1,219 research outputs found

    Adaptive Reduced-Attitude Control for Spacecraft Boresight Alignment with Safety Constraints and Accuracy Requirements

    Full text link
    This paper investigates the boresight alignment control problem under safety constraints and performance requirements, involving pointing-forbidden constraint, attitude angular velocity limitation, and pointing accuracy requirement. Meanwhile, the parameter uncertainty issue is taken into account simultaneously. To address this problem, we propose a modified composite framework integrating the Artificial Potential Field (APF) methodology and the Prescribed Performance Control (PPC) scheme. The APF scheme ensures safety, while the PPC scheme is employed to realize an accuracy-guaranteed control. A Switched Prescribed Performance Function (SPPF) is proposed to facilitate the integration, which monitors various constraints and further establishes compatibility between safety and performance concerns by leveraging a special PPC freezing mechanism. To further address the parameter uncertainty, we introduce the Immersion-and-Invariance (I\&I) adaptive control technique to derive an adaptive APF-PPC composite controller, further guaranteeing the closed-loop system's asymptotic convergence. Finally, numerical simulations are carried out to validate the effectiveness of the proposed scheme.Comment: Submitted to T-AE

    Optimal tracking control for uncertain nonlinear systems with prescribed performance via critic-only ADP

    Get PDF
    This paper addresses the tracking control problem for a class of nonlinear systems described by Euler-Lagrange equations with uncertain system parameters. The proposed control scheme is capable of guaranteeing prescribed performance from two aspects: 1) A special parameter estimator with prescribed performance properties is embedded in the control scheme. The estimator not only ensures the exponential convergence of the estimation errors under relaxed excitation conditions but also can restrict all estimates to pre-determined bounds during the whole estimation process; 2) The proposed controller can strictly guarantee the user-defined performance specifications on tracking errors, including convergence rate, maximum overshoot, and residual set. More importantly, it has the optimizing ability for the trade-off between performance and control cost. A state transformation method is employed to transform the constrained optimal tracking control problem to an unconstrained stationary optimal problem. Then a critic-only adaptive dynamic programming algorithm is designed to approximate the solution of the Hamilton-Jacobi-Bellman equation and the corresponding optimal control policy. Uniformly ultimately bounded stability is guaranteed via Lyapunov-based stability analysis. Finally, numerical simulation results demonstrate the effectiveness of the proposed control scheme

    Optimized data-driven prescribed performance attitude control for actuator saturated spacecraft

    Get PDF
    This article addresses the crucial requirements in spacecraft attitude control: prescribed performance guarantees under actuator saturation and real-time cost optimization. As an application-oriented study, an approximate optimal prescribed performance attitude control scheme is proposed for this objective. To be specific, the prescribed performance constraint is converted into the system dynamics and merged into the adaptive dynamic programming design philosophy. Subsequently, the online learning law is designed based on a special saturated HJB error, in which a dynamical scale is introduced to adjust the learning gain by measured data. It enhances learning efficiency and applicability. Then, uniformly ultimately bounded stability of the whole system is achieved with guaranteed convergence of optimization by the Lyapunov-based stability analysis. Finally, both numerical simulation and hardware-in-the-loop experiments demonstrate the superiority and effectiveness of the proposed method. These attributes and outcomes attained will promote the development of practical space missions

    On finite-time anti-saturated proximity control with a tumbling non-cooperative space target

    Get PDF
    For the challenging problem that a spacecraft approaching a tumbling target with non-cooperative maneuver, an anti-saturated proximity control method is proposed in this paper. First, a brand-new appointed-time convergent performance function is developed via exploring Bezier curve to quantitatively characterize the transient and steady-state behaviors of the pose tracking error system. The major advantage of the proposed function is that the actuator saturation phenomenon at the beginning can be effectively reduced. Then, an anti-saturated pose tracking controller is devised along with an adaptive saturation compensator. Wherein, the finite-time stability of both the pose and its velocity error signals are guaranteed simultaneously in the presence of actuator saturation. Finally, two groups of illustrative examples are organized and verify that the close-range proximity is effectively realized even with unknown target maneuver

    Observer-based event-triggered and set-theoretic neuro-adaptive controls for constrained uncertain systems

    Get PDF
    In this study, several new observer-based event-triggered and set-theoretic control schemes are presented to advance the state of the art in neuro-adaptive controls. In the first part, six new event-triggered neuro-adaptive control (ETNAC) schemes are presented for uncertain linear systems. These comprehensive designs offer flexibility to choose a design depending upon system performance requirements. Stability proofs for each scheme are presented and their performance is analyzed using benchmark examples. In the second part, the scope of the ETNAC is extended to uncertain nonlinear systems. It is applied to a case of precision formation flight of the microsatellites at the Sun-Earth/Moon L1 libration point. This dynamic system is selected to evaluate the performance of the ETNAC techniques in a setting that is highly nonlinear and chaotic in nature. Moreover, factors like restricted controls, response to uncertainties and jittering makes the controller design even trickier for maintaining a tight formation precision. Lyapunov function-based stability analysis and numerical results are presented. Note that most real-world systems involve constraints due to hardware limitations, disturbances, uncertainties, nonlinearities, and cannot always be efficiently controlled by using linearized models. To address all these issues simultaneously, a barrier Lyapunov function-based control architecture called the segregated prescribed performance guaranteeing neuro-adaptive control is developed and tested for the constrained uncertain nonlinear systems, in the third part. It guarantees strict performance that can be independently prescribed for each individual state and/or error signal of the given system. Furthermore, the proposed technique can identify unknown dynamics/uncertainties online and provides a way to regulate the control input --Abstract, page iv

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Prescribed Time Time-varying Output Formation Tracking for Uncertain Heterogeneous Multi-agent Systems

    Full text link
    The time-varying output formation tracking for the heterogeneous multi-agent systems (MAS) is investigated in this paper. First, a distributed observer is constructed for followers to estimate the states of the leader, which can ensure that the estimation error converges to the origin in the prescribed time. Then, the local formation controller is designed for each follower based on the estimation of the observer, under which, the formation errors converge to the origin in the prescribed time as well. That is, the settling time of the whole system can be predefined in advance. It's noted that not only the uncertainties in the state matrix but also the uncertainties in the input matrix are considered, which makes the problem more practical. Last, a simulation is performed to show the effectiveness of the proposed approach

    Adaptive and Optimal Motion Control of Multi-UAV Systems

    Get PDF
    This thesis studies trajectory tracking and coordination control problems for single and multi unmanned aerial vehicle (UAV) systems. These control problems are addressed for both quadrotor and fixed-wing UAV cases. Despite the fact that the literature has some approaches for both problems, most of the previous studies have implementation challenges on real-time systems. In this thesis, we use a hierarchical modular approach where the high-level coordination and formation control tasks are separated from low-level individual UAV motion control tasks. This separation helps efficient and systematic optimal control synthesis robust to effects of nonlinearities, uncertainties and external disturbances at both levels, independently. The modular two-level control structure is convenient in extending single-UAV motion control design to coordination control of multi-UAV systems. Therefore, we examine single quadrotor UAV trajectory tracking problems to develop advanced controllers compensating effects of nonlinearities and uncertainties, and improving robustness and optimality for tracking performance. At fi rst, a novel adaptive linear quadratic tracking (ALQT) scheme is developed for stabilization and optimal attitude control of the quadrotor UAV system. In the implementation, the proposed scheme is integrated with Kalman based reliable attitude estimators, which compensate measurement noises. Next, in order to guarantee prescribed transient and steady-state tracking performances, we have designed a novel backstepping based adaptive controller that is robust to effects of underactuated dynamics, nonlinearities and model uncertainties, e.g., inertial and rotational drag uncertainties. The tracking performance is guaranteed to utilize a prescribed performance bound (PPB) based error transformation. In the coordination control of multi-UAV systems, following the two-level control structure, at high-level, we design a distributed hierarchical (leader-follower) 3D formation control scheme. Then, the low-level control design is based on the optimal and adaptive control designs performed for each quadrotor UAV separately. As particular approaches, we design an adaptive mixing controller (AMC) to improve robustness to varying parametric uncertainties and an adaptive linear quadratic controller (ALQC). Lastly, for planar motion, especially for constant altitude flight of fixed-wing UAVs, in 2D, a distributed hierarchical (leader-follower) formation control scheme at the high-level and a linear quadratic tracking (LQT) scheme at the low-level are developed for tracking and formation control problems of the fixed-wing UAV systems to examine the non-holonomic motion case. The proposed control methods are tested via simulations and experiments on a multi-quadrotor UAV system testbed
    corecore