3,381 research outputs found

    Tietojenkäsittelytieteen päivät 2010

    Get PDF

    A Real-Time Unsupervised Neural Network for the Low-Level Control of a Mobile Robot in a Nonstationary Environment

    Full text link
    This article introduces a real-time, unsupervised neural network that learns to control a two-degree-of-freedom mobile robot in a nonstationary environment. The neural controller, which is termed neural NETwork MObile Robot Controller (NETMORC), combines associative learning and Vector Associative Map (YAM) learning to generate transformations between spatial and velocity coordinates. As a result, the controller learns the wheel velocities required to reach a target at an arbitrary distance and angle. The transformations are learned during an unsupervised training phase, during which the robot moves as a result of randomly selected wheel velocities. The robot learns the relationship between these velocities and the resulting incremental movements. Aside form being able to reach stationary or moving targets, the NETMORC structure also enables the robot to perform successfully in spite of disturbances in the enviroment, such as wheel slippage, or changes in the robot's plant, including changes in wheel radius, changes in inter-wheel distance, or changes in the internal time step of the system. Finally, the controller is extended to include a module that learns an internal odometric transformation, allowing the robot to reach targets when visual input is sporadic or unreliable.Sloan Fellowship (BR-3122), Air Force Office of Scientific Research (F49620-92-J-0499

    A Hormone Inspired System for On-line Adaptation in Swarm Robotic Systems

    Get PDF
    Individual robots, while providing the opportunity to develop a bespoke and specialised system, suffer in terms of performance when it comes to executing a large number of concurrent tasks. In some cases it is possible to drastically increase the speed of task execution by adding more agents to a system, however this comes at a cost. By mass producing relatively simple robots, costs can be kept low while still gaining the benefit of large scale multi-tasking. This approach sits at the core of swarm robotics. Robot swarms excel in tasks that rely heavily on their ability to multi-task, rather than applications that require bespoke actuation. Swarm suited tasks include: exploration, transportation or operation in dangerous environments. Swarms are particularly suited to hazardous environments due to the inherent expendability that comes with having multiple, decentralised agents. However, due to the variance in the environments a swarm may explore and their need to remain decentralised, a level of adaptability is required of them that can't be provided before a task begins. Methods of novel hormone-inspired robotic control are proposed in this thesis, offering solutions to these problems. These hormone inspired systems, or virtual hormones, provide an on-line method for adaptation that operates while a task is executed. These virtual hormones respond to environmental interactions. Then, through a mixture of decay and stimulant, provide values that grant contextually relevant information to individual robots. These values can then be used in decision making regarding parameters and behavioural changes. The hormone inspired systems presented in this thesis are found to be effective in mid-task adaptation, allowing robots to improve their effectiveness with minimal user interaction. It is also found that it is possible to deploy amalgamations of multiple hormone systems, controlling robots at multiple levels, enabling swarms to achieve strong, energy-efficient, performance

    Advancing Pattern Recognition Techniques for Brain-Computer Interfaces: Optimizing Discriminability, Compactness, and Robustness

    Get PDF
    In dieser Dissertation formulieren wir drei zentrale Zielkriterien zur systematischen Weiterentwicklung der Mustererkennung moderner Brain-Computer Interfaces (BCIs). Darauf aufbauend wird ein Rahmenwerk zur Mustererkennung von BCIs entwickelt, das die drei Zielkriterien durch einen neuen Optimierungsalgorithmus vereint. Darüber hinaus zeigen wir die erfolgreiche Umsetzung unseres Ansatzes für zwei innovative BCI Paradigmen, für die es bisher keine etablierte Mustererkennungsmethodik gibt
    corecore