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Abstract

For the challenging problem that a spacecraft approaching a tumbling target with non-

cooperative maneuver, an anti-saturated proximity control method is proposed in this paper.

First, a brand-new appointed-time convergent performance function is developed via explor-

ing Bézier curve to quantitatively characterize the transient and steady-state behaviors of the

pose tracking error system. The major advantage of the proposed function is that the actuator

saturation phenomenon at the beginning can be effectively reduced. Then, an anti-saturated

pose tracking controller is devised along with an adaptive saturation compensator. Wherein,

the finite-time stability of both the pose and its velocity error signals are guaranteed simulta-

neously in the presence of actuator saturation. Finally, two groups of illustrative examples are

organized and verify that the close-range proximity is effectively realized even with unknown

target maneuver.

1 Introduction

The past few decades have witnessed the burgeoning development of on-orbit servicing in light of

various meaningful space applications such as repair of malfunctioning satellites, debris removal,

on-orbit assembly and so on [1–4]. As for the orbit-servicing targets, they are usually divided into

two categories, i.e., cooperative and non-cooperative ones, based on whether the space targets have

active cross-link communication and cooperative identifiers with the servicing spacecraft or not.

Before executing the orbit-servicing task, close-range rendezvous and proximity is an inevitable

process in which precise observation for the orbit-servicing target is implemented to determine the

docking ports and time (for the cooperative target) or capture ports and time(for the non-cooperative
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target) [5]. Thus, highly reliable and precise rendezvous and proximity control methods are essential

to guarantee the safety and success of the on-orbit servicing task [6, 7].

Based on the above discussions, there are many rendezvous and proximity control methods

proposed in the existing works. For example, a robust H∞ control method was investigated for

spacecraft rendezvous problem via using Clohessy–Wiltshire (CW) equations to describe the relative

motion dynamics between two spacecraft in [8]. A robust model predictive control (MPC) scheme

was devised to solve the problem of spacecraft rendezvous based on the Hill–Clohessy–Wiltshire

(HCW) model in the presence of additive disturbances in [9]. Owing to the effectiveness of MPC

in coping with the state constraints, MPC-based rendezvous law was further investigated in [10].

Moreover, in light of the high robustness and low sensitivity to the uncertainties and disturbances,

sliding mode control (SMC)-based rendezvous and proximity methods have attracted considerable

attention such as in [11, 12] and references therein. Although effective to solve the rendezvous

problem with a cooperative target, the above mentioned control methods are seriously dependent

on the information shared between the spacecrafts in the target’s reference frame. Once the target

is non-cooperative, the orbit and attitude information cannot be known by the servicing spacecraft.

In this case, the foregoing corresponding control methods are inadequate obviously to the non-

cooperative target.

To solve the above mentioned defects existed in the rendezvous control methods for coopera-

tive targets, many attempts have been made to handle the relative motion tracking problem for

non-cooperative targets. With consideration of the loss of target’s orbit information, LOS frame

established in the servicing spacecraft was proposed in view of the easy access of relative distance

(by laser radar or angle-only navigation algorithm [13, 14]) and LOS direction information from the

navigation devices [15]. Based on the LOS coordinate frame, a fixed-time fault-tolerant controller

was devised for the spacecraft rendezvous and docking with a freely tumbling target via explor-

ing the SMC technique in [16]. Moreover, with consideration of the target’s active maneuver, an

adaptive SMC-based motion tracking control law was presented in [17]. In practice, actuator satu-

ration is often encountered, which will degrade the control performance and even cause the system

instability [18]. To guarantee the stability and safety of the final phase proximity operations with a

non-cooperative target, a saturated control law was developed to solve the motion tracking problem

with consideration of the path constraints and actuator magnitude constraints in [19]. An adaptive

passivity-based SMC method was proposed for LOS rendezvous considering the input saturation

problem [20]. Although there are various effective motion tracking control methods presented in the

existing works, how to ensure the high-quality tracking performance behaviors (including the tran-

sient and steady-state behaviors) is still an open issue and interesting field for the on-orbit servicing

task.

A particular quantitative performance bound technique, prescribed performance control (PPC),

was proposed by Bechlioulis and Rovithakis [21], and then has attracted wide attention in the con-

trol system design for robotic manipulators, unmanned surface vehicles and vehicle suspensions [22–

26]. Due to its unique advantage in quantitatively characterizing and synthesizing the transient and

steady-state tracking performance, PPC was adopted to develop stable attitude controllers for sin-

gle or multiple spacecraft in [27–29]. Moreover, the spatial motion constraints during the spacecraft
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proximity operations are approximated by two performance functions in the PPC structure. And an

effective pose controller was designed to guarantee the motion tracking performance for spacecraft

rendezvous in [30]. To further accelerate the convergence rate, finite-time or appointed-time PCC

methods have been proposed in the existing works [31–34]. For example, an appointed-time pre-

scribed performance control was proposed for the spacecraft rendezvous orbit and attitude control

in [35]. By the user’s specific choice for the parameters of the performance function, the finite-time

or appointed-time convergence can be achieved for the controlled systems.

However, a major defect in the aforementioned PPC control methods should be considered in

practical engineering, that is the actuator saturation induced by high sensitivity to the performance

bounds. When the system state reaches the performance bound, the transformed state will be pretty

large, which easily causes the actuator saturation [36]. One of the reasons that the relevant PPC

control is sensitive to the performance bound is that the initial derivative of the performance function

is non-zero and often very large. This forces the controlled system state change very fast and easily

leads to a very large control input signal exceeding the actuator saturation bound. Although the

saturation problem can be eased by constructing a compensation controller with an auxiliary system

[37], non-smooth change of the system states will cause quite a lot of fuel consumption, which is not

permitted in many practical applications including the on-orbit servicing tasks.

Inspired by the foregoing observations, this paper tries to propose a brand-new anti-saturated

appointed-time pose tracking control method for spacecraft rendezvous with a tumbling non-cooperative

target. Compared with the existing works, the contributions of our work are twofold:

• A novel appointed-time convergent performance function is developed via exploring Bézier

curve. Compared with existing performance functions in [21–23, 25, 26, 32], the initial deriva-

tive of the proposed one is zero, and the transient behaviors can be tuned intuitively by the

users. This is the first way to reduce the actuator saturation during the close-range proximity

operations.

• Based on the devised performance function, an anti-saturated pose tracking controller is de-

veloped with an adaptive saturation compensator. Compared with the traditional finite-time

control methods, the tedious discontinuous fractional type of finite-time controllers in the ex-

isting works is avoided, while the finite-time convergence of both the pose and its derivatives

signals are achieved simultaneously.

The remainder of this paper is organized as follows. Sec. 2 shows the problem statement with

description of the relative motion dynamics during the close-range proximity operations. Anti-

saturated appointed-time pose tracking controller is devised in Sec. 3 along with stability analysis.

Illustrative simulations of the proposed control method are organized in Sec. 4 and some conclusions

are drawn in Sec. 5.

Notations : ⊤, ∥ • ∥, | • |, σ(•) are the vector transpose, the Euclidean norm of a vector, the

absolute value of a real number, and the eigenvalue of a nonsingular matrix, respectively. Rn, Rn+

represent the set of n-dimensional real numbers and n-dimensional positive real numbers, respec-

tively. N, N+ denote the set of non-negative integers and positive integers, respectively.
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2 Relative motion dynamics

Before moving, it is assumed that two spacecraft are in orbit around the earth. Wherein, one is the

servicing spacecraft (chaser for brevity), which has the control ability to approach the target. The

other is the target spacecraft (target for brevity), which is tumbling and has no active interaction with

the chaser. To develop the subsequent relative motion dynamics, the following coordinate frames

are defined. FI : OIXIYIZI represents the Earth-centered inertial frame with the origin OI being

located in the earth center of mass, and axes OIXI , OIZI pointing to the spring equinox and north

pole, respectively. Employing right-hand coordinate system can generate OIYI . Fs : OcXsYsZs

denotes the line of sight (LOS) coordinate system with the origin Oc being the mass center of the

target. Axis OcXs is the sight direction of chaser, which is pointed to the target. Axis OcYs is

vertical to the longitudinal plane containing axis OcXs. Axis OcZs is generated by applying the

right-hand coordinate system. Fbt : OtXtYtZt and Fbc : OcXcYcZc are, respectively, the body-fixed

frames of the target and the chaser.

Reference Inertial
Frame

IX
IY

IZ

IX

IY

IZ

sX

Mass Center of 
the Chaser

Mass Center of
the Target IO

cO

tO

q
q sY

sZ

Figure 1: Sketch of the line of sight (LOS) coordinate frame

2.1 Relative translational motion

As Fig. 1 shows, the relative translational motion between the chaser and target is described in the

LOS coordinate frame [17, 38]:
r̈ − r

(
q̇2ε + q̇2βcos

2qε
)
= atx + dx − ucx

rq̈ε + 2ṙq̇ε + rq̇2β sin qε cos qε = aty + dy − ucy

−rq̈β cos qε + 2rq̇β q̇ε sin qε − 2ṙq̇β cos qε = atz + dz − ucz

(1)
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where r, qε, qβ ∈ R denote the distance between the chaser and the target, the elevation angle, and

azimuth angle in the LOS coordinate frame, respectively. Moreover, as Fig. 1 shows, The initial

elevation and azimuth angles satisfy qε ∈ (−π/2, π/2) , qβ ∈ (−π, π). at = [atx, aty, atz]
⊤ ∈ R3 is the

accelerated velocity of the tumbling target, which is unknown for the chaser. d = [dx, dy, dz]
⊤ ∈ R3

represents the unknown space perturbations. uc = [ucx, ucy, ucz]
⊤ ∈ R3 is the accelerated velocity

of the chaser to be designed.

Without loss of generality, the final relative distance is supposed to be rd > 0. When the

non-cooperative target is tumbling, the position of the feature point on the target will be changed.

Consequently, the desired orbital information will be changed. It is assumed that the unit vector of

the feature point in the body-fixed coordinate is defined as nb, then the desired LOS orientation is

−nb. The projection of the desired LOS orientation in the inertial frame FI is:

ρI = Cbt
I (−nbrd) = [XI , YI , ZI ]

⊤
, (2)

where Cbt
I denotes the direction cosine matrix from the body-fixed frame Fbt of the target to the

inertial frame FI . With consideration of the transformation from the LOS frame Fs to the inertial

frame FI , vector ρI also equals to

ρI = Cs
Iρs = Cs

I [rd, 0, 0]
⊤
, (3)

where ρs is the vector defined in the LOS frame Fs. Direction cosine matrix CI
s is defined as

CI
s = [Cs

I ]
⊤
=

 cos qε cos qβ sin qε − cos qε sin qβ

− sin qε cos qβ cos qε sin qε sin qβ

sin qε 0 cos qβ

. (4)

Accordingly, the desired LOS distance, elevation angle and azimuth angle ρd = [rd, qεd, qβd]
⊤
and

their time-derivatives can be calculated by the foregoing two equations. By defining the translational

motion tracking errors re = r − rd, qεe = qε − qεd, qβe = qβ − qβd, then one can obtain the tracking

error system for the relative translational motion, i.e.,{
ṡ1 = s2

ṡ2 = fo + go (at + d− uc) ,
(5)

where s1 = [re, qεe, qβe]
⊤
, ṡ2 = ṡ1 = [ṙe, q̇εe, q̇βe]

⊤
. Nonlinear functions fo and go are expressed by

fo =


r
(
q̇2ε + q̇2βcos

2qε

)
+ r̈d

−2ṙq̇ε/r − q̇2β sin qε cos qε + q̈εd

2q̇β q̇ε tan qε − 2ṙq̇β/r + q̈βd


go = diag {1, 1/r,−1/ (r cos qε)} .

(6)
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2.2 Relative rotational motion

In the foregoing subsection, the relative translational motion dynamics between the chaser and target

have been established. In this part, the relative rotational motion dynamics will be given. First, we

apply the quaternion to described the attitude motion for nonsingular attitude representation. The

kinematics and dynamics of the chaser attitude are given by [39, 40] as ϱ̇c =
1

2
A (ϱc)ωc

Jcω̇c = −ω×
c Jcωc + τ c + τ d,

(7)

where ϱc = [ϱcv, ϱc4]
⊤
is the unit quaternion for the attitude representation, which satisfies ϱ⊤

cvϱcv+

ϱ2c4 = 1. ωc denotes the angle velocity of the chaser. Jc is the uncertain inertia matrix, which is

uncertain due to the fuel consumption and system uncertainties. τ c is the control torque to be

designed. τ d is the space perturbations, which are unknown but bounded. Matrix A (ϱc) equals to

A (ϱc) =

[
Av (ϱc)

A4 (ϱc)

]
=

[
ϱc4I3 + ϱ×

cv

−ϱ⊤
cv

]
.

To facilitate the subsequent attitude controller design, the desired attitude command of the

chaser should be preplanned. First, we assume that the measuring sensors and solar panels are

installed on the Xc and Yc-axes of the body-fixed frame Fbc, respectively. To ensure the effective

observing and monitoring for the noncooperative target, the center axes of the measure sensors

should be along with the vector xbcd to be given later. Moreover, to obtain more solar energy, the

solar panels should be vertical with the solar ray. The solar ray represented in the inertial frame

FI is denoted as ζ ∈ R3. Then, in the body-fixed frame Fbc of the chaser, the desired triaxial unit

vector for the chaser is defined as 
xbcd =

ρI

rd

ybcd =
ρ×
I ζ∥∥ρ×
I ζ
∥∥

zbcd = x×
bcdybcd.

(8)

Based on the above equation, the translational matrix from the initial frame FI to the desired

body-fixed frame Fcd of the chaser is expressed by

CI
cd = [xbcd,ybcd, zbcd]

⊤ ∈ R3×3. (9)

The desired attitude command in quaternion ϱcd = [ϱ⊤
cdv, ϱcd4]

⊤ can be computed by solving the

following equation

CI
cd =

(
ϱ2cd4 − ϱ⊤

cdvϱcdv

)
I3 + 2ϱcdvϱ

⊤
cdv − 2ϱcd4

[
ϱ×
cdv

]
. (10)

Accordingly, the attitude tracking error vector of the chaser is defined as ϱce = ϱc ⊗ ϱ−1
cd =[

ϱ⊤
cev, ϱce4

]⊤
with ϱ−1

cd =
[
−ϱ⊤

cd, ϱcd4
]⊤

. The angle velocity tracking error vector is defined as

ωce = ωc −Ccd
c ωcd with translational matrix Ccd

c =
(
ϱ2ce4 − ϱ⊤

cevϱcev

)
I3 + 2ϱcevϱ

⊤
cev − 2ϱce4ϱ

×
cev.
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Then, the attitude tracking error system in the proximity phase is obtained as
ϱ̇ce =

1

2
A (ϱce)ωce

Jcω̇ce = −ω×
c Jcωc − Jc

(
Ccd

c ω̇cd − ω×
ceC

cd
c ωcd

)
+ τ c + τ d.

(11)

Based on (11), by defining two new state variables s3 = ϱcev, s4 = ṡ3 = ϱ̇cev, then a strict-

feedback form for Eq. (11) is obtained as{
ṡ3 = s4

ṡ4 = fa (ϱce, ϱ̇ce) + ga (ϱce) τ
∗
c + τ ∗

d,
(12)

with

fa (ϱce, ϱ̇ce) = −M−1 (ϱce) [C (ϱce, ϱ̇ce) ϱ̇cev + G (ϱce)] , (13a)

ga (ϱce) = M−1 (ϱce) , (13b)

τ ∗
c = P⊤τ c, (13c)

τ ∗
d = ga (ϱce)P

⊤τ d. (13d)

where matrix P = [Av (ϱce) /2]
−1

,M (ϱce) = P⊤JcP , G (ϱce) = P⊤
(
ω×

c Jcωc − Jcω
×
ceωc + JcC

cd
c ω̇cd

)
,

C (ϱce, ϱ̇ce) = −M (ϱce) Ṗ
−1

P .

Based on Eqs. (5) and (12), by defining χ1 =
[
s⊤1 , s

⊤
3

]⊤
, χ2 = χ̇1 =

[
s⊤2 , s

⊤
4

]⊤ ∈ R6, the

coupling relative translational and rotational motion dynamics under the actuator saturation are

expressed by 

χ̇1 = χ2

χ̇2 = f1 (χ1,χ2) + g1 (χ1,χ2) sat(u) + d1(χ1,χ2)

= f1 (χ1,χ2) + (g1 (χ1,χ2)− 1) sat(u) + d1(χ1,χ2) + sat(u)

= f∗
1 (χ1,χ2) + sat(u),

(14)

where f∗
1 (χ1,χ2) = f1 (χ1,χ2)+(g1 (χ1,χ2)− 1) sat(u)+d1(χ1,χ2) with f1 (χ1,χ2) =

[
f⊤
o ,f

⊤
a

]⊤
∈ R6×6,

g1 (χ1,χ2) = diag {go, ga} ∈ R6×6, u = [−u⊤
c , τ

∗T
c ]⊤ ∈ R6, d1 = [(goat+god)

⊤, τ ∗T
d ]⊤ ∈ R6. sat(u)

is the output of the actuator and satisfies

sat (ui) =


ui,max, if ui ≥ ui,max

ui, otherwise

ui,min, if ui ≤ ui,max,

(15)

where ui,max and ui,min are the relevant maximal and minimal saturation bounds of ith control

input.

As presented in (14), the coupling nonlinear term f∗
1 (χ1,χ2) is tedious and unknown. Based on
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the existing reference works [41, 42], a radial basis neural network (RBFNN) has been widely used

to approximate the unknown nonlinearities. Without loss of generality, f∗
1 (χ1,χ2) = W⊤φ (x)

with W ∈ Rm×6 and φ (x) ∈ Rm being the optimal weight vector and Gaussian basis function,

respectively (m is the number of hidden layer nodes, x =
[
χ⊤

1 ,χ
⊤
2 , sat

⊤(u)
]⊤

is the input vector

the RBFNN). Note that the optimal weight vector W is unknown but bounded, which requires to

estimate.

Based on the established relative motion dynamic model in Eq. (14), the control objectives of

this paper are twofold: (1) The orbital and attitude tracking errors χ1 and χ2 can be steered by

the designed controller to a small neighbourhood around the origin with guaranteed performance

within finite time. (2) The negative effects introduced by control saturation can be compensated by

devising an adaptive anti-saturation controller.

3 Main Results

In this section, an adaptive anti-saturated appointed-time convergent controller will be developed

for the tracking error system of the close-range proximity operations in Eq. (14).

3.1 Appointed-time convergent performance function with initial zero

derivative via exploring Bézier curve

To guarantee the tracking performance and reduce the impact of the actuator saturation problem,

a brand-new appointed-time convergent performance function is designed in this part.

To start, according to [43], suppose that there are n + 1 preassigned reference points in the 2D

plane (the x-axes denotes time), i.e., P0 (t0, y0) , P1 (t1, y1) , ..., Pn (tn, yn). Then, the Bezier curve

B (α) can be described as B (α) = β0 (α)P0 + β1 (α)P1 + · · ·+ βn (α)Pn

βi (α) =
n!

i! (n− i)!
αi(1− α)

n−i
, i = 0, 1, 2, ..., n

(16)

where α ∈ [0, 1] is a time-varying parameter. To guarantee the appointed-time convergence, the

time series t0, t1, t2, ..., tn satisfy t0 < t1 < t2 < tn ≤ Ta with Ta is appointed by the users. And

then, parameter α is chosen as α = t/Ta which meets the requirement α ∈ [0, 1].

For the Bézier curve introduced in (16), there are two inherent properties [43] in the following:

Property 1. The Bézier curve B (α) will always go across and be tangent with the first and the

final points P0 (t0, y0) , Pn (tn, yn).

Property 2. The Bézier curve B (α) is always be trapped into the convex hull formulated by the

chosen reference points Pi (ti, yi) (i = 0, 1, 2, ..., n).

Based on the foregoing two properties, a corollary is obtained as follows.

Corollary 1. If the first three reference points P0 (t0, y0), P1 (t1, y1) and P2 (t2, y2) are selected

to satisfy y0 = y1 = y2, then the developed Bézier curve B (α) will go across the first point and
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derivative of B (α) with respect to t at t0 is zero. Similarly, if the last three points Pn−2 (tn−2, yn−2),

Pn−1 (tn−1, yn−1) and Pn (tn, yn) (n ≥ 3) are selected to satisfy yn−2 = yn−1 = yn, then B(α(Ta)) =

yn and dB (α) /dt = 0.

Based on the aforementioned analysis, without loss of generality, a brand-new appointed-time

convergent performance function µ (t) is generated by constructing a Bézier curve with five points.

Namely, its detailed form is given by

µ (t) =

{
β0 (α) y0 + β1 (α) y1 + · · ·+ β6 (α) y6, if t ≤ Ta

y6, if t > Ta,
(17)

where βj (α) = 6!
j!(6−j)!α

j(1− α)
6−j

, α = t/Ta ∈ [0, 1] (j = 0, 1, · · · , 6), y0 = y1 = y2 = µ (0) =

µ0, y4 = y5 = y6 = µ (Ta) = µ∞ with µ0 > µ∞ > 0 being two constants. y5 is selected to satisfy

y5 ∈ (µ0, µ∞) and can be adjusted for different convergent speed.

To verify the effectiveness of the proposed performance µ(t) in Eq. (17), a comparative simulation

is carried out against the traditional appointed-time performance in Ref. [44] with the same initial

value µ0 = 8, the same final value µ∞ = 0.5 and the same appointed time Ta = 8 s. The simulation

result is presented in Fig. 2.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Figure 2: Comparative simulation of different appointed-time performance functions

From Fig. 2 one can obtain that the initial convergent speed of the proposed function is signifi-

cantly slower than the traditional one because of the initial zero derivative. In practical applications,

the input saturation problem usually occurs at the initial time due to the big initial state errors.

The proposed function provides a wider range for the tracking control system, by which the effect of

the input saturation problem can be reduced. And in the meantime, the appointed-time convergent

property is remained.

Remark 1. Appointed-time convergent performance function proposed in Eq. (17) is defined by 7

reference points, with only P3(t3, y3) for adjusting the convergent speed. Actually, extra reference
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points can be inserted into the Bézier curve if the control system has complex requirements for the

whole convergent process. Consequently, the proposed performance function µ(t) is more flexible than

the traditional one in practical situations.

3.2 Anti-saturated appointed-time pose tracking controller design

In this part, an anti-saturated appointed-time pose tracking controller is designed to realize the

performance function. Before moving, a vital assumption is given as follows.

Assumption 1. The uncertain accelerated velocity at of the tumbling target and space perturbations

d, τ d in Eqs. (1) and (7) are bounded.

Remark 2. Owing to the physical limitations for the tumbling target, its accelerated velocity is

bounded. Moreover, if the space perturbations are sufficiently large, the close-range proximity oper-

ations will not be completed with restricted control input. Thus, Assumption 1 is reasonable.

To facilitate the subsequent controller design, an auxiliary state variable p ∈ R6 is defined as

p = χ2 + λϕ (χ1) , (18)

where λ = diag {λ1, λ2, ..., λ6} ∈ R6×6 is positive-definite diagonal matrix. Based on [41], the

element of vector ϕ (χ1) is designed in the following form

ϕ (χ1,i) =

{
sgnγ (χ1,i) , if |χ1,i| > ε0,i, pi ̸= 0 or pi = 0

b1,iχ1,i + b2,isgn
2 (χ1,i) , if |χ1,i| ≤ ε0,i & pi ≠ 0,

(19)

where γ ∈ (0, 1) , 0 < ε0,i ≤ (µi,∞/λi)
1/γ

, b1,i = (2− γ) εγ−1
0,i , b2,i = (γ − 1) εγ−2

0,i are design

parameters. sgnγ (χ1,i) = |χ1,i|γsgn (χ1,i). sgn2 (χ1,i) = |χ1,i|2sgn (χ1,i). Then, the time-derivative

of ϕ (χ1,i) in Eq. (19) equals to

ϕ̇ (χ1,i) =

{
γ|χ1,i|γ−1

χ̇1,i, if |χ1,i| > ε0,i, pi ̸= 0 or pi = 0

b1,iχ̇1,i + 2b2,i |χ1,i| χ̇1,i, if |χ1,i| ≤ ε0,i & pi ≠ 0.
(20)

To guarantee the pose tracking performance during the close-range proximity operations, the

following performance inequality is imposed on the auxiliary state variable p = [p1, p2, ..., p6]
⊤

as{
−δiµi (t) < pi (t) < µi (t) if pi (0) ≥ 0

−µi (t) < pi (t) < δiµi (t) if pi (0) < 0,
(21)

where µi (t) (i = 1, 2, ..., 6) is derived from Eq. (17). δi ∈ (0, 1] is a positive constant. Then, the

standard tracking error Λi = pi (t) /µi (t) satisfies

Λi =
pi (t)

µi (t)
∈ Ωi =

(
−δi, δi

)
=

{
(−δi, 1) , if pi (0) ≥ 0

(−1, δi) , if pi (0) < 0.
(22)
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In PPC structure, a constraint-free translation function is often used to remove the defined

performance constraints as presented in (21). Namely, there exists a monotone function P (•) such
that 

pi(t) = P (θi)µi (t)

lim
θi→+∞

P (θi) = δi

lim
θi→−∞

P (θi) = −δi,

(23)

where θi ∈ R is the newly established state variable. Without loss of generality, function P (•) in

this work is chosen as P (θi) =
[
δiδi (exp (2θi)− 1)

]
/
[
δi exp (2θi) + δi

]
. Then, the newly established

state is obtained as

θi = P−1 (Λi) =
1

2
ln

(
δiδi + δiΛi

δiδi − δiΛi

)
. (24)

Based on the foregoing analysis, an adaptive anti-saturated appointed-time pose tracking con-

troller is devised for system (14) as

u = u0︸︷︷︸
stable control term

+ uc︸︷︷︸
anti−saturation control term

, (25)

with

u0 = −kξθ − λϕ̇ (χ1) + diag

{
µ̇ (t)

µ (t)

}
p− ϖ̂ψ2 (x)Λ

ψ (x) ∥Λ∥+ ι0
, (26)

uc is derived by the following adaptive projection rule

u̇c = Proj (uc,Λ) =

{
−κ1uc − ucΛ

⊤diag−1{µ(t)}(uc+∆u)
u⊤

c uc+|ρ0| , if ∥uc∥ ≥ Ξ0

0, otherwise,

ρ̇0 = Proj (ρ0,Λ) =

{
−κ2ρ0 − sign(ρ0)Λ

⊤diag−1{µ(t)}(uc+∆u)
u⊤

c uc+|ρ0| , if ∥uc∥ ≥ Ξ0

0, otherwise,

(27)

where k = diag {k1, k2, ..., k6} , ξ = diag {ξ1, ξ2, ..., ξ6} ∈ R6×6 are, respectively, the positive-

definite control gain matrix and intermediate parameters. Wherein, each element of ξ equals to

ξi=δiδi/
[
(Λi + δi)

(
δi − Λi

) (
δi + δi

)]
(i = 1, 2, ..., 6). ∆u = sat (u) − u is the difference between

control input command and the output of the actuator. ι0 and Ξ0 are two small positive constants.

κ1 and κ2 are the relevant positive constants. ψ (x) is the product of the 2-norm of the Gaussian

basis function φ (x), i.e, ψ (x) = ∥φ (x)∥. ϖ̂ is an adaptive parameter to be defined later, which

has the following adaptive law

˙̂ϖ = −κ3ϖ̂ +
ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0
, (28)

where κ3 is a positive constant.

Remark 3. Based on the devised performance function in Eq. (16), it is easy to find the zero

derivative of the performance function makes the tracking error system response more smooth. This

is conducive to reduce the existence of saturation phenomenon. Moreover, the anti-saturated pose
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tracking controller devised in Eq. (27) is also used to compensate the negative effects induced by the

actuator saturation. Thus, there are two anti-saturation ways in our work.

3.3 Stability analysis

Based on the aforementioned anti-saturated appointed-time pose tracking controller design, an im-

portant result is addressed in the following theorem.

Theorem 1. Under the devised pose controller and adaptive laws in Eqs. (24)–(28), when the

control gain ki satisfies ki > (1 + δi)
2
/8 (i = 1, 2, ..., 6), then the auxiliary state variable p will

be steered to a small neighbourhood around origin with guaranteed prescribed performance within

appointed time instant Ta,max = max {Ta,i} (i = 1, 2, ..., 6). Both the pose tracking errors χ1 and χ2

are finite-time convergent. Moreover, all the involved close-loop signals for the close-range proximity

operations are uniformly ultimately bounded.

Proof. The proof of Theorem 1 is divided into two steps as follows.

Step 1. Prove the convergence of the auxiliary tracking error p for close-range proximity op-

erations within appointed time instant Ta,max = max {Ta,i} (i = 1, 2, ..., 6). First, considering

Λi = pi/µi (t) (i = 1, 2, ..., 6), there exists

Λ̇i =

(
pi

µi (t)

)′

=
ṗi

µi (t)
− µ̇i (t)

µ2
i (t)

pi. (29)

The above equation is also equivalent to Λ̇ = diag−1 {µ (t)} [ṗ− diag {µ̇ (t)/µ (t)}p]. To guar-

antee the prescribed pose tracking performance in the close-range operations defined in Eq. (21),

the following Lyapunov function V1 is constructed
V1 = V11 + V12

V11 =
1

2
Λ⊤Λ

V12 =
1

2
u⊤
c uc +

1

2
ρ20 +

µmin

2
ϖ̃2,

(30)

where µmin = min
i=1,2,...,6

{1/µi,0}. ϖ̃ = ϖ − ϖ̂ is the estimation error. Based on Eq. (30), taking the

time-derivative of V1 yields

V̇11 = Λ⊤Λ̇

= Λ⊤diag−1 {µ (t)}
[
ṗ− diag−1 {µ (t)} diag {µ̇ (t)}p

]
.

(31)
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Substituting Eqs. (14), (20) and (25) into (31) gets

V̇11 = Λ⊤diag−1 {µ (t)}
[
f∗
1 (χ1,χ2) + sat(u) + λϕ̇ (χ1)− diag−1 {µ (t)} diag {µ̇ (t)}p

]
= Λ⊤diag−1 {µ (t)}

[
f∗
1 (χ1,χ2) + u+∆u+ λϕ̇ (χ1)− diag−1 {µ (t)} diag {µ̇ (t)}p

]
= Λ⊤diag−1 {µ (t)}

[
−kξθ − ϖ̂ψ2 (x)Λ

ψ (x) ∥Λ∥+ ι0
+ uc +∆u+ f∗

1 (χ1,χ2)

]
≤ −

6∑
i=1

kiΛiξiθi
µi (t)

−µmin
ϖ̂ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0
+Λ⊤diag−1 {µ (t)} [f∗

1 (χ1,χ2) + uc +∆u]

(32)

To facilitate the subsequent simplification for Eq. (32), we define a function as follows

ℏ (Λi) =
1

Λi
ln

(
δiδi + δiΛi

δiδi − δiΛi

)
(i = 1, 2, ..., 6), (33)

Taking the derivative of ℏ (Λi) with respect to Λi gets

ℏ̇ (Λi) =
dℏ
dΛi

=
1

Λi

[
δi + δi

(Λi + δi)
(
δi − Λi

) − 1

Λi
ln

(
δiδi + δiΛi

δiδi − δiΛi

)]
(34)

As the above equation presents, it is easy to verify that when 0 < Λi < δi, ℏ̇ (Λi) > 0, and when

−δi < Λi < 0, ℏ̇ (Λi) < 0. Thus, one can obtain the minimal value ℏmin of function ℏ (Λi), namely,

it is derived by applying the L’Hospital’s rule

ℏmin (Λi) = lim
Λi→0+

ℏmin (Λi) = lim
Λi→0−

ℏmin (Λi)

=
d2θi/dΛi

1

∣∣∣∣
Λi=0

=
δi + δi

(Λi + δi)
(
δi − Λi

) ∣∣∣∣∣
Λi=0

=
δi + δi
δiδi

(35)

Based on the above equation, the following inequality holds

Λiξiθi =
Λiδiδi

(Λi + δi)
(
δi − Λi

) (
δi + δi

) × ln

(
δiδi + δiΛi

δiδi − δiΛi

)
≤ Λ2

i

(Λi + δi)
(
δi − Λi

) . (36)

According to Eq. (14), one can find that term Λ⊤diag−1 {µ (t)}f∗
1 (χ1,χ2) satisfies

∥Λ⊤diag−1 {µ (t)}f∗
1 (χ1,χ2)∥ ≤

∥∥diag−1 {µ (t)}
∥∥ ∥Λ∥ ∥f∗

1 (χ1,χ2)∥

≤ µmin
µmax

µmin
∥W∥ ∥Λ∥ ∥φ (x)∥

≤ µminϖ ∥Λ∥ψ (x) ,

(37)

where µmax = max
i=1,2,...,6

{1/µi,∞}. ϖ = µmax ∥W∥ /µmin. ψ (x) is defined in Eq. (27). Based on Eqs.
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(36) and (37), Eq. (32) becomes

V̇11 ≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) +Λ⊤diag−1 {µ (t)} (uc +∆u)

+ µmin

(
ϖ ∥Λ∥ψ (x)− ϖ̂ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0

)

≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) +Λ⊤diag−1 {µ (t)} (uc +∆u)

+ µmin

(
ϖ̃ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0
+
ϖ ∥Λ∥ψ (x) ι0
ψ (x) ∥Λ∥+ ι0

)

≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) +Λ⊤diag−1 {µ (t)} (uc +∆u)

+ µmin

(
ϖ̃ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0
+ ι0ϖ

)

(38)

With consideration of ϖ̃ = ϖ − ϖ̂, ˙̃ϖ = ϖ̇ − ˙̂ϖ = − ˙̂ϖ, then, taking the derivative of V12 in Eq.

(30) yields

V̇12 = u⊤
c u̇c + ρ0ρ̇0 + µminϖ̃ ˙̃ϖ. (39)

Accordingly, two cases are considered as follows.

Case 1.1: ∥uc∥ ≥ Ξ0. Then, substituting the first two subequations in Eq. (27) into (39) gets

V̇12 =− κ1u
⊤
c uc −

u⊤
c ucΛ

⊤diag−1 {µ (t)} (uc +∆u)

u⊤
c uc + |ρ0|

− κ2ρ
2
0 −

|ρ0|Λ⊤diag−1 {µ (t)} (uc +∆u)

u⊤
c uc + |ρ0|

− µminϖ̃ ˙̂ϖ

=− κ1u
⊤
c uc − κ2ρ

2
0 − µminϖ̃ ˙̂ϖ −Λ⊤diag−1 {µ (t)} (uc +∆u) .

(40)

Based on Eqs. (28), (38) and (40), the derivative of V1 in Eq. (30) satisfies

V̇1 = V̇11 + V̇12 ≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) − κ1u
⊤
c uc − κ2ρ

2
0

+ µminϖ̃

(
ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0
− ˙̂ϖ

)
+ϖι0µmin

≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) − κ1u
⊤
c uc − κ2ρ

2
0

− µminκ3
2

ϖ̃2 +
µminκ3

2
ϖ2 +ϖι0µmin

≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) − κ1u
⊤
c uc − κ2ρ

2
0 −

µminκ3
2

ϖ̃2 + ℵ0,

(41)
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where ℵ0 = µminκ3ϖ
2/2 +ϖι0µmin is a positive constant.

Accordingly, there exists E0 = min
i=1,2,...,6

{
2ki/

[
µi,0(Λi,max + δi)

(
δi − Λi,min

)]
, 2κ1, 2κ2, µminκ3

}
such that

V̇1 ≤− E0V1 + ℵ0, (42)

Based on Eq. (42), one can obtain that V1 ≤ exp (−E0t)
(
V1 (0)− ℵ0

E0

)
+ ℵ0

E0
. Thus, when ∥uc∥ ≥

Ξ0, all the adaptive parameters are uniformly ultimately bounded. Meanwhile, owing to the

appointed-time convergence of the performance function µi(t), one can find that the state vari-

able pi is appointed-time convergent to the envelope generated by the steady-state performance

bound µi,∞ (i = 1, 2, ..., 6).

Case 1.2: ∥uc∥ < Ξ0. Then, substituting the second two subequations in Eq. (27) into (39) gets

V̇12 =− µminϖ̃ ˙̂ϖ (43)

In this regard, based on Eqs. (28), (38) and (43), the derivative of V1 in Eq. (30) satisfies

V̇1 = V̇11 + V̇12 ≤−
6∑

i=1

kiΛ
2
i

µi(t)(Λi + δi)
(
δi − Λi

) +Λ⊤diag−1 {µ (t)}×

(uc +∆u) + µminϖ̃

(
ψ2 (x)Λ⊤Λ

ψ (x) ∥Λ∥+ ι0
− ˙̂ϖ

)
+ϖι0µmin

≤−
6∑

i=1

Λ2
i

µi (t)

(
ki

(Λi + δi)
(
δi − Λi

) − 1

2

)
− µminκ3

2
ϖ̃2

+
µminκ3

2
ϖ2 +ϖι0µmin +

1

2

6∑
i=1

(uc,i +∆ui)
2

µi (t)

≤−
6∑

i=1

Λ2
i

µi (t)

(
ki

(Λi + δi)
(
δi − Λi

) − 1

2

)
− µminκ3

2
ϖ̃2 + ℵ0,

(44)

where ℵ0 = µminκ3ϖ
2/2 +ϖι0µmin +max{ 1

2

6∑
i=1

(uc,i +∆ui)
2
/µi (t)} is a lumped term. Note that

Ξ0 is very small positive constant. In this case, the anti-saturation controller term uc is very small,

which in turn means the difference ∆u between the desired control input command u and actuator

output sat(u) is very small. Thus, term 1
2

6∑
i=1

(uc,i +∆ui)
2
/µi (t) is bounded by a small constant.

And the lumped term ℵ0 is bounded. For term
ki

(Λi+δi)(δi−Λi)
− 1

2 , when it is large than zero, one can

find that k1 >
1
2 (Λi + δi)

(
δi − Λi

)
. Considering Λi, δi and δi defined in (22), it is easy to obtain

that the maximal value of function 1
2 (Λi + δi)

(
δi − Λi

)
with respect to the variable Λi, namely

its maximal value is (1 + δi)
2
/8 (i = 1, 2, ..., 6). Thus, when ki > (1 + δi)

2
/8 (i = 1, 2, ..., 6), the

following stability analysis is similar to that as presented in Case 1.1, which is omitted for brevity.

Consequently, based on the stability analysis in Case 1.1 and Case 1.2, one can find that, when

ki > (1 + δi)
2
/8 (i = 1, 2, ..., 6), the defined auxiliary state variable p is appointed-time convergent

to the steady-state performance bound within time instant Ta,max = max{Ta,i (i = 1, 2, ..., 6)} and
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all the adaptive parameters are uniformly ultimately bounded.

Step 2. The finite-time convergence analysis for the pose tracking errors χ1 and χ2.

Case 2.1: When pi = 0 (i = 1, 2, ..., 6), based on Eq. (18), one can obtain that

χ2,i + λiϕ (χ1,i) = 0. (45)

Then, the following Lyapunov function is defined

V2,i =
1

2
χ2
1,i. (46)

Substituting Eq. (45) into the time-derivative of V2,i yields

V̇2,i = χ1,iχ̇1,i = χ1,iχ2,i

= −λiχ1,iϕ (χ1,i)

= −λiχ1,isgn
γ (χ1,i)

= −λiχ1,i|χ1,i|γsgn (χ1,i)

= −λi|χ1,i|γ+1
= −λi2

γ+1
2 V

γ+1
2

2,i .

(47)

According to Theorem 4.2 in Ref. [45], one can find that the tracking error χ1,i will converge to

zero when t ≥ Ta,max + T1,i with T1,i satisfying

T1,i ≤
1

λi2
γ+1
2

(
1− γ+1

2

)V 1− γ+1
2

2,i (χ1,i (0)) =
2

1−γ
2

λi (1− γ)
V

1−γ
2

2,i (χ1,i (0)). (48)

Case 2.2: When pi ∈ (−δiµi,∞, 0) ∪
(
0, δiµi,∞

)
|χ1,i| ≥ ε0,i (i = 1, 2, ..., 6), based on Eq. (18),

one can obtain that

χ2,i + λiϕ (χ1,i) = pi ∈
(
δiµi,∞, δiµi,∞

)
. (49)

Eq. (49) is equivalent to

χ̇1,i = −
(
λi −

pi
sgnγ (χ1,i)

)
sgnγ (χ1,i)

= −
(
λi −

pi
|χ1,i|γsgn (χ1,i)

)
|χ1,i|γsgn (χ1,i).

(50)

Based on the above equation, when λi −
pi

|χ1,i|γsgn (χ1,i)
≤ 0, tracking error χ1,i is convergent. If

the Lyapunov function is chosen in the same form with Eq. (46), substituting (50) into the time-

derivative of V2,i can yield the similar form in (47). Thus, tracking error χ1,i is finite-time convergent

within (Ta,max + T2,i), wherein the detailed form of T2,i is similar to T1,i as presented in Eq. (48).

The convergence domain of χ1,i is expressed by

λi −
pi

|χ1,i|γsgn (χ1,i)
≤ 0⇒ |χ1,i|γ ≤ pi

λi
⇒ χ1,i ≤

(
pi
λi

)1/γ

≤
(
µi,∞

λi

)1/γ

. (51)
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Case 2.3: When pi ∈ (−δiµi,∞, 0) ∪
(
0, δiµi,∞

)
|χ1,i| < ε0,i =

(
µi,∞

λi

)1/γ

. According to the

analysis in Case 2.2, one can find that when |χ1,i| < ε0,i =

(
µi,∞

λi

)1/γ

, χ1,i is finite-time con-

vergent within (Ta,max + T2,i). Thus, based on Eqs. (18) and (19), one can obtain that

|χ2,i| = |pi − λiϕ (χ1,i)|

≤ |pi|+ λi |ϕ (χ1,i)|

= |pi|+ λi
∣∣b1,iχ1,i + b2,isgn

2 (χ1,i)
∣∣

≤ |pi|+ λi |b1,iχ1,i|+ λi
∣∣b2,isgn2 (χ1,i)

∣∣
≤ |pi|+ λi

(
b1,i |χ1,i|+ b2,i|χ1,i|2

)
< |pi|+ λi

(
b1,iε0,i + b2,iε

2
0,i

)
= |pi|+ λi

[
(2− γ) εγ−1

0,i ε0,i + (γ − 1) εγ−2
0,i ε

2
0,i

]
= |pi|+ λi

[
(2− γ) εγ0,i + (γ − 1) εγ0,i

]
= |pi|+ λiε

γ
0,i

= |pi|+ µi,∞

≤ 2µi,∞

(52)

Accordingly to the stability analysis in Step 1 and Step 2 above, the proof of Theorem 1 is

completed.

4 Numerical Simulations

In this section, two simulation examples of close-range proximity control with a tumbling non-

cooperative target are organized to verify the effectiveness of the proposed adaptive finite-time

anti-saturated guaranteed control method.

4.1 Close-range proximity control with a tumbling target

In this simulation example, the chaser and target are in orbit around the earth, and the initial

relative distance r is 0.3 km. Initial orbit elements of the two spacecraft are presented in Tab. 1.

The desired final relative distance rd is set as 0.02 km. Initial quaternions of the chaser and target

are ϱc = [−0.33,−0.22,−0.22, 0.89]
⊤

and ϱt = [−0.31, 0.55,−0.32, 0.71]
⊤
, respectively. Inertia

matrix of the chaser is designed as Jc = diag {100/6, 100/6, 100/6}, which is inaccessible to the

controller. Unit vector of the feature point in the chaser’s body-fixed coordinate is assumed as

nb = [1, 0, 0]
⊤
. During the close-range proximity process, the direction of the solar ray in the

inertial frame is assumed to remain unchanged and set as ζ =
[√

2/2,−
√
2/2, 0

]⊤
. In this example,

the considered target has no active control forces or torques, and is tumbling with a initial angular

velocity ωt = [1.5, 1.0, 1.2]
⊤

deg/s.
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Table 1: Initial orbital elements

Initial orbit elements Chaser Target
Semi-major axis (km) 7999.961 7999.971

Eccentricity 0.01 0.01
Inclination (deg) 50 50

Right ascension of ascending node (deg) 10 10
Argument of perigee (deg) 29.99 29.98

True anomaly (deg) 111.082 111.092

For the novel appointed-time convergent performance function in Eq. (16), the relative distance

r is firstly nondimensionalized as r̄ = r/(0.5 km) and the elevation and azimuth angles are specified

in radians for the same order of magnitude. The reference points are designed as y0 = y1 = y2 =

[0.3, 0.1, 0.5, 1, 1, 1]
⊤
, y3 = 0.5y0, y4 = y5 = y6 = [0.01, 0.02, 0.02, 0.01, 0.01, 0.01]

⊤
. The appointed

time Ta for each dimension is similarly designed as Ta = 100 s. According to Corollary 1, the

performance function µ(t) = [µ1(t), · · · , µ6(t)]
⊤

satisfies µ(0) = y0, and µ(t) = y6 for all t ≥ Ta.

Parameters of the proposed controller (24) are designed as k = diag {300, 300, 300, 200, 200, 200},
λ = diag {0.2, 0.2, 0.2, 0.2, 0.2, 0.2}, γ = 0.8 and δ = 1, κ1 = κ2 = 0.05, κ3 = 0.1. The orbit and

attitude control saturation limits are given as 4.9 N/kg and 1.0 N·m. The corresponding simulation

results are presented in Figs. 3-7.

The constructed auxiliary state variable p(t) is presented in Fig. 3, together with the corre-

sponding appointed-time convergent performance function µ(t). Apparently, p is steered to a small

neighbourhood around origin with guaranteed prescribed performance within appointed time instant

Ta. The LOS states r, qϵ and qβ and their desired trajectories are given in Fig. 4. One can obtain

that the LOS states can reach the desired trajectories before Ta = 50 s and accurately track them

during the rendezvous process. Fig. 5 presents the tracking process of the attitude, and the same

conclusion as the LOS states can be drawn. The orbit and attitude control inputs are presented in

Fig. 6. The input saturation problem occurs at the beginning due to the big initial state errors.

However, due to the novel appointed-time performance function with initial zero derivative and the

proposed adaptive anti-saturation controller, the tracking control system is always stable and the

influence of the saturation is reduced by the adaptive projection rule. The whole proximity and

tracking process is presented in Fig. 7 with the origin of coordinate fixed on the target. It is shown

that the chaser can move along with the tumbling target and stay relatively still with the target,

thus the proximity and docking mission is well realized.

4.2 Close-range proximity control with a tumbling and maneuvering tar-

get

In this simulation example, the initial system states, parameters, as well as the control parameters

are selected the same with section 4.1, except for non-cooperative acceleration caused by the target.

The acceleration at is designed as at = [1.5 sin(0.5t), −1.0 cos(1.0t), 0.8 sin(0.3t) + 0.6 sin(0.7t)]
⊤
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Figure 3: Auxiliary state variable p under the proposed performance functions (Sec. 4.1)
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Figure 6: Control inputs uc and τ c (Sec. 4.1) Figure 7: 3D Proximity trajectory (Sec. 4.1)

N/kg, which means that the target is not only tumbling, but has large unknown maneuvers during

the close-range proximity process. The considered example puts forward pretty high request to the

robustness of the control system. The corresponding simulation results of this example are presented

in Figs. 8-12.

The constructed auxiliary state variable p(t) and its performance function µ(t) is presented in

Fig. 8. The convergent process of p(t) under µ(t) is basically the same as Fig. 3, which indicates

that the proposed control method has strong robustness against the large non-cooperative maneuver

at. The LOS states r, qϵ and qβ and their desired trajectories are given in Fig. 9. The dynamic

performance of the tracking system is not influenced by the non-cooperative maneuver, while the

steady-state error of r(t) is obviously increased. It is noteworthy that the increased steady-state

error is still within the prescribed stable region, and can be reduced by decreasing the prescribed

value. There is not much change of the attitude tracking error in Fig. 10, as the attitude control

system is not changed. The robustness of the proposed method against unknown non-cooperative

maneuver can be viewed in Fig. 11, as the unknown maneuver is compensated by the control inputs.

Finally, the whole proximity and tracking process is also presented in Fig. 12.

5 Conclusions

This paper has proposed a brand-new anti-saturated guaranteed performance control method for

the close-range proximity operations with a non-cooperative tumbling target. An appointed-time

convergent performance function has been design with initial zero derivative based on Bézier curve.

Moreover, an anti-saturated pose tracking controller has been constructed to realize the performance

function. Simulation examples show that the constructed auxiliary states are appointed-time stable

within the designed performance functions and the proximity and docking mission is well realized

even with the maneuvering non-cooperative space target.

For future work, more non-cooperative properties of the target can be considered, e.g. the

unavailable or inaccurate relative motion states. Furthermore, as there may exist solar panels and
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Figure 8: Auxiliary state variable p under the proposed performance functions (Sec. 4.2)
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Figure 9: LOS states tracking their desired
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Figure 12: 3D Proximity trajectory (Sec.
4.1)

manipulators around the main body of the target, the obstacle avoidance rendezvous control problem

is worth investigating to provide a safe rendezvous trajectory for the chaser spacecraft.
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