4,917 research outputs found

    Learning preferences for personalisation in a pervasive environment

    Get PDF
    With ever increasing accessibility to technological devices, services and applications there is also an increasing burden on the end user to manage and configure such resources. This burden will continue to increase as the vision of pervasive environments, with ubiquitous access to a plethora of resources, continues to become a reality. It is key that appropriate mechanisms to relieve the user of such burdens are developed and provided. These mechanisms include personalisation systems that can adapt resources on behalf of the user in an appropriate way based on the user's current context and goals. The key knowledge base of many personalisation systems is the set of user preferences that indicate what adaptations should be performed under which contextual situations. This thesis investigates the challenges of developing a system that can learn such preferences by monitoring user behaviour within a pervasive environment. Based on the findings of related works and experience from EU project research, several key design requirements for such a system are identified. These requirements are used to drive the design of a system that can learn accurate and up to date preferences for personalisation in a pervasive environment. A standalone prototype of the preference learning system has been developed. In addition the preference learning system has been integrated into a pervasive platform developed through an EU research project. The preference learning system is fully evaluated in terms of its machine learning performance and also its utility in a pervasive environment with real end users

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Is adaptation of e-advertising the way forward?

    Get PDF
    E-advertising is a multi-billion dollar industry that has shown exponential growth in the last few years. However, although the number of users accessing the Internet increases, users don’t respond positively to adverts. Adaptive e-advertising may be the key to ensuring effectiveness of the ads reaching their target. Moreover, social networks are good sources of user information and can be used to extract user behaviour and characteristics for presentation of personalized advertising. Here we present a two-sided study based on two questionnaires, one directed to Internet users and the other to businesses. Our study shows that businesses agree that personalized advertising is the best way for the future, to maximize effectiveness and profit. In addition, our results indicate that most Internet users would prefer adaptive advertisements. From this study, we can propose a new design for a system that meets both Internet users’ and businesses’ requirements

    Personalised privacy in pervasive and ubiquitous systems

    Get PDF
    Our world is edging closer to the realisation of pervasive systems and their integration in our everyday life. While pervasive systems are capable of offering many benefits for everyone, the amount and quality of personal information that becomes available raise concerns about maintaining user privacy and create a real need to reform existing privacy practices and provide appropriate safeguards for the user of pervasive environments. This thesis presents the PERSOnalised Negotiation, Identity Selection and Management (PersoNISM) system; a comprehensive approach to privacy protection in pervasive environments using context aware dynamic personalisation and behaviour learning. The aim of the PersoNISM system is twofold: to provide the user with a comprehensive set of privacy protecting tools and to help them make the best use of these tools according to their privacy needs. The PersoNISM system allows users to: a) configure the terms and conditions of data disclosure through the process of privacy policy negotiation, which addresses the current “take it or leave it” approach; b) use multiple identities to interact with pervasive services to avoid the accumulation of vast amounts of personal information in a single user profile; and c) selectively disclose information based on the type of information, who requests it, under what context, for what purpose and how the information will be treated. The PersoNISM system learns user privacy preferences by monitoring the behaviour of the user and uses them to personalise and/or automate the decision making processes in order to unburden the user from manually controlling these complex mechanisms. The PersoNISM system has been designed, implemented, demonstrated and evaluated during three EU funded projects

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Learning Behaviour for Service Personalisation and Adaptation

    Get PDF
    Context-aware applications within pervasive environments are increasingly being developed as services and deployed in the cloud. As such these services are increasingly required to be adaptive to individual users to meet their specific needs or to reflect the changes of their behavior. To address this emerging challenge this paper introduces a service-oriented personalisation framework for service personalisation with special emphasis being placed on behavior learning for user model and service function adaptation. The paper describes the system architecture and the underlying methods and technologies including modelling and reasoning, behavior analysis and a personalisation mechanism. The approach has been implemented in a service-oriented prototype system, and evaluated in a typical scenario of providing personalised travel assistance for the elderly using the help-on-demand services deployed on smartphone

    Harnessing Technology: preliminary identification of trends affecting the use of technology for learning

    Get PDF
    corecore