

hand functions of SCI subjects are evaluated with and without Maestro through a
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standardized hand function test called Sollerman hand function test (SHFT). The

results with six SCI subjects show that the hand functions of C6 and C7 SCI subjects

improved with assistance from Maestro.
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Chapter 1

Introduction

A large number of people experience neurological disorders in life time. More

than 790,000 stroke cases occur every year in the US [5]. Some patients are born with

neurological disorders such as cerebral palsy. Some neurological disorders such as a

spinal cord injury (SCI) occur regardless of age [6] and demand a huge amount of

lifetime costs. For example, the estimated lifetime cost of a patient injured on the C5-

C8 spinal cord at 25 years old is approximately 3.5 million dollars [6]. Neurological

disorder patients also need continuous assistance from care givers to perform the

activities of daily living (ADL).

After neurological disorders, patients seek to regain their body functions with

rehabilitation and assistive devices. First, patients go through rehabilitation pro-

cedure. Doctors, physical therapists (PT), and occupational therapists (OT) help

patients to obtain muscle strength, to enhance motor coordination, to stimulate

neuroplasticity, to relieve spasticity, and other recoveries. However, in many cases,

rehabilitation does not completely restore original body functions to the patients.

After rehabilitation, patients obtain more abilities required in ADL with assistive

devices. They learn how to use a device to assist their body functions. A wheelchair

This chapter includes a part of writing in [4]. Youngmok Yun made a contribution for developing
the exoskeleton and conducting experiments with SCI subjects.
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is one of the most common assistive devices to obtain mobility required in ADL.

With rehabilitation and assistive devices, neurological disorder patients return to

their lives with regained body functions.

Previous studies have shown potentials of robotics technology in rehabili-

tation of neurological disorders. Accurate, precise, and quickly responsive sensors

along with fast, powerful, and fatigueless actuators in robotic systems have many

advantages in the rehabilitation process. First, robotic systems have been used to

study fundamental principles of human motor learning, which is critical for under-

standing the mechanisms of rehabilitation. One remarkable example is the use of

two DoF robotic manipulandums in the study of motor learning and control strate-

gies of the upper extremities [7–13]. Second, robotic systems are advantageous in

the assessment of neurological disorders. Kinarm brought a reliable and quantita-

tive assessment tool with a continuous scale to assess upper-extremity position sense

following a stroke [14, 15]. Langs group showed a potential of wrist-worn sensors

as an assessment tool following a stroke by examining the correlation between the

acceleration acquired from the sensor and the score of Action Research Arm Test

(ARAT) [16, 17]. Last, robotics technologies have introduced novel paradigms in re-

habilitation therapy. Virtual reality and interactive games with robotics technology

have emerged as new treatment approaches in stroke rehabilitation [18–21]. Virtual

reality programs are often designed to be more interesting and enjoyable than tra-

ditional therapy tasks, thereby encouraging a higher numbers of repetitions. Recent

studies with randomized clinical trials showed that rehabilitation with virtual real-

ity have clinical effectiveness in motor recovery after stroke [18, 21]. Rehabilitation
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robots introduced novel adaptive therapeutic motions with advanced control algo-

rithms. Assist-as-needed (AAN) is one of the well-known robot control algorithms in

rehabilitation robotics [22, 23], which encourage patient participation. Patton et al.

recently have shown that an error-enhancing therapy, which is an opposite concept

of AAN, could be more effective than AAN [24].

Robotics researchers also introduced novel forms of assistive devices for neu-

rological disorder patients. Robotics autonomy has been integrated with wheelchairs

(often called smart wheelchairs) to help with obstacle avoidance, navigation, route

planning, and spatially constrained maneuvers [25, 26]. Recently, a wearable lower-

body exoskeleton called Rewalk, which has motors at the hip and knee joints, enabled

SCI patients to walk again [27]. The robotic movement is controlled by using sub-

tle changes in his/her center of gravity; crutches are used to prevent falls and help

operation of the robot. One key technology in assistive robotics is to recognize the

intention of patients. Activating the robots with conventional control interfaces is

challenging for people with neurological diseases. To address this challenge, consid-

erable research has been conducted on intention recognition with electromyography

(EMG) and electroencephalography (EEG) signals. Surface EMG sensors provide a

convenient way to extract muscle activation commands by detecting electrical po-

tentials on the skin above the muscles. EMG signals have been successfully applied

in exoskeleton control in the past [28–31]. The crucial advantage of EMG-based

methods is that, even if the subject is unable to produce sufficient joint torques, the

intention of the user can still be read; consequently, the exoskeleton can be controlled.

However, if the injury level is severe, the EMG signal is not sufficiently available.
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For these cases, brain-machine interfaces have been developed to decode the signals

of brain (EEG) to control assistive robotic devices [32]. This system allows users to

send commands or instructions to robots or other external devices by using brain

signals, which means the system can bypass conventional channels of communication

such as through muscles, nerves, speech, etc.

In this dissertation, we present the development of a hand exoskeleton, called

Maestro, which facilitates the study of hand rehabilitation and assistance of SCI

patients with an EMG-based intention recognition method. The human hand is a

vitally important part of our daily activities. Humans interact external environments

with hands, which are capable of a wide variety of functions: touching, grasping,

feeling, holding, manipulating, etc. The ultimate goal of this research is to help

neurological disorder patients regain their hand functions with rehabilitation and

assistive devices to better their lives.

Chapter III to Chapter V of this dissertation includes 1) mechanical design

and manufacturing of Maestro; 2) sensing and actuation; and 3) control system. The

hand exoskeleton is developed as a research platform to study hand rehabilitation

and active hand assistive devices. To date, many rehabilitation robots have been

developed for human motor learning studies, assessment of neurological disorders,

therapeutic motions, and assistance of tetraplegic patients. However, many studies

have focused on lower bodies or proximal upper limbs, including shoulders and el-

bows. Compared with studies of lower bodies and proximal upper limbs, the number

of studies on the human hand is relatively small [33–35]. Moreover, the unique char-

acteristics of the human hand, including a complex tendon structure, low inertia,
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and significant role of passive stiffness on digit joints [36] make it difficult to directly

accept the hypotheses validated in other body parts such as lower limbs and prox-

imal upper extremities. Hence, we have developed a hand exoskeleton to facilitate

the study of hand rehabilitation and assistive devices. The exoskeleton consists of

thumb, index, and middle finger modules. Maestro is mechanically and electrically

robust, accurate in sensing and torque-actuation, and compatible with various reha-

bilitation schemes, subjects, hardware/software, and different operators. As a result

of these features, Maestro has led to research on adaptive control theories for diverse

properties of hands, the development of a handwrist exoskeletons, the development

of a novel rehabilitation frameworks, progress of hand muscle fatigue, and assistance

for SCI patients.

Among the research paths driven by Maestro, we will present one particular

research result with Maestro in Chapter VI, which is control of an assistive hand

exoskeleton with sEMG sensors for SCI patients. As previously explained, the EMG-

driven assistive devices have many advantages. A user does not require extensive

training because the target muscles of EMG sensors are generally relevant with tasks.

A user is able to perform a task without being disturbed by other body motions. If an

assisive device is operated by other body motions such as the tongue [37], neck [38],

or wrist motion [39], the user needs to stop some activities in order to operate the

assistive device. Based on the advantages, researchers have developed EMG-driven

active hand orthoses [40–42]. However, the operation of those devices has been

performed only with a one-dimensional variable or a threshold for 1-DoF actuation,

leading to the result that subjects with these devices were not capable of grasping
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various objects required in ADL. One challenge in controlling an EMG-driven hand

orthoses to grasp various objects is that the orthosis needs to generate many different

hand poses depending on the target objects. It is difficult to generate many different

hand poses required for the target object by recognizing the noisy EMG signals. Our

solution is to take advantage of compliant actuators of Maestro. The compliance of

actuator in Maestro enables subjects to grasp various object required in ADL with

a small number of grasping modes, which are easily classifiable with sEMG signals.

We evaluated the hand function of SCI subjects with and without Maestro through

a standardized hand function test, and the results show that the proposed method

improved the hand function of C6/C7 SCI patients.

The contributions presented in this dissertation includes the following:

• We have developed, for the first time, a hand exoskeleton that can control

the torques of four individual joints (CMC flexion/extension, CMC abduc-

tion/adduction, MCP flexion/extension, IP flexion/extention) of thumb and

two individual joints (MCP and PIP flexion/extension) of the index and mid-

dle fingers.

• We have designed, modeled, controlled, and tested a miniaturized Bowden

cable-based series-elastic-actuator for a hand exoskeleton.

• We identified, for the first time, the minimal set of target hand poses of a hand

assistive device that allows a subject to grasp a wide range of objects.

• We conducted, for the first time, a standardized hand function test for a robotic

hand assistivie device with SCI patients.

6



• For the first time, experiment results with a hand function test report that the

hand functions of C6 and C7 SCI patients improved with a robotic assistive

device.

7



Chapter 2

Background Information and Previous Works

2.1 Background Information

Recent studies have shown that rehabilitation procedures for neural disorders

can benefit from accurate actuation and sensing abilities of robotics [34]. Rehabili-

tation robots serve a precise therapeutic motion based on a prescription. Also, the

robots assess the degree of impairment and recovery quantitatively without human

subjective errors, which can be reliably used in different institutions, such as hospi-

tals and insurance companies. Based on these advantages, a number of rehabilitation

robots have been recently developed [34, 44], and several clinical trials have shown

the effectiveness in the recovery of body functions [45–47].

Many rehabilitation researchers have explored various robot rehabilitation

schemes to find efficient rehabilitation procedures. For example, [48, 49] showed that

rehabilitation effect is higher when subjects learn individual joint motions for a task

involving multi-joint movement rather than when subjects learn a complete task

in one-go. Another study [50, 51] showed that assisting a therapeutic motion only

when the assistance is needed with a force controlled robot improves the rehabilita-

This chapter includes a part of writing in [43]. Youngmok Yun made a contribution for designing
the thumb exoskeleton.
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tion effect. However, these explorations have been performed mostly for lower limb

or arm/shoulder rehabilitation, and the study for hand rehabilitation is relatively

rare [34, 52]. The rehabilitation effects validated by other body parts, including the

above two examples, cannot be guaranteed for hand rehabilitation due to the unique

features of hand anatomy. For example, the biomechanics of hand joints are strongly

correlated with other hand joints due to a complex tendon structures [53], and the

dynamics of hand is dominated by the joint stiffness rendered by tendon and liga-

ment configurations, not by inertia which commonly dominates the dynamics of arm

and lower limbs [36].

A number of hand assistive devices have been developed for SCI patients to

help their essential hand tasks in activities of daily living (ADL). Most of the current

commercial devices are passive devices that either help with passive extension/flexion

or locate the fingers/thumb in a predetermined position [54]. Although these devices

are economical and easy to use, they have several limitations. The passive stiffness

or elasticity hinders finger movement when it is not needed. Moreover, they assume

the subjects to be able to apply enough force in at least one direction. In order to

address these limitations, active devices have been recently developed. These devices

recognize the intention of subjects and assist the subjects to achieve a task by adding

extra strength. Since the active device recognizes the intention, the assistive force

is added only when a subject needs the force. In addition, because active devices

add force, even the subjects with weak muscle forces can perform tasks. Although

several researchers have developed active hand assistive devices [35, 41, 42], still the

number of research on active hand assistive devices is relatively smaller than those

9



for lower body parts such as smart wheel chairs [25, 26] or Rewalk [27].

The goal of our project is to develop a research platform, called Maestro, ca-

pable of exploring various rehabilitation schemes and assistance methods for hand of

neurological disorder patients. We hope that Maestro facilitates to find efficient hand

rehabilitation procedures and assistance methods by conducting experiments with a

large number of subjects. To achieve this goal, we developed three major require-

ments: robustness, accuracy, and compatibility. First, the exoskeleton needs to be

robust mechanically and electrically under various loads and disturbances. Also, the

exoskeleton must always be safely operated or terminated even under operator’s mis-

take or machine errors. The robustness is the foremost requirement for conducting

experiments with a large number of subjects, in order to ensure the safety of subjects

and the consistent high-quality of experiment data. Second, the exoskeleton needs

be accurate. The accuracy is a main advantage of rehabilitation robots superior to

human abilities. The robot needs accurately measure the kinematics and dynamics

of the subject’s hand and need to apply the desired forces. Third, the exoskeleton

needs to be compatible in various aspects. Many rehabilitation schemes need to be

compatibly implemented into the robots. The exoskeleton needs to be fitted with

diverse hand shape and size. The exoskeleton needs to be easily integrated with

other hardware/software that may bring promising improvement in rehabilitation

and assistive devices. The exoskeleton needs to be operated by different operators,

including robot researchers, OT, and PT.

10
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2.2 Previous Works

To date, a number of hand rehabilitation robots have been developed for

different hand rehabilitation motions. Many robots provide a grasping motion by

binding four fingers together [46, 47, 55, 56]. The exoskeletons provide one of the

most essential motion of hand, or wrapping motion for grasping, with a simple struc-

ture and a small number of actuators. However, possible motions generated by the

exoskeleton are limited, and the analysis of an individual finger is also challenging.

On the other hand, several hand exoskeletons have been developed for actuating

individual digits [57, 58]. However, in contrast, the actuation of individual digits re-

quires a complex but compact design which is a major challenge of hand exoskeleton

design. As a result, only few hand exoskeletons have been developed for multi digits

including thumb. Most of them take advantages of underactuation mechanisms for

actuating [59–62]. The multi-digit exoskeletons with underactuation is able to gen-

erate a coordinated motion for individual digit joints with a relatively small number

of actuators. However, the underacuation mechanisms generate only a predefined

motion, which is usually determined by a healthy hand. The underactuation mech-

anism is generally not robust to different hand sizes because the digits are a part of

the mechanism. A multi-digit exoskeleton which independently actuates individual

joints [63] has the biggest potential, but the trade-off is that a more complex system

requires a higher cost in design and maintenance.

Hand exoskeleton researchers have adopted various mechanisms to resolve

joint misalignment problems which are commonly critical issues in exoskeleton de-

velopment. The mechanisms are mostly classified into three categories. The first
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one is the direct matching method, locating exoskeleton joints coincident to digit

joints. The direct matching method is advantageous for simple design and for direct

measurement of digit joint angles. If the joint is well-matched, the mechanism is

able to apply a pure torque on digit joints, that is only normal directional force on

links (phalanges). However, the location of the digit joints is varying on a person

and not easily visible, and the design space for direct matching is limited. As a

result, the hand exoskeletons with this mechanism [46, 47] have a relatively smaller

DoF and designed for simple tasks such as a one-pose grasping. Second, several

hand exoskeletons uses a glove-tendon structure [64, 65]. The glove-tendon mecha-

nism is like a skin-tendon structure of human hand so that the exoskeletons avoid

the joint misalignment problems. A subject can easily wear the glove, and the large

surface contact provides comfort in wearing. In addition, because the tendons are

usually embedded, the design is compact. However, the tendon structure must be

well-customized for a subject, otherwise a wrong tendon configuration may cause

undesirable motion and force on digit joints. A small moment arm to the hand joints

requires a large tension for actuation and may lead a large reaction forces to digit

joints. Due to the flexible structure of the mechanism, the accurate kinematics esti-

mation or torque control are also challenging. Lastly, various rigid link mechanisms

were introduced for hand exoskeletons. The rigid link mechanism such as fourbar

and six bar mechanisms uses phalanges as a part of the mechanism to avoid the

needs of accurate joint matching [60, 61, 63]. Because of the rigidity of mechanism,

the kinematics and the applied torque are deterministically modeled with the mecha-

nism equation. However, because human phalanges are a part of the mechanism, the

13



accurate estimation and control require the accurate knowledge of hand kinematics.

The rigid link mechanisms must be carefully designed not to apply a large amount

of force on the finger joints and to obtain a large RoM for different hand sizes.

Several thumb exoskeletons have also been developed to date for rehabilita-

tion, virtual reality or teleoperation applications that allow for active actuation of

the thumb (Table 2.2). For this review, we consider the devices (total 15) that could

actively actuate the thumb and are published in the literature with some experi-

mental results. We compare the devices based on the following 8 criteria, which are

important for a thumb exoskeleton for rehabilitation: (i) whether the device supports

each thumb joint individually (exoskeletal type) or connects to the distal phalanx of

the thumb (end-effector type), (ii) the number of active DOFs in the device, (iii) the

type of actuators used, (iv) whether the actuators are situated locally or remotely,

(v) the type of sensors in the device, (vi) weight of the device, (vii) what physical

quantities could be controlled using the device and (viii) what are the peak achievable

forces or torques on the device.

Exoskeletal type devices allow for controlling the position or torque applied

at each joint explicitly as compared to end-effector type devices, which could only

control the position or force at the distal phalanx. The number of active DOFs in

a device determines the variety and complexity of assisted motions it could provide.

Individual support of thumb joints is important to provide targeted therapy to a

specific joint, which may be necessary for certain thumb pathologies (e.g. spastic-

ity). Ensuring natural coordinated motion at pathological thumb joints require that

the device be exoskeletal type with each DOF actuated individually. The type of

14



actuator and its placement determine whether the device would be bulky or light and

therefore, whether it will allow for free movement of the hand while in operation. It

is important for certain hand pathologies where the upper extremity could not be

oriented in a certain manner. The type of sensors on the device determines what

physical quantities the device could control. The weight of the device determines how

easy or cumbersome it is for use. The controller on the device governs what physical

quantities (position or force) the device could control, which in turn decides what

robotic rehabilitation control paradigms (e.g. force-field control, assist-as-needed

control [66]) the device is capable of rendering. Finally, the peak achievable forces or

torques determine for what kind of impairments the device could be used. One of the

limitations of the exoskeletons developed for virtual reality applications is that they

only allow to apply unidirectional forces on the thumb. Rehabilitation exoskeletons,

are however, required to apply bidirectional forces on the thumb based on the nature

of the impairment. A comparison of the weight of the proposed thumb exoskeleton

with the existing ones shows that it has the least weight for the number of degrees

of freedom it offers. The weight per DOF for our device is about 34 g including the

weight of the exoskeleton base on hand (Table 2.2).

There have been five main types of actuation mechanism used for thumb

exoskeletons: (i) linkage-based actuation with locally situated motor [46, 67–69], (ii)

tendon-based actuation with locally situated motor [70, 71], (iii) cable and sheath

transmission with remotely located motor [60, 72–75], (iv) flexible shaft transmission

with remotely located motor [76] and (v) pneumatic actuation [77, 78]. None of

these mechanisms allow for accurate and stable torque control of the digit joints
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individually. Furthermore, these mechanisms have poor backdrivability and results

in high reflected inertia. In addition, the transmission and actuator gearing in some of

these mechanisms suffer from nonlinear friction and stiction, which makes it difficult

to control actuator force or torque accurately.

The actuator mechanism of our thumb exoskeleton lies in category (iii) and

so we discuss the designs in that category in more detail. Commercially available

system, CyberGrasp [74, 77], supports only 1 DOF motion of the thumb, control

unidirectional phalanx force using motor current and cannot be used to control the

position or forces of the thumb phalanges individually. iHandRehab [73] is another

hand exoskeleton with a thumb module that supports 4 DOF of the thumb. However,

experiments with their device showed that significant friction (percentage of friction

torque accounting for the driving torque is up to 95%) was present in their trans-

mission. In addition, no control experiments were presented with their device. [75]

introduced a 2 DOF thumb exoskeleton, called IOTA (isolated orthosis for thumb

actuation), for unidirectional actuation of the thumb. However, their device was

designed to only control position of the joints. HX is another hand exoskeleton with

a 2 DOF thumb module [60]. However, the flexion-extension motion at the MCP

and IP joints is under-actuated in their design and their device is designed to be

position controlled. Also, so far they have only presented the design of the thumb

module. Recently, [79] designed a hand exoskeleton having a thumb module with a

linear series elastic actuator (SEA) to control the grip force. However, their design

has only 1 DOF for thumb with no allowable abduction-adduction motion at the

CMC joint. Also, they have presented only preliminary testing of the SEA and no
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experiment with human subjects have been conducted with the device so far.

Several important features such as physical human-robot interface (pHRI),

manufacturing method, adaptation to different hand sizes, control hardware/software

and safety features have been rarely presented or neglected in the previous literatures.

However, after several pilot tests, it turned out that these practical problems crucially

hinder smooth experiments with a number of human subjects. The previous works

for these topics will be further explained in the next sections while presenting our

strategies for these features.

Many upper-body rehabilitation robots have been developed for the last two

decades. The robots have been experimented with human subjects, and results have

showed the effectiveness to study human motor learning, to assess the impairment

degree of neuromuscular system, and to provide therapeutic motions. For exam-

ple, MIT-MANUS [8] facilitated many studies of human motor learning with 2D

shoulder-elbow motions. KINARM [80] showed potential of rehabilitation robots

as an advanced assessment tool for neural disorders. ARMin [81] and Armeo [82]

showed their efficacy in stroke rehabilitation. One remarkable point is that most of

clinical experiments have been focused on proximal parts of upper body. As shown

in a recent review of robotic devices for upper-limb rehabilitation [34], the clinical

experiments with human hands have been conducted with only few robots.
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Force-controlled rehabilitation robots have additional advantages in rehabil-

itation and assistance of patients. Force-controlled robots encourage participation

of subjects during therapy. For example, assist-as-needed (AAN) strategies pre-

vent subjects from passively following a rehabilitation robot, and the effectiveness

has been verified by clinical tests [22]. Accurately controlled force control is also

advantageous for safe operation. Many subjects with neural disorders have spastic-

ity on joints [86], which needs delicate care. Position control, without considering

the stiffness of subject’s joint, may cause a significant accident during rehabilita-

tion. On the other hands, the treatment with a delicate force control can be safer.

Nevertheless, the torque control of hand joints with an exoskeleton is challenging.

The most intuitive method is to directly match the exoskeleton joint to the finger

joints and to control the exoskeleton joint torque [46, 87]. However, the design of

the direct matching method is difficult particularly for multiple finger exoskeletons

because of space constraints. As a result, these exoskeletons control only the grasp-

ing force of whole hand or the torque of only index finger joints. As a solution some

hand exoskeleton developers adopted a remote actuation method using Bowden cable

transmission [60, 88]. However, due to the substantial friction between outer sheath

and inner wire, accurate force control is challenging. For lower limb exoskeletons, a

series-elastic-actuator (SEA) is combined with the Bowden cable for accurate torque

control [89, 90]. However, the implementation of the SEA mechanisms, which were

introduced in other studies, into a hand exoskeleton is not simple mainly due to the

large sizes.

Most of hand exoskeleton research have been focused on the application of
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rehabilitation rather than the application of assisting a neurological disease patient.

As a result, the number of research for assistance is smaller than that for rehabili-

tation. Nevertheless, there are several important previous studies. The research on

the active assistive hand exoskeleton was pioneered by Benjuya and Kenney [40]. In

et al. [39] developed a soft hand exoskeleton to assist SCI patients and the robot

recognized the intention with the wrist motion of patients. The exoskeleton is com-

pact and comfortable, and one unique advantage is that the robot is washable, which

is practically important. Soekadar et al. [91] developed a hybrid EEG/EOG-based

brain/neural interface to operate a hand exoskeleton.Dicicco et al [41] developed

a pinching device with a pnuematic actuator which has compliance in actuation,

helping grasping multiple objects with one-DoF pinching motion.

Four years ago, we developed the first prototype exoskeleton for an index

finger [92], and conducted pilot tests with the prototype to validate the concepts of

design [3, 93, 94]. After the pilot tests, we were able to determine the most important

requirements of a a hand exoskeleton (robustness, accuracy, and compatibility) to

explore promising rehabilitation schemes and assistance methods with a large num-

ber of subjects. We have iterated the design process to meet the requirements and

to resolve the problems found during pilot tests (Fig. 2.1). We have optimized the

Bowden cable configurations to maximize the transmission efficiency and to mini-

mize unpredictable effects [95], and tried multiple manufacturing methods to have

compact design, light weight and robust structure simultaneously [96]. Based on the

research on exoskeleton elements, we recently developed a thumb exoskeleton which

supports a complex anatomy of thumb [43]. For accurate force control, we have
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designed, modeled, and controlled a miniaturized series-elastic-actuator (SEA) [97]

and investigated control algorithms for efficient interaction with subjects [93, 94].
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Figure 2.1: Iterative design process for the development of Maestro. We have iterated
the design process to develop a robust, accurate, and compatible hand exoskeleton
and to resolve technical challenges which were found in pilot tests.
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Chapter 3

Mechanical Design and Manufacturing of Maestro

While designing Maestro, we have come across ironical problems. The me-

chanical structure of exoskeleton needs to be compact and light, but mechanically

strong. The interface of hand exoskeleton needs to be fixed with hand rigidly for

accurate force transmission and kinematics estimation, but softly for comfort in

wearing. Introduction of a mechanism is required to avoid joint misalignment but

simultaneously reluctant because it causes uncertainty in estimation of hand kine-

matics and actuation of forces. Lastly, actuating all DoF of hand may provide full

freedom for designing therapy schemes, but also cause a high cost and complexity

in maintenance. To resolve these issues, we needed to conduct research to make a

number of decisions.

3.1 Degree of Freedom in Maestro

Determining which hand joints must be actuated was one of the most impor-

tant decisions for hand exoskeleton development. Actuating all DoF of hand may

bring full potential of hand exoskeleton, however which also increases the cost and

complexity. To answer this question, we reviewed hand ergonomics and anatomy lit-

eratures. Several ergonomics studies [1, 98, 99] showed that thumb, index and middle
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fingers contributes a significant portion of hand functions in our daily life. For ex-

ample, a house maid and a professional machinist performed about 80% and 70%

of grasping respectively without helps of ring finger and little finger (disc grasp-

ing and some other grasping motions need these fingers) [99]. In this regard, we

decided to actuate thumb, index and middle fingers. Next, hand anatomy studies

showed that most of finger motions for grasping and pinching are performed mainly

by two flexors (FDS and FDP) with less contributions of the abduction/adduction

tendons (LU,RI,UI) [100], and the DIP flexion is coupled with MCP and PIP flex-

ion by the tendon configuration of FDS and FDP [101]. For thumb, not only

the flexion/extension but also the abduction/adduction are critical for hand func-

tion [102, 103]. In contrast to fingers, thumb is capable to move all flexion/extension

joints independently [102, 103]. As a result, we have determined to actuate four DoF

of thumb, that are CMC abduction/adduction, CMC/MCP/IP flexion/extension,

and two DoF of index and middle fingers, that are MCP/PIP flexion/extension,

which are the most substantial joints for daily hand functions.

3.2 Hybrid Mechanism for Deterministic Kinematics and a
Large RoM

We have introduced a hybrid mechanism involving direct matching mecha-

nisms and four-bar mechanisms for avoiding joint misalignment and achieving accu-

rate joint angle estimation and torque actuation (Fig. 3.1). The abduction/adduction

motions of each digit were directly matched with the exoskeleton abduction/adduction

joints (see yellow axes in Fig. 3.1 (a) and (b)). Theoretically, this direct match-
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Figure 3.1: Maestro is actuated by four-bar mechanisms. The introduction of four-
bar mechanisms fundamentally resolve the exoskeleton joint alignment problem be-
cause the digit joints are a part of the mechanism. The finger exoskeleton mod-
ules (left) and the thumb exoskeleton module (right) have the same configuration
of mechanisms. The first mechanism including MCP flexion/extension (for thumb
CMC flexion/extension) is an inverted-crank-slider mechanism which ensures a nor-
mal force on the proximal phalange. The second and third mechanisms for PIP and
DIP flexion/extension (for thumb, MCP and IP flexion/extension) are basic four-
bar mechanisms. All these four-bar mechanisms move along with the MCP abduc-
tion/adduction (for thumb CMC abduction/adduction). For fingers, MCP/PIP flex-
ion/extension are actively actuated, and for thumb, CMC/MCP/IP flexion/extension
and CMC abduction/adduction are actively actuated.
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ing causes a joint misalignment problem depending on the flexion angle of finger

MCP, but the hand anatomy allows a significant motion of finger MCP abduc-

tion/adduction only at a certain MCP flexion angle [104]. This anatomical effect

is similar for thumb CMC as well. Therefore, we directly matched the exoskele-

ton abduction/adduction joint to finger MCP and thumb CMC where the abduc-

tion/adduction motion of finger MCP and thumb CMC is largest. As a result, the

abduction/adduction joints move smoothly without the joint misalignment problem.

Multiple four-bar mechanisms were introduced for digit flexion/extension.

The four-bar mechanisms fundamentally resolved the joint misalignment issue be-

cause the digts are a part of the mechanism. The flexion/extension mechanism

incorporates one inverted-slider-crank mechanism for the first kinematic chain (red

lines in Fig. 3.1) and two basic four-bar mechanisms for the second and third kine-

matic chains (blue and green lines in Fig. 3.1 respectively). These three mechanisms

move along with the MCP abduction motion. The invert-crank mechanism includes

a linear slider which ensures a normal force on a proximal phalange (for thumb, meta-

capal), so that the actuator does not apply an undesirable reaction force on MCP

(for thumb, CMC). Because a required joint torque of PIP is generally lower than

MCP [105], and the space for the interface on an intermediate phalange is limited,

the PIP is actuated through a basic four-bar mechanism without a linear slider. For

the thumb module, all kinematic chains contain actuators (Fig. 3.1). For the finger

modules, the kinematic chains for DIP flexion and MCP abduction do not have an

actuator, but the states are observed passively by angle sensors.

The disadvantage of the four-bar mechanisms is that the RoM is limited
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depending on the link length configuration. Hence, we optimized the link lengths

to obtain a wide RoM for various finger sizes. We developed a computer simulator

calculating the available RoM for given mechanism link lengths. The simulator

calculated the RoM for a wide range of finger sizes (phalange lengths and thickness)

based on the statistics [2], and found the optimized exoskeleton link lengths. The

shape of mechanism parts were optimized to avoid all interferences with other links

and phalanges (Fig. 3.2). The lengths of exoskeleton links were adjusted depending

on a size of finger. As a result, Maestro provides a high compatibility to different sizes

of hand. We evaluated the RoM with two different subjects whose index fingers are

small and large. Statistically their index finger lengths are located on 9% and 94% of

the distribution of adult index finger lengths [2]. Fig. 3.2 shows experimental results.

Both two subjects were able to reach full active RoM of flexion and extension of index

fingers. For thumb exoskeleton, we carried out tests on four subjects to evaluate

its workspace and kinematic transparency using a motion capture system. Results

show that the device allows for a large workspace with the thumb, is kinematically

transparent to natural thumb motion to a high degree (86%). For the detail analysis,

refer [43].

3.3 Hybrid Manufacturing to Minimize Weight, Reduce Size,
and Enhance Strength

To date, most of hand exoskeletons have been fabricated with conventional

metal machining [34, 44]. Additive manufacturing technologies, which are influencing

many engineering fields as of late, have brought various advantages to the hand
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(a) Extention of small finger (b) Flexion of small finger

(c) Extention of large finger (d) Flexion of large finger

Figure 3.2: The range of motion of Maestro. To validate the RoM, we have conducted
experiments with two subjects whose index finger is short and long. Their index
finger lengths are statistically located on 9% and 94% of the distribution of adult
index finger lengths. They could achieve full active RoM as shown in the figures [2].
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exoskeleton development as well [96]. Some hand exoskeletons [106] include a light

and compact finger exoskeleton only with a 3D printing technology, and another hand

exoskeletons [107] introduced a parameterized design idea into the development of

hand exoskeletons.

We have actively taken advantage of various additive manufacturing technolo-

gies during the development of the Maestro. The Maestro is primarily fabricated out

of Nylon-12 material using selective-laser-sintering (SLS) technology. Comparing to

the most common 3D printing technology, that is fused deposition modeling (FDM),

which uses ABS or PLA plastic as its material (e.g., Makerbot 3D printing), SLS

machines can fabricate more complex structures with a high resolution (0.17mm).

By harnessing the capabilities of SLS based additive manufacturing, we were able to

strategically design our hand exoskeleton in the following ways.

First, using SLS we designed a compact hand exoskeleton. By combining

the design of multiple parts into a single complex part, we were able to both re-

duce the number of hand exoskeleton components and simplify the assembly pro-

cess (Fig. 3.3(a)). Second, since Nylon is about three times lighter than aluminum

in terms of density, our device is significantly reduced in weight compared to ex-

oskeletons fabricated by conventional metal machining. Third, the use of additive

manufacturing allows for the fabrication of complex 3D surfaces, an inherent design

requirement of ergonomic interfaces (Upper-left of Fig. 3.4). Lastly, since the great-

est determinant of additive manufacturing cost is part volume, not complexity, it is

a cost-effective means of fabricating our small volume hand exoskeleton.

A critical problem of SLS fabricated Nylon parts is that the fracture strength
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(a) Complex
structure in a
part

(b) Failure of
plastic part

(c) Example of hybrid
structure

Figure 3.3: Maestro is fabricated by a selective-laser-sintering (SLS) technology.
With SLS, we were able to design components with complex structure (a), reducing
the size, number, and weight of parts. A critical disadvantage of a nylon part fabri-
cated by SLS is the low fracture strength. An example is shown in (b). Hence, we
introduced a hybrid structure consisting of machined aluminum parts for a simple-
shape inner parts and SLS-printed nylon parts for outer complex parts (c).

is considerably weaker than metal parts. Robustness issues were presented during

pilot testing of a Maestro version made completely out of Nylon (Fig. 3.3(b)). As

a result, we updated the design such that load bearing components were machined

out of metal to enhance the strength of the hand exoskeleton during actuation. By

fabricating the majority of the hand exoskeleton out of Nylon and enhancing the

strength with metal parts (Fig. 3.3(c)), we achieved a compact design, a light weight

(finger module: 57g, thumb module: 91g) and robustness to high loads.

3.4 Design of Physical Human-Robot Interface

The pHRI, or attachment between robot and human, is an important feature

for all rehabilitation exoskeletons [108]. The pHRI must be comfortable [109] and
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ensure the proper transfer of forces between device and human hand. However, these

two requirements are especially challenging when designing hand exoskeletons. First,

the amount of space available to attach a device to the hand is limited by the small

size of each digit segment and the need to locate the device on the back side of

the hand to preserve the user’s dexterity [110]. Second, the pHRI must conform to

the complex topography of the hand to increase the contact area between device

and human, and therefore, decrease localized pressure [108] during exoskeleton force

transmission [88].

Many soft robotic gloves are used as pHRI’s in pneumatic driven hand ex-

oskeletons [65, 111] and tendon driven systems [64, 112]. Gloves are inherently com-

fortable and easy to don and doff, however, they stretch during actuation causing

imprecise torque control and require different sizes to accommodate varying hand

anthropometry. Another popular method of pHRI attachment uses Velcro straps

[59, 63, 113]. Velcro straps accommodates the majority of hand sizes and provide a

much tighter fit to the fingers and hand resulting in accurate torque control. How-

ever, the presence of Velcro straps adds bulk and makes donning and doffing more

cumbersome.

The Maestro uses a combination of 3D contoured Nylon saddles secured with

Velcro straps and a wireform structure to attach to the thumb (Fig. 3.4). The dorsal

saddle, which rests on the back of the hand and serves as a grounding point for the

finger modules, is 3D contoured to match the shape of the hand and is secured to

the palm and wrist using Velcro straps. The finger saddles are C-shaped shells that

hug each finger segment and are secured using Velcro. Both the dorsal and finger
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saddles are padded with medical foam for added comfort. The thumb is the most

difficult phalange to interface with, however, due to the dynamically changing size of

its muscle group on the palmar side of the hand [96]. To address this, we developed

a wireform attachment that forms a ring around the MCP joint and consists of four

struts that protrude downward to rest snugly against the metacarpal. The struts are

strategically placed to allow the bellies of the thumb muscles to protrude through the

windows of the struts during contraction. The wire framework provides structural

stability to transfer and distribute the exoskeletal loads onto the metacarpal segment.
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Figure 3.4: The physical human robot interface (pHRI) of Maestro. Maestro uses a
3D contoured saddles secured with Velcro straps and a customized wireform structure
to attach to the thumb. Many foams are attached on the interfaces to soften the
contact points
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Chapter 4

Sensing and Actuation of Maestro

In this chapter, we present the sensing and actuation system of Maestro. The

advantages of robotic actuation and sensing abilities in rehabilitation are obtained

only when the hardware and algorithm of the system are designed in accord with

human biomechanical system. We developed mechatronic systems robust to various

disturbances, sensor configuration taking into account the mechanical structure, and

actuators capable to generate accurate torques on hand joints.

4.1 Robust Electric Connection and Sensing

Maestro has 16 analog angle sensors, 8 optical incremental encoders, 8 DC

motors, and many other electric components for safety and general operation. All

these electric components are critical for safe operation and high quality control

and estimation. However, while conducting experiments with previous versions of

Maestro, a number of robustness issues occurred from these electric components.

Unstable connections between components were the most common, exposed electric

wires were pulled out by a subject or an operator, unintended load on sensors changed

the calibration parameters, electric wires were worn out by repetitive actuations,

and an operators connected wrong wires while changing experiment settings. As the
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system got more complex, the maintenance time has been also increased. Merely a

cautious operation could not be a solution for these robustness issues.

We developed systematic solutions to resolve these issues. First, we installed

angle sensors not to be exposed to an external disturbance, created channels for wire

routing in the exoskeleton links, and secured rooms for extra wires required for for link

length adjustment and joint rotation (Fig. 4.1 (a)). Second, we covered all these items

by thin plastic covers by screws (Fig. 4.1 (a) and (b)). All components are securely

fixed by pressure of covers, and thus a subject cannot touch the inside. Third, we

introduced a precise calibration feature for angular sensors. We added small holes

on actuated pulley and pulley cover, informing specific angles. By inserting a small

dowel pin into two holes, actual positions of sensor values were acquired. Fourth, we

fabricated a PCB for rearrangement of electric connections. Thus we reduced the

size of electric circuits and obtained stable connections. Fifth, standard connectors

were used for frequently disconnected electric components. Sixth, we developed

dedicated electric enclosures called Actuator box and Control box including actuators

and control systems respectively (Fig. 4.1 (b)). With the dedicated enclosures and

connectors, the system is easily moved to experiment locations and reassembled while

keeping the high quality of robustness. Seventh, in the enclosure, the all wires are

cleanly organized by breakout board, wire duct, terminal block, and labels.
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(a) Inside of Maestro

(b) Full system of Maestro

Figure 4.1: The robust electric connections and sensing have been achieved by em-
bedding and covering electric components as shown in (a) and (b). The flexions of all
joints are measured by magnetoresistive sensors, and the abductions are measured by
a potentiometer-type sensor due to the interference of magnetic field. We developed
dedicated electric enclosures shown in (b) for portability and modularization. All of
electric wires are cleanly arraged by breakout board, wire duct, terminal block, and
labels.
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4.2 Automatic Calibration of Kinematic Parameters and Joint
Angle Estimation

The introduction of four-bar mechanisms resolved the design problem in a lim-

ited space and the joint misalignment problem. However, the four-bar mechanisms

also caused uncertainty in kinematics estimation because digit bones and joints are a

part of the mechanism. To resolve this issue, we introduced a redundant sensor con-

figuration that aids in accurate calibration and estimation of hand kinematics. The

basic idea is to conduct calibration and estimation seamlessly while wearing the hand

exoskeleton with extra sensors. Theoretically, four joint angles in a digit are observ-

able by four angle sensors which are located in each kinematic loop. Introduction of

an extra sensor installed on the exoskeleton joint whose angle is correlated with both

the first and second mechanism loops (Fig. 4.1 (a) and 4.2) helps in reducing the

uncertainty by estimating the kinematic parameters of a hand. The abduction joint

of exoskeleton is directly matched with the MCP joint of finger (CMC for thumb),

thus the abduction angle is directly measured. The DIP flexion is observed by angle

sensor, but its function is less significant than MCP or PIP joint [100]. Therefore we

decided not to introduce an extra sensor for the third loop. For thumb, because the

third loop is also important as explained in III-1, we introduced one more sensor.

In this subsection, we will explain only the joint angle estimation of finger MCP

and PIP, which are essential for torque control. The development of a joint angle

estimation algorithm for thumb, considering the complex anatomy, is our ongoing

work and a preliminary study is shown in [43].

For calibration, first the exoskeleton is actuated to sweep the RoM of MCP
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and PIP flexion while collecting sensor data (q = [q1 q2], z) where q1 and q2 are

the angles of actuated joints, and z is the angle for the extra sensor introduced for

calibration (Fig. 4.2). Then N samples of sensor data are randomly selected from

the collected dataset for calibration. Lastly, the uncertain kinematic parameters, p,

are optimized where p is the six link lengths that contain parts of finger kinematic

parameters. More specifically, they are lengths of green solid lines in Fig. 4.2. In

the optimization, the errors between the measured and estimated redundant sensor

values, ∆z, are minimized as:

argmin
p

C = (∆z>∆z) (4.1)

∆z =

 ẑ1 − z1
...

ẑN − zN

 =

 h(p,q1) − z1
...

h(p,qN) − zN


where qi and zi are the i-th sampled data set among N data sets. h is the estimator

of z obtained from the analytical solution of four-bar mechanisms [114]. Because

the measurement model is nonlinear and the number of elements in p is six, the

optimization problem is not a simple convex optimization problem. However, since

we are able to provide a good initial values of the optimization by measuring the link

lengths with a ruler, which is close to the actual value, the optimization is normally

successful.

After calibration, the joint angles of digits are estimated with two angle sen-

sors on the actuated joints, that are q1 and q2 as:

θ = f(q,p) (4.2)
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where θ = [θ1 θ2]
>, θ1 and θ2 are joint angle of MCP and PIP respectively (Fig. 4.2).

f is the kinematics function for finger joint angles, determined by the inverted-crank-

slider mechanism and four-bar mechanisms equations [114]. Because the calibration

is conducted just before the kinematics estimation, the kinematics estimation is

performed with an reliable kinematics model.

We developed a testbed finger for validating the performance of Maestro.

The validation of a hand exoskeleton is tricky because the measurement of kinematic

parameters are not easy even with a motion capture system due to occlusion [115]

and the direct measurement of the torque of finger joints are more challenging with a

human subject. In this regard, we have developed the testbed finger which contains

magnetoresistive angle sensors with magnets and torsion springs on MCP and PIP

flexion joints. The physical interface for a human finger was replaced for the assembly

with the testbed finger. From the CAD model, we could obtain the exact kinematic

parameters of the testbed finger and exoskeleton. The angle sensors are calibrated

independently and the stiffness curve of the joints were experimentally obtained.

With the testbed finger, we evaluated the performance of kinematics estimator (in

this subsection) and torque actuator (in the next subsection).

We evaluated the calibration algorithm and joint angle estimation algorithm.

In the calibration step, we added Gaussian random noise to the true values of p

obtained from CAD model of the testbed finger and exoskeleton, and input them

as an initial guess for the optimization of (4.1). The standard deviations of the

Gaussian random noises were 5mm - 10mm depending on the difficulty of measuring

the values (e.g., the measurement of phalange length is easier than the measurement
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Figure 4.2: Maestro with a testbed finger. A testbed finger has been developed
for validation of Maestro. The testbed finger has two DoF joints corresponding to
MCP and PIP flexion of human finger. Each joint includes a magnetoresistive angle
sensor and torsion spring. Thus, all joint angles are directly measurable, and the
stiffness of joint rendered by torsion spring were experimentally obtained. Because
the connection with Maestro is rigid, all kinematic parameters are fully known which
are not possible for human finger. With the measured joint angle and stiffness, the
validation of kinematics estimation and torque control performance was possible.
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of the MCP location relative to the exoskeleton joint). Then, optimization (4.1) was

conducted. We repeated the optimization 100 times, and the Fig. 4.3 (a) shows the

results that most of optimized values converged to the true values with reasonably

low variance. After calibration, the joint angles of testbed finger were estimated with

a calibrated kinematic parameter set. For the first 20 seconds the SEAs moved the

testged finger, and for the next 20 seconds a researcher applied a random disturbance

to simulate the torque generated by a subject. One experiment result is shown in

Fig. 4.3 (b) and the RMSE were 2.32 deg and 2.86 deg for MCP and PIP respectively.

Existing estimation errors might be caused by residual calibration error and sensor

noise.

4.3 Bowden Cable Series Elastic Actuator

Maestro is actuated through Bowden cable consisting of outer sheath and

inner wire (commonly seen in bicycle brakes). The pulley of exoskeleton joint is

connected to the pulley of motor shaft with a pull-pull mechanism (like a timing belt

connection through Bowden cable. See Fig. 4.5). The pulley of the motor shaft is

position-controlled by a servo motor system (Maxon DC motor + Maxon EPOS2

driver).

The introduction of Bowden cable as a transmission system resolved many

challenges in the hand exoskeleton development. First, the Bowden cable allows for

a compact design of exoskeleton. Actuating 8 DoF (2 for index finger + 2 for middle

finger + 4 for thumb) in a limited space needs a compact design of actuator. By

locating the electric motors in a remote place, the design could be compact. Second,
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Figure 4.3: Results of calibration and estimation of the exoskeleton kinematics with
a testbed finger. (a) shows the distribution of optimized kinematic values after 100
iterations of optimization with random initial inputs. As the optimized values are
close to the correct calibration line, the optimization is successful. (b) plots the
MCP and PIP angles obtained from the testbed finger (gray lines) and estimated
from exoskeleton sensors (blue lines).
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the Bowden cable allows for a light weight of the exoskeleton, which is important

for dynamic transparency. Generally, the weight of actuators such as electric motor

is substantial. The remote actuation reduced the weight significantly, so that the

inertia effect for force control is ignorable. Third, the exoskeleton does not need to

be grounded. Because the outer sheath generates a pushing force while the inner

wire generates a pulling force, the sum of reaction forces in the exoskeleton is zero.

Due to this unique characteristics, the exoskeleton can be easily combined with other

systems such as a wrist exoskeleton [3].

However, the Bowden cable transmission also introduced additional problems.

The first problem is a low efficiency of power transmission. The friction between the

inner wire and outer sheath significantly deteriorates the efficiency of power trans-

mission. The second problem is that the friction of Bowden cable is not predictable.

The friction is correlated with many factors including material property, routing path,

and even time [95, 116]. One unique feature of the Bowden cable is the backlash-like

effect [116, 117]. That is, the tension of inner wire in Bowden cable transmits to the

other side after some displacement. The sources that cause the backlash are guessed

as the elongation of inner wire due to large friction, the play between outer sheath

and inner wire, and motor gear head.

Our first solution for these challenges was to find the best configuration of

Bowden cable which has a high transmission efficiency and low nonlinearity. We have

conducted experimental analysis with various combinations of different materials [95],

and finally, we selected a steel sheath and a braided stainless steel cable. This

combination provides a reasonably high efficiency due to its high stiffness, and does
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not have time-dependent properties. Polymer-based material such as PTFE provides

a higher transmission efficiency than metal but the friction with the polymer-based

material changes as operation time goes by [116]. In addition, the durability of

polymer-coating is generally low, so that the coated surface on metal gets damaged

during operation, deteriorating the transmission efficiency. Strong pre-tension also

helped to eliminate an undesirable nonlinear effect such as slackening.

Next, we modeled the backlash effect for the selected Bowden cable configu-

ration. The exoskeleton joint angle q was measured while the corresponding motor

generated sinusoidal motions without load on the exoskeleton joint. The backlash

effect was observed as shown in the blue lines of Fig. 4.4. The observed backlash is

modeled as (4.3) and shown in the red line of Fig. 4.4.

q̃(t) = BL(φ(t)) (4.3)

where φ is the pulley rotation angle on the motor shaft, q̃ is the modeled angle change

of the pulley on the exoskeleton joint through the backlash model (4.3).

With the Bowden cable model (4.3), the pulley rotation on the exoskeleton

joint is estimated, but the force control is still challenging due to substantial friction.

For the torque actuation, we introduced two compression springs before the exoskele-

ton joint pulleys (Fig. 4.5). With these elastic components, we built a miniaturized

SEA. The basic idea of our SEA is to estimate the joint torque by measuring the de-

flection of springs. The deflection is calculated from the motor angle, the SEA joint

angle, and the compensation of the backlash-effect. The SEA torque is expressed by
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Figure 4.4: Backlash-like effect was observed in Bowden cable transmission as shown
in the blue line. For control with the Bowden cable, the backlash model is obtained
as shown in the red line. To avoid a jerky motion of actuator in control, the model
is smoothed with a sigmoid function as shown in the green line.
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Figure 4.5: Bownden cable actuation with a miniature SEA. The pulley on exoskele-
ton joint is actuated by the pulley on motor shaft through Bowden cables. By
introducing two compression springs before the the exoskeleton joint pulley, we built
a miniaturized SEA which converts a displacement into a torque

(4.4):

τs = rs(2k∆d)

= 2kr2s(q̃ − q) (4.4)

where τs is the torque of the SEA, k is the stiffness of the compression spring, rs

is the pulley radius of SEA joint, ∆d is the deflection of the compression springs

representing rs(q̃ − q). q is the SEA angle and q̃ is obtained from (4.3).

For controlling the SEA torque, τs, we needed a inverse of the backlash model.

However, the inverse of backlash model includes discontinuity which is unrealistic in

real applications. Thus, we developed a smoothed version of backlash model shown

in the green line of Fig. 4.4, and the smoothed backlash inverse model was used for
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torque control of SEA. Since the weight of exoskeleton is light and the operation

speed is slow in rehabilitation, we assume a quasi-static condition for torque control

of exoskeleton. The SEA torque for the desired finger joint torque is obtained with

the virtual work principle as:

τs = J>τf (4.5)

where J is the Jacobian of f of (4.2) with respect to q, defined as J = ∂f
∂q

. For

evaluation, the SEA generated torques to follow a given desired trajectory. Fig. 4.6

shows the result, and the RMSEs for MCP and PIP joints were 7.66 mNm and 6.35

mNm respectively in the experiment. For the detail of experiments and equations,

refer to [95, 97, 118].
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Figure 4.6: Torque control of finger joints with Maestro. Using the calibrated kine-
matic model and the smooth backlash model, the finger joint is controlled by two
SEAs. The SEAs tracked the desired torque trajectories of finger joints. The actual
torques were measured from the testbed finger.
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Chapter 5

Control System of Maestro

In this section, we will present how we developed a control system including

hardware and software architecture. The development of hardware and software

structure for a control system has been often neglected in research papers because

it is not a theoretical problem. However, in a practical aspect, the development of a

high quality control system needs a significant amount of time and efforts because it is

difficult to know the pros and cons of the systems before having extensive experience

of them. We also spent considerable amount of time to find a good combination of

hardware, operation system (OS), and program structure for Maestro. We surveyed

robotics engineers, had consultation from hardware and software suppliers, and tried

multiple systems.

5.1 Two-layer control system including FGPA and RT-Linux
achieves both powerful capability and flexibility

When selecting hardware and operation system (OS), we considered several

important points. The control system needs to have a powerful signal processing

performance to process various control algorithms. Most of precise force control

algorithms generally require a high frequency control loop (greater than 1kHz) and

a small jitter (less than 1ms). Lower-level signal processing such as high/low-pass
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filtering or current control of motors needs even faster sampling rate. Implementation

of a complicated control algorithm such as a neural-network based algorithm needs a

high speed microprocessor and sufficient RAM. The system also needs to receive and

process many signal inputs and outputs simultaneously. The exoskeleton has total 8

actuators, and 16 analog-voltage-output sensors, 8 incremental encoders, and extra

signal lines for other purposes (e.g., emergency switches).

The control system also must be flexible in terms of hardware and software.

The goal of our exoskeleton is to investigate various promising rehabilitation strate-

gies studied in neuroscience research. In this regard, the exoskeleton needs to be in-

tegrated with other hardware such as motion capture system, EMG and other body

exoskeletons, and also with other software including hardware drivers and math

libraries. In the current status, C/C++ programming environment provides the

largest compatibility to hardware and software of robotics applications.

Based on the requirements, we have explored four different options of hard-

ware and OS combinations and compared them by data sheet and by our experience.

The result is shown in Table 5.1, and we finally selected NI-cRIO and RT-Linux

combination. The combination has a strong real-time (RT) performance by RT-

preempt Linux, a reasonably strong computational power by Intel Atom processor,

a convenient FPGA programming environment by Labview and a flexible C/C++

programming environment by GCC in Linux. The hardware package of cRIO is

robust and validated in many industry applications such as automotive field tests.

The modularized system of cRIO makes the system compatible to extra mechatronic

parts.
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After the selection of the main control hardware and OS, we developed a sys-

tem in an enclosure, called Control box (Fig. 5.1), which is dedicated for processing

the information of Maestro. In addition to cRIO, we established an independent

ethernet network for general purpose communication by installing an ethernet hub

in Control box. Control box communicates through the hardware interface of FPGA

if a strict RT-communication is required, or for the hand exoskeleton sensing, ac-

tuation and safety features. Control box communicates through the ethernet if the

communication does not require a strict RT performance, e.g., the communication

with user interface and visualizer. The overview of the signal flow in Maestro is

shown in Fig. 6.11.

5.2 Object-oriented program in C++, Labview for FPGA,
and UDP communication provide flexibility, easiness of
programming, and compatibility

The control system of Maestro is programmed by two programming languages:

Labview for FPGA and C/C++ for RT-Linux.

5.2.1 FPGA programming by Labview

Field-programmable gate array (FPGA) is an integrated circuit (IC) devel-

oped to be configured after manufacturing. The advantage of FPGA in robotics

application is at its fast response (almost same as an analog logic) so that many

robotic applications introduced the FPGA when they needs a high-speed signal pro-
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Table 5.1: Comparison of control system options

Control
System

Hardware
Desktop
+ DAQ

Desktop
+ DAQ

NI cRIO NI cRIO

OS
RTAI

(RT Linux)
xPC Target

(Matlab)
VxWorks

RT-preempt
Linux

(RT Linux)

RT Performancea Strong Strong Strong Strong

Computational
power at high levelb

Strong Strong Medium Medium

Integrated FPGA N/A N/A Strong Strong

Support of C/C++ Strong Weakc Weakc Strong

hardware driver
support by OS

Weakd Strong Strong Strong

a VxWorks has the best RT performance in general, but all four OS shows
great performances for the rehabilitation robot control application [119].
b NI cRIO devices generally have lower hardware specs than the state-of-art
desktops in terms of CPU, RAM, and etc. However, cRIO can calculate
the inverse of a 500x500 double-precision matrix within 1ms.
c Labview and Matlab/Simulink supports C/C++ partially. For integra-
tion, they requires several procedures of converting existing codes to fit
with their systems.
d The hardware driver of RTAI is supported by Comedi
(http://www.comedi.org). However, the support is limited and out-
dated.
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Figure 5.1: The inside of Control box. Control box consists of NI cRIO, ethernet hub,
power supply, safety devices, and others. For the connections in Control box, screw-
type breakout boards were used for convenient maintenance, and for the connection
to the other peripherals, standard connector housings (D-sub 25/37, HDMI A-type)
were used for quick and robust connections. The wires in Control box were cleanly
arranged by Din rail, wire duct, terminal block, and label.

57



Control Box

High-level controller, 
C/C++ on RT Linux, Microprocessor
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Figure 5.2: Overview of signal flow in Maestro system. All major signal processing
occurs in Control box. The cRIO in Control box consists of two parts: C/C++
program on RT-Linux and Labview program on FPGA. The high-level controller is
running on the C/C++ program, and the low-level signal processing is performed
in FPGA. FPGA communicates with peripheral devices with GPIO, analog sig-
nals, etc. In Control box, an independent ethernet network is established. Through
User-datagram-protocol (UDP) through the network, various general-purpose com-
munications are performed for visualization, user-interface, connection with another
exoskeleton.
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cessing. The disadvantage of FPGA is that the development of FGPA is not conve-

nient for frequent program changes and its programmable capacity is limited. FPGA

programming requires low-level hardware knowledge, and the compilation and hard-

ware synthesis time is significantly longer than a simple C/C++ compilation and

linking time. Programming a FPGA by NI Labview saves the development time of

FPGA significantly by using GUI-based programming tool and pre-built libraries.

In addition to the easiness of programming, NI provides an C/C++ libraries which

interfaces with the FPGA. As a result, the C/C++ programmer does not need to

worry about NI hardware drivers.

In Maestro, the FPGA is used for hardware management, low-level signal

processing, and safety features. The FGPA has multiple analog I/O and digital

I/O. The FPGA manages those signal I/O for interfacing with C/C++ program

(Fig. 6.11). Maestro has 16 analog sensors and the quality of the sensor values are

improved by low-pass filters running at 20kHz. In addition, various bio-signals such

as EMG can be postprocessed with a high-speed signal processing. The status of

all electric components are monitored by the FPGA and if any abnormal status is

found, the operation is safely terminated. The FPGA program is separated from the

C/C++ program, thus any mistakes of C/C++ program do not affect the FPGA

safety features.

5.2.2 C/C++ programming with GNU GCC/G++ for RT Linux

Although the Labview provides a convenient programming environment for

FPGA, C/C++ with GNU GCC/G++ has several advantages for programming
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high-level software. First, if a program is considerably large, the GUI-based pro-

gramming is not anymore intuitive. Second, the connections with existing C/C++

codes are not simple. So far the most compatible programming language in robotic

applications is C/C++. Most of hardware and software developers support C/C++

libraries essentially but Labview optionally. Lastly, some engineering schools have

the license of Labview software, but many other institutions do not have Labview

software which is expensive. Otherwise, GNU GCC/G++ in Linux provides a license-

free programming environment.

In the C/C++ programming environment, we developed hand exoskeleton

control program with a object-oriented-programming (OOP) concept. The OOP

provides several advantages for Maestro. First, the end-user can program a reha-

bilitation scheme easily. We built a low-level software for managing RT interrupter

and FPGA interface and the high-level software for the controller for rehabilitation.

By dividing the program into two parts, an end-user does not need to know the

knowledge of hardware or OS. Simply, an end-user needs to write a code to modify

the controller existing in the high-level software. Second, the system can be safer

by encapsulation. The low-level software is encapsulated, and thus an end-user does

not need to touch the low level software which is critical for basic operation. Lastly,

the maintenance is handy. The high level programs are modularized so that the de-

velopment of those modules can be parallelized. We have developed many different

types of high-level modules such as various controllers, user-interfaces, and commu-

nication tools. These modules will be upgraded and more parts will be added. The

modularized structures supports sustainable upgrades of the software.
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High level SW on RT-Linux

Smooth initialization
Rehabilitation algorithm

Low level SW on FPGA

Error monitoring

Electric HW

Safe default status, 
Circuit breakers

Mechanical HW

Mechanical hard stops

Subject and operator

E-stop

Figure 5.3: Multi-stage safety features prevent human mistakes or unexpected ma-
chine problems.

5.3 Multi-stage safety features ensure the safety of subjects

Since the mission of Maestro is to explore various rehabilitation strategies, the

high level software will be modified frequently by different end-users. The high-level

algorithm developers first have to do his/her best to build a stable algorithm, but

many control schemes, particularly interacting with an unknown environment, have

a risk of unstability. to prevent all possible accidents, we introduced multi-stage

safety features (Fig. 5.3).

The first safety device is on the high level software running in C++ program

on RT-Linux. The final output of the controller is transmitted to the low level soft-

ware with a gain whose shape is a sigmoid function (smoothly increasing function).

Because the sigmoid function begins from zero and reaches to one, the initial output

of actuator is very small, and as time goes, the output becomes same with the actual

control outputs. The basic motivation of this safety feature is to provide a time to

press an emergency stop button if an unexpected problem occurs.

The second safety feature is on the low level software running in FPGA. The
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FPGA keep monitoring hardware behaviors, and if hardware shows an unexpected

behaviors such an impulsive motion or a significant difference between a desired and

actual behavior, the FPGA safely halts the system operation.

The third and fourth safety features are on electrical and mechanical hard-

ware. The default status of all electric circuits are set to be safe, and users need

to activate each electric component manually after checking the safe status. Also,

circuit breakers halt all system if electric hardware detects overcurrent or commu-

nication error. All exoskeleton joints have mechanical stops, thus an exoskeleton

motion exceeding a safe region is blocked. Finally, the system is always safely ter-

minated by pressing emergency stop buttons if a subject or an operator detects a

danger. Since we introduced all these safety features, any safety accidents have not

yet occurred to date while conducting many pilot tests.
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Chapter 6

Control of a Hand Assistive Device with Surface

EMG Sensors for Spinal Cord Injury Patients

For the last three chapters, we have presented the development of research

platform to study hand rehabilitation and assistance for neurological disorder pa-

tients. The development of Maestro has led to research on adaptive control theories

with human motion, development of a hand-wrist exoskeleton, fatigue progress of

hand muscles, systematic rehabilitation framework and assistance for SCI patients.

Among those, in this chapter, we will present our study on the hand assistive orthoses

with sEMG sensors and with Maestro.

6.1 Background Information of Active Hand Assistive Or-
thoses

The number of spinal-cord-injury (SCI) patients is estimated to be 282,000

in the United States in 2016 [6]. Approximately 45% of SCI patients have residual

function in their arms and shoulders [6], but have difficulty performing activities

of daily living (ADL) due to insufficient hand function. An ultimate goal of the

research in this chapter is to improve their hand function in ADL with an active

This chapter includes a part of writing in [4]. Youngmok Yun made a contribution for developing
the exoskeleton and conducting experiments with SCI subjects.
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assistive orthosis.

Most current commercial assistive orthoses are passive devices that either

help with passive extension/flexion or locate the fingers/thumb in a predetermined

position [54]. Although these orthoses are economical and easy to use, they have

several limitations. The passive stiffness or elasticity hinders hand movement when

it is not needed. Moreover, they assume the subjects are able to apply enough force

in at least one direction. In order to address these limitations, active orthoses have

been recently developed [37–42, 120]. Since the devices assist them in achieving a

task by adding extra strength, even a subject with weak muscles is able to perform

the tasks. A key challenge to achieve this advantage is to reliably recognize the

intention of users. If the device fails to recognize the intention of the user, the

orthoses “actively” hinder achieving tasks.

EMG-based operation of assistive orthoses has many advantages. First, the

operation is intuitive because the target muscles of EMG sensors are generally se-

lected to be relevant with desired tasks. Thus, users do not need to be trained for

long time. Second, the operation of the assistive device is not disturbed by the mo-

tions of other body parts. Several user interfaces of active assistive devices sense the

motion of other body parts such as tongue [37], neck [38], or wrist motion [39], or

recognize voice commands [120]. In order to use these interfaces, a user must stop

speech or nodding to operate the assistive device. In addition, using the motion of

other body parts may restrict the scope of available tasks with the orthosis. For ex-

ample, if a hand orthosis is operated by a wrist motion [39], a user may not achieve

a task that needs both hand and wrist motions (e.g, jar opening).
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Based on the advantages, researchers have developed EMG-driven active hand

orthoses. However, the operation of those devices have been performed only with

an one-dimensional variable or a threshold for 1-DoF actuation. Benjuya and Ken-

ney [40] pioneered the research on an active hand orthosis with 1-DoF finger ex-

oskeleton. The device is tested with two C6 SCI patients and one brachial plexus

patient. The paper reported the enthusiasm of patients while using the orthosis, but

did not report a quantitative result. DiCicco et al. [41] developed a 1-DoF orthosis

assisting pinching motion of a SCI patient. The paper reported that a C5/C7 SCI

subject with the orthosis was able to grasp a roll of tape, rubber ball, hockey puck,

and not able to grasp a tooth brush, and deck of cards. Zhao et al. [42] recently pre-

sented a soft hand orthosis which is capable of increasing grasping force proportional

to one-dimensional EMG-related variable. The paper showed a potential of soft ac-

tuators in a hand orthosis but did not show experimental results with a neurological

disorder patient. A healthy subject with the soft orthosis grasped an apple [42]. A

critical problem of the previous devices is that a subject with an 1-DoF orthosis is

able to grasp only a limited number of objects.

Grasping various objects required in ADL with an EMG-driven orthosis is

challenging. In order to grasp various objects required in ADL, a hand orthosis

needs to generate many different hand poses depending on the objects. Bullock et

al. [99] reported that humans use 34 different hand poses for grasping objects, and

Sollerman [1] selected the eight most frequent hand grips for grasping objects re-

quired in ADL. What even more challenging part is that the many desired hand

poses for a specific object needs to be determined by noisy EMG signals. EMG sig-
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nals are inherently noisy because the action potential of motor neurons is very low,

and particularly, sEMG sensors cannot monitor individual muscle activities. More-

over, similar patterns of EMG signals are measured while grasping different objects

requiring different hand poses, which makes the EMG-based operation difficult.

One promising solution is to take an advantage of compliant actuators in

operation of a hand orthosis. Actually, humans actively use the advantages of com-

pliance in digit joints. While grasping an object, the hand poses are determined not

only by the kinematics control of digit joints, but also by the stiffness of digit joints

and the shape of objects in tasks [121]. Because of this strategy, humans are capable

of grasping various objects even under uncertain environments (e.g, with insufficient

visual information of an object). If a hand orthosis has compliance in actuation, a

subject with the orthosis may grasp many different objects without generating spe-

cific hand poses for the objects. Furthermore, this idea may bring an advantage in

the classification of EMG signals because the classification algorithm does not need

to classify the noisy EMG signals into many different grasping modes.

A naturally following question after the above idea is “what is the minimal

set of hand poses with a compliant hand orthosis to grasp various objects required

in ADL?” We found that four different hand poses generated by a compliant hand

orthosis are sufficient to enable subjects to grasp various objects required in ADL; the

four hand poses are transverse volar grip, lateral pinch, extension grip, and extension.

We will present the detailed procedure of answering this question in Section 6.2.

Next, we present the optimal locations of sEMG sensors for SCI patients to

generate the command for the four hand poses. When selecting the location of sEMG
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sensors, several points need to be considered. First, the muscles monitored by EMG

sensors need to be relevant with the target hand poses. Second, the innervation

of muscles from spinal cord needs to be considered because the assistive device is

for SCI patients. The muscles innervated by an upper part of spinal cord is more

desired. Third, the target muscles need to be located close to skin. Otherwise,

the signals from the target muscle would be polluted by external electric noise and

interfered by other muscle signals. Based on these considerations, we found three

optimal locations of sEMG sensors, which are capable of efficiently classifying the

EMG signals into one among the four hand poses.

Lastly, we present the evaluation of the hand function for 6 SCI subjects with

and without Maestro. The ultimate goal of the assistive device is to improve the hand

function of SCI patients in ADL. Thus, we evalutated their hand functions with a

standardized hand function test, called Sollerman hand function test (SHFT). Three

sEMG sensors were attached on the optimal locations, and then a classification

algorithm classified the EMG signals into one of the four hand poses. Maestro

generated the target hand pose based on the command. The results of SHFT shows

that the hand functions of C6 and C7 SCI subjects were improved with the proposed

method.

6.2 Target Hand Poses of a Compliant Hand Orthosis

In this section, we present how the target hand poses of a compliant hand

orthsis were determined. The target hand pose is defined as a hand pose generated

by a hand orthosis when the hand is relaxed and does not interact with an external
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object. If a subject use a compliant hand exoskeleton, the hand pose would be

different with the given target hand pose when interacting with an object or when

the user generates strengths on their digits. Before explaining the detailed process

of answering the question, we first present the background information that will be

used in the next subsections, including the modification of Maestro and the definition

of ADL based on the study of Sollermand and Ejeskr [1].

6.2.1 Modification of Maestro

The requirements of our active assistive hand orthosis is a light weight, com-

fort in wearing, compliance in actuation, and capability of generating diverse essential

hand poses. We conducted experiments with Maestro because it has already many

advantages required as an active hand orthosis. However, the assistive device needs

several different factors, thus some modification of Maestro were performed. Except

the explanation of the below, other properties are same with those of Maetro.

A major change is the interface of the exoskeleton. In the original design of

Maestro, we intentionally used a rigid interface with a velcro, providing a transparent

force transmission but simultaneously being less comfortable. For the experiment of

assistive devices, we introduced a glove-type interface to provide more comfort than

the original Maestro while sacrificing some transparency of force transmission because

users need to wear an assistive device for long time and the exoskeleton does not need

to measure the exact kinematic and dynamic properties of hands. We developed three

sizes of gloves including small, medium and large sizes as shown in Fig. 6.1. Three

different sizes of gloves provide comforts in wearing for a wide range of subjects.
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We sewed rigid interfaces on to the dorsal sides of the glove to prevent undesired

tilting motion of the rigid structure as shown in Fig 6.1. Leather also avoids direct

contact of rigid structure with skin, preventing irritation. After wearing the glove,

tightening velcro straps minimizes the play between the exoskeleton mechanism and

the hand (Fig. 6.2 (a)). The fingertip parts of the glove were cut to preserve sensation

(Fig. 6.2 (a)). For many SCI subjects, it is challenging to wear a glove because they

have disability in moving and sensing their fingers and thumb. To resolve this issue,

we cut the palmar side of glove and sewed velcro straps for SCI subjects to facilitate

in wearing the glove (Fig. 6.2 (b)). Once a researcher find the correct size of glove for

a subject, the rigid interface on the glove is connected with the rigid link mechanisms

of Maestro by screws as shown in Fig. 6.3. In addition, we removed passive joints

from the original Maestro because the passive joints were designed only for observing

the angles of DIP joints, which is not required in an assisitve device.

6.2.2 Definition of Activities of Daily Living

A goal of this research is to assist SCI subjects with an assistive hand ex-

oskeleton to perform hand functions in “ADL”. By defining ADL systematically, we

would be able to develop an assistive device in a systematic method. The hand

functions of ADL is studied by several researchers [1, 99, 122]. Among those, the

study conducted by Sollermand and Ejeskr [1] is one of the most extensive studies

and focused on the essential hand functions of tetraplegic patients in ADL. Also the

study provides a systematic evaluation method of hand functions for SCI subjects.

Therefore, the control method of Maestro for assisting SCI patients is developed
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Figure 6.1: We developed a customized glove to interface hands with a rigid link
mechanism of exoskeleton. Depending on the size of a subject’s hand, one among
three different sizes of gloves is selected.

based on the study of [1].

Sollermand and Ejeskr selected the most frequently used eight grips in ADL;

those are transverse volar grip, spherical volar grip, lateral pinch, diagonal volar grip,

extension grip, tripod grip, five finger pinch, and pulp pinch as shown in Fig. 6.4.

Based on the selected grips, they selected 17 objects which need to be grasped by the

eight grips; those are a key, coin, wooden block, iron, screw driver, nut, jar lid, knife,

socks, pen, paper, paper clip, telephone, door handle, pure-pak, and cup. The hand

function is evaluated by how a subject correctly perform tasks with these objects

with a correct grip. The detailed explanation of Sollerman hand function test will

be described in the later sections.
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(a) (b)

Figure 6.2: (a) The finger tip and thump tip of gloves were cut to preserve sensation
of SCI subjects. Velcro straps were attached on the side of glove digits to remove the
stretch effect of the leather glove. (b) SCI subjects usually have difficulties in wearing
a glove. Thus, we cut the palmar side of glove for SCI subjects to to facilitate in
wearing the glove.

6.2.3 Experiments and Results

In this subsection, we will find a minimal set of target hand poses of Maestro

which is capable of grasping the 15 objects listed in [1]. We excluded the grasp of a

coin and a water-jug because grasping a coin and a water jug uses exactly same hand

grips for a paper clip and an iron respectively. The basic idea of the experiment is

that a researcher increase the number of a target hand pose or replace a target hand

pose with another until a subject is able to grasp all 15 objects.
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Figure 6.3: Maestro is modified from the original design of Maestro for experiments
to study assistive devices. A novel interface is introduced and passive joints were
removed.

The experiment was conducted through the following protocol. First a subject

wears Maestro. All mechanical settings are tunned by a researcher to be optimal

for the subject to obtain the maximum range of motion and comfort in wearing.

Second, the subject is asked to relax his hand. This ensures that grasping an object

is performed by Maestro. Third, a researcher places an object at the best location

to be grasped by the subject. This eliminates effects from external environments.

Fourth, a researcher generates a target hand pose which is desired for the object.

Fifth, the subject with Maestro grasps the object. The subject is allowed to move

their arm and shoulder to help his hand grasp the object. Sixth, a researcher judges
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(a) Transverse volar grip (b) Spherical volar grip

(c) Lateral pinch (d) Diagonal volar grip

(e) Extension grip (f) Tripod grip

(g) Five finger pinch (h) Pulp pinch

Figure 6.4: Sollermand and Ejeskr selected the most frequently used eight grips in
ADL [1].
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if the subject grasps the object with a correct grip described in [1]. The compliance

of Maestro was passively determined by the stiffness of compresseion springs located

at the exoskeleton SEA. In other words, the motors in Actuator box was controlled

in a position mode. The stiffness of springs was selected by a researcher in the

range which provides reasonable comfort to a subject and simultaneously sufficient

grasping strength. The selection of the stiffness was practically not difficult.

Two healthy subjects and one SCI subject participated in the experiment,

and the experiment results were consistent through all subjects. As a first trial,

we tried two target hand poses including transversal volar grip and extension. As

shown in [41], results show that subjects could not make all hand grips which require

thumb adduction (e.g., key pinching). In the second trial, we added lateral pinch

into transversal volar grip and extension. This addition enabled subjects to grasp

many objects requiring thumb adduction such as a key and screw driver, but subjects

still could not grasp objects which are flat or small objects such as a nut, paper clip,

and paper. Lastly, we added extension grip into the previous set, and subjects were

able to grasp all 15 objects listed in [1]. Fig. 6.5 shows an experiment result with

a C5/C7 incomplete SCI subject who is barely able to generate flexion force on his

index and middle fingers.

The experiment results show that a subject with a compliant hand orthosis is

able to grasp with only four hand poses including transverse volar grip, lateral pinch,

extension grip, and extension, which are significant smaller than the number of hand

grips reported in [1, 99, 122]. This significant reduction may bring an advantage in

the EMG signal classification problem because a smaller number of classification
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Figure 6.5: A C5/C7 incomplete SCI subject who is barely able to generate flexion
of index and middle fingers was able to grasp 15 objects listed in Sollerman hand
function test. In the experiment, only four target hand poses of Maestro were used.

generally leads to a higher success ratio of a classification algorithm.

There are several discussion points. The first one is the uniqueness of the

target hand poses. During the experiments, we found that the compliance of actua-

tion allowed for high flexibility in selecting the target hand poses that are capable of

grasping various objects. As a result, the selected four target hand poses were not

a unique solution. A variation of the selected target hand poses can be also a set of

target hand poses of Maestro. However, the number of target hand poses would not

be reduced because as shown in [99], there are clear requirement of thumb adduction

and abduction motion depending on objects. The shape of fingers also determines

the available shape of objects for grasping, which justifies two different target finger

poses at thumb abduction, those are extension and flexion of fingers.
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Another important point is that the difference between grasping an object

and performing a task with the object. In the experiment of this section, we only

conducted a grasping test, which means if a subject was able to hold an object with

a correct grip, then a researcher determined the grasping was successful. Although

subjects with Maestro were able to grasp all 15 objects listed in [1] with the four

target hand poses, showing the advantages of Maestro over other hand orthoses,

the success of grasping does not mean that the subject is able to perform a task

with the object. Indeed, the performance of a task can be successfully conducted

only when many complex components meet sufficient conditions including dexterous

shoulder and arm functions, adequate grasping force, creativity in the task, and

psychological effects like a motivation. Therefore, it must be clear that grasping the

15 objects required in ADL does not directly mean that a subject with Maestro is

able to perform all tasks. The hand function of SCI subjects in task performance

with Maestro will be evaluated in the later sections with Sollerman hand function

test.

6.3 Location of Surface EMG Sensors

To develop a successful EMG-driven active hand orthoses, the intention recog-

nition with EMG sensors is crucial. In the previous section, we found a minimal set

of target hand poses of a compliant hand exoskeleton, which is capable of grasping

various objects required in ADL. The small number of the target hand poses, that

is four, has advantages in an EMG-based classification algorithm because an EMG-

based classification algorithm would be less confused. The other important factor
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for the EMG-based classification algorithm is to find the optimal locations of EMG

sensors. This section will present an optimal set of locations for sEMG sensors to

operate Maestro for SCI subjects.

6.3.1 Candidates of Surface EMG Sensor Locations

For determining the locations of sEMG sensors, several points need to be

considered. First, the muscles monitored by EMG sensors need to be relevant with

the four target hand poses. This reduces the training time and makes operation

of the device more intuitive. Second, the innervation of muscles from spinal cord

need to be considered. For instance, the muscles innervated by upper parts of spinal

cord are more suitable because, SCI patients have less function in muscles innervated

from lower parts of spinal cord. Third, the target muscles need to be located close

to the skin. Otherwise, the signals would be polluted by external electric noise

and interfered by signals from other muscles. Fourth, the number of EMG sensors

need to be minimized. Using numerous sensors may provide a considerable amount

of information, but simultaneously the application with the many sensors is not

feasible in reality. For example, Liu et al [123] performed a successful EMG-signal

classification with 57 sEMG sensors for SCI subjects. The study showed potential

of using sEMG sensors to understand the intention of SCI patients. However, it is

difficult to directly implement this sensor configuration in ADL due to high cost and

long setting and calibration time. We also consulted with an occupational therapist

to understand common muscle patterns of incomplete SCI and available muscles of

SCI patients with limited hand function.
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Based on the above factors, we selected six candidates of sensor locations

to be monitored. We picked target muscles based on relevance to task and muscle

innervation. Then we tested the pattern recognition algorithm with different com-

binations of located sensors to find out the minimal number and location of EMG

sensors for achieving reliable control.

The muscles are listed in Table. 6.1. Flexor digitorum superficialis and Flexor

carpi ulnaris are selected mainly for detecting the finger motion. Extensor digitorum

and Extensor carpi ulnaris are selected mainly for finger and thumb extension. Flexor

pollicis brevis and Flexor pollicis longus are selected to detect thumb abduction and

flexion. Because the muscle and tendon configuration is correlated with multiple

digit joint motions, it is difficult to build a one-to-one match between a joint motion

and a muscle. Also due to the characteristics of sEMG sensors, each sensor measures

not only a targeted muscle activity but also the activities of other muscles located

around that muscle.

Based on these six muscles, we selected six candidate locations for sEMG

sensors as shown in Fig. 6.6. The numbers in the figure correspond to the muscle

numbers of Table. 6.1. The quality of the measured EMG signals is crucially depen-

dent on choosing the correct location of sEMG sensors. The occupational therapist

assisted us in locating the selected muscle bellies by palpating patient’s forearm and

palm. Multiple small muscles exist together in the small region of the third sensor

(palm), so the third sensor measures activities of Abductor pollicis brevis in addition

to the target muscle, Flexor pollicis brevis. However, this was not a problem in the

experiment since our goal was to determine user’s intent, not to monitor the single
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Table 6.1: Six muscle candidates to be monitored by sEMG sensors

Muscle No. Muscle Name Innervation

1
Flexor Digitorum
Superficialis

Median nerve
(C7, C8 and T1)

2 Extensor Digitorum
Posterior interosseous nerve
(C7 and C8)

3 Flexor Pollicis Brevis
Recurrent branch of
median nerve (C8 and T1)

4 Flexor Carpi Ulnaris Ulnar nerve (C7 and C8)

5 Extensor Carpi Ulnaris
Posterior interosseous nerve
(C7 and C8)

6 Flexor Pollicis Longus
Anterior interosseous nerve
from median nerve (C8 and T1)

muscle activities.

Based on the six muscles, we selected six candidates of locations for sEMG

sensors on a subject’s forearm and palm as shown in Fig. 6.6. The numbers in the

figure corresponds to the muscle number of Table 6.1. The occupational therapist

assisted to find the best location of a EMG sensor to monitor a specific muscle.

Every muscle has different shapes and there is a “sweet spot” of each muscle for

EMG sensors. Depending on the selection of the sensor location, the quality of

measurement crucially changes. Because of his assistance, we were able to eliminate

undesired factors caused by selecting incorrect locations. One remarkable point is

that multiple small muscles exist together in the small region of the third sensor

(palm). Therefore, it was not possible to measure the signals of the single target

muscle, Flexor pollicis brevis. The third sensor measured the activities of not only
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Flexor pollicis brevis but also Abductor pollicis brevis. This measurement was not

a substantial problem in our experiment because the our goal only need to read the

intention of users.

6.3.2 Experiment to Select an Optimal Set of Sensor Locations

In this subsection, we present an experiment method designed to find an

optimal set of sEMG sensor locations from the six candidates of locations found in

the previous subsection. The basic procedure of the experiment is to find a set of

sensor locations that can provide a sufficient success ratio of an EMG classification

algorithm.

In the experiment, first six sEMG sensors are attached on a subject’s right

forearm and palm. The precise locations are identified by palpating the subjects

right forearm and palm. Delsys Trigno Wireless EMG sensors were used for recording

EMG signals.

Second, the subject’s hand is placed and secured in a hand splint to measure

maximum voluntary isometric contraction (MVIC) of each muscle. A custom-made

splint is used to measure the MVIC of hand muscles for SCI subject as shown in

Fig. 6.7. The subject is asked to perform maximum finger flexion, finger exten-

sion and thumb flexion respectively, while the muscle activity is being displayed to

the subject on a computer screen. The MVICs measured in this part are used to

normalize EMG data in the post-processing of EMG signals.

Third, in order to train a EMG-classification algorithm, subjects are asked

to perform 3 trials including 5 different tasks interacting with real objects while the
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Figure 6.6: Six sEMG sensors were attached on a subject’s forearm and palm to
measure the muscle signals of 1) Flexor digitorum superficialis, 2) Extensor digito-
rum, 3) Flexor pollicis brevis, 4) Flexor carpi ulnaris, 5) Extensor carpi ulnaris, and
6) Flexor pollicis longus.
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Figure 6.7: Maximum voluntary isometric contraction of muscles is measured with
a custom made splint. Because SCI patients are not capable of moving their hands,
we developed a custom splint to facilitate the measurement.

muscle activities were being recorded. The tasks included holding a jar (transverse

volar grip), holding a key (lateral pinch), holding a plate (extension grip) (Fig. 6.4),

relaxing the hand, and extending the fingers and thumb. If a subject is not able to

complete a task due to his SCI, he is asked to perform the task as best as he can.

Each task is asked for 10 seconds and after finishing a task, relaxation of muscles is

asked for 10 seconds. In order to preserve the accuracy of recorded EMG data and

eliminate the effects of transitioning between different grasp modes on EMG data,

the 2 seconds in the beginning and at the end of each grasp were disregarded and

only the midmost 6 seconds were used to train the classification algorithm.

During the training, the EMG signals are measured and post-processed. The

basic post-process of EMG signal is same with [41]. First, the offset of signal is

removed. Next, the signal is rectified to obtain the magnitude values. Then, the third
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order Butterworth low-pass filter (cutoff frequency at 4 Hz) is performed to produce

a linear envelope representation of the signal. Lastly, the signal is normalized with

the MVIC of the muscle. The post-processed EMG signals are classified into five

classes by an artificial neural network (ANN) algorithm. The five classes consist of

the four target hand poses stated above, and relaxation. We selected a two-layer

feed-forward network with sigmoid hidden and softmax output neurons [124]. The

network model is trained with a scaled conjugate gradient back-propagation. For

evaluating the success ratio of the classification algorithm, 70% of data is used for

training, 15% of data is used for validation, and 15% data is used for test.

For the analysis of the classification performance versus a set of EMG sen-

sor location, we generated all possible sets, those are all possible combinations of

EMG sensor locations, of which the total number is 60. Then, we trained all indi-

vidual ANN for 60 training data sets. Lastly, we compare the success ratio of the

classification results with a given training data set.

6.3.3 Results and Discussion

Two healthy subjects and one C5/C7 incomplete SCI subject participated

in the experiment. Fig. 6.8, Fig. 6.9, and Fig. 6.10 show the experiment results

with the subjects. The results were sorted by the success ratios in descending order.

Each subfigure in the first six bar graphs shows the success ratios of a classification

algorithm with training data sets whose number of sensors is same. For example,

when the number of selected sensors is 3, the number of possible combination of

sensor configurations is 20 (=6 C3). Thus, we compared 20 success ratios of the
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sensor configurations. Then, we picked the highest success ratios from the first six

subfigures and drew the seventh bar graph. This bar graph shows the best success

ratios with the given number of EMG sensors.

When the number of sensor is only one (see (a) of Fig. 6.8, Fig. 6.9, and

Fig. 6.10), the highest success ratios were obtained when measuring EMG signals

from the location 1 of Fig. 6.6 for two healthy subjects and the location 2 of Fig. 6.6

for a SCI subject respectively. When the number of sensor is two, the highest success

ratios were obtained when measuring EMG signals from location 1 and 2 for two

healthy subjects and from location 2 and 3 for a SCI subject respectively. When the

number of sensor is three, the highest success ratios were obtained when measuring

EMG signals from location 1, 2 and 6 for the first healthy subject and from the

location 1, 2, and 3 for the second healthy and a SCI subject. One remarkable

point is that the second highest success ratio of the first subject, which is similar

to the highest success ratio, was obtained from the same sensor configuration of the

others, those are the location 1, 2, and 3. When the number of sensor is four, the

highest success ratios were obtained when measuring EMG signals from the location

2,4,5, and 6 for the first subject, the location 1,2,3, and 6 for the second subject,

and the location of 2,3,4, and 5. For the five sensors, the success ratios are almost

similar to all others, the comparison does not have a significant meaning. Due to

some randomness of initial values for the training of ANN, the results slightly changed

when the trainings are repeated but the major trends were not substantially changed.

From Fig. 6.8 (g), Fig. 6.9 (g), and Fig. 6.10 (g), we found that the success

ratios of classification result are settled from the three EMG sensors. This result was
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expected because we intentionally selected two redundant muscles for each one joint

motion. The highest success ratios for the three sensors were also from a consistent

sensor configuration, those are the sensor location 1, 2, and 3. Although the result

for the first subject was slightly different from the others, the sensor configuration for

the second highest success ratio showed consistency. In addition, locating a “sweet

spot” for the sixth EMG sensor location was practically difficult due to high variance

among people. Based on these experiment results, we decided to use the EMG sensor

location 1, 2, and 3 for the operation of Maestro.

6.4 Hand Function of SCI Subjects with Maestro

In the previous sections, we have developed an efficient method for operating

an active hand orthoses by taking an advantage of compliance of exoskeleton. The

compliance in actuation enabled a subject with Maestro to grasp various object

required in ADL with only four target hand poses of Maestro. Then, we found three

locations for sEMG sensors to command Maestro to generate one target hand poses

among the four. The selected locations of EMG sensors are capable of providing

high success ratio of a EMG-classification algorithm. The final goal of these works

is to improve the hand function of SCI patients in ADL. In this section, we evaluate

the hand fuction of SCI patients with and without Maestro through a standardized

hand function test.
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Figure 6.8: Experiment results with the first healthy subject. Each subfigure in the
first six bar graphs (a)-(f) shows the success ratios of the classification algorithm with
training data sets whose number of sensors is same. Then, we picked the highest
success ratios from (a)-(f) and drew (g). The bar graph in (g) shows the best success
ratio with the given number of EMG sensors.
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Figure 6.9: Experiment results with the second healthy subject. Each subfigure in
the first six bar graphs (a)-(f) shows the success ratios of the classification algorithm
with training data sets whose number of sensors is same. Then, we picked the highest
success ratios from (a)-(f) and drew (g). The bar graph in (g) shows the best success
ratio with the given number of EMG sensors.
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Figure 6.10: Experiment results with a SCI subject. Each subfigure in the first
six bar graphs (a)-(f) shows the success ratios of the classification algorithm with
training data sets whose number of sensors is same. Then, we picked the highest
success ratios from (a)-(f) and drew (g). The bar graph in (g) shows the best success
ratio with the given number of EMG sensors.
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Figure 6.11: Signal flow of the muscle activities to the target hand poses of Maestro.
The EMG of muscles are measured and amplified by sEMG sensors, the amplified
signal is post-processed with several filters and classified into a target hand pose of
Maestro with an Artificial neural network classifier.

6.4.1 Operation of Maestro

This subsection presents how we developed the operation method of Maestro

to be suitable for performing tasks. The overview of the signal flow from the muscles

activities to the target pose of Maestro is shown in Fig. 6.11. The goal is to generate

commands for Maestro, that are the target hand poses, to perform various tasks in

ADL reliably with the EMG signal of SCI subjects.

One essential feature for operating an active hand orthosis is stability based on

a robust EMG classification algorithm. Although we have introduced a minimal set of

target hand poses and an optimal set of EMG sensor locations to secure a successful

user-intention algorithm through sEMG sensors, operating Maestro with the EMG-

classification algorithm is still challenging. Because 95% of successful classification

results also means that 5% of result is wrong, and this wrong classification results

may lead to oscillation between misclassified hand poses. Hence, we introduce two

more additional methods to make the operation of Maestro stable.
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The first method is to take an advantage of the relaxation class while operating

Maestro. The basic idea of this method is similar to that of [40]. The relaxation

class plays a significant role for stable operation of Maestro. The relaxation class

is selected when a subject relaxes all muscles that are monitored by EMG sensors.

Compared to other classes, the relaxation class is classified without confusion because

the muscle activations are all low so that the EMG pattern is clearly distinguishable

from other EMG patterns. We use this distinguishing property of relaxation class

to maintain the selected target hand pose consistently. That is, if the classification

result of ANN is the relaxation class, Maestro does not change the target hand pose

and maintains the current pose. Since the subject does not need to keep generating

the EMG signal for the specific pose, subjects can comfortably maintain the desired

hand pose with a low-rate of classification failure.

As the second method, we introduced a probabilistic approach for stable op-

eration of Maestro. Although we reduced the number of target hand poses and

introduced the relaxation mode, the noise in EMG signals and the movement of

arms and wrist caused problems in the classification and lead to frequent fluctuation

between hand poses of Maestro. For the operation of an active device in contrast

to gesture recognition, we needed a higher success rate of EMG classification. To

enhance the success ratio, the Maestro controller adopted a probabilistic approach.

The Maestro controller records the classification results for a certain time duration.

Then, classification results are counted for the time window. Lastly, only when the

count of a classification result exceeds a certain threshold, the Maestro controller

changes the target hand pose. This probabilistic approach filters out wrong classi-
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fication results occurred by EMG noise or transition of muscle states. One scenario

of operation is shown in Fig. 6.12 to help understanding of readers.

6.4.2 Experiments

In this section, we validate the effectiveness of Maestro for the improvement

of hand function of SCI patients. The hand performance of six SCI subjects with

and without Maestro was evaluated by a standardized hand function test, called

Sollerman Hand Function Test (SHFT) [1].

6.4.2.1 Sollerman Hand Function Test (SHFT)

SHFT is developed to evaluate the hand functions of tetraplegic patients

in ADL. Comparing to other evaluation methods such as GRASSP [125] or Toronto

rehabilitation institutehand function test (TRI-HFT) [126], SHFT is more focused on

the evaluation of the hand functions in daily activities with objects used in daily tasks

rather than evaluating individual components of hand functions such as strength of

muscles, sensibility, and motor coordination, which are main factors of GRASSP and

TRI-HFT. Since we want to evaluate the hand functions in ADL of SCI patients, we

selected SHFT for the experiments.

SHFT evaluates the hand function of subjects based on 20 tasks inspired by

ADL. Each subtest is scored on a scale of 0 to 4 based on scoring criteria including

time to complete the task, successful completion of task, use of the normal hand grip

and number of drops. The maximum score of SHFT is 80. Tasks to be performed

include closing and opening zippers, picking up coins, using a screw driver, writing
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Figure 6.12: Control mode change of Maestro with EMG classification results. A
virtual classification result, flexion, is introduced instead of transverse volar grip,
lateral pinch, and extension grip to effectively illustrate the algorithm. The basic
principle for full classification results is the same without loss of generality. We
created a virtual scenario to show how a subject changes the target hand pose from
extension to flexion. The top plot shows the EMG classification results obtained
by ANN. The middle plot shows the relative frequency of classification results. The
frequency is counted during a pre-determined time window. The bottom plot shows
the target hand poses of Maestro controller. The change of target hand pose is
made when the relative frequency of a classification result exceeds a threshold. (a)
the frequency of extension crosses the threshold but the target hand pose does not
change because it is already extension. (b) the subject relaxes the muscles but
Maestro maintains the current target hand pose. (c) the subject changes the muscle
activities. During the transition, the classification results are noisy, but the target
hand pose is not changed. (d) The classification results are consistent, but the target
hand pose is not changed yet due to the delay of a time-window approach. (e) The
frequency of the flexion crosses the threshold, and the target hand pose is changed
to flexion. Due to the probabilistic approach, the decision is robust to occasional
fault of classification.
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with a pen, pouring water from a jug, lifting an iron, etc. The brief description of

tasks is listed in Table 6.4. For detailed task descriptions, refer to [1].

6.4.2.2 Recruitment of SCI Subjects

We included a SCI patient as a subject if 1) they provide written informed

consent prior to any study related procedures, 2) his/her age is between 18-75 years,

3) he/she got diagnosis of complete or incomplete (C5-C8) spinal cord injury as

defined by the American Spinal Injury Association (ASIA) impairment scale clas-

sification, and 4) they do not have “no conditions” (e.g., severe arthritis, extreme

shoulder pain) that would interfere with valid administration of the measures or with

interpreting motor testing. All experiments were conducted with an approval of the

institutional internal review board (IRB). Based on the above conditions, we have

recruited six SCI subjects to evaluate the assistance performance of Maestro. The

detailed information of subjects is listed in Table 6.2.

6.4.2.3 Experiment Protocol of SHFT with Maestro

All experiments will take place in the ReNeu Robotics Lab, which is located

in rooms 3.130 and 3.104 the ETC building on The University of Texas at Austin

campus. The lab is part of the Department of Mechanical Engineering.

For evaluation of the hand functions of SCI patients in ADL with Maestro,

researchers conducted experiments with the following protocol. Before the SHFT,

the EMG system was set up and data were collected to train the ANN program.

First, we attached EMG sensors on the forearm and palm of each subject. Three
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Table 6.2: SCI patients who participated in the experiment

Subject No. Gender
Hand

Dominance Age
Age

at Injury
Injury
Level

Pre-injury Post-injury

1 M R R 57 53
C5/C7

Incomplete

2 M R R 34 29
C6

Incomplete

3 F L L 20 19 C5

4 M R L 41 24 C6

5 M R R 59 52 C6

6 M R R 51 33 C5

Delsys Trigno Wireless EMG sensors were used for recording EMG signals. Muscle

locations were identified by palpating the subjects right forearm and palm. The EMG

sensor locations for the experiment is shown in Fig. 6.13. After the EMG sensors are

correctly attached, the EMG sensors are securely protected by wrapping the forearm

with fabric strips and by covering with a tubular bandage (Fig. 6.14). Second, the

MVIC of subjects hand is measured. The method of MVIC measurement is same as

that in the previous Subsection 6.3.2. Third, the EMG-classification algorithm with

ANN is trained. The method is same with that in Subsection 6.3.2.

Next, subjects wore Maestro. Researchers opened the palmar side of the

leather glove (Fig. 6.2) and helped a subject to put their fingers and thumb in the

glove. After a subject wear the glove, a researcher close the opened palmar side

of the glove and tighten Velcros of digits. Then, we allowed them to get familiar
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Figure 6.13: Three wireless EMG sensors are used to identify the intention of SCI
subjects. The first sensor detects the flexion of fingers, the second detects the exten-
sion of fingers, and the third sensor detects the thumb flexion and abduction.

with the system. We adjusted the link lengths of the exoskeleton to fit the subjects

hand size and ensure comfort. In addition, we customized the target hand poses of

the Maestro controller, including transverse volar grip, lateral pinch, extension grip,

and extension. After the customization of Maestro, the EMG-driven controller was

turned on, and the subjects had 20 minutes to practice controlling Maestro with

their muscle activities and interacting with objects.

After the practice, subjects performed SHFT with Maestro. A researcher

introduced the SHFT and its scoring criteria (Table 6.3) to subjects. They sat at

a table whose height had been adjusted for their wheelchair and the SHFT kit was
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(a) Forearm with fabric strips

(b) Forearm with a tubular bandage

Figure 6.14: After conforming the locations of EMG sensors, the EMG sensors are
protected by fabric strips (a) and a tubular bandage (b).

placed on the table. A researcher performed and demonstrated each task of the

SHFT using the normal grasp mode and asked the subject to try to do the same

task. An occupational therapist observed and timed each task and scored the task

on a scale of 0-4 based on the scoring guide provided by SHFT (Table. 6.3).

After the SHFT with Maestro, we removed Maestro and the EMG sensors,

and subjects had a break for 10 minutes. Then, subjects performed SHFT with their

bare hands. Before every task, a researcher again performed and demonstrated each

one using the normal grasp mode and asked the subject to try to do the same.

After the two SHFTs, subjects were asked about the comfort and difficulty

of the session and tasks, and the effectiveness of Maestro in accomplishing ADL.

Some questions were answered on a scale of 0-10 and others required short answers.
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Table 6.3: SHFT Scoring Guide [1]

Criteria Score

The task is completed without any difficulty within 20
seconds and with the prescribed hand-grip of normal quality

4

The task is completed, but with slight difficulty, or the task
is not completed within 20 seconds, but within 40 seconds,
or the task is completed with the prescribed hand-grip with
slight divergence from normal

3

The task is completed, but with great difficulty, or the task is
not completed within 40 seconds, but within 60 seconds, or
the task is not performed with the prescribed hand-grip

2

The task is only partially performed within 60 seconds. 1

The task cannot be performed at all. 0

During the experiments, all subjects were asked to inform researchers when they

feel uncomfortable. Anytime when subjects feel too uncomfortable to continue the

experiment, we halted the experiments.

6.4.2.4 Results of SHFT

Among the six SCI subjects (Table 6.2), four SCI subjects accomplished the

above protocol. Subject 1 volunteered to participate in the experiment one more.

Thus, Subject 1 accomplished the experiment protocol two times. Two SCI subjects

expressed uncomfort while performing the experiments, and the tests were imme-

diately stopped. Subject 3, a SCI subject who gave up the experiment, had low

functionality in shoulders and arms due to C5 SCI. Because the injury occurred re-

cently (less than 1 year ago), the rehabilitation of the body functions were not fully
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performed, and the emotional status was unstable. Subject 4, the other subject who

gave up the experiment, also did not have sufficient shoulder and arm functions to

perform tasks in SHFT. His injury was less severe than Subject 3, but his dominant

hand was changed after the injury from the right to left hand. Hence, he has not used

his right hand in daily activities, resulting in substantial weakness of all muscles and

motor coordination of right upper extremity. Because Maestro was designed only

for a right-hand user, he was asked to use the non-dominant hand, that is his right

hand, for SHFT.

The scores of the SHFT in Table 6.4 and Table 6.5 show that the hand

functions of Subject 1, 2 and 5 are improved with Maestro and the hand function of

Subject 4 is overall not changed. For Subject 1, the SHFT without the exoskeleton

was 41, the first SHFT score with the exoskeleton was 47 and the second SHFT

score were 50. The improvement between the first trial and second trial was mainly

because he learned how to use the exoskeleton for the tasks. SCI subjects spent

long time with their bare hands to perform tasks. However, the subjects had a short

time with Maestro before performing SHFT. Therefore, experiencing the exoskeleton

longer resulted in better performance in SHFT tasks. Subject 1 had difficulty with

active flexion of the fingers and abduction/adduction of the thumb. Maestro helped

him to generate flexion of the fingers and abduction of thumb. He performed tasks

with the correct hand grip and generated enough hand strength required in ADL. For

instance, his scores were improved in lifting the iron, pouring water from a pure-pak,

and writing with a pen. Subject 1 had limited sensory feedback on his fingertips,

which made it difficult to perform delicate tasks, especially without visual feedback,
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including picking up coins from a purse mounted on a wall and picking up nuts and

putting them on bolts.

For Subject 2, the score went from 45 to 49 by wearing the exoskeleton. Sub-

ject 2 had stiff flexed fingers and difficulty in finger extension. He usually wrapped

around an object by pushing his fingers, and opened his hand by using the other

hand or by contacting with an object. When he used Maestro, he could extend his

fingers more easily and got a higher score in lifting the iron and pouring water from a

jug, cup, and pure-pak. On the other hand, he got lower scores in tasks that included

pinching of small objects, such as unlocking a Yale-lock with a key and writing with

a pen.

For Subject 5, the score went from 40 to 41 by wearing the exoskeleton.

Subject 5 had a severer SCI injury than Subject 1 and Subject 2, and thus the

available EMG signals were fewer than Subject 1 and Subject 2. The less available

EMG signals resulted in difficulties in operating exoskeleton in a precise timing, and

consequently the SHFT score was low. Nonetheless, the exoskeleton increased his

grasping strength, thus he was able to lift heavy objects such as an iron and pure-pack

with water.

For Subject 6, the scores were same with and without the exoskeleton. His

injury was the most severe injury among the subjects who participated in the ex-

periments. His EMG signals were barely available for operating the exoskeleton. He

was able to generate signals only for the extension grip, and the control between the

target hand poses were very unstable due to the low EMG signals. Nonetheless, the

most remarkable part was that Subject 6 showed the most significant satisfaction
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Table 6.4: Sollerman Hand Function Test Scores, Part 1

Task Description
Subject 1 Subject 2

w/o
Exo

w/
Exo 1

w/
Exo 2

w/o
Exo

w/
Exo

Pick up key, put into Yale-lock
and turn 90.

1 1 1 3 2

Pick up the coins from flat surface,
put into purses mounted on the wall.

2 2 2 2 3

Close and open zips. 2 1 1 2 2

Pick up coins from purses. 1 0 1 2 1

Pick up wooden blocks, lift over edge. 3 2 3 2 3

Lift iron over edge. 2 4 4 2 4

Turn screw with screwdriver. 2 2 3 3 3

Pick up nuts and put on bolts. 1 1 1 2 1

Unscrew lid of jars. 2 3 2 2 2

Do up buttons. 2 1 1 1 1

Cut Play-Doh (plasticine). 2 2 1 2 2

Put elasticated tubular bandage
on the other hand.

2 3 3 2 1

Writing the word ”name” on paper 2 4 4 4 3

Fold paper, put into envelope. 2 1 2 2 1

Put paper-clip on envelope. 2 3 3 2 3

Pick up telephone-receiver and
put it to the ear.

3 3 4 3 3

Turn door-handle 30. 4 3 4 3 3

Pour water from one litre paper milk
or juice package (pure-pak).

2 4 2 2 3

Pour water from jug. 2 3 4 2 4

Pour water from cup. 2 4 4 2 4

Total Score 41 47 50 45 49
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Table 6.5: Sollerman Hand Function Test Scores, Part 2

Task Description
Subject 5 Subject 6

w/o
Exo

w/
Exo

w/o
Exo

w/
Exo

Pick up key, put into Yale-lock
and turn 90.

1 1 1 1

Pick up the coins from flat surface,
put into purses mounted on the wall.

3 1 1 1

Close and open zips. 2 1 1 1

Pick up coins from purses. 1 1 1 1

Pick up wooden blocks, lift over edge. 3 3 2 1

Lift iron over edge. 3 4 3 4

Turn screw with screwdriver. 2 3 1 1

Pick up nuts and put on bolts. 1 1 1 1

Unscrew lid of jars. 2 3 2 2

Do up buttons. 1 1 1 1

Cut Play-Doh (plasticine). 2 1 2 1

Put elasticated tubular bandage
on the other hand.

1 1 1 1

Writing the word ”name” on paper 2 3 3 4

Fold paper, put into envelope. 1 1 3 1

Put paper-clip on envelope. 3 1 1 3

Pick up telephone-receiver and
put it to the ear.

3 2 3 2

Turn door-handle 30. 3 4 3 4

Pour water from one litre paper milk
or juice package (pure-pak).

2 4 1 1

Pour water from jug. 2 2 1 1

Pour water from cup. 2 3 1 1

Total Score 40 41 33 33
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among subjects with achieving the movement of hand by his intention although the

control was not stable. Another remarkable point is that the injury time of his case

is the longest among all subjects. Thus, he had a wide range of knowledge how

to use his SCI hands for tasks. He knew about compensated motions to achieve a

certain task well. Therefore, his SHFT score with bare hands was higher than our

expectation, and thus he was able to accomplish the tasks although Subject 3 and

Subject 4 whose injury level is less severe or similar gave up the tests.

According to the feedback form completed by the subjects, most of subjects

believed Maestro is comfortable to wear and reasonably weighed (Table. 6.6). Sub-

ject 1 thinks direct skin contact is better to grasp objects, whereas Subject 2 and

6 confirm that the glove interface helps significantly in grasps. All subjects believe

the tasks performed in the session are representative of ADL. All subjects prefer the

exoskeleton to be smaller and to have bigger workspace. Actually, the biggest chal-

lenge while performing task was the interference of the exoskeleton with a working

space.

There are more remarkable points in the experiment results. First, the ex-

oskeleton enabled subjects to perform tasks using the correct hand grip. Without

the hand exoskeleton, although some subjects were able to accomplish many tasks,

they used various compensating motions and help from other hand and body parts.

Second, the time to achieve tasks was overall longer with exoskeleton than without

exoskeleton. This is due to the delay of the system and implementation of proba-

bilistic approach introduced in Section III that ensures stable operation of Maestro.

Third, although most of subjects answered that SHFT represents ADL well, we were
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Table 6.6: Feedback from SCI Subjects

Question
Subject

S1 S2 S5 S6

Is the hand exoskeleton comfortable to wear? 7 7 6 3

Is the weight of the exoskeleton reasonable? 10 9 6 9

Is the glove comfortable? 9 8 6 8

Does the glove help to grasp objects? 5 9 7 9

Are the tasks representative of daily activities? 8 10 7 10

Were the tasks difficult to achieve
without the exoskeleton?

6 3 7 5

Were the tasks difficult to achieve
with the exoskeleton?

6 3 8 3

able to find several disadvantages. SHFT tends to set low points for compensated

motions. We agree that some compensated motions are not stable and may cause

another problem in ADL, but we also observed that some compensated motions are

able to perform ADL tasks without serious problems.
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Chapter 7

Conclusion

We have developed a robust, accurate, and compatible hand exoskeleton,

Maestro, by integrating multiple novel design attributes (Table 2.1). First, the ex-

oskeleton is robust. The hybrid fabrication method allows for a strong mechanical

structure while keeping the exoskeleton light and compact. The embedded and cov-

ered electric systems consistently perform a high quality of sensing and actuation

even under various disturbance. The multistage safety features protect subjects and

exoskeleton systems from human and machine errors.

Second, Maestro is accurate. The rigid attachment of pHRI allows for accurate

kinematics measurement and force actuation. Dynamic transparency during force

control was achieved by the light weight of the exoskeleton. The redundant sensor

configuration reduced the uncertainty caused by the diversity of hand sizes. The

optimal configuration and modeling of Bowden cable and miniaturized SEA allowed

accurate control of the finger joint torque. The high-speed signal processing with

FPGA and the strict real-time performance with RT-Linux made the sensing and

actuation precise.

Last, Maestro is compatible. The exoskeleton actuates the most essential

8-DoF of the hand, which is compatible with many rehabilitation schemes and as-
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sistance methods with independent joint motion or coordinated joint motion. The

fourbar mechanisms resolved the joint misalignment problem, commonly occuring

when subjects have different hand sizes. The automatic calibration with the redun-

dant sensors made the kinematics estimation algorithm compatible with different

hand sizes. The Bowden cable transmission freed the exoskeleton from grounding;

thus, the exoskeleton can be integrated with other devices such as a wrist or upper-

body exoskeleton. C/C++ on Linux and NI-cRIO combinatoin are compatible with

many hardware and software. Different users can easily change the program due to

the OOP-based structures.

There are a number of avenues for making improvements to Maestro. The

Bowden cable-based actuation offers many advantages for Maestro, but neatly ar-

ranging the wires is an issue. The total of 16 Bowden cables actuate 8 SEA through

a pull-pull mechanism. The hanging cables sometimes get tangled with each other,

which is not aesthetically appealing. Developing a Bowden cable holder may be a

solution. Development of a comfortable and transparently force-transmitting pHRI

is a challenging and important problem to resolve. Based on a number of discus-

sions with occupational therapists and stroke and SCI subjects, we are developing

an improved version of pHRI that would migrate away from the use of Velcro straps,

a cumbersome method that requires a long don-doff time, commonly interferes with

muscle contractions, and would also allow for an intimate fit between the subject

and device. Another ongoing direction is to develop a customized glove, which is

seamlessly connected with rigid structures of the hand exoskeleton. A network of

string or elastic will be carefully routed throughout the glove such that it will wrap
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around the finger and hand in locations where creases in the human skin naturally

occur, ultimately avoiding any muscle bellies. The wire will secure the glove to the

hand using adjustable loop knots that tighten under tension and lengthen to accom-

modate all hand sizes. The overall shape would be similar to a complicated version

of shoe-lace tightening. The estimation and control of thumb joint angle and torque

are part of our ongoing work. Although we developed a thumb exoskeleton whose

workspace is close to the workspace of the bare thumb, accurate estimation and ac-

tuation of thumb are still challenging because accurate modeling of thumb anatomy

is challenging. According to the literature [102, 103], the thumb anatomy is more

diverse among people than fingers and cannot be easily represented by mechanical

joints. The challenge may be resolved with a statistical model-based approach in-

stead of a mechanical joint-based approach. The statistical mapping between the

thumb pose and the exoskeleton joints would be a model representing the complex

joint anatomy of the thumb.

The development of Maestro has led to a number of research avenues for

rehabilitation and assistive devices for the hand. First, a subject-specific assist-as-

needed controller has been developed with Maestro for effective rehabilitation of

patients with neurological disorders [93, 94]. The force-field is learned for a subject

with a neural-network model, and then the controller builds a force-field to assist the

subjects finger joint motion. Second, we have conducted experiments to develop an

optimal rehabilitatioini framework by studying human motor learning and re-learning

abilities. In the experiments, the challenges in robotic rehabilitation are modulated

in multidimensional space (task, assistance, and feedback), and the degree of motor
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learning and re-learning are evaluated during the experiments. Third, we are devel-

oping an advanced assessment tool with Maestro. Recent research has demonstrated

that robotic devices, especially robotic exoskeletons, have the potential to be used in

the assessment of stroke recovery. However, the works thus far have focused on the

assessment of arm function, leaving the use of robotic devices in assessing recovery

of hands unexplored. We are developing a new assessment metric, which can provide

highly repeatable, real-time, and automated feedback to the therapist and patient,

thus reducing assessment time. Last, another ongoing project is to integrate Maestro

with a wrist exoskeleton from Rice University [3] (Fig. 7.1). The biomechanics of

the hand are significantly coupled with that of the wrist because of the location of

muscles and tendon structure. The study on the coupled biomechanics between the

hand and wrist may reveal significant factors on rehabilitation of coupled body parts.

We have presented a detailed research result with Maestro on the control of

an assistive hand orthosis with the surface of EMG sensors for SCI patients. In

previous works, the active hand orthoses with EMG sensors actuated the hands of

SCI patients with only 1-DoF motion. However, the orthoses with 1-DoF motion are

capable of grasping only a limited number of objects required in ADL. To enable an

SCI subject to grasp various objects required in ADL, we developed a novel control

method for sEMG sensors with Maestro. First, we took advantage of compliant

actuation of Maestro. With this advantage, a subject with Maestro-alpha was able to

grasp various objects required in ADL with only four target hand poses. Second, we

found an optimal set of sEMG sensor locations to generate a target hand pose among

the four. Only with three sEMG sensors, an EMG-classification algorithm classified
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Figure 7.1: We are developing a hand-wrist exoskeleton by integrating Maestro with
a wrist exoskeleton from Rice University [3].
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noisy sEMG signals into one among the four target hand poses with high success

ratios. Last, we evaluated the hand functions of SCI patients with a standardized

hand function test (the Sollerman hand function test). The results show that the

hand functions of C6 and C7 SCI patients were improved with the proposed control

method and with Maestro.

The results showed several benefits of the proposed method. First, the selected

four target hand poses and three sEMG sensor locations would be beneficial to other

researchers for designing an active hand orthosis driven by EMG sensors. The results,

as shown in Sections 6.2 and Sectiion 6.3, can be applied not only to Maestro but

also to other hand orthoses whose actuation is compliant. Selecting a small number

of target hand poses may help to reduce failure rate of their classification algorithm,

and the optimal locations of EMG sensors may not reduce the success ratio, although

the number of EMG sensors is small, which is critical in practical applications. Also,

the small number of target hand poses suggests a potential design of a mechanical

system of hand orthsis with a small number of actuators. Last, the experimental

results in Section 6.4 show the potential of a multi-DoF assistive hand orthoses. To

date, all of the hand orthoses only showed the number of objects or shape of objects,

which can be grasped by the orthoses without performing a standardized test. In

Section 6.4, we showed the performance of a hand orthoses in ADL by performing

SHFT with and without the exoskeleton. The results show the merits and limits of

an active hand orthosis, which are useful for designing an improved version of hand

orthoses.

To develop an assistive device that can be practically used by SCI patients,

109



several technical problems need to be resolved. First, the hand exoskeleton needs

to be compact. Although we have observed that the grasping performance of SCI

subjects was improved with Maestro, hand function scores were not dramatically

improved. The main reason reported in the survey was due to the large size of

Maestro. Most subjects pointed out that the biggest challenge in performing tasks

in SHFT was due to the interference of Maestro with the workspace for tasks. For

example, although subjects could grasp a coin if a researcher passes it, the subjects

could not perform the task of picking up a coin from a purse because the size of purse

is smaller than the size of Maestro. Second, the compliance of the exoskeleton needs

to be selected in a systematic method. If spring stiffness is too low, subjects may not

apply a sufficient force to grasp objects. If stiffness is too high, subjects may feel large

pressure on their hands and may not delicately manipulate a hand task. Therefore,

when selecting adequate compliance of the exoskeleton, which is optimal for a subject

and tasks, the subject may efficiently perform tasks. Furthermore, actively controlled

variable stiffness may bring additional advantages. Third, a systematic arrangement

of the Bowden cable is needed. The Bowden cable-based transmission leads to many

advantages for Maestro. However, the Bowden cables also disturbed the motions

of hand, arm, and shoulder while performing tasks. Development of a systematic

method for arranging the Bowden cables may improve the efficiency of performing

hand tasks with a hand assistive device that uses Bowden cable transmission.

The EMG-driven interface can be improved in several ways. First, the training

of the EMG classification model needs to be simplified. The EMG signals change

depends on many conditions, including locations of sensors and degrees of fatigues.
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Thus, the EMG classification program inherently needs frequent training of the model

to achieve a robust classification performance. In our experiments, the training

usually took about 20 to 30 minutes. If a subject can train the model more often

with a simplified method, then the EMG classification model will exhibit higher

performance. Second, the selection of locations of sEMG sensors can be improved.

The three locations of sEMG sensors were selected based on an anatomy study

about the innervation from spinal cord to muscles. Due to this selection, we were

able to find the optimal sEMG sensor locations, which are advantageous for general

SCI patients. However, because the selection did not consider the symptoms of

individual SCI patients, the sensor locations are not optimized for an individual SCI.

Every SCI patient has different symptoms resulting in specific availability of muscle

signals. For the optimal development of a hand orthosis that uses EMG signals of

SCI patients, a developer needs to consider not only the general perspective of SCI

but also the individual perspective of SCI. Third, the EMG classification algorithm

can be improved by choosing recently devised machine-learning algorithms. Because

the development of a machine learning algorithm for EMG classification is not our

main research topic, we have implemented one of the most stable and well-known

algorithms for EMG classification. Introducing a state-of-art classification algorithm

such as a recursive neural network algorithm [127], which outperformed the previous

machine learning algorithms, may improve the performance for operating a hand

orthoses with sEMG sensors.

The robotics research on the hand function recovery of patients with neurolog-

ical disorders is still in the early stages, and patients are eagerly waiting for advances
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in the technology. Almost every SCI subject who tried Maestro was delighted just by

the resulting movements of their hands with their intentions regardless of the scores

of SHFT because it was an accomplishment of one of their lifes dreams. While con-

ducting research on rehabilitation and assistive devices, we have met many stroke and

SCI subjects who desperately want the recovery of their hand functions. We hope

that my research makes a contribution to the progress in the robotics technology for

these individuals.

112



Bibliography

[1] Christer Sollerman and Arvid Ejeskär. Sollerman hand function test: a stan-

dardised method and its use in tetraplegic patients. Scandinavian Journal of

Plastic and Reconstructive Surgery and Hand Surgery, 29(2):167–176, 1995.

[2] John W Garrett. The adult human hand: some anthropometric and biome-

chanical considerations. Human Factors: The Journal of the Human Factors

and Ergonomics Society, 13(2):117–131, 1971.

[3] Chad G Rose, Fabrizio Sergi, Youngmok Yun, Kaci Madden, Ashish D Desh-

pande, and Marcia K O’Malley. Characterization of a hand-wrist exoskeleton,

readapt, via kinematic analysis of redundant pointing tasks. In IEEE Inter-

national Conference on Rehabilitation Robotics, pages 205–210. IEEE, 2015.

[4] Youngmok Yun, Sarah Dancausse, Paria Esmatloo, Alfredo Serrato, Curtis A.

Merring, and Ashish D. Deshpande. An EMG-Driven assistive hand exoskele-

ton for spinal cord injury patients: Maestro. In IEEE International Conference

on Robotics and Automation (ICRA), 2017.

[5] Dariush Mozaffarian, Emelia J Benjamin, Alan S Go, Donna K Arnett, Michael J

Blaha, Mary Cushman, Sandeep R Das, Sarah de Ferranti, Jean-Pierre De-

sprés, Heather J Fullerton, et al. Executive summary: Heart disease and

113



stroke statistics-2016 update: A report from the american heart association.

Circulation, 133(4):447, 2016.

[6] National Spinal Cord Injury Statistical Center. Spinal cord injury (SCI) facts

and figures at a glance. 2016.

[7] Rieko Osu, Ken-ichi Morishige, Jun Nakanishi, Hiroyuki Miyamoto, and Mit-

suo Kawato. Practice reduces task relevant variance modulation and forms

nominal trajectory. Scientific reports, 5, 2015.

[8] Neville Hogan, Hermano Igo Krebs, J Charnnarong, P Srikrishna, and Andre

Sharon. MIT-MANUS: a workstation for manual therapy and training. I.

In IEEE International Workshop on Robot and Human Communication, pages

161–165. IEEE, 1992.

[9] Emanuel Todorov and Michael I Jordan. Optimal feedback control as a theory

of motor coordination. Nature neuroscience, 5(11):1226–1235, 2002.

[10] Kurt A Thoroughman and Reza Shadmehr. Learning of action through adap-

tive combination of motor primitives. Nature, 407(6805):742–747, 2000.

[11] Robert A Scheidt, Jonathan B Dingwell, and Ferdinando A Mussa-Ivaldi.

Learning to move amid uncertainty. Journal of neurophysiology, 86(2):971–

985, 2001.

[12] Reza Shadmehr and Ferdinando A Mussa-Ivaldi. Adaptive representation

of dynamics during learning of a motor task. The Journal of Neuroscience,

14(5):3208–3224, 1994.

114



[13] Francesca Gandolfo, FA Mussa-Ivaldi, and Emilio Bizzi. Motor learning

by field approximation. Proceedings of the National Academy of Sciences,

93(9):3843–3846, 1996.

[14] Sean P Dukelow, Troy M Herter, Kimberly D Moore, Mary Jo Demers, Janice I

Glasgow, Stephen D Bagg, Kathleen E Norman, and Stephen H Scott. Quan-

titative assessment of limb position sense following stroke. Neurorehabilitation

and neural repair, 24(2):178–187, 2010.

[15] Daichi Nozaki, Isaac Kurtzer, and Stephen H Scott. Limited transfer of learn-

ing between unimanual and bimanual skills within the same limb. Nature

neuroscience, 9(11):1364–1366, 2006.

[16] MA Urbin, Kimberly J Waddell, and Catherine E Lang. Acceleration met-

rics are responsive to change in upper extremity function of stroke survivors.

Archives of physical medicine and rehabilitation, 96(5):854–861, 2015.

[17] MA Urbin, Ryan R Bailey, and Catherine E Lang. Validity of body-worn

sensor acceleration metrics to index upper extremity function in hemiparetic

stroke. Journal of neurologic physical therapy: JNPT, 39(2):111, 2015.

[18] Gustavo Saposnik, Robert Teasell, Muhammad Mamdani, Judith Hall, William

McIlroy, Donna Cheung, Kevin E Thorpe, Leonardo G Cohen, Mark Bayley,

Stroke Outcome Research Canada (SORCan) Working Group, et al. Effective-

ness of virtual reality using wii gaming technology in stroke rehabilitation a

pilot randomized clinical trial and proof of principle. Stroke, 41(7):1477–1484,

2010.

115



[19] David Jack, Rares Boian, Alma S Merians, Marilyn Tremaine, Grigore C Bur-

dea, Sergei V Adamovich, Michael Recce, and Howard Poizner. Virtual reality-

enhanced stroke rehabilitation. IEEE transactions on neural systems and re-

habilitation engineering, 9(3):308–318, 2001.

[20] Alma S Merians, David Jack, Rares Boian, Marilyn Tremaine, Grigore C

Burdea, Sergei V Adamovich, Michael Recce, and Howard Poizner. Virtual

reality–augmented rehabilitation for patients following stroke. Physical ther-

apy, 82(9):898–915, 2002.
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[86] Camilla Sköld, Richard Levi, and Åke Seiger. Spasticity after traumatic spinal

cord injury: nature, severity, and location. Archives of physical medicine and

rehabilitation, 80(12):1548–1557, 1999.

[87] Christopher L Jones, Furui Wang, Robert Morrison, Niladri Sarkar, and Derek G

Kamper. Design and development of the cable actuated finger exoskeleton for

hand rehabilitation following stroke. IEEE/ASME Transactions on Mecha-

tronicss, 19(1):131–140, 2014.

[88] Andreas Wege and Günter Hommel. Development and control of a hand

exoskeleton for rehabilitation of hand injuries. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3046–3051. IEEE, 2005.

127



[89] Jan F Veneman, Ralf Ekkelenkamp, Rik Kruidhof, Frans CT van der Helm, and

Herman van der Kooij. A series elastic-and bowden-cable-based actuation sys-

tem for use as torque actuator in exoskeleton-type robots. The International

Journal of Robotics Research, 25(3):261–281, 2006.

[90] James S Sulzer, Michael A Peshkin, and James L Patton. Marionet: An

exotendon-driven rotary series elastic actuator for exerting joint torque. In

International Conference on Rehabilitation Robotics, pages 103–108. IEEE,

2005.
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