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ABSTRACT 

 

With ever increasing accessibility to technological devices, services and applications 

there is also an increasing burden on the end user to manage and configure such 

resources.  This burden will continue to increase as the vision of pervasive 

environments, with ubiquitous access to a plethora of resources, continues to become a 

reality.  It is key that appropriate mechanisms to relieve the user of such burdens are 

developed and provided.  These mechanisms include personalisation systems that can 

adapt resources on behalf of the user in an appropriate way based on the user's current 

context and goals.  The key knowledge base of many personalisation systems is the set 

of user preferences that indicate what adaptations should be performed under which 

contextual situations. 

 

This thesis investigates the challenges of developing a system that can learn such 

preferences by monitoring user behaviour within a pervasive environment.  Based on 

the findings of related works and experience from EU project research, several key 

design requirements for such a system are identified.  These requirements are used to 

drive the design of a system that can learn accurate and up to date preferences for 

personalisation in a pervasive environment.  A standalone prototype of the preference 

learning system has been developed.  In addition the preference learning system has 

been integrated into a pervasive platform developed through an EU research project.  

The preference learning system is fully evaluated in terms of its machine learning 

performance and also its utility in a pervasive environment with real end users. 
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1 INTRODUCTION 

1.1 Background 

It is interesting to consider how many computational devices the average person owns.  

Just over a decade ago the list was likely restricted to a family desktop PC.  Nowadays 

it is common for any single person to own a combination of devices such as laptops, 

desktop PCs, smart phones/PDAs and mobile phones to name a few.  In addition, the 

current versions of such devices are much more sophisticated than their earlier 

counterparts providing enhanced connectivity options as well as multiple services and 

applications.  Further, devices previously considered as "dumb" such as washing 

machines, fridges and even toasters are becoming increasingly sophisticated in terms of 

the computational and communication power they have.  It is clear that computational 

technology is filtering into our everyday lives to a greater and greater degree.  This is 

the view of the world that Weiser envisaged over 20 years ago and what he termed as 

ubiquitous (or pervasive) environments.  As technology continues along this trend we 

must consider the impact on end users in such complex, resource rich environments. 

 

To ensure the continued acceptance of additional computational technology, 

mechanisms must be provided to shield the user from complexity and aid them in 

resource management tasks.  Such mechanisms should configure resources on behalf of 

the user, where possible, in line with user needs and goals.  Recently, location aware 

applications have arrived on the market with the ability to adapt beneficially based on 

user location.  Additionally many of the latest smart phones include sensors such as 

digital compasses, proximity sensors, ambient light sensors, etc. that allow applications 

to respond to other user context information.  This is a step towards resource 

management aids; however, basing adaptations on context alone can only aid the 

individual user to a certain degree.  For example, one individual may want their smart 

phone to use the cheapest network when they are at home whereas another user may 

want their smart phone to use the network with best Quality of Service (QoS).  It is not 

possible to correctly manage resources on behalf of the user without personal 

information.   
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In pervasive environments, personalisation mechanisms typically use preference rules, 

or preferences for short, to manage resources on an individual basis.  The preferences 

outline what an individual user prefers in some situation.  Personalisation mechanisms 

can then configure or adapt resources based on the preferences so that resources may 

appear differently to different people, or to the same person in different situations.  The 

individual user may define preferences manually; however, to reduce this burden on the 

end user many personalisation mechanisms utilise machine learning techniques to 

gather and manage preferences on behalf of the end user.   

 

A typical approach is to monitor how the user interacts with resources in the current 

situation and then mine preferences from this monitored data.  For example, if an 

individual user always selects the cheapest network when at home, this behaviour would 

be mined as a preference that states "when the user is at home, always select the 

cheapest network".  However, there are many issues related to learning preferences for 

personalisation in pervasive environments.  A suitable learning algorithm is key.  The 

algorithm should be able to produce accurate, human understandable preferences from 

the available input data, respond rapidly to new user behaviours to ensure an up to date 

preference set and handle an ever changing problem domain where resources come and 

go. 

1.2 Aims and Objectives 

The central research question to be answered in this thesis is: 

How can a system learn and provide accurate and up to date preferences for 

personalisation in a pervasive environment? 

The main aim of this thesis is to provide a solution to this question through the 

development of a preference learning system that can be deployed in a pervasive 

environment.  The system should provide and maintain a set of accurate and up to date 

preferences to drive personalised adaptations for an individual user within the 

environment.  The learning system should also fulfil other requirements of the pervasive 

problem domain.  

 

The derivation of this requirements list is a key objective of this research work.  It is 

necessary to identify how preference learning systems are typically implemented in 

pervasive environments in order to assess their ability to learn accurate and up to date 
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preferences and identify areas for improvement.  A review of related literature 

highlights that batch learning algorithms are the technique of choice for preference 

learning despite scheduled executions and batch processing constraints in such an 

incremental and real time problem domain.  Notably, batch algorithms can provide 

accurate preferences but their scheduled executions often mean that preferences are not 

always up to date.  Therefore, this thesis questions the utility of batch algorithms for 

preference learning and aims to identify if incremental learning techniques provide a 

more efficient solution for preference learning in pervasive environments. 

 

The solution presented and evaluated in this body of work is the DIANNE (Dynamic 

Incremental Associative Neural NEtwork).  The DIANNE is a single layer, feed forward 

neural network that aims to learn accurate and up to date preferences.  The design of the 

DIANNE topology and learning algorithm are driven by the identified set of 

requirements.  Learning is incremental with inputs processed as they occur in the 

environment rather than during scheduled batch executions.  The preference related 

outputs from the DIANNE are used to drive the personalised configuration and 

adaptation of resources on behalf of the user depending on their current situation. 

 

The DIANNE assumes a temporal relationship between situations and preference 

related behaviours.  Therefore the longer that a behaviour prevails in some situation, the 

stronger the association between the behaviour and the situation.  An objective of this 

research is to investigate this assumption to see if such a relationship holds in reality 

and hence if it is a good basis for DIANNE learning. 

 

A key challenge faced by a preference learning system is that of concept drift.  This 

occurs when user behaviour changes in such a way that it is no longer in line with the 

learnt preferences.  When this occurs the preference learning system must rapidly 

respond to update the learnt preferences and bring them back in line with current user 

behaviours.  For an incremental learning system a significant issue is the rate at which 

such responses are implemented.  On the one hand the learner should not take an 

unsatisfactorily long time to update but on the other hand single instance updates are 

also undesirable.  The aim is to provide a solution that performs such updates 

appropriately and in line with the expectations of end users.  The proposal and 

evaluation of such a solution is an important objective of this work. 
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Finally, it is the aim of this research work to assess whether the provided solution (i.e. 

the DIANNE) satisfies all the necessary requirements and ultimately whether the 

provided solution answers the initial research question.  To accomplish this the 

implementation of a sufficient testing and evaluation strategy is key.  The aim is to 

analyse the solution both in terms of its performance as a learning algorithm and also in 

terms of its utility as a preference learner in a pervasive environment. 

1.3 Key Contributions 

The main contributions of this work are: 

 

1. Identification of the key requirements for the provision of an efficient solution for 

preference learning in a pervasive environment. 

The work presented in this thesis draws on many influences from both background 

literature and previous experience on research projects.  Key challenges have been 

identified from both influences based on the consideration of past works by third parties 

(discussed in Chapter 2) as well as lessons learnt from personal experiences (discussed 

in Chapter 3).  In particular, the Personalisation system developed in the EU FP7 

DAIDALOS project has been cited as a prototype from which issues have been 

identified and lessons learnt.  Based on the identified challenges, a requirements set for 

preference learning systems is identified.  Two key outcomes include: 

 the identification that an incremental learning approach is the most natural and 

flexible way to handle incremental tasks, such as learning user preferences. 

 the identification that the temporal duration in which a preference prevails is an 

important piece of information that is often overlooked by preference learning 

systems.  Utilising this information enables challenges such as negative 

preference learning to be overcome. 

 

2. Design of Dynamic Incremental Associative Neural NEtwork (DIANNE) topology. 

The DIANNE is a single layer, feed forward network that has been designed specifically 

to meet the identified requirements related to learning preferences for personalisation in 

a pervasive environment.  The DIANNE represents associations between context 

vectors and preference vectors as linear connections.  The use of a single layer neural 

network allows for rapid and non-complex updating of internal knowledge and hence is 
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an ideal topology for an incremental learning solution.  It is shown that a single layer 

topology is sufficient to represent the learning problems of the pervasive domain.  Due 

to the absence of hidden layers it is also possible to translate internal network 

knowledge into human understandable form.  This is a necessity in such a user centric 

problem domain. 

 

3. Design of DIANNE temporal learning algorithm. 

The DIANNE algorithm is an incremental learning algorithm based on temporal 

reinforcements.  The algorithm design has introduced some novel aspects: 

 The DIANNE algorithm is an incremental preference learning algorithm.  Inputs 

(monitored user behaviour) are processed as they occur in real time.  This allows 

for rapid response to changes in user behaviour.  There is no need to retain 

stores of past behaviour as the DIANNE does not need to re-process past data. 

 The DIANNE algorithm implements continuous learning through temporal 

reinforcements.  Weight updates occur in a temporal fashion based on the 

amount of time that an active input renders an active output (i.e. the amount of 

time that a preference prevails in some context).  This is in contrast with 

traditional weight update methods where updates are often error driven or based 

on the number of occurrences of an active input rendering an active output. 

 Two learning rules are utilised.  Hebbian/anti-Hebbian is used for continuous 

temporal learning.  An error reduction approach is used for learning under 

conflict conditions when network output conflicts with the real world situation. 

 Due to continuous temporal learning a dynamic squashing function has been 

designed and implemented to stop the occurrence of saturation. 

 The incremental nature of the DIANNE has led to the design of an incremental 

conflict resolution strategy that can resolve conflicts at one instance in time 

based on current knowledge.  Two heuristics for incremental conflict resolution 

are proposed in line with end user expectations and the notion of preference time 

constants. 

 

4. Implementation of DIANNE as standalone system. 

The DIANNE has been implemented as a standalone learning system.  In this sense it 

can be applied to other problem domains if required.  Benchmark testing and analysis of 
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the DIANNE, described in Chapter 7, utilises the DIANNE as a standalone learning 

system. 

 

5. Implementation of DIANNE as preference learning system in PSS platform. 

The DIANNE is utilised in the EU FP7 PERSIST project.  It is implemented as a 

preference learning system within the Personal Smart Space (PSS) platform, developed 

by the project.  Chapter 6 describes how the DIANNE is integrated into the platform 

and also how it was utilised and demonstrated during the final project review.  User 

testing of the DIANNE, described in Chapter 7, utilises the DIANNE within the PSS 

platform. 

 

6. Testing and analysis of the DIANNE as an incremental learning system.   

The DIANNE is tested and evaluated in two ways.  Firstly, the DIANNE is analysed in 

terms of its accuracy against other benchmark learning algorithms (both batch and 

incremental) on well cited, real world datasets.  Secondly, the DIANNE is analysed in 

terms of its utility as a system to learn user preferences for personalisation in a 

pervasive environment.  This process involves user trials to determine how the 

DIANNE performs as a preference learner in a live pervasive environment.  As part of 

this the performance of the DIANNE is compared with the performance of a benchmark 

batch learning algorithm also applied to the live environment. 

1.4 Thesis Overview 

Chapter 2 presents and discusses related work in three key areas: pervasive computing, 

personalisation and machine learning.  Pervasive computing is the problem domain of 

this thesis and a general overview is given.  The review of personalisation is focussed 

towards personalisation in the pervasive computing problem domain while the review of 

machine learning is focussed towards the problem of learning preferences for 

personalisation in the pervasive computing problem domain. 

 

Chapter 3 documents and discusses the DAIDALOS Personalisation system developed 

during the EU FP6 DAIDALOS project.  The chapter details how it was designed and 

implemented over two project phases and how the second phase prototype built upon 

and was an improvement over the first.  Design and implementation of the first phase 

prototype was completed prior to the author's personal involvement.  The work 
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presented in this thesis is mostly related to personal experience of the design and 

implementation of the second phase Personalisation system.  This work was undertaken 

in conjunction with colleagues (listed as co-authors on all related and referenced 

papers).   

 

Chapter 4 outlines the requirements that should be met to successfully meet the 

challenges of preference learning for personalisation in a pervasive domain.  The 

requirements are drawn from observations on previous works as well as lessons learnt 

from the DAIDALOS prototype. 

 

Chapter 5 presents the Dynamic Incremental Associative Neural NEtwork (DIANNE).  

The network topology is outlined and analysed for capacity, stability and convergence. 

 

Chapter 6 presents the DIANNE temporal learning algorithm and outlines how the 

DIANNE has been successfully implemented in the EU FP7 PERSIST project. 

 

Chapter 7 describes the testing and analysis that has been performed on the DIANNE.  

Firstly, the benchmark testing phase is presented.  Results outline DIANNE 

performance on a number of well cited real world datasets.  Comparisons are drawn 

between DIANNE performance and that of other benchmark learning algorithms.  

Secondly, the user testing phase is presented.  Results outline the user centric view of 

how well the DIANNE learns user preferences for personalisation in the pervasive 

problem domain. 

 

Chapter 8 concludes the work and findings in this thesis.  Key concepts, assumptions 

and findings are discussed and several suggestions are put forward for further work and 

extensions. 
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2 Related Work 

The work related to this thesis has branched across three main research areas; pervasive 

computing, personalisation and machine learning.  Pervasive computing is the trend 

towards computational devices anywhere and everywhere around us with the ability to 

communicate with each other, self-improve and behave in an "intelligent" manner to aid 

us in our everyday lives.  Personalisation aims to tailor some entity to a specific 

individual so it looks or acts differently for different individuals or for the same 

individual in a different situation.  Machine learning is the discipline concerned with the 

design and implementation of algorithms that automatically improve their performance 

at some task with experience. 

 

Although individual fields in their own right, they have been brought together in this 

context with the common goal of learning preferences for personalisation in a pervasive 

environment.  Pervasive computing provides the problem domain, learning preferences 

for personalisation is the challenge and machine learning provides possible solutions.  

Therefore all three areas are discussed in terms of related work with a view towards the 

common goal. 

 

To illustrate how the connections between these three research areas have materialised 

the rest of the chapter is structured as follows.  Firstly a literature review is presented 

for pervasive computing.  This includes an introduction into the general concepts of 

pervasive computing and the past and ongoing innovations that are helping to realise 

pervasive environments.  Secondly a literature review is presented for personalisation in 

terms of pervasive systems.  It focuses on pervasive systems that utilise personalisation 

concepts to aid individuals in pervasive environments through the personalised 

management of resource and personalised adaptations.  A distinction is drawn between 

those projects that require a user to input personalisation rules (i.e. preferences) 

manually and those projects that attempt to identify preferences using behaviour 

monitoring techniques and machine learning algorithms.  Finally a literature review is 

presented for machine learning with a focus on those algorithms used for preference 

learning in pervasive systems. 
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2.1 Pervasive Computing 

Over the past five decades computing trends have changed dramatically.  In the early 

days, computational technology was inaccessible to the majority of the population due 

to the size and cost of machines as well as their complexity.  Users were mainly of some 

scientific affiliation and literate in computational languages.  Large mainframe 

computers served these users who shared the resource in a many to one relationship.  As 

computer technology progressed, the cost and size of machines decreased.  This fact, 

coupled with advances in peripherals and more user friendly operating systems, made 

computational technology more accessible to the general public.  The Personal 

Computer (PC) promoted a one to one relationship between computational technology 

and the end user.  A member of the general public could now own a computational 

device that was personal to them, containing their information and performing processes 

specific to their needs. 

 

Already we have moved to the next natural progression defined by a one to many 

relationship between users and computational technology.  In the current climate a 

single user will now often own multiple devices such as laptops, PDAs, mobile phones, 

etc. and as mobile and network technologies advance there is great potential for this one 

to many relationship to grow.  Such device intensive environments and the challenges 

they raise were described by Mark Weiser in his 1991 seminal paper [1].  He outlined a 

new research field to tackle such challenges which he labelled 'Ubiquitous Computing'.  

Since then several alternative labels such as „Ambient Intelligence‟ and „Pervasive 

Computing‟ are commonly used.  Regardless of the label, the fundamental concept is 

that computational technology is „weaved into the fabric of everyday life‟ until 

indistinguishable to end users.  In other words, computational technology exists in 

everyday objects throughout the user‟s environment and interactions with such powerful 

technology are natural and unobtrusive to the user, rendering it invisible.  This is in 

direct contrast with current trends where the focus of the user's attention is firmly on the 

computational technology. 

 

It is difficult to provide a short succinct definition of pervasive computing since it is a 

complex and multi-faceted domain.  Many authors have attempted to define it in terms 
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of fundamental principles [2, 3, 4].  Although this list often differs from source to 

source, there are several common properties that repeatedly appear in the literature. 

 Networked, distributed and transparently accessible computational technology – 

In an environment where pervasive computing is implemented, all devices 

throughout should be able to communicate and share information with one 

another anytime and anywhere. 

 Invisibility and simple human-computer interactions – Interactions between 

users and the computational devices within a pervasive environment should be 

simple and natural, minimising distraction.  In contrast to PCs the user‟s 

attention should not be focussed on the technology.  Rather, computational 

technology should be invisible in the environment. 

 Context-aware adaptation – The devices within a pervasive environment should 

be context-aware both in terms of their physical environment and the user.  

Based on current contextual information, environments should adapt to meet the 

needs of individual users within. 

 

Pervasive services are also an important aspect of pervasive computing.  Although not 

always explicitly listed as a key principal, pervasive services take advantage of the 

principals listed above to deliver the pervasive experience to the end user. 

 

At the time when the vision of pervasive computing was initially conceived, many 

limiting factors restricted the realisation of such principles.  This was largely due to the 

infancy of research and technology in areas upon which pervasive computing depends.  

Since then, advances in several key fields are bringing us closer to a pervasive world 

that conforms to the above principles.   

2.1.1 Connectivity 

One key property of pervasive systems is ubiquitous connectivity and access to all 

components of the pervasive system.  When Weiser initially outlined his ubiquitous 

vision the world was a very different place, where the World Wide Web was very much 

in its infancy and WiFi technologies did not yet exist.  In fact widespread internet usage 

was a substantial step forward in pervasive computing terms.  The idea of ubiquitous 

connectivity now did not seem so farfetched with the global adoption of Internet 

Protocol based networking.   
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The mid 90‟s saw the introduction of the IPv6 internet protocol [5] which has further 

enhanced the prospects of pervasive computing by providing enough unique IP 

addresses for every object in the world to communicate.  The potential for such an all 

encompassing network has lead to a new concept, defined in 1999 at MIT, and termed 

the Internet of Things [6].  This refers to a network of objects such as everyday 

household appliances.  Such innovations make it possible to saturate everyday 

environments with networked computational technology. 

 

The introduction of wireless networking and the 802.11 protocols have also been a huge 

boost towards pervasive ideals.  Devices are free from physical wired boundaries 

allowing greater potential for mobility and the ability to add new devices to the network 

in an unobtrusive way.  As well as WiFi protocols, short range solutions such as 

Bluetooth are now common in many mobile devices for data exchange across short 

distances.   Research continues in this field and technologies such as WiMax [7] provide 

the potential for greater widespread wireless connectivity.  Already several trials have 

brought WiMax to cities throughout the UK with the promise of widespread coverage 

and free internet access for residents.  At the same time, telecommunications research is 

also tackling the issue of ubiquitous connectivity with advances in 3G networking.  

Coupled with very portable devices, telecoms companies have spotted their potential to 

impact on the pervasive market. 

2.1.2 Mobility 

Advances in mobility have followed different streams.  On the one hand we have 

advances in portable devices such as laptops allowing us to take substantial 

computational power with us wherever we go.  Another step along the mobility scale 

brings us to handheld devices such as PDAs and smart phones which, although 

computationally less powerful than laptops, are becoming increasingly feature laden 

with many devices such as the iPhone [8] now acting as a telephone, MP3 player, 

camera and video recorder to name a few.  Although this means the end user requires 

less individual devices, to stay in line with pervasive ideals such devices must remain 

intuitive and simple to interact with.  Overloading with features may have an anti-

pervasive outcome. 
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Another mobility stream is embedded technology.  Research in this field has enabled 

everyday objects to benefit from added computational intelligence and communication.  

This is an important step towards making devices, and hence the environments they 

reside in, more pervasive.  As Weiser was communicating his vision of ubiquitous 

computing, across the Atlantic Roy Want‟s team at the Olivetti Research Labs in 

Cambridge University were already attempting to realise a subset of pervasive 

computing through embedded devices.  The initial Active Badge project [9] embedded 

infrared technology in an identification badge that could be used to locate an employee 

within the building for the purpose of routing telephone calls.  The Active Floor project 

[10] was the successor embedding sensors into the floor of the building so employees 

could be located and identified by various features such as their gait without the need to 

carry an identification token. 

 

Indeed various projects have experimented with a range of everyday artefacts, adding 

computational and network technology to create pervasive devices.  Another example is 

the Kenko Toware toilet [11].  Sensors and network technology have been added to this 

everyday, dumb device to allow biometric information to be obtained (through sensors 

in the toilet seat) indicating the user‟s pulse, blood pressure and body fat.  This 

information can then be communicated directly to the user‟s doctor if so desired.  

Although perhaps a crude example, it illustrates how the most mundane artefacts can be 

used as pervasive devices.  More commonly, white goods, vending machines, ATMs 

and automobiles are examples of artefacts regularly enhanced with networking and 

computational technology. 

 

Another area of mobility research which often overlaps with embedded technology is 

wearable computing.  One of the pioneers of wearables, Steve Mann, began 

investigations in the 1970‟s using head mounted displays to record personal visual 

memories [12].  From the rather bulky and un-elegant beginnings, wearable computing 

has advanced towards smaller, lighter and cheaper devices.  In early 2009 Pattie Maes 

from the MIT Things That Think (TTT) consortium [13] presented her vision of sixth 

sense computing [14] which centred on a small wearable device that resembled a 

necklace.  It enabled users to retrieve useful information depending on their current 

situation and display the information using any suitable surface in the physical world. 
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A more commercial trend in wearable devices has been towards the integration of 

computational technology into clothing rendering it less visible.  This branch of 

wearables has been most successful in the commercial world to date.  In 2006 Motorola 

teamed up with Burton, the skiwear company to introduce the Audex ski jacket [15] 

with integrated Bluetooth and MP3 players complete with control pads at the wrists 

allowing the wearer easy access to controls while skiing.  In other sports, Adidas have 

produced the Adidas_1 running shoe [16] complete with sensors and actuators allowing 

the shoe to adapt to the recorded biometrics of the runner. 

2.1.3 Human Computer Interaction (HCI) 

Pervasive systems will result in a very different relationship between humans and 

computers.  Where current PC devices and traditional WIMPS (Windows, Icons, Menu, 

Pointer device) interfaces demand the full attention of the user, pervasive systems will 

offer a multitude of less obtrusive and less attention-intense computer interfaces.  This 

will be necessary due to the numerous computational devices in the user‟s pervasive 

environment.   

 

To interact with such an array of devices, interfaces must fully utilise all aspects of 

human communication media such as movement, gestures, speech and touch.  

Technologies specific to each of these media are already advanced.  Vision systems 

couple cameras with artificial intelligence to learn and recognise gestures associated to 

some command.  These can include the movement of hands and arms, head movements 

and facial expressions or full body movements.  This form of interaction has recently 

become popular for interfacing with games consoles such as the Nintendo Wii [17].  

The natural gestures used to control games have opened the gaming world up to a new, 

less technical, audience. 

 

Speech interfaces have the advantage of allowing users to interact with computers in a 

hands-free manner.  As with vision systems, artificial intelligence is applied to learn and 

recognise spoken words.  Speech and voice recognition software is already widely used 

in many domains ranging from the military to health care.  At a more commercial level 

such software is commonly available in mobile phones (supporting voice dialling) and 

word processors (supporting speech-to-text processing). 
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The Tangible Media Group [18] at MIT has adopted another interesting human-

computer interaction concept by bringing together the „bits‟ of cyberspace and the 

„atoms‟ of the real world to give physical form to digital information.  In other words 

users can interact with information systems by manipulating physical objects.  Early 

projects such as MetaDesk [19] used phicons (physical icons) to allow users to interact 

with a campus map by moving a physical object representing some landmark.  More 

recently at Lancaster University the Cubicle project [20] implemented a cube shaped 

object that could control applications.  In one scenario a radio tuner could be controlled 

by turning the cube so that the face representing the required command (play, stop, 

volume up, volume down, channel up, channel down) was facing upwards. 

 

Other projects explore a similar thread of changing interfaces where interfaces 

physically change shape to change function.  The Speak Cup [21] is a cup shaped object 

that acts as a voice recorder and play-back device however instead of providing buttons 

for interaction, the user can control the cup functionality by changing the shape of the 

cup.  When the user wishes to record themselves they talk into the cup, „filling‟ it with 

the voice recording.  To play the recording back the user simply turns the cup inside 

out, „spilling‟ its contents. 

 

Although physical manipulation brings artefacts into the foreground of attention the 

physical manipulations greatly reduce the attention required for interactions allowing 

the user to divide attention between tasks.  Weiser referred to this concept as Calm 

Technology [22] where users did not have to focus full attention on computation and 

could therefore be more aware of their environment and perform other tasks.  A well 

cited example of calm technology is the Live Wire [23] created by artist Natalie 

Jeremijenko.  A long wire strand was attached to a motor which in turn was attached to 

an Ethernet connection.  When a packet of data passed through the network the motor 

twitched making the wire move around.  Therefore it was easy to see how much traffic 

there was on the network without devoting full attention to the information medium. 

 

Research at the Pervasive Computing Institute in Switzerland is developing the idea of 

Informative Art as a potential mechanism for information provision in an ambient and 

less obtrusive way [24].  What seem like ordinary pictures hanging on the wall can 

provide information to the user by adapting the content of the picture.  For example, if 



Chapter 2: Related Work 

 

 

 15  

there are three people in the house, a picture of a fruit bowl may represent this 

information by displaying three oranges in the bowl. 

 

Indeed, there are many natural and innovative ways in which humans can interact with 

computational devices.  In a pervasive world permeated with technology, multiple 

interfacing modalities will be necessary to reduce attention requirements and increase 

productivity.  Providing control over multi-modal interfaces has become a challenge in 

itself warranting research effort from recent projects such as OPEN [25].  The 

significant challenges are the persistent transfer of content from device to device and the 

adaptation of content to the most appropriate form for a given device.  

 

2.1.4 Context-Aware Adaptation 

The field of context-aware adaptation consists of two main streams; the gathering of 

contextual information, and the usage of contextual information for adaptation 

purposes.  In a pervasive world, where the environment should adapt to meet user 

needs, context is vital.  The more context information available, the more informed and 

appropriate system adaptation will be.   

Gathering Context Information 

Unfortunately the term „context‟ is rather all-encompassing so it is a challenge to know 

what should be gathered as context.  Dey‟s well accepted definition of context describes 

it as  

“…any information that can be used to characterize the situation of an entity.  

An entity is a person, place, or object that is considered relevant to the 

interaction between a user and an application, including the user and 

applications themselves.” [26] 

This rather vague description hints that any information can be relevant for specific 

adaptation decisions and therefore does not give much direction as to what information 

should be gathered as context. 

 

However in a pervasive environment, with much emphasis on mobility, information 

regarding the user‟s location is usually relevant to most decisions.  Gathering such 

information has various challenges depending on whether the user is indoors or 

outdoors.  Since the early 70‟s the US military have been developing the Global 
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Positioning System (GPS) based on 24-32 satellites.  Used for many applications such 

as land surveying and mapping, GPS is most familiar commercially for navigation 

purposes due to the popularity of Sat Nav technology.  Although GPS provides more 

accurate results than other outdoor positioning methods such as mobile network cells, 

unfortunately it is not appropriate for indoor positioning.  Instead, alternative methods 

are under development such as the use of short-range positioning beacons.  This method 

utilises various technologies such as WLAN, Bluetooth and RFIDs to calculate indoor 

positions based on signal strength.  To improve accuracy such an approach is often used 

in conjunction with accelerometers and other wearable sensors. 

 

Although important, it is unlikely adaptation decisions can be accurately made on 

location information alone.  Wireless sensor networks (WSN) lend themselves well to 

pervasive computing with their ability to gather physical and environmental context 

information (such as temperature, sound, vibration, motion, etc.) in a distributed and 

autonomous fashion.  One thread of research focuses on reducing the size of individual 

sensor nodes with the goal of achieving microscopic dimensions.  The SpeckNet [27] 

consortium in Scotland is developing the concept of speckled computing which 

comprises networks of small programmable devices called specks (smaller than a two 

pence coin), each equipped with sensors, a processor and wireless networking.  In 2001 

Kristofer Pister of UC Berkeley introduced the concept of smart dust [28] described as a 

sensor network consisting of tiny devices or motes that would be no larger than a dust 

particle.  As yet this concept is not fully realised as no microscopic functional motes 

exist.  However, such small devices would be perfect for use in the pervasive domain 

and the development of WSN specific operating systems such as TinyOS [29] is already 

promoting their use in the commercial world for applications ranging from industrial 

process monitoring to traffic control. 

 

Low-level context information from sensors (such as temperatures or coordinate 

vectors) may be useful for some decision making; however, it is often the case that 

higher level context information is required such as the current task the user is 

performing.  Gathering this type of context information often requires input from a 

range of different sensors which must then be processed to infer the higher level 

information.  The Multi-Sensor Wearable project [30] has utilised WSN technology to 
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create a wearable sensor network, the output of which can be processed to determine 

user activity or other such high-level context. 

Utilising Context Information for Adaptations 

One fundamental requirement of a pervasive system is the management and control of 

the component technologies and devices within an environment in order to adapt the 

environment to provide a beneficial and enhanced user experience.  As mentioned 

above context information is key to this process.  For example, if the system knows that 

the user has entered a dark room, the system can switch on the lights for the user.  

Various research teams have attempted to create pervasive systems that utilise many of 

the hardware innovations mentioned above as well as context-awareness to provide 

enhanced user experiences in pervasive environments. 

 

One of the earliest efforts was Microsoft‟s EasyLiving project [31] that promised “better 

living through geometry” within the home environment.  Great effort was invested in 

context-awareness and the gathering of context information to drive environment 

adaptation.  The position and orientation of devices and users within the environment 

were implicitly gathered through various sensors to enable the system to beneficially 

adapt the environment.  For example, if the user moved from their PC to the living-

room sofa, their session would follow transferring to a device (such as the TV) within 

the user‟s line of sight. 

 

The University of Sejong [32] followed a similar approach to context-aware adaptation 

within the home environment.  However, biometric information such as pulse, body 

temperature and facial expressions were also gathered to enhance the accuracy of 

environment adaptation.  User location was used for device selection while biometrics 

were used to infer user activity and drive service selection within selected devices.  

Other pervasive aspects such as invisibility of technology and simplistic interactions 

were not so strongly considered by either project. 

 

The Intelligent Room [33] is a component project of the larger Project Oxygen initiative 

at MIT [34] with a focus on context-awareness and adaptation in an office or home 

environment.  As with EasyLiving it aims to provide beneficial environment adaptations 

based on implicitly gathered contextual information regarding the environment and user 
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tasks.  However, interactions between the user and the smart space are more natural, 

utilising speech and vision technology to recognise voice commands and gestures. 

 

As well as context-aware pervasive systems, many groups have experimented with 

context-aware artefacts, often taking everyday objects and making them context-aware.  

The Lover‟s Cups [35] are pairs of context-aware cups that glow and adapt depending 

on the context of the partner cup, allowing users in different locations to know when the 

other user is drinking.  A more useful example is the context-aware pill bottle [36] that 

reminds users to take their medication especially if it has not been lifted off its stand for 

some time.  In fact, the list of context enhanced artefacts is lengthy, ranging from 

wheelchairs [37] and children's toys [38] to kitchen sinks [39]. 

2.1.5 Conclusion 

Since the original conception of the pervasive computing idea, many of the hardware 

and software components required have gone from non-existent to global reality.  In fact 

in the current climate all the constituent parts required for a pervasive system are 

available in some form or another (although most are still advancing).  This begs the 

question why pervasive systems have not become a widespread reality already.  With 

their potential to provide a better user experience one would assume that their uptake 

would have been more rapid. 

 

There are several possible reasons why this is not the case.  The first reason is the giant 

leap between the current computational climate and a pervasive environment.  

Throughout all phases of computing from mainframe to present day the user has been 

the intelligence and the computer is the slave device that responds to user requests.  

Pervasive computing aims to upset that trend.  Pervasive devices will be intelligent 

entities, sharing information with each other and using that information to adapt the 

environment on behalf of the user.  This raises two issues that must be successfully 

dealt with before mass uptake is likely.  Firstly, users must trust the system to make 

decisions and perform actions on their behalf.  Additionally they must trust the system 

to handle their information with care by not divulging embarrassing or sensitive 

information.  Secondly, the user does not want to lose their feeling of control over the 

devices in their environment.  This is how human-computer relationships have 
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traditionally existed.  We are expectant of control over devices and become anxious at a 

lack of it. 

 

On these issues, very often pervasive computing has been badly portrayed in the media.  

The potential benefits are usually omitted and instead a negative spin highlights dark 

scenarios of intelligent devices learning our behaviour and taking control.  Therefore it 

is vital for pervasive computing to find the balance between automation and user choice, 

surveillance and privacy. 

 

The second reason for the slow commercial movement towards pervasive systems is 

perhaps the radical infrastructure updates and additions necessary to make pervasive 

environments a reality in our everyday world.  For a start, our everyday devices must be 

replaced with pervasive versions equipped with computational and network 

technologies.  Manufacturers will be reluctant to focus effort on such products until 

demand increases.  As well as pervasive devices, sensors and actuators must be 

incorporated into the everyday environment along with network technologies to support 

communication between all devices.  Several research institutes and commercial offices 

have gone some way to providing pervasive environments within their buildings but so 

far this has often been research related and has not expanded into the wider world. 

2.2 Personalisation in Pervasive Environments 

The term „personalisation‟ has become a buzzword in many different communities.  In 

the commercial world, and more recently the e-commerce world, the benefits of 

personalisation have been recognised for some time.  By tailoring goods and services to 

the needs of individual users, vendors can gain and retain a loyal customer base.  In the 

media community, websites [40] and TV channels [41] are developing personalised 

content retrieval and delivery to provide a tailored service in line with individual user 

interests.  In highly adaptable pervasive environments, the application of personalisation 

techniques can also bring great benefit to end users.  With ubiquitous access to 

pervasive services, networks and devices personalisation can help to tailor such 

resources to best meet the needs of the individual. 

 

As mentioned above, context information can be used to drive adaptations such as 

device selection for session transfer or service configuration e.g. turning on the lights 
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when the user enters a dark room.  Projects such as Easy Living used context-dependent 

automation rules to dictate how the environment should be adapted depending on the 

current environmental state.  However, the exclusively context-aware adaptations are 

uniform for all users, no matter who is in the environment or what their individual needs 

are.  For example, some users may prefer all the lights to illuminate when they enter a 

dark room whereas other users may not.  Similarly, different users may prefer sessions 

to transfer to different devices.  Without user centric information, user specific 

adaptations cannot be distinguished.  

 

Satyanarayanan et al. argue that a high level of user information is crucial for system 

decision taking, adding that “otherwise it would be impossible to determine which 

system actions will help rather than hinder the user” [42].  Indeed this is true with 

exclusively context-aware adaptations.  A context-aware adaptation that suits one user 

may be wholly inappropriate for another user.  In the light example above, turning on all 

the lights would be more of a hindrance than a help to a light sensitive person.  

Therefore, to provide a truly pervasive experience personalisation is essential, forcing 

the consideration of user information when performing environment adaptations so that 

the pervasive environment can be personalised to the needs of each individual user.   

 

Such user information is stored in a user profile and can include a wide range of user 

related data.  In pervasive environments there are two types of user information that are 

most commonly stored in profiles for personalisation.  They are sequential patterns of 

behaviour, or user tasks, and user specific adaptation rules, or user preferences.  Some 

profile information may be facts that always hold true (e.g. disabilities such as 

blindness) but in such a mobile, dynamic domain, very often user needs will be related 

to the user‟s current context.  Therefore user profiles favour context-dependent user 

tasks and preferences and context-dependent personalisation is usually implied when 

referred to in a pervasive domain.  A context-dependent preference may specify such 

behaviours as "if the user is at home, then set the heating to 25 degrees, otherwise set 

the heating to 15 degrees".  A context-dependent task may specify such behaviour as "if 

the user is leaving work, then turn off the office lights (once the user has left the office) 

and unlock the car (once the user arrives at the car)". 
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Pervasive personalisation is often divided into two distinct subsets depending on how 

the user profile is gained and maintained.  The term explicit personalisation refers to 

personalisation processes that operate on profile information that has been manually 

entered into the system and is manually maintained by the owner.  Implicit 

personalisation refers to personalisation processes that operate on profile information 

that has been learnt and created by the system and is maintained by the system on behalf 

of the owner.  The sections below describe several pervasive projects developing 

personalisation mechanisms, distinguishing between those that implement explicit 

personalisation and those that implement implicit personalisation. 

2.2.1 Explicit Personalisation in Pervasive Environments 

During the late 90‟s several pervasive projects incorporated profile information into 

system decision-making processes to provide some level of personalisation.  The 

Intelligent Home project [43] focused on the intelligent management of a home 

environment.  Environment adaptation was based on resource availability as well as 

user preferences, enabling a personalised user experience.  It was assumed user 

preferences and other profile information already existed in the system since the project 

scope did not include how such information would be gathered or maintained.  Simple 

preferences were pre-entered into the system for testing and demonstration purposes but 

unfortunately there was no simple means to view or manipulate the preference set. 

 

The Blue Space project [44] at IBM aimed to provide a personalisable and easily 

configurable office workspace.  Users could control several environmental aspects of 

the space (e.g. lights) through a touch-screen GUI.  (As an aside: although HCI aspects 

were not the focus of this pervasive project, Mozer [45] raises an interesting argument 

against the use of computational control GUIs as a replacement for existing interfaces 

such as light switches.  He suggests that such complex GUIs act as a barrier to uptake of 

pervasive technology as the benefits are outweighed by the effort required in 

understanding the GUI.)  Another GUI was provided to allow the user to view and 

manipulate their preferences for the various personalisable aspects of the space.  An 

active badge system allowed the space to identify the occupant and personalise using 

the correct profile. 
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Since early 2000 Project AURA [46] at Carnegie Mellon University has been 

developing a slightly different approach to environment adaptation with the aim of 

reducing the burden on user attention caused by resource management tasks.  Rather 

than only basing adaptation decisions on context and preferences, user tasks were also 

considered.  Users could define tasks by specifying the services needed and associated 

preferences.  The addition of task information allowed the system to better predict what 

future resource requirements might be and pro-actively adapt environments to meet 

those needs.  As with Blue Space, GUIs were provided for interactions with the user, 

allowing them to view and manipulate preferences and tasks.  Screen shots of the GUIs 

show that there has been an effort to keep complexity to a minimum but the 

technologically challenged person may still struggle to translate their needs into 

appropriate input. 

 

In general, the explicit personalisation implemented by the projects above serves a 

purpose for project testing and demonstration; however, from a user perspective explicit 

personalisation can often be more detrimental than beneficial.  On the one hand, explicit 

personalisation puts the user in complete control of their preference and profile 

information.  They will have a mental understanding of the information held in their 

profile and hence what system behaviour to expect.  Dey [47] outlines the importance of 

this for system acceptance.  Without it, unexpected behaviour will lead to confusion and 

it will be difficult for the user to correct profile information to achieve the desired 

behaviour.   

 

On the other hand, explicit personalisation places greater mental and interaction burdens 

on the user.  Significantly, there is the learning curve required to understand 

personalisation GUIs and accurately specify the required system behaviours.  The 

research field of end-user programming investigates how this learning curve can be 

mitigated by providing visual or tangible interfaces that non-technical users can easily 

understand and use to create rules for environment adaptation [48].  The Pervasive-

interactive-programming (PiP) paradigm [49] for end-user programming supports non-

technical users in defining the required behaviours of physical and virtual devices 

within a digital home environment.  However, with an exclusively explicit approach, 

even where interfaces are simple and non-technical one could argue that mental and 
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interaction burdens have only been slightly mitigated.  Such burdens could be mitigated 

to a greater degree with the added support of intelligence and autonomy. 

2.2.2 Implicit Personalisation in Pervasive Environments 

If a system employs implicit personalisation, it contains mechanisms such as behaviour 

monitoring and machine learning to create and maintain a user profile on behalf of the 

user to drive future personalisation tasks.  This reduces the information management 

responsibilities placed on the user by explicit techniques and the passive nature of 

implicit personalisation helps fulfil the goal of pervasive computing by rendering the 

underlying personalisation mechanisms less distinguishable to the user.   

 

The concept of implicitly gathering and maintaining a user profile is not specific to 

pervasive environments.  It has long been associated with HCI (Human-Computer 

Interaction) as a driver for user adapted interaction and the personalisation of interfaces 

[50], although here it is referred to as user modeling.  Other common applications are 

personalised adaptive hypermedia, web personalisation and e-Learning.  Profiling 

standards exist, such as CCPP [51] and ETSI [52], outlining the various types of 

information that constitute a profile.  However, often these standards do not fulfil the 

needs of profiling for pervasive personalisation.  CC/PP does not consider profile 

content such as context-dependent intentions and preferences.  ETSI goes much further 

by proposing the use of implicit profile management mechanisms such as monitoring 

and learning for the management of context-dependent preferences.  However, it is 

unclear how ETSI's hierarchical, multi-profile structure would cope in a highly dynamic 

pervasive environment. 

 

A large percentage of pervasive projects implementing personalised adaptation choose a 

smart space as their domain. (A smart space is a physically bounded environment, such 

as a home or office, enhanced with pervasive computing technology such as that 

mentioned in section 2.1).  Perhaps this trend is due to commercial focus and 

application opportunities but the finite scope of services, devices and possible contexts 

within a smart home or office also provides useful boundaries for development. Since 

2000 the GAIA project [53] has been developing a middleware infrastructure for smart 

homes and offices which it terms active spaces.  In a process typically employed by 

most implicit personalisation systems, the GAIA system monitors user behaviour within 
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the environment, storing it with related context state information as training data.  Once 

enough training data is collected, learning techniques are executed to produce context 

dependent preferences indicating what actions the user performs in a given context.  

Agents can then use these preferences to automatically adapt the environment 

appropriately as the context state changes. 

 

Also since the early 00's the MavHome project [54] has been utilising a different type of 

profile content.  This project focussed on the prediction of future user tasks to drive 

adaptations within a home environment.  This technique is similar to the task based 

explicit personalisation provided by AURA; however, the MavHome system 

automatically learns and maintains user tasks rather than depending on manual entry 

and management by the user.  Several machine learning techniques such as sequential 

pattern discovery and Markov chains are used to identify commonly occurring patterns 

of behaviour from stores of monitored historic behaviour data.  An incremental 

prediction algorithm (Active-LeZi) [55] is used to predict future behaviour in real-time 

(e.g. in a given context, when the user switches on the VCR, they then switch on the 

TV). 

 

The Adaptive Home (or Neural Network Home) project [56] constructed a prototype 

pervasive system in an actual residence in 1997.  It utilises reinforcement learning and 

neural network techniques to learn the intentions of inhabitants within the smart home 

environment.  The aim is to balance user requirements and energy conservation.  To 

achieve this the Adaptive Home goes a step beyond other projects by employing 

learning techniques to build models of future context states for future context prediction 

(e.g. future occupancy of an area or future hot water usage).  User tasks are then 

analysed against predicted future context states to pro-actively adapt the home 

appropriately in terms of future user and energy requirements. 

 

The projects above place autonomy as a key goal with the intention of mitigating user 

interaction.  However, the Synapse project [57], which began in the mid 00's, heeds the 

advice of Barkhuus [58] who argues that users want to enjoy autonomous behaviour to a 

moderate degree without losing control.  Therefore, the Synapse personalisation system 

performs environment adaptations under two modes; active and passive.  Bayesian 

Networks are employed to learn preferences dictating the relationships between context 
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states and service usage behaviour.  This learnt knowledge is then applied to personalise 

the user‟s environment through service provision.  If a preference has a probability 

above some threshold, personalisation operates in active mode and the service is started 

automatically.  If the preference has a probability below some threshold, personalisation 

operates in passive mode and the top five potential services are presented to the user for 

manual selection.  This approach aims to minimise incorrect personalisation in 

uncertain situations while at the same time provide automation when appropriate. 

 

In fact, finding the correct balance between automation and user control is a challenging 

personalisation issue.  If personalisation is incorrect due to unsatisfactory learning 

techniques or a change in user behaviour then it is desirable that the system provides 

mechanisms to identify and rectify the problem in an acceptable time frame to mitigate 

user involvement.  User feedback can provide some assistance but equally implicit 

preference learning processes should be able to accommodate new patterns of behaviour 

into the preference set in an acceptable time frame.  It is undesirable for the user to have 

to continually override incorrect automatic behaviours.   

 

It is suggested that the adoption of batch learning algorithms for preference learning in 

personalisation systems can compound this issue.  The nature of such algorithms 

prevents any natural quick response to changes in preference related user behaviour 

since learning only occurs at certain intervals between which a training dataset 

(monitored user behaviour) is gathered.  Further, batch learning algorithms are 

dependent on a priori training datasets before any learning can proceed at initial system 

usage.  Hence there exists a lag period where no learnt profile content is available, 

between initial system usage and the initial learning execution (once enough user 

behaviour has been monitored for an initial training dataset).  During this period 

personalisation may be limited to default tasks or preferences (if any are available).   

 

A simple solution is the provision of a GUI through which the user can manually update 

the incorrect profile information.  However, as mentioned above, without the 

appropriate mental picture of the user profile this process can be challenging for users, 

as well as increasing the interaction requirements and burden on the user.  A more 

desirable approach is the implementation of an implicit rapid response solution. 
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Also beginning in the mid 00's, the Ubisec project [59] implements mechanisms to 

enable the quick accommodation of new information into its customisation (or user) 

profile.  If a conflicting behaviour occurs (e.g. the device volume is set to mute by the 

system but the user un-mutes the volume), the real-time profile evolution process 

analyses the differences between the customisation profile and the device status profile.  

A recommendation profile is generated from the differences and used to update the 

customisation profile subject to manual user approval.  In this way the required updates 

are implicitly gathered from monitored manual device re-configuration and do not 

require the user to understand complex profile GUIs. 

 

Other projects such as SPICE [60] and its predecessor Mobilife [61] also implement 

real-time response techniques.  Regular behaviour model learning uses a batch 

algorithm but between algorithm executions the user profile is updated in real-time 

based on user feedback received as a consequence of undesired personalisation.  This 

helps to keep the user profile up to date between learning cycles.   

 

The personalisation system implemented within the iDorm at Essex University [62] 

removes all user awareness during the rapid updating of profiles.  Once a preference set 

has been established during the initialisation period, preferences can be modified, added 

or deleted when user behaviour changes.  At such times, a non-intrusive cycle is entered 

where new or changing user behaviour is specifically monitored and new preferences 

learnt.  Additionally, in a life-long learning phase the worst performing preferences are 

periodically replaced by new ones to preserve system performance.  These rapid 

response mechanisms are often termed 'incremental' by the projects that employ them 

due to the way in which they update the user profile in real time. 

2.2.3 Conclusion 

As personalisation has been adopted by new fields its scope has grown.  From initial use 

as a marketing tool to its current use in pervasive systems it has expanded to include 

disciplines such as behaviour monitoring and machine learning.  Its success is the 

ability to tailor some entity to the needs of individuals giving each user an enhanced and 

personal experience whether it be in an e-commerce site or in a smart home.   
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Two approaches to personalisation were presented; explicit and implicit.  Both 

approaches have advantages and disadvantages in terms of enabling user control over 

system behaviours and mitigating user involvement in system decision making 

processes.  As Ball et al argue [63, 64], a balance must be found between the two 

approaches with the most beneficial solution likely employing explicit and implicit 

techniques in a unified way.  Cole et al reflect this argument based on their analysis of 

the relationship between the increasing demand for user control and the changing role 

and expectations of intelligent buildings.  They describe the problem as a reconciliation 

challenge between human and automated intelligence [65]. 

 

The pervasive domain has thrown up many new and interesting challenges that 

personalisation must tackle but the success of pervasiveness and the advancement of 

personalisation go hand in hand.  As the hardware and software components required 

for pervasive computing continue to fall into place perhaps one of the biggest barriers to 

widespread commercial use is finding a solution to the seamless integration of 

component technologies with each other and their implicit management rendering them 

invisible to the end user.  Tasks such as environment adaptations, information and 

device management and scalability issues must be intelligently handled by the system to 

meet individual user needs and minimise interaction requirements.  Personalisation 

provides an answer; however, issues such as automation vs. user control and implicit 

profile management require further investigation. 

 

Adam Greenfield suggests that one reason why pervasive computing is not currently 

more widespread is due to the fact that we are not very good at „doing smart‟ and 

perhaps we may never reach the required level [11].  Perhaps the issue is with 

personalisation system design or perhaps it is related to the more fundamental issues of 

machine learning and artificial intelligence techniques that many implicit 

personalisation systems have adopted. 

 

2.3 Machine Learning for Pervasive Personalisation 

The aim of machine learning research is to create programs that automatically improve 

their performance at some task with experience.  To achieve such a goal the field of 

machine learning has been influenced by many disciplines such as mathematics, 
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psychology, biology and philosophy to name a few.  This has resulted in the 

development of a wide range of techniques and algorithms throughout the years.  Much 

early machine learning research was theoretical due to computational limitations and 

initially took inspiration from biological systems.  In 1943 McCulloch and Pitts [66] 

applied symbolic logic to the modelling of nervous systems laying the groundwork for 

future connectionist innovations such as Rosenblatt‟s Perceptron [67]. However, initial 

expectations for such neural systems were not realised and later research by Minsky and 

Papert [68] highlighted their limitations.  The result was an exodus from neural 

modelling and a shift of focus towards more symbolic, concept-acquisition techniques. 

 

Indeed, interest in symbolic techniques had been growing since the early 60‟s and 

continued to enjoy much research focus through the 70's.  The machine learning 

community drew inspiration from psychology and, in particular, research on models of 

human concept acquisition.  Numerical and statistical methods were abandoned for 

logic-based techniques with Michalski's work on inductive learning programs [69] and 

Mitchell's work on Version Spaces [70]. 

 

The 80‟s saw a real revival in the entire machine learning field with an explosion of new 

and influential techniques such as the ID3 decision tree algorithm [71] and incremental 

learning methods like the COBWEB [72] clustering system.  A major development was 

Rumelhart, Hinton and William's back-propagation algorithm [73] that overcame many 

of the limitations of the perceptron and sparked a renewed interest in connectionist 

techniques.  Evolutionary techniques, originally conceived in the 60's, also enjoyed 

renewed interest at this time; popularised by Dawkin's book entitled "The Blind 

Watchmaker" [74]. 

 

In the 90's, the field of fuzzy logic finally started to gain support after it had been 

ignored by many researchers since the 60's.  The field acquired a wide literature and the 

concept of fuzzy logic was applied within many commercial products and control 

systems.  In 1997, Diettrich [75] summarised how the machine learning field was 

following several directions; learning ensembles of classifiers to improve accuracy in 

supervised learning, scalable supervised learning to improve efficiency over large 

training datasets, reinforcement learning for online processing and agent control and 
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learning stochastic models that incorporate prior knowledge (such as Bayesian 

networks).   

 

At this time Mitchell reviewed the success of machine learning and considered its utility 

in real world applications [76].  As well as data-mining for knowledge discovery and 

difficult to program applications such as face recognition he also identified the potential 

machine learning offered to customizable applications that could adapt to individual 

users.  He concluded that such complex problem domains are notoriously difficult to 

overcome through manual programming.  Indeed, since the early 90's, pervasive 

projects have utilised machine learning for personalisation with much greater success 

than other approaches. 

 

However, many different machine learning techniques are available with each being 

specific to some problem domain and no one approach consistently out-performing all 

others.  Wolpert and Macready termed this the No Free Lunch theorem [77] stating that 

“…any two algorithms are equivalent when their performance is averaged across all 

possible problems.” 

Therefore, each learning task has a small number of suitable machine learning 

techniques that will give optimal results in the problem domain when compared to other 

techniques. 

 

In the pervasive computing domain, different machine learning techniques are used 

depending on project goals and the required profile content.  However, there are several 

approaches that are more commonly used for implicit personalisation purposes across 

projects.  Table 1 below maps the various techniques and algorithms to the projects that 

employ them.  The rest of this section considers the techniques and algorithms in more 

detail. 
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ML Technique Algorithm Project 

Artificial Neural Networks 

(ANNs) 

Sparse Network of Winnows 

(SNoW) 

GAIA 

Multi-layer perceptron Adaptive Home 

Stochastic Models Hierarchical Hidden Markov 

Models (HHMM) 

MavHome  

Hidden Markov Models (HMM) Synapse 

Naïve Bayesian Classifier Mobilife 

Fuzzy Logic Fuzzy rules iDorm  

Ubisec 

Rule Learning Ripper algorithm Mobilife  

Apriori algorithm SPICE 

Reinforcement Learning Q Learning Adaptive Home 
 

Table 1.  Machine learning techniques and algorithms employed for implicit personalisation by pervasive 

projects 

 

2.3.1 Artificial Neural Networks 

With regard to learning algorithms the most natural place to look for inspiration is 

biological systems such as the human brain with its extremely powerful learning 

capabilities. As scientists understand more about its internal workings, computer 

scientists have attempted to replicate these biological structures to process information 

in a similar way.  The observation that the brain is built from very complex webs of 

interconnected neurons has inspired the study of Artificial Neural Networks (ANNs) 

which are networks of processing units (representing neurons) interconnected by 

weighted connections (representing synapses). 

 

One of the most basic ANN systems is based on the perceptron processing unit.  The 

perceptron sums weighted inputs and uses a linear threshold function to determine 

activation.  It learns by adapting weights based on the perceptron training rule where 

weight manipulations are dependent on the error at the output unit.  Unfortunately the 

perceptron is not capable of learning non-linearly separable functions such as XOR, 

greatly limiting its power.  Multilayer Perceptrons (MLPs) overcome this issue by 

introducing extra (hidden) layers of processing units that utilise a sigmoid threshold 

function to determine activation [78].  Learning is often performed using variations of 

the Backpropagation algorithm [73] based on gradient descent.  This is the ANN 

topology implemented within the Adaptive House project.  A feedforward MLP is used 

to learn the target function relating context-based inputs to preference-based outputs. 
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GAIA makes use of a Sparse Network of Winnows (SNoW) [79], a learning 

architecture developed at the University of Illinois.  It is essentially a network of 

perceptrons with linear thresholds, each making predictions over the feature space.  

Weights can be updated using a variety of learning rules such as the perceptron rule or 

naïve Bayes but the WINNOW rule is most successful.  The WINNOW rule uses 

promotion (weight multiplied by some fixed parameter 1 ) and demotion (weight set 

to 0) steps to update weights and only operates on weights related to incorrect outputs.  

SNoW is specifically tailored for domains with large numbers of features that may not 

be known a priori and hence is well suited to pervasive domains where the set of 

context features is large and ever-changing. 

 

Generally, ANNs have a remarkable ability to derive meaning from complicated or 

imprecise data and can be used to extract patterns and detect trends that are too complex 

to be noticed by either humans or other computer techniques.  Unlike many logical 

machine learning methods, ANNs can handle real-valued inputs and are robust against 

errors in training examples.  For real world applications such as implicit personalisation 

such properties are desirable where user context can contain continuous values (from 

sensors) as well as errors. 

 

Due to their algorithmic similarities, Support Vector Machines (SVMs) [80] have been 

found to perform well in the same problem domains as neural networks (e.g. pattern 

recognition and data mining applications).  Although not used for implicit 

personalisation, the University of Sejong utilises SVMs in their smart home 

environment for inference [32].  SVMs are an enhanced version of optimal linear 

classifiers that employ kernel methods to overcome linear classification issues.  Just as 

MLPs overcame the linear issues of perceptrons, kernel methods allow SVMs to 

overcome the linear issues of optimal linear classifiers by adding more dimensions to 

the feature space to allow linear separation of different classes.  Unlike neural networks 

the SVM algorithm can be decoupled from the application domain meaning that the 

neural network problem of pre-configuration is not relevant to SVMs.  However, this 

problem is replaced by the problem of deciding on a suitable kernel for the SVM. 
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One constraint of such learning methods, with complex internal knowledge 

representations, is that the learning process is often difficult to interpret or to explain in 

human-understandable terms.  In many common application domains such as vision 

systems such limitations are rarely an issue.  However, in a pervasive environment users 

will be keen to view and understand what the system has learnt about them and hence 

what system behaviours to expect.  Users may also want to manipulate this information 

in some way to adjust system behaviour.  Therefore, when employing ANNs for 

implicit personalisation, such issues must be considered. 

2.3.2 Stochastic Models 

In the 1990‟s a trend towards learning complex stochastic models emerged in the 

machine learning field.  It had been identified that more general learning techniques 

such as ANNs could not easily incorporate prior knowledge and were often difficult to 

interpret.  In contrast stochastic models describe the real world process in which the 

data was observed allowing for easier interpretation as well as the incorporation of prior 

knowledge.  Such models are typically probabilistic graphs depicting the probabilistic 

dependencies among variables.  Once a stochastic model has been learned over a set of 

training data, probabilistic inference can be carried out for prediction or classification of 

future inputs.  Indeed, such techniques are often used for context inference in pervasive 

environments (e.g. Mobilife).  As can be seen from Table 1 stochastic techniques are 

also the most favoured for implicit personalisation systems. 

 

Bayesian Networks [81] are directed graphical models representing causal relationships 

between random variables.  The underlying paradigm is Bayes' theorem of conditional 

probabilities from the field of statistical mathematics.  A Bayesian network consists of 

nodes, each representing a random variable.  The nodes are connected such that a 

directed arc (with an assigned probability value) is drawn from node A to node B if B is 

dependent on A.  By constructing a network of feature nodes and target nodes, the most 

probable hypothesis can be inferred given the input data. 

 

Many different variations of Bayesian networks exist.  The Bayes Optimal Classifier 

determines the most probable classification for a new instance by combining the 

predictions of all hypotheses weighted by their posterior probabilities.  A more efficient 

method is the Naïve Bayesian Classifier.  This approach is implemented by the Mobilife 
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project for the classification of recommendations based on context inputs [82].  It makes 

the assumption that the presence of a feature is unrelated to the presence of any other 

feature.  For example, an animal may be classed as a fish if it has the features: lives in 

water, has gills and has scales.  A naïve Bayes classifier will consider each feature 

independently even though one depends on the existence of others.  The advantage is 

the ability to learn parameters for classifications on a small training set. 

 

Markov models [81] are a subclass of Bayesian networks often referred to as dynamic 

Bayesian networks.  The distinction is that Markov techniques model the probabilistic 

dependencies between actions in a linear sequence with the assumption that an action 

can cause another action in the future.  At the simplest level a first order Markov chain 

models the probability of an action nx  given the occurrence of its immediate 

predecessor 1nx .  Scaling up to the M
th

 order, Hidden Markov Models (HMM) model 

the probability  1,...,|  nMnn xxxp  as a state transition diagram.  This ability to model 

dependencies in sequential data has led to their widespread use in personalisation 

systems that operate on task-based user profile data where sequential patterns of 

behaviour are considered.   

 

The Synapse project utilises HMMs to model relations between context and service 

usage [83].  An initial learning phase generates the HMM from context and service 

parameters.  A consequent execution phase computes the occurrence probability of 

services based on the learned parameters and new context situations.  Services with the 

highest occurrence probability are either executed or suggested to the user.   

 

The MavHome project utilises Hierarchical Hidden Markov Models (HHMMs) for the 

modeling of sequential behaviour patterns [84].  In a HHMM each state is a 

probabilistic model in itself rendering the HHMM a recursive model of sub-HHMMs.  

In contrast to a HMM each state returns a sequence rather than a single observation.  

When a state is activated it processes its own probabilistic model activating states which 

in turn activate their own models and so on.  This makes HHMMs the obvious choice 

for task modelling where tasks can take a hierarchical form, recursively consisting of 

sub-tasks.  However, one potential drawback of Markov models is their over-simplified 

assumption that each state is only dependent on its predecessors.  When applied in the 
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pervasive domain, care must be taken to ensure the correct timing and context for the 

application of predicted future actions.  For example, the application of action C might 

be dependent on the time interval between actions A and B.  Similarly the application of 

some action A (e.g. „unlock car‟) might be dependent on user context (e.g. the 

proximity of the user to their car). 

 

To utilise most stochastic learning techniques a priori knowledge is required of the 

necessary model structure and parameters.  This is due to the task specific nature of 

stochastic models.  This lack of generality may be an issue in pervasive domains.  The 

use of stochastic models for context inference is favoured as a priori knowledge of 

necessary parameters such as sensor inputs is possible.  However, for personalisation 

purposes, if new behaviours appear due to the availability of new services it may not be 

known what context parameters influence the new behaviour.  Devising effective 

algorithms to implement the learning of required structures and parameters is complex 

and the focus of ongoing research. 

2.3.3 Fuzzy Logic 

In contrast to crisp logic with precise values (e.g. 0 and 1) fuzzy logic is a multi-valued 

logic that can represent the degree of truth of a statement (i.e. a value between 0 and 1).  

It attempts to mimic human thinking by removing the need to specify strict binary 

thresholds.  For example, human concepts such as „hot‟ and „cold‟ have no strict 

temperature thresholds as what one person might conceive as hot might not be the same 

for another person.  Further, if we were to derive a threshold temperature of 20C as 

hot, we would not consider the temperature 19.9999C to be cold. 

 

In comparison to probabilistic models, fuzzy logic does not represent the likelihood of 

some event.  Instead it operates on degrees of truth representing the membership of 

some entity in vaguely defined sets.  Its ability to handle uncertainties has proved 

successful in complex systems and application areas such as automatic transmissions, 

air conditioners and elevators to name a few.  Equally it has proved successful in 

implicit personalisation where uncertainties exist due to unstable environments and 

changing user behaviours. 

 



Chapter 2: Related Work 

 

 

 35  

The Ubisec project employs fuzzy logic decisions such as device selection [85].  This 

seemingly trivial action becomes increasingly complex as human factors such as vision 

are considered.  For example, the range of human sight varies between short-sighted and 

long sighted so a device selection that may suit one user will be inappropriate for 

another.  iDorm also reflects on the uncertainties introduced by human factors.  They 

identify that behaviours can change through time, e.g. due to seasonal variations.  

Further, concept definitions may also change.  Consider how the term 'warm' can vary 

in meaning between summer and winter. 

 

iDorm utilizes a multi-step learning process using fuzzy membership functions (MFs) 

[86].  User behaviour is monitored and MFs are extracted to form a fuzzy logic 

controller (FLC) that models the user's behaviour.  The FLC is used to adapt the user's 

environment and incremental adaptations are applied to the FLC in real-time based on 

user feedback.  This adaptation process continues until uncertainties increase above 

some threshold (due to changing behaviours or environmental aspects).  At this point, 

monitoring is re-triggered and MFs are extracted to create new FLCs that better model 

current user behaviour.  This is repeated each time uncertainties reach some threshold.  

In this way, the learning process provides life-long learning with a rapid response to 

changes between re-learning of FLCs (similar to rapid response concepts implemented 

in SPICE and MobiLife). 

 

Another advantage of fuzzy logic is the ability to translate the MFs into human-readable 

IF-THEN rules.  This enables the user to view, understand and manipulate their profile 

information.  As mentioned above, in a pervasive environment it is desirable that learnt 

profile information is available to the user in this way to ensure both a sense of control 

and a mental picture of expected system behaviour. 

2.3.4 Rule Learning 

Rule learning falls within the large family of symbolic (logic-based)  machine learning 

techniques.  The common aim of symbolic techniques is to determine a knowledge 

representation that describes the relationship between the features and the classes.  This 

knowledge is represented by decision trees or logic based rules and therefore is 

naturally human-understandable.   
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Decision Tree algorithms construct a decision tree as the knowledge representation.  If 

required this can be easily parsed into rules for better human-readability.  Each node in 

the tree is an attribute test and the leaf nodes represent the classifications.  Quinlan's 

ID3 [71] and C4.5 [87] algorithms are the most widely used tree building techniques.  

The shape of the tree is determined by the information gain of attributes where 

attributes with higher information gain better separate the training examples according 

to the target classification and hence should be closer to the root.  Once the tree is 

constructed over all the training examples, new, previously unseen instances are 

processed down the tree at each attribute test node until some classifying leaf node is 

reached.    Over-fitting is a problem that is especially relevant to decision tree learning.  

However this problem may be prevented through pruning techniques, such as reduced-

error pruning [88] where sections of the tree that provide little classification power are 

removed. 

 

Inductive learning or concept learning, constructs a set of logic-based rules as a 

knowledge representation.  Research has often focussed on learning general concepts 

and categories, reminiscent of how humans continually perform such tasks.  A common 

aim is to 'find' some hypothesis that approximates the target function over the set of 

training examples given, with the assumption that this hypothesis will also approximate 

the target function well over other unobserved examples.  Therefore it can be viewed as 

a search problem in that the hypothesis which best satisfies the training examples must 

be found within the space of all hypotheses.   

 

One major issue with symbolic learning is that algorithms often scale badly in terms of 

computational efficiency as the size of the dataset increases, increasing the hypotheses 

space and hence requiring a longer search time.  Mitchell showed how version spaces 

can be used to minimise the search by bounding the hypotheses space to contain only 

those hypotheses that conform to the training data.  His Candidate-Elimination 

algorithm [89] used general (G) and specific (S) limits to bound a subset of the 

hypotheses space.  However, the algorithm is not robust to errors and noise in training 

examples.  To overcome this issue, several inductive rule learners have utilised adapted 

decision tree pruning techniques such as Quinlan's reduced-error pruning. 
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The Ripper algorithm [90] used for preference learning in the Mobilife project is based 

on the reduced-error pruning (REP) for rules technique.  When compared with less 

scalable learning algorithms such as C4.5, the Ripper algorithm is much more efficient 

on large datasets while achieving comparable error rates.  This is desirable in a real 

world environment where datasets can be very large, especially when monitoring user 

behaviour over weeks and months for implicit personalisation. 

 

The SPICE project utilises a very different rule learning technique due to specific 

project goals of providing recommendations [91].  For this, they have implemented 

association rule learning, a technique commonly used for basket analysis.  The chosen 

algorithm is the Apriori algorithm [92] that identifies commonly co-occurring items in a 

list of transactions (e.g. 86% of people who bought milk also bought eggs).  The 

knowledge representation contains association rules of the form (X, Y) that holds based 

on the percentage of transactions within the transaction list that contain X and then also 

contain Y.  Such rules are generated from frequent itemsets identified during algorithm 

runtime.  Starting with itemsets of length 1, the itemsets are grown with each pass 

through the transaction list by generating candidate itemsets until the maximal length 

itemsets with sufficient support are found.  As with other rule learning approaches 

scalability is an issue.  However, extensions such as AprioriHybrid scale linearly with 

the number of transactions. 

2.3.5 Reinforcement Learning 

Reinforcement learning [78] is based on psychological studies and observations of 

biological learning processes with the basic assumption that actions accompanied or 

closely followed by satisfaction will be more likely to re-occur should the situation re-

occur, whereas actions which are accompanied or closely followed by discomfort will 

be less likely to re-occur should the situation re-occur.   It is a technique most 

commonly used for agent or robot learning where the agents exist in an environment 

with a given state and each agent has a set of actions which it can perform to alter the 

state of the environment. 

 

Several issues are commonly associated with this learning approach.  Firstly, the agent 

must overcome the problem of temporal credit assignment.  The goal is to learn a 

control policy which will indicate an action sequence that will maximise its cumulative 
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reward from any given state.  However the agent must determine what actions within 

the sequence should be credited with producing the final reward.  Secondly, the agent 

must overcome the problem of exploration.  The agent must somehow determine when 

to exploit known actions with known rewards and when to explore unknown actions 

with unknown rewards. 

 

The Adaptive Home project utilises reinforcement learning in a less traditional 

application area (but with successful results) in a smart, energy efficient house [45].  

The Q-learning algorithm is employed to find an optimal control policy that will 

balance energy costs against the discomfort costs of inhabitants.  Bias is initially 

towards mitigating energy costs; therefore initially the system will opt to keep lights off 

and heating to a minimum.  As the user over-rides such automated decisions the system 

learns by increasing the discomfort costs which in turn alter the optimal control policy.  

The system also exploits the explorative nature of reinforcement learning by 

occasionally selecting a reduced energy setting (e.g. lower heating temperature), 

unbeknown to the inhabitant.  If the inhabitant does not complain, the energy and 

discomfort costs are updated appropriately to reflect this new control policy. 

2.3.6 Incremental Learning Algorithms 

It is interesting to note that many pervasive projects implement batch learning 

algorithms for implicit personalisation in the pervasive domain.  Some projects (e.g. 

SPICE) employ incremental profile updating mechanisms for rapid response to 

behaviour changes but such mechanisms are temporary, still relying on batch learning 

executions to provide a more stable user profile.  Although these projects have produced 

encouraging results, perhaps incremental learning algorithms could provide a more 

natural and successful way to create and maintain user profiles in pervasive systems. 

 

Within a pervasive system, examples of user behaviour will typically become available 

and hence be monitored by the system one at a time, over time (as the user interacts 

with their environment).  It would be desirable to process examples as they occur, 

altering the target function in real-time without the need to retain large stores of 

behaviour examples or re-process past examples when new examples become available.  

Indeed, Giraud-Carrier [93] states that the process of building and maintaining a user 

profile is essentially an incremental task and convincingly argues that although 
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incremental tasks can be handled by non-incremental algorithms, the most natural and 

flexible way to handle an incremental task is with an incremental algorithm.  In machine 

learning literature there is no single definition of the term 'incremental' when referring 

to the behaviour of an algorithm.  Different algorithms see different properties as their 

defining incremental feature and why the algorithm itself should be termed incremental.  

Hence, there is huge variation among incremental algorithms.  Therefore the 

incremental algorithms reviewed in this section will be discussed based on their 

defining incremental properties of which the most common are described below: 

 

Property 1: Process input one at a time over time (no a priori training data) 

Incremental in this sense means that the algorithm should not be reliant on receiving an 

entire training dataset before the learning process begins.  Instead learning should be 

continuous through time on a case by case basis as new examples are presented.  Since 

no a priori dataset is available, no dataset sampling or re-ordering can be performed as 

is sometimes the case to improve the convergence rate and accuracy of algorithms.  In 

addition it should be possible to retrieve a best estimate hypothesis of the target function 

after each new example has been processed. 

 

Property 2: No re-processing of past training data 

Non-incremental algorithms such as ID3 and Multi-layer Perceptrons (MLPs) can learn 

a target function that represents the training data but if new instances are presented the 

target function must be re-learned using the original training set plus the new instances.  

If the original training set is not presented again during the re-learning phase the new 

target function would no longer represent the original training set in what is often 

referred to as catastrophic forgetting.  Hence a store of all past training data must be 

retained.  This has obvious spatial and temporal consequences.  As the store of past 

training data grows so do storage capacity requirements and the time taken to re-learn 

the target function.  In practical terms, it is undesirable to maintain such a store ad 

infinitum.  In contrast, incremental algorithms defined by this property are memoryless 

in that they do not require access to an explicit store of all past examples.  Instead such 

algorithms store information that represents past examples within their knowledge base 

(e.g. as network weights). 
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Property 3: No A priori knowledge of the problem domain 

It is the case that some algorithms require domain specific parameters to be set prior to 

learning.  For example, neural networks often require a learning rate to be set.  Finding 

the correct value for such parameters greatly influences the possibility of convergence 

and hence the success of the learner.  However, identifying the optimal values for some 

problem domain is usually a trial and error process. 

 

Property 4: Growing/ shrinking topology 

Many algorithms are defined as incremental in terms of this property.  Rather than 

defining the learner topology a priori to cover the training dataset, the topology grows 

by adding new concepts or classes to allow the proper classification of new examples.  

Pruning operations can also be performed to sections that provide little classification 

support allowing the topology to shrink as well as grow. 

 

Property 5: Selective training data 

This property is derived as a subset of active learning.  Algorithms that employ active 

learning select the most useful training dataset from a list of all candidate datasets with 

the aim of increasing convergence success and speed.  The two approaches to active 

learning are selective learning and incremental learning.  The former selects a 

completely new dataset from a candidate list at each subset selection, replacing it after 

use.  In contrast the latter selects a dataset from a candidate list at each subset selection 

and adds it to the training set.  Therefore, when implementing incremental learning the 

candidate list of datasets shrinks and the training dataset grows as training continues. 

 

The term on-line is often used interchangeably with the term incremental.  However, 

this is most common when the algorithm possesses property one.  For clarity, the term 

incremental will be used throughout this thesis.  Table 2 lists several incremental 

algorithms and identifies their defining incremental properties.  Each of the algorithms 

listed is discussed in more detail below.  It should be noted that some properties are not 

mutually exclusive.  For example it is not possible for an algorithm to require no a priori 

training data and utilise selective training data techniques. 
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 Process input 

one at a time 

over time  

(no a priori 

training data) 

No re-

processing of 

past training 

data 

No a priori 

knowledge of 

the problem 

domain 

Growing/ 

shrinking 

topology 

Selective 

training 

data 

Candidate-

Elimination    n/a  

AQ15 
   n/a  

STAGGER 
   n/a  

COBWEB 
     

ID4/ID5/ID5R 
     

Pocket 

Algorithm      

WINNOW 
     

ART 
     

ITDNN 
     

IBPLN 
     

CSAILA      
SELF       
Grippo      

Learning++      
SwiftFile 

   n/a  

 

Table 2.  Incremental properties possessed by incremental algorithms 

 

Since the late 70's many incremental concept learning algorithms have emerged.  

Perhaps this is due to the inspiration taken from considering how humans perform such 

a task or perhaps because of the unstable problem domain where new concepts can 

appear and existing concept definitions can change.  One of the earliest incremental 

approaches is Mitchell's Candidate-Elimination algorithm [89].  It is based on the use of 

general and specific delimiters to define the version space of all candidate hypotheses 

and is defined in terms of a search problem for the hypothesis that best represents the 

presented positive and negative examples.  As new examples are presented sequentially 

over time the general boundary set (G) becomes more specific and the specific 

boundary set (S) becomes more general to be consistent with the presented examples.  
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This results in a continually reducing version space of the candidate hypotheses where 

eventually G and S boundaries converge on the same hypothesis.   

 

An obvious consideration is how the algorithm handles noisy data, or in relation to use 

in an unstable environment, how the algorithm would handle a moving target function 

due to possible changes in concept definition (often referred to as concept drift).  

Mitchell states that the algorithm is not robust to this situation as once an instance has 

been presented, all inconsistent hypotheses (including that which may be the future 

target hypothesis) are removed from the version space with no possibility for future 

consideration.  In such a situation the result would be non-convergence.   

 

However, many other algorithms have taken inspiration from Mitchell's search problem 

approach and provided solutions to robustness issues.  The STAGGER [94] algorithm is 

not only robust to noise and concept drift, but even attempts to distinguish between 

them for better performance.  Like Mitchell's solution, STAGGER is also based on a 

search through the hypothesis space; however, the search moves towards general (G) 

and specific (S) limits rather than starting at such limits.  The search is guided by the 

type of error where a wrongly included negative example leads to a more specific search 

and a wrongly omitted positive example leads to a more general search. 

 

AQ15 [95] is a descendent of the AQ1-AQ11 series of inductive learning algorithms.  

Here the search problem is through a space of logical expressions with the aim of 

determining those that represent all positive and no negative examples.  It learns 

incrementally with full memory meaning that it doesn't forget any presented examples or 

rules it has formed.  As with the two algorithms above it is incremental in terms of 

processing sequential inputs and a non-dependency on a priori training datasets; 

however, all three algorithms require a priori knowledge of the problem domain such as 

problem specific parameters to initialise search spaces and guide searches.  

 

In contrast COBWEB [72] can operate successfully without such a priori information.   

It is an unsupervised concept clustering algorithm that learns concepts by building and 

adapting a concept tree as each new example is received.  Again, the algorithm is based 

on a search problem; however, it is assumed that no 'teacher' exists to pre-classify 

examples.  Therefore the algorithm must search for appropriate categories as well as 
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appropriate concepts for each category.  A probability function termed 'category utility' 

determines the tree structure and is considered when deciding if a new example should 

be incorporated into an existing category or whether a new category should be created.  

Past examples are represented in the tree as probabilities held at each node and hence 

are retained by the algorithm without the need to maintain an explicit store of past 

examples. 

 

Due to their symbolic base, parallels have been drawn between the COBWEB approach 

to building a concept tree and the way in which incremental versions of ID3 build a 

decision tree for classification.  In both techniques tree structures are determined by 

some utility parameter and past examples are represented at tree nodes as adaptable 

values.  The ID4 algorithm [96] builds a decision tree on an instance by instance basis 

depending on the calculated information gain of attributes at each decision node.  Past 

examples are represented at tree nodes as positive and negative counts of decision 

attribute values.  If a new instance leads to a different decision attribute having a higher 

information gain at a decision node, the decision node over-writes the existing decision 

attribute with the new winner and the sub-tree below that node is discarded. 

 

However in 1989, UtGoff [97], showed that the ID4 algorithm could not learn some 

functions that were learnable using ID3.  Notably, where there was little difference in 

the information gain of decision attributes at some decision node a thrashing behaviour 

was observed where sub-trees below the decision node would be continuously 

discarded.  His alternative solution was the ID5 (and later ID5R) algorithm that utilised 

the ID4 process for decision attribute selection at a decision node but rather than 

discarding the sub-tree, it restructured the entire tree by pulling the desired decision 

attribute up to the root (in a process called pull up).  Analysis shows that ID5 can 

produce the same tree as ID3 but with fewer training instances. 

 

Although concept learning has produced many incremental algorithms based on 

inductive learning and the search problem another common domain of incremental 

algorithms is in connectionist approaches.  This is most likely due to the way in which 

neural networks naturally represent past examples as easily adjustable weights in a 

network structure.  Perhaps the parallels between neural networks and biological 
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learning processes also have some bearing.  In any case a multitude of incremental 

neural networks are available, each exhibiting various incremental properties.  

 

Gallant's pocket algorithm [98] is a perceptron-based incremental learning algorithm for 

neural networks.  It works on the premise that the weights providing the best solution so 

far are kept in your 'pocket'.  These pocket weights are replaced by the actual perceptron 

weights if the perceptron weights outperform the current pocket weights in correctly 

classifying new training instances.  In this way the algorithm can produce the pocket 

solution at anytime, providing the best estimate of the target function so far without the 

need to refer to past examples.  The original pocket algorithm requires no a priori 

training dataset; however, when a dataset is available an optional ratchet can be used to 

improve algorithm performance. 

 

Like the pocket algorithm, WINNOW [99] assumes a definition of incremental learning 

based on no dependence on a priori training data and no dependence on a store of all 

past examples.  Weights are updated after a new example is presented to incorporate the 

example into the network target function.  The algorithm focuses on reducing mistakes 

by identifying irrelevant attributes and hence scales well to high-dimensional problem 

domains.  However, when implementing both WINNOW and the pocket algorithm the 

network topology must be determined a priori and hence a priori knowledge of the 

problem domain is required.  This is not the case for other incremental neural networks 

where a defining feature is a network structure that grows to accommodate new 

examples. 

 

The ART (Adaptive Resonance Theory) family of neural networks utilise clustering 

algorithms for pattern classification.  The basic principle introduced by Grossberg [100] 

involves two node vectors where FA corresponds to the input pattern and FB corresponds 

to the target output.  Inputs are sent from FA through weighted connections to FB where 

nodes compete until only one FB node is active.  This winning node responds through 

weighted connections to the FA nodes where the initial input activation is compared 

with the activation in response to the top-down signal from the winning FB node.  A 

vigilance parameter determines the similarity threshold required between the two 

activations.  If this is met the winning FB categorises the inputs, if not another FB that 

better meets the vigilance parameter is searched for.  If no such FB exists, a new FB node 
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is created to categorise the input.  In this way ART networks grow over time without the 

need for a pre-defined static topology.  Inputs are processed sequentially over time and 

the algorithm does not rely on an a priori training dataset.  Many variations to the basic 

algorithm exist for both unsupervised [95, 96, 97, 98] and supervised [99, 100] learning. 

 

In addition to growing networks, there also exist networks that shrink.  Incremental 

learning is defined in terms of the growing and pruning operations.  However, several 

algorithms use such operations as temporary responses to new examples.  Both the 

Incremental Time Delay Neural Network (ITDNN) [107] and the Incremental 

Backpropagation Learning Network (IBPLN) [108] algorithms use incremental growing 

and pruning adaptations as temporary solutions until a complete re-training of the 

network can be performed on the entire set of past examples.  This is reminiscent of the 

rapid response mechanisms employed by various pervasive personalisation systems 

such as SPICE where temporary profile updates are performed incrementally (based on 

each instance of user feedback) in between scheduled profile re-learning cycles.  

However, dependence on a store of past examples is obviously in direct conflict with 

other common definitions of incremental learning. 

 

The Clustering Sensitivity Analysis Incremental Learning Algorithm (CSAILA) [109] 

and Selective Learning with Flexible Neural Architectures (SELF) [110] algorithms 

conform to another definition of incremental learning as a subset of active learning 

where training data is selectively chosen from a store of possible candidate datasets that 

have not been previously used.  Hence, by using selective training data as the defining 

incremental feature there will always be a dependency on a priori training datasets.  The 

CSAILA algorithm first clusters the candidate training set.  Then at each subset 

selection interval the most informative pattern from each cluster is selected as input to a 

growing neural network.  The SELF algorithm is based on the observation that networks 

trained on border patterns (i.e. those that lie close to separating hyperplanes) generalise 

better than those trained on random patterns.  Hence a seed training set is selected 

appropriately from the candidate training set and continually expanded until the network 

generalises over the candidate set. 

 

Other incremental algorithms perform similar pre-processing functions on training 

datasets.  Grippo [111] utilises sampled datasets to create copies of a neural network 
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where suitable incremental training algorithms can be defined to reduce disagreements 

between network copies and hence converge on a target function.  Similarly the 

Learn++ algorithm [112] utilises sampled datasets for the incremental training of neural 

network pattern classifiers.  Sampling is driven by a distribution that ensures previously 

misclassified examples have a higher probability of being selected.  An ensemble of 

classifiers is generated using the sample datasets and finally each hypothesis is merged 

in a voting process. 

 

Unlike the algorithms mentioned above, SwiftFile [113] is a system utilising 

incremental learning to predict how incoming emails should be filed based on observed 

user behaviour.  Although not strictly in the pervasive domain, SwiftFile is one example 

of a profiling system that utilises an incremental learning algorithm to automatically 

predict how incoming email should be filed.  The authors identify some of the major 

issues of learning user profile data in the real world including no a priori training data 

and dynamic environments where new classes can appear and user behaviour can 

change.   

 

The algorithm itself is a modified, incremental version of a Term Frequency-Inverse 

Document Frequency (TF-IDF) text classifier, that uses statistical methods to determine 

what folder an email should be filed into based on word occurrences.  Initial evaluations 

on accuracy are not particularly positive but when coupled with appropriate user 

prompting the algorithm is sufficient to satisfy end user requirements.  Interestingly the 

authors investigate whether a batch algorithm retrained on a nightly basis would fare 

better in this dynamic, real world domain.  Their analysis shows that the incremental 

algorithm out-performs batch counterparts (emphasising the claims of Giraud-Carrier).  

They conclude that batch algorithms cannot respond rapidly enough to new classes or 

changes in user behaviour.  Although incremental algorithm accuracy also drops in 

response to such changes, it recovers quickly and retains a higher average accuracy 

throughout testing. 

 

2.3.7 Conclusion 

The field of machine learning has enjoyed much research attention although this has 

shifted over the years between different learning paradigms [114].  As new application 
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areas emerge new learning challenges must be addressed and hence machine learning 

continues to be a popular and important research area.  Of particular note is the 

exploitation of learning algorithms for implicit personalisation in pervasive 

environments.  Due to the task specific nature of most learning algorithms, a variety 

have been applied within pervasive systems depending on specific goals such as 

preference learning, task learning or other inference.  These algorithms (and some 

alternatives) were discussed above in terms of their strengths and weaknesses with 

regard to implicit personalisation in the pervasive domain.   

 

It was noted that most pervasive systems adopt a batch learning approach where 

learning cycles occur at certain intervals and algorithms are dependent on a priori 

datasets and access to stores of all past training examples.  Although successful results 

have been achieved by such systems various literature suggests that learning profile 

information such as that used for personalisation is inherently an incremental task and 

therefore could be better handled by an incremental algorithm.  Specifically, 

incremental processing of inputs allows for more rapid response to changes in user 

behaviour as processing is immediate rather than scheduled and processing does not 

require complete retraining on the entire set of past examples. 

 

Several notable incremental algorithms were discussed and on reviewing the literature a 

trend seemed to emerge.  During the 80's and early 90's incremental algorithms enjoyed 

much interest with various notable works.  However, since then it seems incremental 

algorithms have suffered something of a winter in terms of research interest.  This may 

be due to the fact that incremental tasks can be handled by non-incremental algorithms 

where the use of a priori training examples allow for closed-world systems (where the 

world is confined to the training examples) that are theoretically convenient in terms of 

evaluation, comparison and enhancement.  However, this confined view is not 

representative of real world problem domains such as pervasive environments.    

2.4 Summary 

Mark Weiser's seminal paper outlined his vision of 'Ubiquitous Computing' (also termed 

Pervasive Computing or Ambient Intelligence) where everyday environments are filled 

with networked, computational technology weaved into daily life.  At a time prior to 

significant hardware and software advances this was an ambitious goal.  Since then 
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innovations in key areas such as connectivity, mobility, and HCI are providing the 

component parts to realise Weiser's vision.  We are already starting to face challenges 

caused by ubiquitous access to a multitude of resources in a climate of many computers 

to one user.  Significantly, the user is faced with the issue of resource management.  

With a plethora of available services, networks and devices, managing such an array 

manually can place huge burdens on the user and will often fall short of user needs. 

 

Context information is key to addressing this issue.  By knowing the context of the user, 

systems can better decide how to configure resources.  This is demonstrated in a number 

of projects implementing context-aware adaptation where intelligent spaces (e.g. the 

home) are configured according to the user's context (e.g. if a user enters a dark room 

the lights are turned on).  Although useful, context-awareness alone cannot meet the 

needs of every individual user as it does not consider user specific needs.  Rather, 

context-aware adaptation will be uniform for all users. 

 

In contrast, personalisation incorporates the user's context information as well as other 

user centric information such as user preferences and tasks, to configure resources so 

they appear differently to different users or to the same user in different contexts.  

Therefore, personalisation has become a key concept in pervasive systems.  Its 

utilisation in the pervasive domain has thrown up new and interesting challenges, not 

least the issue of how user centric information (held in a user profile) is created and 

maintained.  The explicit personalisation approach relies on manual creation and 

maintenance by the user.  In contrast the implicit personalisation approach utilises 

monitoring and machine learning mechanisms to create and maintain a user profile on 

behalf of the user.  Both approaches have been adopted to differing degrees by various 

pervasive projects but finding the correct balance between user control and automated 

system behaviour remains difficult. 

 

Although more in line with pervasive ideals, implicit personalisation introduces the 

challenges of learning user profile information from monitored user behaviour.  Many 

different machine learning techniques are utilised in various pervasive systems 

depending on specific project goals.  Each learning technique has various strengths and 

weaknesses when applied in the pervasive domain and solutions must consider changing 

user behaviours, changing environments, large datasets with many features as well as 
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temporal efficiency and spatial issues.  Although most projects implement batch 

learning approaches, it is suggested that learning for implicit personalisation is an 

incremental task and hence better addressed by an incremental learning approach.  

Although relatively few projects implement incremental learning algorithms, initial 

results from such systems seem to support the above claim.   

 

This chapter has provided an overview of the techniques currently employed for 

preference learning in various personalisation systems and has raised several questions 

such as the use of batch learning algorithms.  Chapter 3 provides a more in-depth 

analysis of the DAIDALOS personalisation system and highlights several key lessons 

learnt by the author from the first hand experience of its design and implementation.  

Chapter 4 combines the findings from Chapters 2 and 3 to present a set of design 

features and requirements for an efficient preference learning technique that is 

specifically tailored to personalisation in the pervasive computing domain.   
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3 Research Prototypes - Personalisation in the DAIDALOS 

Project 

3.1 Introduction 

The DAIDALOS (Designing Advanced network Interfaces for the Delivery and 

Administration of Location independent, Optimised personal Services) project was an 

EU Framework 6 Integrated Project which ran over two phases from January 2004 until 

December 2008 [115].  With over forty partners from academia and industry it aimed to 

design and develop a beyond B3G (Beyond 3rd Generation) framework to support 

heterogeneous network and service infrastructures for the mobile user allowing 

seamless and ubiquitous access to pervasive services and information.  The research 

areas covered were diverse and ranged from the network level up to service 

provisioning and user experience level.  Covering such a broad range of research areas, 

the project relied on five key concepts to drive all design and development in a common 

direction.  These were as follows: 

 

 MARQS – Mobility Management, A4C (Authentication, Authorisation,  

Accounting, Auditing, Charging), Resource Management, Quality of Service and 

Security 

 VID – Virtual Identities 

 USP – Ubiquitous and Seamless Pervasiveness 

 SIB – Seamless Integration of Broadcast 

 Federation – allowing network and service operators to offer and receive services 

 

These concepts permeated every level of the project although at the various levels some 

concepts were more applicable than others.  At the service provisioning and user 

experience level the concept of Ubiquitous and Seamless Pervasiveness was one of the 

stronger factors.  This proposed that all heterogeneous network technologies and 

services should be available „anytime, anywhere‟ and should be seamlessly adaptable 

due to changing environments and user needs.  To realise this concept an intelligent 

middleware was designed and developed to run on top of the heterogeneous network 

technologies.   
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Phase one of the project (DAIDALOS I) produced an initial middleware prototype, 

termed the DAIDALOS Pervasive Service Platform (PSP) [116].  Figure 1 illustrates 

the PSP architecture including the enabling services it provided such as context-

awareness, privacy and security, service management and personalisation.   

 

 

Figure 1.  Architecture of the DAIDALOS I Middleware 

 

Phase two (DAIDALOS II) produced a two-layer version of the middleware [117].  

Figure 2 illustrates the two-layer architecture.  „Core‟ enabling services (such as service 

management and privacy and security) were separated into a lower Management layer 

while „enhancing‟ enabling functionalities (such as context management and 

personalisation) resided in a higher User Experience layer.   

 

 

Figure 2. Architecture of the DAIDALOS II Middleware 

 

Dependency restrictions meant that lower layers could not be dependent on upper 

layers.  This constraint affected the design of internal systems including the 

Personalisation system.  It became difficult to pass control from the management layer 

to the user experience layer and constrained the potential of the enhancing 

functionalities.  Another constraint placed on the DAIDALOS II PSP was the 
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prohibition of any decision making and proactive behaviour.  This meant that the PSP 

could not automatically adapt or reconfigure services directly.  Instead the service was 

to be notified of the required action by the PSP and would then decide whether to 

implement it based on other internal factors.  Again this had a direct impact on the 

Personalisation system where its major function is the adaptation of services.  The 

impact of these design decisions are discussed with regard to the Personalisation System 

(PS) throughout the following sections and in several reflective papers [112, 113]. 

 

In both prototypes the PS played a key role in realising the USP concept.  The following 

sections describe PS prototypes produced in both project phases and their evolution 

from the initial phase of the project through to the final project demonstration at the end 

of 2008.  It should be noted that the initial PS prototype for phase one was largely 

designed and implemented prior to the author‟s involvement and therefore it will not be 

described in full detail. 

3.2 DAIDALOS I PS Prototype 

The USP concept introduces two key challenges in terms of user experience.  Firstly it 

proposes that all networks and services should be available „anytime‟, „anywhere‟.  This 

presents the user with a plethora of resources.  It is essential to ensure that the user is 

not overwhelmed by such an array and the advertisements, requests and information 

generated by each resource.  Secondly with so many available resources, manual (re-) 

configuration of each to meet current needs is no trivial task.   

 

To provide a pervasive experience, where possible such management responsibilities 

should be performed on behalf of the user in line with their current context and needs.  

Personalisation provides mechanisms to achieve this.  User needs are expressed as 

preferences that can be used by personalisation processes to manage resources (both in 

terms of access and adaptation) on behalf of the user.   

3.2.1 DAIDALOS I PS Architecture 

The initial PS [120] supported various personalisation tasks with regard to both third 

party services and enabling services internal to the PSP.  Figure 3 illustrates the 

architecture of the first PS. 
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Figure 3.  The DAIDALOS I PS Architecture 

 

A preference set (stored in the Context Management database) contained a variety of 

preferences covering each personalisation task.  With regard to third party services, the 

PS provided support for personalised service parameterisation.  Each third party service 

could specify a number of „personalisable parameters‟ (e.g. volume, font size, 

background colour, etc.).  Such parameters were populated by the PS using 

personalisable parameter preferences during service composition and instantiation to 

configure the service appropriately. 

 

With regard to enabling services (enabling functionalities within the PSP) the PS 

provided the following key tasks: 

1) Personalised Service Parameterisation - As with third party services, enabling 

platform services could also have various personalisable parameters.  When the 

enabling service was initiated the parameters were populated based on 

personalisable parameter preferences. 

2) Personalised Service Selection - When a service request was received, a two-step 

process was triggered.  Firstly, all applicable services were discovered using 

conventional service discovery.  Secondly, the list of discovered services was 

ranked based on service selection preferences to provide the service which best met 

the current needs of the user [121].  For example, at work the user may prefer the 

service with the highest QoS regardless of price while at home they may prefer the 

cheapest service regardless of QoS. 

3) Personalised Service Composition - In DAIDALOS I several individual services 

could be assembled into a single composite service.  Personalisation allowed user 
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requirements to impact the composition process through composition preferences 

[121].  Under certain circumstances, services could be added/removed from a 

composition or the order in which services were placed in the composition could be 

altered (e.g. the user may not want to book airline tickets until accommodation is 

confirmed). 

 

As illustrated in Figure 3, the DAIDALOS I PS explicitly provided functionality for 

each of the personalisation processes required and took full responsibility for their 

implementation.  In other words, personalised parameterisation, service selection and 

composition functionality resided within the PS rather than externally in other dedicated 

enabling services.  The PS utilised preferences to perform the functions internally.    

Although the PS supported all personalisation processes required, its process specific 

design impeded the addition of support for new personalisation tasks such as 

personalised redirection [116, 117] which was implemented externally to the PS in the 

DAIDALOS I platform. 

3.2.2 User Preferences 

In DAIDALOS I a preference was represented as a context-dependent IF-THEN-ELSE 

rule.  Each preference contained various context conditions that represented some 

contextual situation which, if satisfied, indicated that the related preference outcome 

should be implemented.  An example of a simple preference is illustrated below: 

 

IF <location = home>    (context condition) 

 THEN [service = sports]  (preference outcome) 

 ELSE [service = news]  (preference outcome) 

 

This preference states that a sports service is preferred when the user is at home and a 

news service is preferred when the user is not at home.  Besides simple assignments, 

preference outcomes can also be nested IF-THEN-ELSE preferences allowing for a 

recursive and rich structure that could model any context-dependent behaviour.  As 

mentioned above the DAIDALOS I PS utilised a store of such preferences to drive 

personalisation for each user.  The preference store was pre-set prior to usage but it was 

assumed that the preferences would be added and edited through time manually by the 

user.  This approach conforms to accepted profiling standards that define guidelines for 
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the management of user profiles (which include user preferences).   W3C provides 

CCPP (Composite Capabilities/Preference Profiles) Structure and Vocabularies [51] 

outlining profile management guidelines within a web environment.  It assumes a 

manually editable profile which does not change often through time. 

 

As such, the PS provided little support for the creation and maintenance of the 

preference set other than an editor GUI for manual user updating.  The user could view 

their stored preferences and manually manipulate the preference set to fit their changing 

needs.  Such an approach is acceptable in a stable environment where updates are 

seldom required but the dynamic nature of pervasive environments lends itself to a more 

frequently updating preference set.  User needs will change through time due to lifestyle 

changes, the availability of new resources, etc.  The user‟s preference set must also be 

altered to reflect changing user needs if adequate personalisation is to be maintained.  

Due to the frequency of required updates purely manual creation and maintenance of a 

pervasive preference set quickly becomes a continuous and laborious task, eventually 

defeating the benefits that personalisation aims to provide. 

 

This situation is not considered in current W3C standards which are not specifically 

tailored for pervasive environments.  The DAIDALOS I PS confirmed that placing such 

a heavy burden of preference management on the user had a negative effect on 

personalisation.  Users were reluctant to invest such effort into preference set 

maintenance.  This led to a sparse and outdated preference set which was reflected in 

the quality of personalisation. 

 

As well as preference rules, the DAIDALOS I PSP also included a Rules Management  

(RM) system that also stored and managed rules relating to the configuration and 

behaviour of enabling services within the PSP.  There was not a clear distinction 

between these rules and the preferences managed by the PS.  An example of a rule in 

the RM system was to trigger context dependent session transfers.  It is not clear why 

this rule was not regarded as a context dependent preference and why such a separation 

of rule stores existed. 

 

One possible solution relates to the design of the DAIDALOS I PS.  As mentioned 

above, its task specific architecture rendered it very difficult to add support for extra 
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personalisation tasks.  Since no functionality existed within the PS to perform session 

transfers this was implemented externally in the Pervasive Service Management system 

utilising non preference rules. 

3.2.3 Applying Personalisation 

Personalisation was applied in two different ways.  Preferences were always available 

on a request basis from the PS.  At any time, a service could request preference 

information to personalise some aspect of itself.  In addition the PS automatically 

configured services by applying preferences during service deployment.  Once 

deployed, no further automatic service personalisation was supported by the PS.  The 

onus was on the service to manage any further personalisation using the preference 

request mechanisms of the PS. 

 

This placed a requirement on services to have knowledge of when re-personalisation 

was necessary.  However, this knowledge resided in the user‟s context-dependent 

preferences which were not completely available to services.  The inability to re-

personalise themselves appropriately meant that service personalisation remained static 

from initial application and easily became void as the user‟s context (and hence 

preferred behaviours) continued to change.  For example, user preferences indicate that 

an enhanced mode of some news service (costing a fee) is preferred when the user is at 

work while the standard (free) mode is preferred when the user is at home.  If the user 

starts the news service at work and then travels home, the news service should be 

automatically re-personalised to the free mode when the user arrives at home.  Provision 

of dynamic personalisation was identified as a main requirement for the enhanced PS 

prototype in DAIDALOS II enabling applied personalisation to change in line with 

changing environmental states.  

 

Throughout DAIDALOS I a number of stand-alone demonstrations were implemented 

to show the innovations of the PSP including personalisation.  This culminated in a final 

demonstrator that aimed to show the full potential of the PSP [124].  It was successfully 

demonstrated in early 2006 and provided a good basis for the design and realisation of 

an enhanced prototype during the second project phase. 

 



Chapter 3: Research Prototypes - Personalisation in the DAIDALOS Project 

 

 

 57  

3.3 DAIDALOS II PS Prototype 

The shortcomings of the first PS prototype were the main input to the requirements 

capture for the enhanced prototype in the second project phase.  A more dynamic 

solution was required, yet any improved system still had to provide support for the 

multiple personalisation tasks both internally within the PSP and externally within third 

party services.  Further, the layer dependency and decision making constraints placed on 

the DAIDALOS II PSP had to be taken into consideration when designing the 

DAIDALOS II PS architecture.  The key requirements are listed below. 

 

Generic Personalisation 

As in DAIDALOS I, it was necessary for the DAIDALOS II PS to support a variety of 

personalisation tasks throughout the enabling platform and third party services.  Where 

possible the solution was to be generic to allow porting of preferences across resources.  

For example, if a specific preference doesn‟t exist to indicate the volume of an audio 

service, it should be possible to use an equivalent volume preference related to another 

service to personalise the former. 

 

However, it may be the case that no preference is available throughout the entire PS to 

personalise some service.  This situation can arise when a new resource becomes 

available containing personalisation parameters the PS is unfamiliar with.  In such 

situations the PS should support the creation and usage of entirely new preferences 

related to the previously unknown parameters.  This would enable the PS to support 

new personalisation tasks through the provision of new preferences and hence the need 

for multiple rule stores in the PSP should become void.  Any rules related to the 

configuration or behaviour of services (both enabling and third party) should be 

regarded as preferences and stored in a single user preference set. 

 

Dynamic Personalisation 

The internal functionality of the PS required complete re-design since the more modular 

and layered architecture of the DAIDALOS II PS forced the removal of management 

layer functionality (such as service selection, composition and parameterisation).  The 

new PS was required to adopt a more passive role to personalisation by managing and 

providing preference information but not explicitly applying it to services.  Instead, 
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when a preference outcome was to be applied to a service the outcome was 

communicated to the service at which point the service itself made the decision as to 

whether or not to apply the outcome.  This was due to the prohibiting of decision 

making and proactive behaviour within the DAIDALOS II PSP. 

 

However, although a more passive role was adopted in terms of the outcome application 

strategy, the personalisation of a resource must be up to date to ensure accuracy.  As the 

user moves through their environment their context will change, which may or may not 

affect how they prefer resources to be configured/behave.  In the case where a context 

change does have an impact on personalisation, mechanisms should be in place to 

automatically trigger a re-personalisation of resources for the new situation.  Such an 

approach is termed dynamic personalisation as the personalisation applied changes 

dynamically due to changing environmental states.  This differs from the static 

personalisation provided in DAIDALOS I where applied personalisation could not alter 

in line with the changing environment and therefore remained static from the point of 

initial application. 

 

The knowledge of when to re-personalise a resource is held in the context-dependent 

preferences themselves.  Mechanisms are required to monitor context values that form 

the condition parts of the preferences.  When a context value changes, all dependent 

preferences should be re-evaluated (under the new context) and any change in outcome 

communicated to the appropriate resources for re-personalisation purposes. 

 

Support for Implicit Preference Set Maintenance 

Another key requirement was the provision of mechanisms that would support implicit 

preference set maintenance through time to reflect changing user needs.  In DAIDALOS 

I a preference management GUI allowed the user to view and manipulate their 

preference set accordingly.  In other words, DAIDALOS I provided explicit 

personalisation.  As mentioned in section 2.2.1 this approach gives the user complete 

control over their preference set mitigating unexplained system behaviour and the 

ensuing frustration. 

 

However, as also learnt in DAIDALOS I, the frequent updates required, placed a heavy 

burden on the user and led to unsatisfactory personalisation.  Another point to consider 
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is the fact that the context dependent preferences themselves can potentially become 

large and complex in order to depict all preferred options in a variety of different 

contexts.  The average user may have difficulty understanding or expressing such 

preferences, or in some cases may not even be aware of preferred behaviours e.g. the 

user may not realise that he/she always listens to a particular music genre at a certain 

time of day. 

 

A more pervasive approach to preference set maintenance is to provide mechanisms that 

will create and maintain the preference set on behalf of the user.  In other words, 

provide support for implicit personalisation where mechanisms such as behaviour 

monitoring and learning algorithms create and maintain the preference set automatically 

without the need for user involvement.  Indeed, this approach to preference management 

is in line with ETSI standards for profile management [52].  ETSI standards refer to a 

mobile environment and assume a dynamic domain where preferences are context 

dependent and prone to frequent updates. 

 

A system that supports implicit personalisation enables each user to have a complete 

and up to date preference set with minimal effort.  However, a completely automated 

approach leaves the user out of the loop.  With no way to provide any input the user 

may feel a loss of control.  Additionally, lack of user input could lead to inaccurate 

preferences and possibly detrimental system behaviour.  Therefore the optimum 

solution to providing a dynamic preference set must be a balance between implicit and 

explicit techniques.  In this way, the user‟s preference set is maintained with minimal 

effort but control can be passed to the user when required. 

3.3.1 DAIDALOS II PS Architecture 

To meet the requirements of implicit personalisation and provide an enhanced PS, an 

architecture was developed that divided the PS into two functional blocks as shown in 

Figure 4.  The Preference Management subsystem supported all management activities 

of individual preferences including updating, evaluation and application.  A new 

concept was added to the PS in the form of the Learning Management subsystem.  It 

supported all (previously non-existent) activities concerned with the learning of new 

preferences including behaviour monitoring and data mining allowing the PS to create 

new preferences and maintain existing ones on behalf of the user.   
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Figure 4. DAIDALOS II Personalisation System Architecture 

 

3.3.2 Preference Management 

The DAIDALOS II PS supported all the personalisation tasks provided by the 

DAIDALOS I PS but support was less explicit than the original prototype.  The 

DAIDALOS II PS took on a more generic architecture where the personalisation 

processes themselves were moved to external services.  These external services would 

then request preference information from the PS and use this information to personalise 

their own processes.  For example, the external service selection process would request 

service selection preference information so it could rank discovered services based on 

user preferences and pick the service that best met the user‟s needs.  This more generic 

architecture was necessary due to the layer dependency constraint but essentially it 

allowed the PS to easily support personalisation of other tasks as required.  In 

DAIDALOS II this included support for personalised privacy policy and identity 

management [119, 120, 121, 122]. 

 

Within the Preference Management subsystem the Preference Manager (PM) 

component acted as the guardian of the individual preferences and as such was the only 

component in the platform that could access the entire set of preferences or complete 

preference rules.  As in DAIDALOS I, preferences continued to be context dependent 

rules based on an IF-THEN-ELSE construct.  This format was generic to all preferences 

in the preference set and hence preferences were portable across services (e.g. a volume 

preference for audio service A could be used to populate an equivalent personalisable 
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parameter in service B).  Different preferences existed within the user‟s preference set 

to cover all key personalisation tasks that were previously supported in DAIDALOS I.  

The main functions of the PM were: 

1. Storage/retrieval of preferences (held in the Context Management system database)  

2. Evaluation of preferences against current context 

3. Handling of service requests for preference information 

4. Base functionality for the creation, deletion and updating of preferences as requested 

either manually by the user (through the Preference GUI) or due to new preferences 

becoming available from the Learning Management subsystem. 

 

In DAIDALOS II the notion of stereotypes was investigated to provide the user with a 

default set of relevant preferences depending on the user‟s role (e.g. „Doctor‟).  This 

initial set of preferences could then be expanded and refined over time either by the user 

or by preference learning processes [123, 124].  The use of such default preference sets 

meant the user was not „starting from scratch‟ and so experienced some level of 

personalisation from the moment they began to use the system. 

 

To allow for an expanding preference set it was essential that the PM could handle new 

preferences for new personalisable parameters.  The adopted solution was to capture 

new attributes when a new resource first requested preference information from the PS.  

The PS enforced this by requiring each request for preference information to be 

accompanied by a default outcome.  If an appropriate preference already existed, the 

PM evaluated the preference and returned the outcome as normal but in the situation 

where the request asked for a nonexistent preference, the PM returned the default 

outcome (sent in the request) and stored the default as a new preference for future use 

and refinement. 

 

As well as handling new preferences from new resources, the PM also had to handle 

new preferences from the Learning Management subsystem.  At various intervals the 

Learning Management subsystem would schedule a preference mining execution and 

forward the output to the PM for merging with the user‟s existing preference set.  In this 

way the user‟s preference set remained up to date.   
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The Preference Condition Monitor (PCM) enabled the second phase PS prototype to 

provide dynamic personalisation within the DAIDALOS II platform and third party 

services [131].  It provided the functionality necessary to drive automatic re-

personalisation of services at run-time due to changes in the user‟s context.  To achieve 

this, the PCM held information regarding the currently running services, their related 

preferences and the context attributes those preferences depended on.  This information 

allowed the PCM to identify what context attributes to monitor for changes.  For 

example, if the following preference belonged to some running service  

IF <location = work> AND <day = weekday> 

 THEN [service = news] 

 ELSE [service = sport] 

then the PCM would monitor the context attributes „location‟ and „day‟ for changes.  

When a monitored context attribute changed, cross-referenced lists held internally 

enabled the PCM to trace what preferences may be affected by the change.  The PCM 

requested a re-evaluation of all such preferences through the PM and communicated any 

new preferred outcomes to the appropriate services so they could re-personalise 

themselves. 

3.3.3 Learning Management 

DAIDALOS II introduced learning mechanisms to the PS to both compliment and 

alleviate manual preference management processes.  These mechanisms supported the 

creation and maintenance of the user‟s preference set on behalf of the user with minimal 

effort on their part.  Figure 5 shows the basic flow of the DAIDALOS II preference 

learning process. 

 

Figure 5.  Flow of the Preference Learning process 
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Monitoring and Storing User Behaviour 

As the user moves through their pervasive environment they will inevitably interact 

with various resources.  To build a picture of user behaviour it is essential to capture 

information on these interactions.  Mechanisms must be capable of capturing the 

appropriate, useful information no matter where the user is or what resource they are 

interacting with.  Important interaction information must be distinguished from noise; 

for example, it may not be useful to record all keystrokes while the user is typing. 

DAIDALOS II monitored user actions defined as: 

 

user action: an act performed by the user that changes the personalised state of 

an entity where an entity may be a service, network or device. 

 

Each entity determined a number of personalisable parameters that were populated by 

personalisable parameter preferences during runtime.  Therefore the set of 

personalisable parameters dictated what could be personalised within an entity.  When 

the user changed the value of some personalisable parameter, this changed the 

personalised state of the entity and therefore was monitored as a user action.   

 

DAIDALOS II implemented passive monitoring through the Action Handler component 

(Figure 4).  This put the onus on the resources to send user actions to the PS when the 

user performed them.  User actions were received by the Action Handler where they 

were processed and stored in the User Behaviour History within the Context 

Management database for later use by learning procedures.  Since the goal of preference 

learning was to produce context-dependent preferences an important step of the user 

action processing was the addition of an appropriate context snapshot to each user 

action.  This snapshot described the situation of the user when they performed the user 

action. 

 

However, as mentioned in section 2.2.2, context can be seen as anything that describes 

the situation of the user [26].  Such an all-encompassing definition means an entire 

context snapshot can potentially be huge.  It is undesirable to store such a large volume 

of data with every monitored action.  Instead, only the most relevant contextual 

information should be stored.  DAIDALOS II provided a solution by defining a 
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snapshot of set length containing the context attributes that were generally relevant to 

all actions (e.g. location).  This generic snapshot was stored with each user action. 

User Behaviour History 

The User Behaviour History (UBH) held a complete store of all the action-snapshot 

pairs that occurred over some time period.  The batch learning algorithms then accessed 

this store at intervals to process the data and extract new preferences.  Most 

conventional approaches to storing monitored user behaviour data use a single storage 

method; however, the DAIDALOS UBH adopted a dual store approach which acted as 

a long-term store (LTS) and a short-term store (STS) [132].  Figure 6 illustrates this 

concept. 

 

 

Figure 6.  Dual store behaviour history illustrating the separate short-term and long-term stores 

 

At time t0 when the user began to use the pervasive system, the entire UBH was empty 

as no actions had yet been performed.  As the user interacted with resources, actions 

were initially stored in the STS while the LTS remained empty.  When the first learning 

cycle occurred at time ti, the learning algorithms processed the data stored in the STS.  

At this point the contents of the STS were copied to the LTS and the STS was cleared 

ready to receive the next monitored actions.  This process continued with the cyclic 

pattern of learning executions and subsequent STS contents being appended to the LTS. 

 

In this way the STS only contained the actions that had occurred since the last execution 

of the learning algorithm at time ti until the current time tj.  The LTS contained all 

actions that had occurred since the user began to use the system at time t0 until the last 

execution of the learning algorithm at time ti. 

 

The benefits of this approach were two-fold.  Firstly, since learning algorithms 

generally only process the contents of the STS, recent new behaviours were identified 
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more readily since they were not inhibited by prominent behaviours from the past.  

Secondly, the LTS retained the entire back catalogue of user behaviour that could be 

called upon to aid in the resolution of conflicts between long-established preferences 

and newly learned preferences.  Such conflicts often occurred during the preference 

merging process [133] when the user‟s preference set was automatically updated with 

new preferences returned from the learning process.  Where the conflict was 

unresolvable by conventional merging techniques the learning algorithms could be 

applied to the combined dataset from the STS and the LTS to create a preference that 

represented the entire historic behaviour of the user.  This preference then replaced the 

current one in the user‟s preference set. 

 

Extraction of Preferences and Updating 

With a plethora of available learning algorithms it is essential to select one suitable for 

the task of extracting preferences from monitored user behaviour.  Each algorithm has 

various strengths and weaknesses and some preferred problem domain.  DAIDALOS II 

employed several different learning algorithms for preference learning as well as 

context inference and reasoning.  To accommodate this requirement the Learning 

Manager (LM) component was designed to support a library of pluggable algorithms as 

shown in Figure 7. 

 

 

Figure 7.  Pluggable library architecture of the Learning Manager 

 

Bayesian networks, neural networks and decision tree learning approaches were 

implemented and utilised in DAIDALOS II although Quinlan‟s C4.5 tree building 

algorithm [87] was chosen as the primary algorithm for preference learning.  This well 

evaluated, benchmark algorithm performed consistently well in the problem domain.  

The algorithm's use of Gain ratios instead of simple Gain (as in ID3) overcame 

problems arising from context attributes with multiple values (such as „time‟ or „date‟).  
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Further, the decision tree output generated from this algorithm mapped well to the 

human-readable IF-THEN-ELSE preference format and translation processes between 

the two formats was straightforward.  The decision tree branches represented context 

conditions and the leaves contained the preference outcomes (i.e. the most popular user 

actions performed under the context conditions). 

 

The LM component ran its own learning cycle thread that took full responsibility for 

learning algorithm execution.  Therefore the PM did not need to explicitly request re-

executions of the algorithm.  Instead it periodically received preference updates as 

output from the LM when another execution of the learning algorithm completed.  The 

frequency with which the learning cycle thread triggered executions of the C4.5 

algorithm was based on the number of actions, n , received since the last algorithm 

execution and the time, y , that had elapsed since the last algorithm execution.  A new 

execution was requested if the following condition held true: 

 

      yORnif   where  is the maximum number of actions 

allowed between each execution 

 where  is the maximum time interval allowed 

between each execution 

 

The frequency of learning algorithm executions could be controlled by manipulating the 

variables  and .  When a learning algorithm execution completed, the output (i.e. list 

of new learned preferences) was passed to the PM.  The PM then merged the new 

preferences with the user‟s existing preference set [133].   

3.3.4 User Input and Control 

The negative effects of denying the user input to the personalisation and learning 

processes include a loss of control, confusion at system behaviour and ultimately system 

rejection.  Therefore user interaction is an essential part of the implicit personalisation 

process.  In DAIDALOS II two GUIs were provided by the PS for user interaction 

purposes.   The Preference Management subsystem provided the Preference GUI 

allowing the user to view their preference set and manually alter preferences any time 

they required.  The Learning Management subsystem provided the Feedback GUI 
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allowing the user to provide input during the application of preferences.  This input 

would feed back into learning processes allowing the further refinement of the user‟s 

preference set. 

 

When the system resolved that some preferred behaviour (preference outcome) should 

be implemented, system uncertainty in the proposal dictated whether the feedback GUI 

would be presented to the user and in what format it would appear.  In the case where 

system uncertainty was below some threshold (i.e. the system was certain that this 

behaviour was correct) the proposed behaviour would be implemented automatically 

without consulting the user. 

 

In the case where system uncertainty was above some threshold (i.e. the system was 

uncertain that this behaviour was correct) the feedback GUI could be used in explicit 

mode which required a specific authorisation from the user before the behaviour would 

be implemented.  In this case the user would be prompted with an „OK/Cancel‟ option 

requiring the user to explicitly input their decision. 

 

In the case where system uncertainty was between upper and lower thresholds (i.e. the 

system was indifferent about this behaviour) the feedback GUI could be used in implicit 

mode where user input was only required if the user rejected the proposal.  In this case 

the user would be prompted, for some timeout period, that the behaviour would occur.  

If the user did not push the „cancel‟ button within the timeout period the system inferred 

that the user agreed with the proposal (i.e. positive feedback was gained implicitly) and 

the proposal was implemented. 

 

In each case the user‟s response was captured by behaviour monitoring mechanisms and 

fed back into the UBH and learning processes.  This enabled further refinement of the 

user‟s preference set as well as the creation and maintenance of negative preferences 

indicating what the user doesn‟t want in a given context.   

 

3.4 DAIDALOS II PS Evaluation 

An evaluation of the DAIDALOS II PS was carried out to capture performance 

statistics.  An evaluation framework was implemented to test both subsystems of the PS 
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in terms of how accurately user preferences were learnt and applied.  Figure 8 shows the 

evaluation framework. 

 

 

Figure 8. Evaluation Framework for the DAIDALOS II PS 

 

The Mobile Phone Emulator Service (MPES) acted as a third party telecommunications 

service running on top of the DAIDALOS II platform.  It contained several 

personalisable parameters which the Learning Management subsystem would learn 

preferences for and the Personalisation Management subsystem would populate 

dynamically.  To simulate service usage, subsets of the Reality Mining Dataset [134] 

were used to represent historic user behaviour.  The Reality Mining Dataset (created by 

the MIT Media Lab) contained mobile phone usage data for over 100 users across a 

period of 350,000 hours.   

3.4.1 Evaluation Tests 

During the test initialisation period a subset of usage data from one user was divided 

into test and training data and the training data was uploaded as user behaviour history 

to the Context Management System by the User Behaviour History Control.  Once 

uploaded, the Experiment Control triggered the LM to perform a learning execution.  

This resulted in a set of preferences being forwarded to the PM where they were then 

merged into the user‟s preference set.   

 

To test the accuracy of preference learning and the dynamic application of preferences, 

the User Context Control then used the test data to drive further context changes.  After 

each context change the Experiment Control recorded how the MPES was dynamically 
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re-personalised by the PCM (based on the learned preferences) and compared this with 

the actual behaviour in the test data set to calculate an overall percentage accuracy of 

personalisation for the test.  This process was repeated ten times for each user using 

different test and training data subsets across three users.  The test results [135] showed 

that the PS performed well with an average accuracy of 84% across all tests. 

3.5 Lessons Learnt 

3.5.1 Generic PS Architecture 

The DAIDALOS II PS provided many enhancements to the functionality of the PS from 

DAIDALOS I.  A significant improvement was the replacement of the task specific PS 

from DAIDALOS I with a more generic PS in DAIDALOS II.  The role of the PS 

changed from personalisation task management to that of support for personalisation 

tasks through the management of task specific preferences.  The IF-THEN-ELSE 

preference format from DAIDALOS I was adopted again in DAIDALOS II.  All 

preferences, regardless of the task they related to, followed this format enabling all 

preferences in both DAIDALOS I and DAIDALOS II to be managed by a common 

mechanism.  In DAIDALOS II it also enabled preferences to be ported across services, 

where a preference for one service could be applied for an equivalent task in another 

service. 

 

Provision for dynamic application of preferences led to more up to date and accurate 

personalisation.  Profile management went a step beyond current standards providing 

monitoring and learning mechanisms to support the maintenance of a frequently 

changing preference set that could expand and alter through time in line with user 

needs.  This mitigated the user‟s role in such laborious and time consuming tasks; 

however, when user control was required several GUIs allowed the user to manually 

view and manipulate their preference set as well as provide input to the preference 

application process.  

 

Although the main requirements were fulfilled, the DAIDALOS II PS did not reach its 

full potential due to the top down constraints that were applied to all enabling services 

within the PSP.  The layer dependency restriction rendered it difficult for the PS to 

perform necessary tasks to allow for the personalisation of enabling services residing in 
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the management layer.  Since these lower layer enabling services could not be 

dependent on the PS, tasks such as monitoring user behaviour, requesting user feedback 

and communicating preference outcomes became complex and non-standard work-

arounds were necessary.  Since management layer services could not send monitored 

actions directly to the Action Handler component, eventing was used as an alternative 

solution to capture user behaviour in such services.  Further, management layer services 

could not receive new preference outcomes from the PM as this involved implementing 

a PM call-back method.  Therefore, the PM was forced to directly apply preference 

outcomes to enabling services violating the decision making and proactive behaviour 

constraint.  This restricted environment led to restricted personalisation of lower layer 

enabling services. 

3.5.2 Negative Preferences 

In DAIDALOS II environment monitoring was triggered by the occurrence of a user 

action.  When a user performed a user action, a context snapshot was taken and stored 

with the action in the UBH.  However, it became apparent that by only monitoring user 

behaviour when some user action occurred, the system became biased towards positive 

behaviour.  In other words the system could learn positive preferences based on action 

occurrences, i.e. what the user did prefer, but could not learn negative preferences based 

on the non-occurrence of actions, i.e. what the user did not prefer.  

 

Consider the following example.  A user walks into a room twelve times.  On three of 

the twelve entries the user turns on the light but on nine of the twelve entries the user 

doesn't turn on the light.  The DAIDALOS II learning system would only be able to 

incorrectly learn that the user prefers to turn on the light when they enter the room as 

the user behaviour history set (of action-snapshot pairs) only contained data related to 

action occurrences (due to the user action-triggered environment monitoring policy).  Of 

course the user could correct this erroneous system behaviour through feedback 

mechanisms but incorrect personalisation would be experienced first. 

3.5.3 Pre-actions 

When detailing scenarios for the DAIDALOS II demonstrations the issue of pre-actions 

was raised.  A pre-action is an action performed by the user in a previous context to 

prepare for entrance into a new context.  For example, if the user is entering a lecture 
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theatre, they may mute their mobile phone in the corridor outside before they enter the 

lecture theatre.  Equally, when leaving the lecture theatre, the user may un-mute their 

mobile phone just before they leave the lecture theatre.  This issue is most specific to 

the problem domain of preference learning in pervasive environments where user 

behaviour can be pre-emptive, introducing consistent noise into the dataset. 

 

The DAIDALOS II system would capture the user actions and store them with a 

snapshot of the current context.  Hence the system would learn a preference stating that 

the user mutes their phone in the corridor and un-mutes their phone in the lecture 

theatre, even though the user actually prefers the reverse.  As above the only solution 

provided by DAIDALOS II involved preference refinement from user feedback once 

incorrect personalisation had been experienced. 

3.5.4 Preference Format 

In DAIDALOS II preferences were stored internally as IF-THEN-ELSE rules.  This 

decision followed from DAIDALOS I where the IF-THEN-ELSE internal format was 

sufficient since the primary goal was to display user preferences in a human-

understandable format so that preference manipulations could be performed manually 

by the user.  However, as complex processes such as preference learning and preference 

merging were added to the PS in DAIDALOS II, implicitly managing the preference set 

on behalf of the user became increasingly non-trivial due to the complex internal format 

of preferences.  A more efficient solution would be to store preferences internally as a 

tree or network structure that can be more efficiently manipulated and processed.  The 

internal format could then be translated to an IF-THEN-ELSE rule when the user wishes 

to view it. 

3.5.5 Preference Learning Algorithm 

The use of the C4.5 decision tree learning algorithm proved successful in the preference 

learning domain.  It provided an accurate preference set and the non-complex output 

format allowed users to view and update their learned preferences manually.  However, 

the slow time constant associated with batch algorithms such as C4.5 often meant that 

the user‟s preference set was not completely up to date.  When the user presented a new 

behaviour, the learning system could not provide a rapid response to quickly update the 

preference set accordingly.  This was due to the batch nature of the C4.5 algorithm 
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which was only executed at various intervals.  If a new behaviour presented itself just 

after a learning execution, it would not be accommodated into the user‟s preference set 

until the next learning execution which may not be due for some time.  Therefore, in 

between learning executions the accuracy of the user‟s preference set could deteriorate.  

Equally, at the point of initial system usage no monitored behaviour was processed and 

no learnt preferences were available until the first learning execution. 

 

This issue is also faced by other pervasive projects, all utilising batch algorithms for 

preference learning.  For this reason similar projects such as SPICE, Mobilife and 

Ubisec implement rapid response mechanisms that accommodate user feedback into the 

user‟s preference set immediately when it is received.  This provides a partial solution 

but does not address rapid response to all monitored (non-feedback) user actions. 

 

As mentioned in Section 2.3.6 user modelling (of which preference learning is a subset) 

is essentially an incremental task and as such can be most efficiently handled by an 

incremental learning algorithm.  With such an algorithm all new information would be 

processed immediately as it is received.  The behaviour history store would become 

redundant and updating of the user‟s preference set would not be restricted to cyclic 

executions.  Equally, learnt preference information from monitored behaviour would be 

available from initial service usage without the need for the lag time required by batch 

algorithms to acquire an initial user behaviour history. However, such an incremental 

approach must consider several key issues.  How should new input be rapidly 

incorporated into the entire information store and what if the new input conflicts with 

what already exists in the information store? 

 

In the DAIDALOS II PS conflicts are handled during the preference merging process 

when new learnt preferences are merged into the user‟s existing preference set.  If a 

preference has been learnt based on a new behaviour it may be in direct conflict with a 

preference based on a past behaviour.  Where no alternate solution is possible the PS 

executes learning on the entire store of user behaviour history data to generate a 

compromise preference that takes account of both past and recent user behaviour.  This 

solution is not transferrable to an incremental approach where no history of user 

behaviour is stored.  An alternative solution is required to deal with the emergence of 

new conflicting behaviours in an incremental system. 
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3.6 Summary 

The DAIDALOS project made a significant contribution to pervasive personalisation 

research.  Initial prototypes produced during the first phase of the project provided a 

good base for further development and innovation in the second project phase.  The 

initial PS provided various personalised processes such as personalised service 

selection, personalised composition and personalised service parameterisation.  

Although successfully demonstrated at the end of the first project phase, key 

requirements were identified for an enhanced PS in the second project phase.  These 

included a more flexible PS architecture, dynamic personalisation (i.e. re-

personalisation during service runtime) and implicit personalisation involving 

monitoring and learning techniques. 

 

The second PS delivered all enhancements required and an evaluation of the entire 

DAIDALOS II PS demonstrated its ability to implicitly create and manage an accurate 

set of preferences on behalf of the user that would drive dynamic personalisation.  

Although successful, the DAIDALOS II PS has also raised some important lessons 

learnt for consideration if developing a future personalisation system.  It is highlighted 

above how the layered architecture of the DAIDALOS II middleware placed several 

restrictions on PS functionality.  Further, the addition of implicit personalisation 

functionalities such as behaviour monitoring and machine learning has also highlighted 

several areas for improvement in terms of how and when user behaviour is monitored, 

how internal data should be stored and processed and what learning approaches may be 

better suited to the task of preference learning in a pervasive environment. 

 

In Chapter 4 the findings presented in this chapter are combined with those presented in 

Chapter 2 to present a set of design features and requirements for an efficient preference 

learning technique that is specifically tailored to personalisation in the pervasive 

computing domain.   
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4 Design Issues and Requirements for Preference Learning 

in a Pervasive Environment 

4.1 Problem Description 

This thesis attempts to answer the following research question: 

How can a system learn and provide accurate and up to date  preferences for 

personalisation in a pervasive environment? 

 

If we consider this statement in more detail, it raises several obvious issues such as the 

selection of an appropriate learning algorithm and determining an appropriate method of 

environment monitoring as input to learning processes.  However, it also contains 

several less obvious issues that must equally be considered.  Notably, implicit 

personalisation is applied in a user-centric domain and hence the user should have 

ultimate control.  Therefore he/she should be able to view all preferences and 

manipulate them as required.  This raises further questions as to how preferences should 

be represented internally within the system, externally to the user and how translations 

should occur between the two formats. 

 

Section 2.2.2 outlined various pervasive projects that have attempted to address these 

challenges.  Chapter 3 described how the DAIDALOS II PS provided support for 

implicit personalisation.  The final evaluations of the Dadialos II PS produced 

satisfactory results and indeed many other pervasive projects (detailed in section 2.2.2) 

have enjoyed similar success.  However, reflecting on the shortcomings of past projects 

and the lessons learnt from DAIDALOS II, it seems there are several key areas for 

improvement to better provide both accurate and up to date preferences for implicit 

personalisation.  The following sections discuss various design issues related to the 

problem description above and determine key requirements for an efficient preference 

learning solution. 

4.2 What to Monitor 

To learn preferences for personalisation in a pervasive environment it is necessary to 

monitor user behaviour in context situations.  However, as identified in DAIDALOS II 
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it is important to outline the scope of terms such as user behaviour and context since 

they are potentially all encompassing.   

 

As outlined in section 3.3.3 not all actions performed by the user are useful for 

preference learning.  Behaviour monitoring in DAIDALOS II was bounded by the set of 

personalisable parameters identified by each service, network and device.  Monitored 

user actions only included those actions performed by the user that altered the value of 

some personalisable parameter, hence altering the personalised state of the entity.  The 

same boundaries for behaviour monitoring will be adopted here as a design decision. 

 

User context is provided from environmental sensors and other sources.  It is difficult to 

determine a priori, what context data will be useful for preference learning since user 

actions can potentially be dependent on all user context.  Therefore, unlike user 

behaviour, it could prove detrimental to pre-determine a bounded subset of user context 

for monitoring.  DAIDALOS II and many other implicit personalisation systems were 

forced to bound monitored context to a finite static set due to the storage and processing 

limitations resulting from the use of batch learning algorithms (and the required 

behaviour history stores).  An optimum approach would monitor all context for 

consideration during preference learning; therefore the design decision is to aim towards 

the monitoring of all available context in an efficient manner. 

4.3 Batch vs. Incremental Learning 

A significant area for improvement in providing support for implicit personalisation 

involves the type of learning algorithm employed for the preference learning task.  

Although the most common approach is to employ a batch learning algorithm it has 

been highlighted throughout Chapter 2 that batch algorithms have several drawbacks 

when applied to the task of preference learning in a pervasive environment.  This is also 

echoed in the lessons learnt from the DAIDALOS II project where the batch C4.5 

algorithm was utilised for preference learning.   

 

If we refer to the problem description above, the aim is to learn preferences that are both 

accurate and up to date.  Evaluation of the DAIDALOS II PS showed that batch 

algorithms are capable of learning accurate preferences based on user history data; 

however, it has also been highlighted numerous times that batch algorithms cannot 
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ensure up to date preferences due to their cyclic execution.  This issue is most acute 

when the user changes their behaviour between cycles warranting an update to their 

existing preferences.  A batch algorithm alone will not provide updates to the preference 

set until the next learning cycle execution and until that time incorrect personalisation 

can be manifested. 

 

Indeed, first-hand experience of the design and implementation of the DAIDALOS II 

Learning Management subsystem highlighted the need for additional supporting 

functionalities besides the main learning algorithm to ensure a more up to date 

preference set.  In DAIDALOS II the dual-store user history database took account of 

recency to more rapidly identify new behaviours in behaviour history data while in 

projects such as Ubisec, SPICE and MobiLife, rapid updating mechanisms (based on 

user feedback) immediately altered the user's preference set between learning cycles. 

 

Giraud-Carrier [93] proposes that user modelling (of which preference learning is a 

subset) is essentially an incremental task, best handled by an incremental learning 

algorithm.  Inputs will naturally occur one at a time through time and input vectors 

should not be static.  This is reflected in the DAIDALOS II lessons learnt where one 

important lesson hints towards the benefits that a more incremental learning solution 

could provide.  Not only would an incremental preference learning algorithm provide a 

more responsive system to changes in user behaviour but it would also remove the need 

for large stores of user history data and remove the need for lag periods when these 

stores are populated with monitored data between learning cycles.   

 

Indeed the typical open-world assumption of most incremental approaches maps 

naturally to the real world problem domain of a pervasive environment.  As users move 

through their environment, interacting with services, networks and devices, context and 

behaviour updates will occur sequentially, through time.  Several incremental 

algorithms discussed in section 2.3.6 naturally handle input in such a continuous 

fashion.  Additionally, several incremental algorithms can also grow/shrink their 

topology to accommodate changing classes and concepts such as new forms of context 

information and new user actions.   
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However, Giraud-Carrier highlights a key design issue of incremental algorithms.  

Essentially such algorithms follow a learning curve.  Starting with very little 

information, an incremental algorithm may initially provide inaccurate output.  

Accuracy will improve over time as input increases but it may be difficult to determine 

when the algorithm has received sufficient input to be trusted.  This could have serious 

consequences in terms of addressing the problem description where learnt preferences 

should be both up to date and accurate. 

 

Indeed, there is some trade-off between an up to date preference set and an accurate 

one.  However, as Webb [136] outlines, often in a user modelling domain, predictive 

accuracy comes second to various other factors such as CPU time.  He also highlights 

that appropriate prompting can greatly improve the user experience where predictive 

accuracy is lower.  These observations were also noted in the Swiftfile system where 

final analysis showed that incremental learning out-performed batch learning of user 

behaviours.  Essentially, the great benefit of incremental algorithms is their ability to 

provide some kind of preference information from initial system usage.  Even if initial 

output is not highly accurate, it is better than nothing and when used in conjunction with 

prompting mechanisms, can satisfy user expectations. 

 

Therefore, the outcome of this fundamental design decision is to adopt an incremental 

approach to preference learning.  The next step is to determine the requirements that an 

incremental algorithm must fulfil within this problem domain.  

4.4 Incremental Algorithm Requirements 

As detailed in section 2.3.6 the term 'incremental' is interpreted in several different ways 

when referring to machine learning algorithms.  Current incremental algorithms vary in 

terms of what incremental properties they possess and hence what distinguishes them as 

incremental.  Therefore it is necessary to consider what are the key properties of an 

incremental algorithm for the purposes of preference learning in a pervasive domain. 

4.4.1 Incremental Properties 

For preference learning in a pervasive environment, it is desirable that an incremental 

algorithm would possess the following properties. 
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1. Process input one at a time over time.  The incremental algorithm should receive 

and process inputs as they occur in real-time rather than rely on an a priori training 

set to be presented.  With regard to preference learning in a pervasive environment 

the inputs will be user actions and user context.  User context will change as the user 

moves through their environment and user actions will occur as the user interacts 

with services.  The incremental learning algorithm should process such events 

immediately when they occur. 

2. No re-processing of past data.  The incremental algorithm should not need to re-

process past data to update its internal knowledge store or to provide output.  Instead 

the algorithm should create a new hypothesis h for each new example e where 1ih  

depends only on ih  and the current example ie .  Equally, at any time the algorithm 

should be capable of providing a best approximation, ih , of the target so far when 

queried. 

3. No a priori knowledge of the problem domain.  In a highly dynamic pervasive 

environment an incremental algorithm should not rely on preset knowledge such as 

learning rates as changes in the pervasive environment could easily render such 

static, domain specific configurations invalid. 

4. Growing/shrinking topology.  In a pervasive environment new context sensors can 

become available or the user may enter a previously unknown situation (e.g. if they 

go on holiday).  In either case new context attributes or new values of existing 

context attributes should be considered.  Equally, the user may perform new user 

actions over time as new resources become available.  Therefore new user actions 

should be considered.  An incremental algorithm should be able to accommodate 

such changes by altering internal knowledge structures.  In effect it should be an 

open-world system, unbounded by static input and output vectors. 

 

It is noted that several incremental algorithms (ART, COBWEB and ID4) reviewed in 

section 2.3.6 possess all four properties.  Considering past projects and background 

literature discussed in section 2.3.6, none of these algorithms have been employed for 

implicit personalisation in a pervasive system to date.  One could question if any of 

these existing incremental algorithms are sufficient for preference learning in a 

pervasive domain.  However, a suitable algorithm must also satisfy the learning 
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properties below (Section 4.4.2) and support all the design decisions outlined in this 

chapter. 

4.4.2 Learning Properties 

As well as incremental properties, the algorithm should implement several fundamental 

learning properties due to the pervasive problem domain. 

 

1. Hetero-associative mapping mechanism.  To create context-dependent preferences 

the internal representation is essentially a mapping between context data and 

preference data.  In learning terms this translates to a hetero-associative mapping 

since the input is very different to the mapped output.  The preference learning 

algorithm must be able to handle the two heterogeneous data types and the hetero-

associative mappings between them. 

2. Unsupervised learning.  Most learning methods can be classified into two 

categories: supervised learning and unsupervised learning.  While supervised 

learning relies on an external teacher and/or global information, unsupervised 

learning relies only on local information to self-organise presented data and identify 

emergent properties.  In a pervasive environment the preference learning algorithm 

will only be presented with context and preference data which it must self-organise 

to identify correlations between the two. 

4.5 Internal Knowledge Representation 

In the DAIDALOS II pervasive platform, preferences were stored in a human-readable 

form in the PS.  This proved to be inefficient for a number of reasons.  Firstly, each time 

new learnt preferences were delivered, the decision tree output from the C4.5 learning 

algorithm had to be translated into the IF-THEN-ELSE preference format and merged 

with the existing preference set.  Both these processes were potentially time intensive 

depending on the volume of output from the C4.5 algorithm.  Secondly, manipulating 

and evaluating preferences in such a human-readable format proved non-trivial and 

computationally expensive. 

 

A more efficient solution would be to hold the user preferences in some internal 

structure for quick manipulation rather than converting them to an external format for 

storing.  Several personalisation systems considered in section 2.2.2 use Bayesian 
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networks or neural networks to represent preferences internally.  However, such 

networks can themselves become complex systems that are difficult for humans to 

interpret or understand.  For example, most neural networks contain a hidden layer to 

enable them to solve non-linear problems (such as XOR).  Although this makes for a 

more powerful network it becomes very difficult to understand why the network settles 

on a target function and even more difficult to extract this information into a human-

understandable format. 

 

Therefore, although neural and Bayesian networks allow for more efficient 

manipulation and evaluation of the preferences they represent it should not be forgotten 

that they are employed in a user centric domain and therefore the user should be able to 

take ultimate control when required.  To ensure this, it must be possible to display all 

preferences to the user in a human-understandable format.  Additionally, the user should 

be able to manipulate preferences in this human-understandable format and such 

changes should be transferrable back to internal preference representations. 

 

One solution is to represent context-dependent preferences as a linear neural network 

with weighted connections between context data and preference data.  With no hidden 

layers, it is much easier to explain internal network knowledge and in turn translate the 

linear connections into human-understandable rules.  Consider a typical context 

dependent IF-THEN-ELSE preference.  The context conditions consist of tuples of the 

form: 

<context parameter, logical operator, context parameter value> 

It is changes in the context parameter value that affects the outcome of the preference.  

For example, if we have the following service selection preference: 

IF <location = home> 

THEN [service_type = sport] 

ELSE IF <location = work> 

THEN [service_type = news] 

we can see that the context parameter values „home‟ and „work‟ determine whether the 

implemented preference outcome is „sport‟ or „news‟.  Therefore, individual context 

parameter values influence the implementation of individual preference outcomes.  We 

can represent this as a linear network with weighted connections between the two 
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heterogeneous vectors (context parameter values and preference outcomes) as shown in 

Figure 9. 

 

 

Figure 9.  Linear network representing associations between context parameter values and preference 

outcomes 

 

The weighted connections between layers represent the strength of the association 

between some context attribute value and some preference outcome.  Altering such 

weights would alter internal network knowledge and hence the preferences represented 

by the network.  Weight manipulations could be performed rapidly in real-time in line 

with the rapid response behaviour required of an incremental solution.  The preferred 

outcomes in some context could be determined at any point by summing the weighted 

inputs of the preference outcome nodes and applying some activation function.   

4.5.1 Dynamic Network Topology 

As well as being easier to interpret and translate into a human-understandable form, 

implementing an incremental algorithm as a single layer neural network also makes it 

easier to manipulate the network topology to reflect new classes.  A pervasive 

environment is a very dynamic space.  The array of available resources continuously 

changes as the user moves through the environment.  For example, location based 

services may become available or unavailable as the user moves in and out of range.  As 

the available services change, so do the possible user actions that the user can perform 

in the environment.  Similarly context sensors may be active or inactive through time 

impacting on the available context information.  Therefore, any system that attempts to 

correlate context and user behaviour must be able to cope with the dynamic structure of 

these vectors for association. 

 

Many neural systems rely on a static architecture which is defined before learning 

begins.  The input and output vectors cannot change during the course of learning.  If 
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any changes are required the network architecture must be re-defined and learning 

repeated.  The inhibiting factors for a dynamic topology are typically the existence of 

hidden layers (adding internal complexity) and the use of a global network error, hence 

changes to the network topology will affect the accuracy of the entire network. 

 

However, in a linear network with no hidden layers, it becomes much easier to 

dynamically add/remove network nodes, especially if a local learning rule is 

implemented to manipulate weights on individual connections.  Since there is no global 

network error the addition or removal of nodes will not affect entire network accuracy.   

Therefore as regards the internal preference format, the design decision taken is that the 

incremental preference learning algorithm will be implemented as a single layer neural 

network with a dynamic topology. 

4.6 Learning Positive and Negative Preferences 

Another important lesson learnt from DAIDALOS II was in relation to the inability to 

learn negative preferences from the outset, i.e. what the user does not prefer.  This was 

due to the action-triggered monitoring process that only captured the current state of the 

environment when the user performed some user action.  When a user action occurred, a 

snapshot of context was taken, appended to the user action and stored as an example in 

the user behaviour history store.  Useful information regarding the non-occurrence of 

user actions in context situations was therefore omitted and hence the behaviour history 

dataset was biased towards positive action occurrences.  Therefore the system could 

only learn positive preferences indicating what the user does prefer.  Of course negative 

preferences could be introduced to the preference set based on negative user feedback 

due to incorrect personalisation but this required the user to experience and correct 

erroneous system behaviour. 

 

A better approach is to continuously monitor all user actions and all context changes so 

both the occurrence and non-occurrence of actions can be identified in some context.  If 

we consider the single-layer network structure proposed in Figure 9, the vectors for 

association (context attribute values and preference outcomes) could retain the current 

state of user context and implemented preference outcomes.  When a context update 

occurs or when the user performs an action, this new input could be quickly 

accommodated into the network by altering the appropriate vector nodes and updating 
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related network weights.  By implementing both incrementing and decrementing 

processes on network weights, positive and negative associations could be identified 

between context and preference vectors.  Hence, the incremental neural network for 

preference learning would be able to learn both positive and negative preferences from 

the outset without relying on negative user feedback. 

4.7 Overcoming Pre-Actions 

Another issue raised in DAIDALOS II concerns pre-actions, i.e. actions that are 

performed in a previous context to prepare for entry into another context.  The example 

given detailed how a user may mute their mobile phone before entering a lecture theatre 

and un-mute their mobile phone before leaving the lecture theatre.  A typical batch 

system would learn the reverse of what the user actually preferred since the monitoring 

process would store the context outside the lecture theatre with the mute action and the 

context inside the lecture theatre with the un-mute action. 

 

Equally, an incremental algorithm could provide incorrect output if faced with such a 

situation.  For example, with an incremental neural network it is also typical that 

network updates are input triggered.  Therefore, when the user mutes their phone, the 

network vectors and weights would be adjusted to incorrectly associate the mute action 

with the current context outside the lecture theatre. 

 

One may question if this issue could be handled with additional sensing and inference.  

With appropriate sensing and inference techniques the system could predict the user's 

future location (lecture theatre) for association with behaviours (muting the phone).  

However, even with additional sensing and future context prediction it may still be the 

case that the user is performing actions to prepare for entry into contexts that are more 

than one step ahead.  Therefore it does not always solve the issue and could still result 

in the incorrect association of context and behaviours. 

 

To overcome this issue an alternative solution is proposed that considers the 

reinforcement policy of the incremental algorithm.  The reinforcement policy dictates 

when an algorithm updates its internal knowledge representation during learning 

processes.  It is clear an input-based policy is not adequate in all circumstances, 

therefore another reinforcement policy must be considered.   
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4.7.1 Temporal Reinforcement Policy 

If we reconsider the lecture theatre scenario, the user mutes their mobile phone outside 

the lecture theatre and then immediately enters the lecture theatre.  Therefore, the 'mute' 

state prevails for only a short time period in the context outside the lecture theatre, but 

prevails for a much longer time period in the context inside the lecture theatre.  The 

temporal duration of the co-occurring context and preference states provides important 

information that naturally leads one to conclude that the mute state is more strongly 

associated to the context inside the lecture theatre where it prevailed for a greater 

temporal duration. 

 

Consider this proposal from another angle.  In some context the user performs an action 

that sets their preferred screen background colour to blue.  This state prevails for several 

minutes before the user performs another action to set their preferred screen background 

colour to yellow.  This state prevails for a number of weeks.  Note that the two actions 

only occur once in some context.  With an input-based reinforcement policy both 

actions would be equally associated to the context state.  This contrasts with the natural 

assumption that the second action is more strongly associated to the context due to its 

longer duration.  Again, the temporal duration of the co-occurring context and 

preference states provides valuable information. 

 

Therefore, it is proposed that the incremental preference learning algorithm will 

implement a temporal reinforcement policy to take into account temporal information 

regarding environmental states.  Rather than manipulating weights only once when 

input is received, weights will be continuously manipulated through time based on 

current environmental states.  This will enable the incremental network to learn 

associations based on the duration of co-occurring vector states, rather than simply on 

the fact that they co-occurred at one point in time.  Vector states that co-occur for longer 

time periods will be more strongly associated than vector states that co-occur for shorter 

periods of time.  This design decision will overcome the issue of pre-actions identified 

in DAIDALOS II.   
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4.8 Concept Drift and Conflict Resolution 

Concept drift is highlighted as a major learning algorithm design issue in a number of 

research papers.  It describes the situation where the target function and its statistical 

properties change through time rendering a prediction model created from past 

examples, inconsistent with new examples.  Webb [136] outlines the challenges of 

concept drift from the perspective of user modelling (including preference learning).  

When attempting to model user behaviour, concept drift will be an inevitable issue due 

to changing user behaviours.  Giraud-Carrier also highlights concept drift as a major 

design issue from the perspective of incremental learning algorithms where new inputs 

are continuous and ongoing. 

 

Incremental learning algorithms have the ability to adapt quickly to concept drift in a 

pervasive domain as user behaviour changes but a drifting concept renders some 

underlying conflict between what used to be true and what is now actually true.  In 

machine learning terms, there is some error between the algorithm's internal knowledge 

representation and the real world.  Reducing this error essentially over-rides old 

information with the new conflicting information so that the learning system can adapt 

to new input.  Batch algorithms typically minimise such errors during several epochs of 

training data, aided by global knowledge of the entire dataset; however, an incremental 

algorithm must determine how to minimise error in one instance based only on current 

knowledge.  In other words, when a conflict arises incremental algorithms must 

consider how to over-ride old information with new information based on minimal 

global knowledge. 

 

The issue of incremental conflict resolution has triggered much debate and received 

significant consideration during the course of this research.  Due to the intended user 

centric application domain, a psychological element is introduced into the equation.  It 

is impossible not to consider this issue from a user's perspective, questioning how a user 

would expect a learning system to behave in terms of accommodating changes in 

behaviour.  For example, if a user has always preferred to use the BBC News website, 

what does it mean when they suddenly start to use MSN News?  How quickly would the 

user expect the learning system to pick up this new behaviour, if at all? 
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Essentially, it comes down to the intended duration of the behaviour change.  In the 

example above, if the user intends to use MSN News from now on, then the user would 

most likely want the learning system to accommodate the behaviour change rapidly.  

Equally, if the user intends to use MSN News for one session, the user would most 

likely want the learning system to accommodate the behaviour change slowly, so their 

prevailing preference for BBC News is not over-ridden. 

 

Unfortunately attempting to determine if new conflicting input is intended for a long-

term or short-term duration is non-trivial.  Prompting the user for clarification is an 

option; however, it is undesirable to request user involvement every time they change a 

preferred outcome.  Instead it is proposed that the temporal nature of a past behaviour 

can be used to infer the likely temporal nature of a new behaviour.  In preference terms 

this is captured in two heuristics for conflict resolution: 

 

Heuristic 1: A change to a long-term preferred outcome is more likely to be a 

long-term change and therefore should be accommodated rapidly.  

Heuristic 2: A change to a short-term preferred outcome is more likely to be a 

short-term change and therefore should be accommodated less 

rapidly. 

 

Considering these heuristics from an end user perspective they assume that a long-term 

preferred outcome is akin to a deeply held belief.  Changes to such an outcome are 

likely to be the result of much contemplation and hence less likely to revert or change 

frequently.  Equally, the heuristics assume that a short-term preferred outcome is akin to 

a less deeply held belief.  Changes to such an outcome are likely to be more whimsical 

and hence more likely to revert or change frequently. 

 

Of course, the counter of these heuristics can also be argued.  There will always be 

situations where the heuristics hold and equally situations where they do not.  This is 

due to the complex nature of both human behaviour and pervasive environments.  There 

are many reasons why the user may change their preferred outcome in some context.  It 

may be due to a context change of which the system has no knowledge, a change in 

lifestyle or simply a change of mind.  Equally there are many reasons why the user may 

allow a preferred outcome to prevail for a substantial time period, other than because it 
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is strongly preferred.  Perhaps the outcome personalises some insignificant parameter or 

perhaps it is difficult for the user to change this preferred outcome. The key phrase in 

both heuristics is 'most likely'.  It was felt that an investigation into psychological 

literature was worthwhile in an attempt to uncover support for such heuristics at a 

human behavioural level. 

 

4.8.1 Psychological Investigations 

Psychological literature on human behaviour tends to regard behaviour as something we 

learn and therefore investigates and explains human behaviour in terms of learning and 

memory.  In this sense behaviour change is often viewed as changes in memory due to 

cognitive processes such as learning and forgetting.  Temporal aspects are only 

considered in terms of the time taken to learn or forget a behaviour. 

 

In human memory over-riding of old memories with new memories can be described by 

various learning and forgetting phenomena, one of which is retro-active interference 

[137].  It is based on the principle that if a subject learns the association A-B, later 

learning of the association A-C will weaken the recall of B.  This is essentially what 

should happen when a conflict arises.  The new conflicting preferred outcome should 

over-ride the old preferred outcome.  Retro-active interference also states that the 

stronger the association between A and B, the longer it will take to forget.  This makes 

sense when considering learning and forgetting as mechanical processes for adapting 

memories. However, if we reflect on the two heuristics above and their proposals to 

adapt internal knowledge at different rates, it is clear that the mechanical processes 

described by retro-active interference do not consider how higher-level variables may 

affect the rate of learning and forgetting.   

 

One interesting memory concept does consider how external variables influence 

memory and recall.  Levels of processing [138] identifies that some memories are stored 

and recalled more efficiently than others due to the way in which the memories are 

processed.  The theory states that memories processed in a written or spoken format are 

shallow memories and will be quickly forgotten or over-ridden by new information.  

Conversely memories processed in a semantic way are deep memories, not easily 

forgotten or over-ridden by new information.  Reflecting on the heuristics short-term 
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behaviour changes are essentially shallow memories, with little impact on internal 

knowledge, whereas long-term behaviour changes are essentially deep memories with a 

bigger impact on internal knowledge. 

 

Unfortunately, the processing concept that defines a memory as deep or shallow cannot 

be mapped to the preference learning problem domain.  Preference learning inputs will 

all come from similar sources (context management system and services).  Of course 

one could argue that some services may be more critical than others (e.g. a service 

managing the disclosure of your personal details) and hence new behaviours related to 

these services should be accommodated more rapidly.  This could prove a useful 

distinction but it also abstracts the conflict resolution issue to a higher level and binds 

incremental conflict resolution processes to service attributes. 

 

Although investigation of the psychology literature uncovered some interesting 

cognitive concepts it provided little support for the heuristics but equally it did not 

invalidate them.  Therefore focus shifted towards more domain specific aspects.  The 

temporal nature of behaviours was further investigated in terms of preference time 

constants which give an insight into the past temporal trends of a preference.   

 

4.8.2 Preference Time Constants 

The time constant of a preference relates to how frequently the preferred outcome 

changes in some context.  Some preferences will have rarely changing preferred 

outcomes (e.g. font size preference) whereas other preferences will have frequently 

changing preferred outcomes (e.g. volume preference).  In a single layer network the 

time constant of a preference can be identified by comparing the association strengths of 

the preference's outcomes with the current context. 

 

If all the outcomes of a preference have similar connection strengths this indicates that 

the preference frequently fluctuates between preferred outcomes (i.e. the user is 

indifferent about their preferred outcome).  We can say the preference has a short time 

constant.  Alternatively if a preference has one outcome with a significantly higher 

connection strength than all the others, this indicates that the preference rarely fluctuates 
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between preferred outcomes (i.e. the user has an obvious preferred outcome).  We can 

say the preference has a long time constant. 

 

Essentially, the time constant of a preference is a record of its temporal history and 

hence it is reasonable to base future predictions of a preference's time constant on past 

trends.  Therefore one could assume that a preference with a short time constant will 

most likely continue to have a short time constant in the future while a preference with a 

long time constant will most likely continue to have a long time constant in the future.  

In other words, a change to a preference with a short time constant will most likely be 

for the short-term while a change to a preference with a long time constant will most 

likely be for the long-term.  This is in line with the conflict resolution heuristics detailed 

above. 

 

Consider this further in terms of network error reduction.  At the time of conflict the 

incremental neural network will hold the connection strength of the old preferred 

outcome to the current context and the connection strength of the new preferred 

outcome to the current context.  The error is the difference between them with the new 

preferred outcome initially always having a lower connection strength than the old 

preferred outcome.  Minimising such error over-writes the old information with the new 

information until eventually the new preferred outcome is more strongly associated with 

the current context. 

 

If a conflict arises in a preference with a long time constant the error will be large since 

the old preferred outcome will have a significantly stronger connection to the current 

context than all other outcomes (including the conflicting outcome).  Since the 

preference has a long time constant the large error should be reduced rapidly.  

 

Equally if a conflict arises in a preference with a short time constant the error will be 

small since all preference outcomes will have a similar connection strength to the 

current context.  Since the preference has a short time constant the small error should be 

reduced slowly. 

 

Therefore the design decision regarding conflict resolution is to implement resolution 

strategies based on the heuristics proposed above.  In terms of network error, larger 
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errors (occurring in preferences with long time constants) will be reduced rapidly while 

smaller errors (occurring in preferences with short time constants) will be reduced less 

rapidly. 

 

4.9 Summary 

The problem description was presented at the start of this chapter outlining the main 

goal of the research associated with this thesis.  As well as the obvious issues it raises, 

several less obvious issues were highlighted for consideration.  Section 2.2.2 outlined 

how various pervasive projects have attempted to achieve this goal.  In considering their 

solutions, several shortcomings were identified.  Additionally, section 3.5 outlined how 

first-hand experience of providing an implicit personalisation system for DAIDALOS II 

has highlighted several key areas for improvement.   

 

Most notably, the use of batch learning algorithms for preference learning does not 

completely meet requirements in a dynamic pervasive environment.  The cyclic nature 

of batch learning means preference sets can become out-of-date between learning 

cycles.  The store of historical user behaviour can also contain bias and errors that are 

reflected in the learnt preferences.  Giraud suggests such issues can occur when a non-

incremental algorithm is used for an essentially incremental task.  However, incremental 

algorithms can also suffer problems.   

 

Essentially there is a trade off between up to date output and accuracy.  This is most 

critical in the early stages of incremental learning when initial prediction accuracy is 

often low until sufficient inputs have been received.  Even so, there is evidence to 

suggest that prediction accuracy is not the most essential requirement in a user 

modelling domain and mechanisms such as prompting can provide support when 

required.  Therefore it was proposed that an incremental algorithm should be used for 

the preference learning process in an implicit personalisation system.  The desirable 

incremental and learning properties of such an algorithm were outlined.   

 

The learner's internal knowledge representation is another area for consideration.  The 

rule based approach adopted in DAIDALOS II proved too inefficient for internal 

processes and hence it was proposed that a neural network structure be adopted.  
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Although utilised for preference representation in other pervasive projects, it is 

important to consider how one would understand or alter such data.  It was noted that 

single layer neural networks are simpler to understand and manipulate. They are also 

successfully implemented in the GAIA project where incrementing and decrementing 

weight processes enable the networks to handle non-linear problems. 

 

As well as the fundamental design decisions mentioned above, several other lessons 

learnt from DAIDALOS II were considered.  Firstly, it was proposed that environment 

monitoring should be continuous, capturing both context changes and user actions as 

they occur.  In contrast to the DAIDALOS II action-triggered approach, this would 

enable learning of both positive and negative preferences from the outset.  Secondly, it 

was proposed that the network should adopt a temporal reinforcement policy.  By 

updating weights continually through time, associations can be made between context 

and preferences based on their temporal longevity rather than their co-occurrence at one 

instance in time.  This will allow the network to overcome the problem of pre-actions.   

 

Finally, a key issue related to user modelling was discussed.  Concept drift is an 

inevitable phenomenon in a real world environment where user behaviour can change 

over time.  This renders a moving target function which in preference learning terms 

means that what the user preferred in the past may not be what they prefer in the 

present.  In other words there is a conflict between past behaviour and present behaviour 

which manifests itself as error in the learning system.  Unlike batch algorithms that can 

reduce error over a number of epochs, the incremental algorithm must appropriately 

reduce error in one instance.  This becomes even more complex when we consider 

human behaviour and expectations.  Ideally, long term changes should be 

accommodated rapidly while short term changes should be accommodated less rapidly.  

However, identifying whether a behaviour change is most likely long-term or short-term 

is non-trivial. 

 

Two conflict resolution heuristics were proposed indicating that change to a long-term 

preferred outcome is most likely long-term and change to a short-term preferred 

outcome is most likely short-term.  Although the heuristics will not hold in all cases, in 

the absence of deep knowledge they can indicate the most likely scenario.  An 
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investigation into the psychological literature was carried out to seek support for the 

heuristics at a human behavioural level.   

 

Little information was uncovered in the psychological literature that either supported or 

refuted the heuristics.  Therefore focus shifted back to the known temporal nature of 

past behaviours indicated through preference time constants.  Preference time constants 

can give an indication to the past temporal trends of a preference and hence can provide 

a basis for the prediction of future trends.  This approach is in line with the heuristics.  

At a network error level, following such an approach would reduce network error in 

direct relation to the size of the error. 

 

Although several existing incremental algorithms a) satisfy many of the fundamental 

incremental and learning properties, b) have a neural network based internal knowledge 

representation and c) support dynamic topologies, they do not utilise temporal 

information for weight reinforcement or conflict resolution.  Based on the design 

decisions and requirements outlined in this chapter a novel incremental learning 

algorithm has been developed to provide an efficient and tailored solution to the 

problem description. 
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5 Dynamic Incremental Associative Neural NEtwork 

(DIANNE) 

5.1 Introduction 

The DIANNE is a Dynamic Incremental Associative Neural NEtwork with the primary 

goal of learning associations between two heterogeneous vectors.  In the pervasive 

preference learning domain our aim is to learn context-dependent preferences for a user 

where the preferred outcome is the most commonly performed action in some context 

situation.  Therefore, the two vectors for association are the user‟s context and the user‟s 

behaviour (i.e. the actions the user performs when interacting with pervasive services).  

By learning associations between these two vectors the network can learn and store 

context dependent preferences indicating preferred outcomes for service adaptation and 

usage in a given context.   

 

The network implements several key concepts.  Firstly, the DIANNE implements an 

incremental approach to learning and hence does not rely on stores of user behaviour 

history as input.  Instead data received from services and context is processed 

immediately and incorporated into the network.  In this way the DIANNE can provide 

output to personalise services within the pervasive environment from initial system 

usage.  This is a great advantage over batch learning approaches where an initial lag 

period is required to capture a user behaviour history.  During this time, no input is 

processed and hence no learnt preferences are available for personalisation.  Equally, 

between batch algorithm executions, no new data is processed and hence no new learnt 

preferences are generated.  This incremental approach allows the DIANNE to provide 

rapid response to changes in user behaviour rendering the network highly responsive to 

change and constantly up to date. 

 

Secondly, the DIANNE executes a temporal reinforcement policy that continuously 

alters the strength of associations between actions and context over time.  This policy 

implements the hypothesis that the time a behaviour endures in some context is just as 

important as the fact that the behaviour was observable in the context.  Therefore the 

strength of associations learned by the DIANNE is not only based on the simultaneous 

occurrence of action and context states but also the period of time that the simultaneous 
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occurrence of action and context states endured.  This enables the DIANNE to 

overcome the issue of pre-actions. 

 

Finally the DIANNE implements a dynamic architecture.  This allows the vectors for 

association to change structure during network learning.  New nodes can be added to 

vectors as new resources and context information become available.  In such a dynamic 

environment where the array of available resources frequently changes, such an 

approach is a great asset ensuring continuous learning.  The sections below describe the 

topology of the DIANNE.   

5.2 Network Topology 

Figure 10 shows a high-level view of the DIANNE infrastructure.  In a similar manner 

to the DAIDALOS PS the DIANNE resides between some Context Management 

System and the pervasive services which provide input to the DIANNE.   

 

 

Figure 10.  DIANNE Infrastructure 

 

The DIANNE is a single-layer network with no hidden layer although for ease it is 

described in terms of two layers; the context layer and the outcome layer.  The context 

layer represents the context parameters and values related to the user in their real world 

environment.  The outcome layer represents the preferred preference outcomes for the 

adaptation and usage of the pervasive services in the user‟s real world environment.  As 

the user moves through their environment interacting with various services, the services 

capture user actions (e.g. selecting a service, changing the volume of a service, etc.) and 

pass them through to the DIANNE where they are associated with the current context of 

the user (provided by the Context Management System).  These associations allow the 

DIANNE to predict future adaptations of services on behalf of the user depending on 

the user‟s context. 
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The context layer is an input only layer and does not return any output to the 

environment.  Conversely the outcome layer acts as both an input and an output layer.  

It receives input from the services in the form of user actions.  As in DAIDALOS, after 

user actions are associated with context (i.e. become part of a context dependent 

preference) they are referred to as preference outcomes.  Therefore the outcome layer 

provides output in the form of preference outcomes to the services, indicating what the 

network has learnt the user will do in the current context.  This allows the services to 

implement the preferred outcomes before explicit user request thereby personalising 

themselves to that particular user. 

 

Within the layers there are two different types of network node.  The context layer 

contains context nodes and the outcome layer contains outcome nodes.  Each context 

node is connected to every outcome node (and vice versa) and a synapse exists on each 

connection. Figure 11 shows the structure of a network in a very simple state. 

 

 

Figure 11.  DIANNE Network Structure 

 

 is the set of all outcome nodes },...,{
1 m ,   is the set of all context nodes 

},...,{
1 n  and W is the set of all synapses },...,{

11 mnwwW  .  This hetero-

associative network stores the pattern pairs ( ,  ) associating a context state with 

preferred outcomes. 

5.2.1 Context Nodes 

A context node represents one value of some context parameter in the user‟s real world 

environment (e.g. a context node may represent the value „home‟ of the context 

parameter „location).  This differs from traditional neural networks where nodes often 

represent a range of values for some parameter.  Each context node can be in one of two 
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states; active or inactive.  The activity of each context node refers to whether the node is 

in the active or inactive state and is therefore binary.  The activity of a context node is 

determined by the truth of the related value in the real world environment.   

 

As the user moves through their environment their context will continuously change.  

The network receives context updates from the context management system.  When an 

update is received the appropriate context nodes are made active and inactive to 

represent the new real world context of the user.  If a context node is active it means 

that the related real world context value is true, whereas an inactive context node means 

that the related real world context value is false.  Therefore the DIANNE context layer 

provides a pseudo-representation of the user‟s real world context. 

 

Due to the explicit, single value structure it may be the case that several context nodes 

exist in the network, all relating to the same overall context parameter (e.g. there may be 

multiple context nodes each representing a different value of the context parameter 

„location‟).  It is assumed that a user‟s context model can only have one true value for 

each parameter at a time.  Therefore this should be reflected in the network by allowing 

only one node related to the same context parameter to be active at a time.   

 

To implement such a constraint, the context nodes relating to the same context 

parameter are grouped together as shown in Figure 12.  },...,{ 1 iccC   is the set of all 

context node groups in the context layer where each group ic  represents some context 

parameter (e.g. location) and is a unique set of context nodes }{ n . Any context node 

that exists in ic  cannot exist in any other context node group. 

 

 

Figure 12.  Context Node Groupings in the Context Layer 
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The activity of members within a context group is mutually exclusive (Figure 12 

illustrates active nodes as yellow and inactive nodes as blue) and the active node at any 

time is the node that represents the true real world value of the context parameter.  In 

the diagram above the network indicates that the user‟s location is „home‟ and their 

status is „free‟ in the real world. 

 

Each context node has an associated input potential. This is binary depending on the 

activity of the node.  The input potential is the value that the context node pushes into 

the network.  The input potential of context node i  is defined as: 

 





inactive. is  if    0

active is  if    1

i

i

iip



     (1) 

As the activity of context nodes change so do their input potentials and hence the 

overall input to the network. 

5.2.2 Outcome Nodes 

An outcome node represents some possible outcome of a preference in the user‟s real 

world environment (e.g. an outcome node may represent the outcome „mute‟ of a 

„volume‟ preference).  As with context nodes, outcome nodes can also be in one of two 

states; active or inactive and therefore the activity of an outcome node is also binary 

referring to what state each outcome node is in.  The activity of an outcome node once 

again reflects the truth of the related value in the real world environment. 

  

As the user interacts with pervasive services in their environment they will perform user 

actions that change the personalisable aspects of services.  The DIANNE receives 

updates from the services regarding the state of their personalisable parameters (i.e. 

what preference outcomes are implemented).  When an update is received the 

appropriate outcome nodes are made active and inactive to represent the implemented 

preference outcomes in the real world.  If an outcome node is active it means that the 

related preference outcome is implemented in the real world, whereas an inactive 

outcome node means that the related preference outcome is not implemented in the real 

world.  Therefore the DIANNE outcome layer provides a pseudo-representation of the 

preference outcomes that are actually implemented. 
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In a similar fashion to the context layer, nodes in the outcome layer can relate to the 

same preference.  Again it is assumed that only one preferred outcome can hold true in 

the real world for each preference at a time; therefore only one outcome node related to 

a preference should be active at a time.  To implement this constraint outcome nodes are 

also grouped depending on the preference they relate to as shown in Figure 13.  

},...,{ 1 iooO   is the set of all outcome node groups in the outcome layer.  Each 

outcome group io  represents some preference (e.g. „volume‟) and is a unique set of 

outcome nodes }{ m  relating to the various preference outcomes of the preference.  

Any outcome node that belongs to io  cannot belong to any other outcome node groups.   

 

 

Figure 13.  Outcome Node Grouping in the Outcome Layer 

 

As with context groups, the activity of members within an outcome group is mutually 

exclusive (Figure 13 illustrates active nodes as yellow and inactive nodes as blue) and 

the active node at any time is the node that reflects the implemented preference outcome 

in the real world.  In the diagram above the network indicates that the volume of some 

service is set to „high‟ and the current selected service is „news‟ in the real world. 

 

However, as well as receiving and reflecting input from pervasive services, the 

DIANNE outcome layer can also provide output to services altering the service to 

reflect the state of the network.  Therefore the activity of an outcome node can also 

depend on internal network factors and processing.   

 

Each outcome node has an output potential which indicates how strongly the DIANNE 

believes that this outcome node should be active given the current context.  The higher 

the potential the stronger the belief that the node should be active.  Each outcome node 
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has some number n of inputs where n = | |.  The output potential of an outcome node is 

the sum of its inputs; therefore the output potential of j  at time t is defined as: 

  )( j
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where   is the dynamic squashing function that maps the output potential from the 

possibly very large range of values to a finite range of values between -1 and +1.  It 

should be noted than when the input potential of i
t  is zero (i.e. context node i  is not 

active at time t) the input along that connection received by the outcome node j  will 

also be zero since 00 ji
tw . 

 

The outcome node with the greatest potential in each outcome node group is known as 

the winner node.  This is the node that the DIANNE believes should be active and 

implemented in the real world.  In the majority of cases the winner node will already be 

active; however, sometimes this may not be the case.  This situation indicates a change 

in user behaviour from what has been observed and learnt in the past.  For example, the 

DIANNE may identify the 'mute' outcome of some volume preference as the winner 

node but the user may have manually changed the volume to 'unmute'.  The DIANNE 

must determine how to deal with the conflict and provide appropriate output to the 

environment based on both internal network variables and external environmental input.  

This entire process, including conflict resolution is described as part of the DIANNE 

temporal learning algorithm in section 6.2. 

5.2.3 Dynamic Squashing Function 

Section 4.8.2 introduced the notion of preference time constants where the time constant 

of a preference gives some indication of how frequently the preferred outcome of the 

preference has changed through time.  Some preferences will have short time constants 

while others will have long time constants.  This must be considered when determining 

how normalisation should be applied.   

 

The DIANNE implements a squashing function   to map the output potentials of 

outcome nodes from the possibly very large range of values to a finite range between -1 

and +1.  If the gradient of   is too steep, behaviour changes will be reinforced too 
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rapidly due to temporal reinforcement (almost as a manifestation of one instance 

learning).  The normalised output potentials would quickly reach upper and lower 

saturation points and over-ride past information.  Of course it is possible to implement 

  with a very shallow gradient (hence saturation would take longer to occur) but 

inevitably preferences with the longest time constants will saturate due to temporal 

reinforcement, rendering further reinforcements useless. 

 

To overcome this problem,   is implemented as a dynamic squashing function with a 

variable gradient.  Since output potential comparisons only occur between nodes within 

the same outcome node group, each group has its own squashing function   with a 

dynamic gradient that alters independently in relation to the preference time constant of 

the group.  Therefore the DIANNE implements multiple dynamic squashing functions, 

one for each outcome group.   

 

For each outcome group, the gradient of   is identified based on the output potentials 

of the group‟s winner node win  (i.e. the node with the highest output potential in the 

group) and the group‟s loser node lose  (i.e. the node with the lowest output potential in 

the group).  The function   is defined as: 
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where highlimit and lowlimit dictate the dynamically adjustable positive and negative 

saturation points of  .  The grad  variable is the gradient of the slope of   defined as: 

  grad   
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Figure 14 below shows a graphical representation of   with highlimit = +5 and 

lowlimit = -5. 
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Figure 14.  Example graph of squashing function 

 

The highlimit and lowlimit variables influence the value of grad  as well as dictating 

the saturation points of  .  The variable highlimit dictates the positive saturation point 

while lowlimit dictates the negative saturation point.  At time 0t  highlimit is initialised 

to +  and lowlimit is initialised to -  where   is come constant greater than zero.  In 

current DIANNE implementations   is initialised to 10.  The value of   only affects 

the frequency with which the gradient of the dynamic squashing function changes. 

 

During DIANNE operation if   highlimitwinop  or   lowlimitloseop   the highlimit 

and lowlimit variables are updated.  The variable highlimit is increased by   while 

lowlimit is decreased by  .  The new value of grad  is calculated based on equation (3) 

above.  This allows the ramped squashing function to alter over time relative to the time 

constant of the preference represented by the outcome group.  It should be noted that 

saturation will therefore not occur in the DIANNE due to this approach.  This ensures 

that no valuable temporal reinforcement information is lost as would be the case if 

saturation were allowed. 

 

Once the gradient of the squashing function is decreased, there is no function to increase 

it to a steeper gradient should the output potentials of win  and lose  approach closer to 

zero again.  This decision is based on the assumption that if the preference‟s time 

constant led to this gradient in the past then it is very possible such a gradient will be 

required again in the future.  In real world terms an outcome group with a shallow 

gradient reflects the fact that the user consistently selected the same preference outcome 

in some context over an extended period of time.  Even if recent user behaviour is much 
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more changeable in this context it is always possible that the user will revert back to 

their significantly preferred outcome for an extended period of time again in the future.   

 

The decision to use a linear ramped squashing function is based on several factors.  

Firstly, the ramped function does not introduce any bias into the system as is the case 

with sigmoid functions.  Using a sigmoid curve such as tanh would favour inputs closer 

to zero over those further away.  Secondly, the ramped function has distinct saturation 

points compared to a sigmoid curve where no distinct saturation points exist.  However, 

as the sigmoid curve levels off, near-saturation points are reached as further changes to 

raw node potentials render miniscule changes to the normalised output potential.  The 

lack of distinct saturation points renders it more difficult to dictate thresholds for 

altering the gradient of the curve. 

5.2.4 Network Weights 

Each connection between a context node   (pre-node) and an outcome node   (post-

node) in the DIANNE has a synapse with an associated weight value.  The weight value 

determines the strength of the connection between   and   (and hence the strength of 

the association between the real world values they represent).  It is the manipulation of 

these weights that allows the DIANNE to learn.  The plasticity of weights is dependent 

on the activity of pre and post nodes and follows Hebbian and Anti-Hebbian learning 

policies.  A weight will increase if the positive activity of   leads to the positive 

activity of   (in line with Hebbian learning), decrease if the positive activity of   

leads to the negative activity of   (in line with Anti-Hebbian learning) and stay the 

same if   is not active.   

 

The weight of synapse mnw  at time T  is defined as: 
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It should be noted that no squashing function is applied to 
T

mnw .  Initially a sigmoid 

function (tanh) was implemented to map the very large range of possible weight values 

to between limits of 1 .  However, the sigmoid curve introduced a bias to the influence 

of each weight on the output potential of the related outcome node.  It was observed that 

when weight value 
T

mnw  was closer to zero, tanh(
T

mnw ) was closer to the 1  limits 

compared to a weight value that was further away from zero.  Linear squashing 

functions are a possibility but saturation issues must be dealt with uniformly across all 

weights.  The outcome would be greater overhead and no obvious benefit since weight 

values are not compared with one another.     

5.2.4.1 Weight Initialisation 

In many artificial neural networks weights are initialised randomly and modified to 

converge on some target function during the course of the training process.  However, 

due to the „learning from scratch‟, incremental nature of the DIANNE, it is natural to 

initialise the weights to zero giving them an initial state that is neither excitory nor 

inhibitory.  Unlike non-incremental networks, the weights will not converge on some 

definitive target value.  Some may converge towards upper or lower bounds (  ) for 

periods of time but equally others may not. 

5.3 Network Analysis 

There are many performance vectors with which neural networks can be analysed and 

compared.  Apart from encoding and recall mechanisms we can also consider network 

generality, capacity, stability and convergence. 

5.3.1 Generality 

Non-Linear Problems 

A well documented constraint of single layer neural networks is their inability to handle 

non-linear problems such as XOR.  As a single layer network, the DIANNE will not be 

able to represent XOR; however, in this problem domain (context-dependent preference 

learning) the DIANNE will never need to solve the XOR problem.  Consider the four 

XOR states shown in Figure 15. 
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Figure 15.  XOR Network States 

 

It is possible to represent state A in the DIANNE.  When all context nodes are inactive 

the DIANNE can make no prediction so it will not return an outcome node in these 

circumstances.  States B and C can also be represented by the DIANNE.  When input is 

available (i.e. some context nodes are active) the DIANNE will always return the most 

likely outcome node for each node group.  If there is only one outcome node in a group, 

that outcome node will always be returned in response to input.  With that in mind, state 

D will never need to be represented by the DIANNE as when input is available output 

will always be provided. 

 

Continuous Inputs 

The DIANNE has been designed to handle discrete inputs.  Due to the fact that each 

network node represents only one value, continuous input would result in the creation of 

numerous network nodes and would decrease performance significantly.  Since many 

context attributes can relate to continuous sensor inputs we must consider how this data 

is handled in the DIANNE. 

 

As is the case with many other learning algorithms it is necessary to discretise inputs 

before they are presented to the DIANNE.  Rather than utilising raw sensor data the 

DIANNE utilises discrete values that are inferred from one or more raw sensor inputs.  

For example, the DIANNE utilises inferred symbolic location names rather than 

continuous GPS coordinates. 

5.3.2 Capacity 

It is important to understand how many associations between input vectors and output 

vectors the DIANNE can store.  The capacity of a network is often expressed as a 

function of N, the number of nodes the network contains.  However, the DIANNE 
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groups nodes into mutually exclusive sets.  Therefore we must define the capacity of the 

DIANNE in terms of both network nodes and groups. 

 

First we will consider the number of possible input patterns conP  the network can 

handle.  A context group Cci   contains some n  number of context nodes.  Since the 

activation of each node in ic  is binary the total number of possible node activation 

patterns in ic  is n2 .  However, we must discount any activation patterns that violate the 

mutually exclusive constraint on the activation of nodes within the same group.  

Therefore, if ic  contains 1 node the possible activation patterns are: 

Node A 

on 

off 

 

Both activation patterns are legal and do not violate mutually exclusive node activation.  

Therefore when ic  contains only 1 node it has 2 possible activation patterns.  If ic  

contains 2 nodes the possible activation patterns are: 

Node A Node B 

on on 

on off 

off on 

off off 

 

The first pattern is not possible as it violates mutually exclusive node activation.  

Therefore, when ic  contains 2 nodes it has 3 possible node activation patterns, or more 

generally if ic  contains n  nodes the number of possible node activation patterns for ic  

is: 

     in )1(   

 

Therefore if we have k  context node groups then:     

   conP   knnn )1(...)1()1( 21   

 



k

i

in
1

)1(  
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Linear connections, binary node activations and the single layer architecture of the 

DIANNE mitigate against internal hidden complexity.  Therefore each input pattern 

i

conP  has one associated output pattern 
i

outP .  In other words: 

outP  conP  

Therefore the DIANNE storage capacity is equal to the number of possible input 

patterns (i.e. the number of possible context situations) conP . 

 

One interesting point to note is the relationship between the network capacity and the 

number and size of context node groups.  Let‟s assume we have 2 networks each 

containing 32 context nodes but grouped in different ways.  Network 1 has 3 context 

node groups containing 10, 13 and 9 nodes respectively.  The capacity of this network 

is: 

)19()113()110(   

1170  

Network 2 has 12 context node groups containing 2, 4, 3, 3, 2, 2, 3, 4, 3, 2, 2 and 2 

context nodes respectively.  The capacity of this network is: 

)12()12()12()13()14()13()12()12()13()13()14()12(   

82944  

It is clear that in terms of network capacity the number of context node groups is the 

influential factor, not the number of context nodes. 

5.3.3 Stability 

Network stability is realised if output is only slightly disturbed by deviant input.  It is 

often formally expressed through the notion of Lyapunov stability [139] which 

conceptually states that solutions starting „close enough‟ to the equilibrium remain 

„close enough‟ forever.   

 

The domain of all possible raw outcome node potentials is infinite; however, a dynamic 

squashing function   maps the raw node potentials from their infinite domain to within 

the limits: 

   1lim 


y
x  

1lim 


y
x
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The dynamic nature of   ensures that saturation will not happen.  However, we must 

ensure that the dynamically changing gradient of   does not have a negative effect on 

the stability of the network.  The gradient of   is global for all outcome nodes in the 

same group.  This means that different outcome groups can have different global 

gradients related to  .  However, the output potentials of the outcome nodes are only 

compared between nodes within the same outcome group.  Therefore, different 

gradients in different outcome groups will not affect the output of the network.  Within 

each outcome group the changing gradient should not cause any detrimental effects to 

outcome group processing (such as determining the winner node) since the output 

potentials of nodes within the group are always normalised with the same gradient and 

are therefore comparable. 

 

One potential problem the network may face is flicker.  This occurs when small 

environmental changes have large effects on network output.  For example, consider the 

situation where temperature sensors (providing continuous input) are context sources.  

If the user prefers to set the volume of some multimedia service to „low‟ because it is 

after 9pm, it should not be the case that the continually changing temperature sensor 

inputs affect this setting, causing the volume to frequently change. 

 

In most cases the natural network learning will filter such network noise.  A variable 

that remains constant in some environment will become more strongly associated with 

other, less changeable, environmental variables due to reinforcement over time.  

Variables that change frequently will be very weakly associated with other 

environmental variables and therefore have little influence over network output.  Other 

external approaches such as context inference can be used to infer higher level discrete 

context values from multiple continuous context sources (such as sensors) helping to 

reduce the possibility of network flicker from rapidly changing inputs. 

5.3.4 Convergence 

Convergence is related to the learning in a system.  We tend to say a system has 

captured presented data correctly if it converges to some fixed value or some fixed set 

with minimal error.  However, the incremental and temporal nature of DIANNE 

learning means we will not observe convergence in the traditional way.  A fixed set 

with minimal error will never be reached although the network will tend towards it.  If 
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we assume no conflicts occur in the network, convergence can be observed at outcome 

node level and outcome node group level. 

 

Generally, convergence is defined as: 

    xxn
n




lim  

If we assume that n  is equal to t  (a unit of time over which the DIANNE operates) and 

x  is equal to the potential of some outcome node   we can rewrite the equation to 

represent the convergence of an outcome node. 

    active) is  (if 1lim  


t
t

  

    active)not  is  (if 1lim  


t
t

 

Notice that the outcome node has two limits at positive and negative 1.  The 

convergence limit at time t  depends on the activity of the outcome node.  If the 

outcome node is active it will converge towards 1  otherwise it will converge towards 

1 .  The rate of convergence towards these upper and lower limits depends on the 

learning rate of the DIANNE and the frequency with which temporal reinforcements are 

applied. 

 

The convergence of an outcome node group is observable by considering the delta   

between the output potential of the winner node and the output potentials of other nodes 

in some context.  This will alter through time due to temporal reinforcements based on 

the activity of the group nodes. 

 

In a stable outcome group the same outcome node will remain the active winner for a 

significant period of time (given some context input vector).  In this situation   will 

tend towards its maximum value 2 as the output potential of the active winner node 

tends towards +1 and the output potentials of the other group nodes tend towards -1 in 

this context.  This reflects the fact that the user has settled on a significantly preferred 

outcome in this context and hence the network converges on this outcome accordingly. 

 

In an unstable outcome group different outcome nodes will be the active winner for 

short periods of time (given some context input vector).  In this situation   will remain 

close to its minimum value 0 i.e. the output potentials of all the outcome nodes in this 

outcome node group will remain very similar.  This reflects the fact that the user has not 
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settled on a preferred outcome in this context and regularly changes their mind.  In such 

a situation the network cannot converge on a single outcome.  However, in this situation 

another type of convergence is observable. 

 

In an unstable outcome group the output potential of all the nodes in the group will tend 

towards -1.  The rate of this convergence is dependent on the number of nodes in the 

outcome group.  Consider the network state shown in Figure 16. 

 

 
 

Figure 16.  Example network state 

 

Assume that both outcome groups o1 and o2 are unstable.  Each outcome node in group 

o1 will, on average, be the active winner (with an increasing potential) 25% (1/4) of the 

total time and inactive (with a decreasing potential) 75% (3/4) of the total time in some 

context.  In comparison the outcome nodes in group o2 will, on average, be the active 

winner (with an increasing potential) 50% (1/2) of the total time and inactive (with a 

decreasing potential) 50% (1/2) of the total time in some context.  With a greater chance 

of inactivity (decreasing potential) than activity (increasing potential), the output 

potentials of the nodes in group o1 will tend towards -1 at a greater rate than the output 

potentials of the nodes in group o2.  Therefore the greater the number of outcome nodes 

in an unstable outcome node group, the more rapidly the output potentials of the group 

nodes will converge towards -1. 

 

This convergence of output potentials to -1 in an unstable outcome group is expected 

behaviour.  Since the behaviour of the user is uncertain and changeable it is correct for 

this to be reflected through greater uncertainty in the network.  If this continues for a 

significant period of time the potentials of the (unstable) outcome group nodes should 

tend towards their greatest uncertainty value of -1. 
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5.4 Summary 

The DIANNE network is a dynamic, incremental, associative neural network which 

aims to learn associations between heterogeneous vectors in an incremental and time 

dependent fashion.  When learning user preferences for the adaptation and usage of 

pervasive services the two vectors for association are the user‟s context and the actions 

they perform related to preference outcomes when interacting with services.  By 

associating these two vectors the DIANNE can learn and store context-dependent 

preferences indicating what preference outcomes the user prefers to implement in a 

given context.  The dynamic nature of the DIANNE also allows input and output 

vectors to adapt during the learning process without the need to re-define the network 

and re-run learning. 

 

The linear structure of the DIANNE was presented and each of its component parts 

described.  Two node layers (the context layer and the outcome layer) provide pseudo-

representations of user context and implemented preference outcomes in the real world.  

Single value nodes, node groupings and a combination of Hebbian and Anti-Hebbian 

weight manipulations allow the network to represent all situations that it will be 

required to handle in the context-dependent preference learning domain.  This does not 

include non-linear problems such as XOR.  It is shown that in this problem domain the 

DIANNE will never need to represent the XOR problem. 

 

The use of a dynamic squashing function at outcome node potentials ensures that 

saturation points are not reached in this temporally reinforced network.  The issues of 

capacity, stability and convergence were discussed with regard to the DIANNE 

including the impact of nodes and node groups on network capacity and observed trends 

towards negative output potentials in outcome groups related to preferences with short 

time constants. 
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6 DIANNE Operation and Application 

6.1 Introduction 

The DIANNE is essentially a feed-forward, single layer neural network.  Figure 17 

summarises the topology of the DIANNE as presented in Chapter 5 highlighting some 

of the significant features.  Outcome node potentials are determined by the sum of their 

weighted inputs.  Normalisation is applied by multiple independent dynamic squashing 

functions, one for each outcome node group.  Outcome node activations are mutually 

exclusive within node groups and are based on both external input from the 

environment and internal variables such as the output potential of each outcome node. 

Therefore the activation of outcome nodes is boolean even though their output 

potentials are continuous. 

 

 

Figure 17.  Summary of DIANNE Topology 

 

The single layer topology of the DIANNE has many advantages when utilised for 

incremental learning purposes.  Indeed a single layer neural network has also been the 

topology of choice for several incremental learning algorithms detailed in section 2.3.6.  

However, it is the temporal reinforcement policy of the DIANNE learning algorithm 

(outlined in section 4.7.1) that sets it apart from other incremental approaches.  This 

section details the algorithm and its various sub-processes before going on to describe 

how the DIANNE was applied within the EU FP7 PERSIST project. 
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6.2 The DIANNE Temporal Learning Algorithm 

Unlike most conventional neural systems, the DIANNE learns associations between 

vectors based on the duration of vector state co-occurrences rather than the fact that they 

co-occurred at one instance in time.  To do this the DIANNE learning algorithm is 

temporal, iterating in a continuous cycle in real-time.  The iteration frequency is 

controlled by a network update rate (nur where nur>0) variable which is set to some 

unit of time.  Therefore the network is updated and the DIANNE learns, strengthening 

and weakening its associations, on a temporal basis. 

 

Initial DIANNE algorithm designs tended towards an asynchronous approach with each 

network node operating in its own thread, updating itself depending on asynchronous 

inputs from other nodes.  However, synchronisation issues quickly appeared and 

network accuracy suffered as a result.  Therefore a more synchronous approach has 

been adopted where all network updating occurs in an ordered and discrete fashion.  

 

However, the adoption of a synchronised implementation opens the DIANNE to 

sampling which can add bias to the system.  For example, it is possible that between 

cycles, some context attribute value could change from X to Y and back to X again.  

During the next cycle the network will learn based on the X value being active, 

overlooking the occurrence of the Y value.  Therefore it is essential that the nur is 

sufficiently small to capture and learn upon most inputs.  Set to 1 second, the nur is 

sufficient to handle discrete context attributes such as 'day of the week' where values 

typically change at a much lower frequency.  Although context attributes related to 

sensor input can potentially update at a frequency greater than 1 second, one could 

argue that context states that endure for durations shorter than 1 second will have 

minimal effect on preference outcomes and hence little significance on network output.  

Therefore in the example above the occurrence of Y for less than 1 second will have 

little significance on the preferred outcomes. 

 

The DIANNE can overcome two other bias issues: capturing the non-occurrence of 

actions for negative preference learning (as discussed in section 4.6) and handling pre-

actions (as discussed in section 4.7).  By capturing and processing a snapshot of the 

entire environment every second, both the occurrence and non-occurrence of actions in 

some context are captured and learnt upon.  By learning associations based on the 
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duration of vector co-occurrence the DIANNE does not incorrectly associate actions 

with the current context when in fact the actions were performed prematurely in 

preparation for a future context. 

 

Figure 18 illustrates the temporal DIANNE learning algorithm.  Note that the algorithm 

is cyclic, repeating at a frequency dictated by the nur.  The algorithm can be split into 

two major processes.  The layer update process is concerned with processing input (if 

any) received from the environment since the previous iteration.  The learning process 

is concerned with updating the DIANNE weights and providing output (if any) to the 

environment.  Each major step and its sub-processes are described in detail below. 

 

 

 

Figure 18.  Illustration of the main processes involved in the DIANNE temporal learning algorithm. 

 

6.2.1 The Layer Update Process 

The main purpose of this process is to ensure that the network nodes correctly reflect 

the environmental state before any learning updates occur.  The DIANNE context 

vector should reflect the user's current context and the DIANNE outcome vector should 

reflect the user's currently preferred preference outcomes.  Failure to perform this 

process correctly will result in the network associating incorrect context and preference 
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vectors.  Between iterations, all changes to the user's context are stored in a context 

buffer and all changes to the user's preferred preference outcomes are stored in an 

outcome buffer.  The buffers then provide input to the three sub-processes involved in 

the layer update process.   

Update Context Layer 

The first sub-process involves updating the context layer based on the contents of the 

context buffer.  This ensures that the context layer reflects the user's current contextual 

state (for example, since the last algorithm iteration, the user may have changed 

location).  Figure 19 shows the pseudocode and flow diagram for the process of 

updating the context layer.  Each item in the context buffer is a context attribute-value 

pair of the form: 

<     > 

where    is the context attribute and corresponds to the name of a context group in the 

DIANNE.     is the context attribute value and corresponds to the name of a context 

node within that group.  If the group and node are located inside the DIANNE the node 

is activated and all others in the group de-activated.  However, since the DIANNE has a 

dynamic architecture that grows over time as new context sources and preferences arise, 

it may be the case that a related node or even group does not yet exist in the DIANNE.  

If no group exists, a new group is created with a name equal to the context attribute and 

a new node is created inside the group with a name equal to the context attribute value.  

The node is then activated.  If the group already exists but the node does not, a new 

node is created inside the existing group with a name equal to the context attribute value 

and activated.  Each new context node is connected to all nodes in the outcome layer  

with initial connection strengths (weight values) of 0. 

 



Chapter 6: DIANNE Operation and Application 

 

 115  

if Ccm   where mc  corresponds to the context 

attribute of the input 

if mi c  where i  corresponds to the 

context attribute value of the input 

  set activity of i  to active; 

set activity of all other nodes in 

mc  to inactive 

else 

create new context node new   in 

mc  

set activity of new  to active 

set activity of all other nodes in 

mc  to inactive 

else 

create new context node group newc  

create new context node new  in newc  

set activity of new  to active 

 

 

Figure 19.  Pseudocode and flow diagram illustrating the process of updating the context layer. 

 

Feed Forward Context Vector 

The second sub-process feeds the new context vector forward through the network to 

the outcome layer where the outcome vector is updated accordingly.  The outcome 

vector now represents what the network believes to be the preferred preference 

outcomes in this context.  Figure 20 illustrates the pseudocode and flow diagram for the 

process of feeding forward the new context vector to the outcome layer.   

 

The potentials of the outcome nodes are re-calculated and the node with the highest 

potential in each outcome group is activated.  At this point, if any potentials are 

reaching the saturation point for the group, the gradient of the dynamic squashing 

function is decreased for the group to ensure saturation does not occur.  The outcome 

layer now represents what the network believes to be true in this context.  It is notable 

that the DIANNE produces no output at this point even though the outcome vector may 

have changed due to a new context vector.  Output is only returned to the environment 

during the learning process after associations have been updated. 
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for each outcome node group no : 

for each outcome node nj o : 

calculate output potential based 

on equation (2); [Section 5.2.2] 

activate node with highest output 

potential  in mo  

 

Update group gradient based on equation (3); 

[Section 5.2.3] 

 

 

 

Figure 20.  Pseudocode and flow diagram illustrating the process of feeding forward the new context 

vector to the outcome layer. 

Update Outcome Layer 

The final sub-process involves updating the outcome layer based on the contents of the 

outcome buffer.  The contents of the outcome buffer are the result of user actions (for 

example, the user may have changed their preferred news website since the last 

algorithm iteration).  In the previous sub-process the outcome vector was updated based 

on new context input to reflect what the network believes to be true in this context.  In 

contrast, this sub-process updates the outcome vector based on new user input to reflect 

any changes in preferred outcomes made by the user.  Therefore after the completion of 

this sub-process, the DIANNE outcome vector will reflect both what the network 

believes to be the preferred preference outcomes in this context and also what the user 

has actually implemented as their preferred preference outcomes in this context. 

 

Figure 21 illustrates the pseudocode and flow diagram for the process of updating the 

outcome layer.  This process is equivalent to the process of updating the context layer.  

Input from the outcome buffer is processed one at a time.  Each item in the outcome 

buffer is a preference name-outcome pair of the form: 

<     > 

where    is the preference name and corresponds to the name of an outcome group in 

the DIANNE.     is the preference outcome and corresponds to the name of an outcome 

node within that group.  If the group and node are located inside the DIANNE, the node 

is activated and all others in the group de-activated.  However, as with the context layer 
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it may be the case that the input corresponds to some new preference or some new 

preference outcome warranting the creation of a new outcome group or outcome node.  

When a new node is created inside a new or existing group, it is activated.  It is also 

connected to every node in the context layer with initial connection strengths of 0.  

Therefore the initial potential of any new outcome node is also 0. 

 

if Oon   where no  corresponds to the 

preference name of input 

if nj o  where j  corresponds to the 

preference outcome of input 

  set activity of j  to active; 

set activity of all other nodes in 

no  to inactive 

else 

create new outcome node new   in 

no  

set activity of new  to active 

set activity of all other nodes in 

no  to inactive 

else 

create new outcome node group newo  

create new outcome node new  in newo  

set activity of new  to active 

 
 

 

Figure 21.  Pseudocode and flow diagram illustrating the process of updating the outcome layer. 

 

6.2.2 The Learning Process 

Now that the DIANNE vectors reflect the current real world state of context and 

preference outcomes, the learning process can execute to strengthen and weaken 

associations between the two vectors enabling the DIANNE to learn.  Within the 

learning process, two learning rules are utilised.  Firstly, the Hebbian learning rule is 

used for normal, temporally driven updating of the synapse weights.  This learning 

occurs always in each iteration of the DIANNE algorithm, incrementally increasing and 

decreasing network weights based on pre and post synaptic node activations.  Secondly, 

an error driven policy is utilised to update synapse weights during conflict resolution.  

This learning only occurs when conflicts exist between network knowledge and real 
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world states and is based on the potentials of the conflicting network nodes.  There are 

three sub-processes involved in the overall learning process.  Each is described in detail 

below. 

Update Synapses 

Firstly, the synapse on each network connection is updated based on the Hebbian 

learning rule (including anti-Hebbian).  Figure 22 illustrates the pseudocode and flow 

diagram for the process of updating all synapses.  Each update is dependent on the 

activity of the pre and post synaptic nodes i.e. the activity of the context and outcome 

nodes attached to the synapse.  As outlined in section 5.2.4, if both the pre-node and the 

post-node are active, the weight at the synapse is increased.  If the pre-node is active 

and the post-node is not active, the weight at the synapse is decreased. If the pre-node is 

not active the weight is not manipulated.  Once this sub-process is complete the 

DIANNE must now respond to reflect the new weight values in the outcome vector. 

 

 

for each connection  ij  

for each weight jiw  

 update value of jiw   based on 

equation (4); [Section 5.2.4] 

 

 

 

Figure 22.  Pseudocode and flow diagram illustrating the process of updating the network synapses. 

 

Feed Forward Context Vector 

As in the layer update process, a feed-forward sub-process is now required to feed the 

new synaptic weights forward to the outcome layer allowing the outcome vector to 

reflect network output, post learning.  This sub-process is similar to the feed forward 

sub-process in the layer update process as illustrated in Figure 23.  The context vector is 

fed through the network to the outcome nodes, where their potentials are re-calculated 
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based on the updated synapse weight values.  However, this time no outcome nodes are 

activated.  Instead the winner node (the node with the greatest potential) in each 

outcome group is identified.  Therefore in terms of active nodes, the outcome vector 

still reflects its state after the layer update process.  This is necessary for the final sub-

process where conflicts are identified and resolved and output is provided. 

 

 

for each outcome node group no : 

for each outcome node nj o : 

calculate output potential based 

on equation (2); [Section 5.2.2] 

 identify the winner node in no ; 

 

Update group gradient based on equation (3); 

[Section 5.2.3] 

 

 

 

Figure 23.  Pseudocode and flow diagram illustrating the process of feeding forward the context vector 

(and new network weights) to the outcome vector. 

 

Resolve Conflicts & Provide Output 

At this stage the DIANNE can now provide output to the environment as appropriate 

and resolve conflicts within the network.   Figure 24 illustrates the pseudocode and flow 

diagram for the process of resolving conflicts and providing output to the environment. 

 

At this point in the algorithm cycle, each outcome group has a winner node and an 

active node.  The winner node indicates the preference outcome that the network 

believes should be implemented while the active node indicates the preference outcome 

that has actually been implemented by the user.  If the winner node and active node are 

the same node we can say that what the DIANNE believes to be true is actually true in 

the real world, hence there is no conflict. 

 

In such a situation the DIANNE can now provide output to the environment if 

appropriate.  The current winner node of this outcome group is checked against the 
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winner node of the previous algorithm iteration.  If they are different this means that a 

new winner node has been identified for this context and must be communicated to the 

environment.  In this case the DIANNE broadcasts the new winner node as output.  If 

the winner node is the same as the previous iteration, the environment already knows 

about and conforms to this winner node and hence the DIANNE does not need to 

communicate the winner node again. 

 

A conflict occurs within the network when the winner node is not the same node as the 

active node i.e. what the network believes should be implemented is not what is actually 

implemented.  This usually occurs when the user changes their preferred preference 

outcome in some context. 

 

 

for each outcome node group no : 

if winner node is active 

if winner node is a new winner 

node 

send output to service 

else 

 resolve conflict between network 

and user 

 

 

Figure 24.  Pseudocode and flow diagram illustrating the process of resolving conflicts and providing 

output to the environment. 

 

Section 4.8 discussed aspects of incremental conflict resolution reflecting on the 

problem domain of learning user preferences.  Psychological aspects (such as user 

expectation of learning rates and the intended longevity of behaviour changes) come 

into play when considering a user centric domain and hence DIANNE conflict 

resolution is considered as more than a typical error reduction process. 
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For this reason, the DIANNE cannot use the Hebbian learning rule (used for temporal 

DIANNE learning) to resolve conflicts.  The Hebbian learning rule could not always 

reduce network error in a sufficient time frame as would be deemed acceptable by the 

user.  As the DIANNE learns through time, the potentials of nodes within the same node 

group can differ greatly, increasing and decreasing to upper and lower limits.  For 

example, if a user has preferred to use the BBC News website for a year the potential of 

the BBC News node will have been reinforced towards the upper limit for a year during 

which time the potential of the MSN News node will have been reinforced towards the 

lower limit.  Figure 25 illustrates this scenario showing the two outcome node potentials 

on the dynamic squashing function. 

 

Figure 25.  A possible scenario involving the potentials of 2 competing outcome nodes. 

 

If a conflict now arises, Hebbian learning alone would take an unacceptably long time 

to accommodate the behaviour change, reducing the error in small incremental steps.  

Therefore, the DIANNE utilises a different learning policy for error driven learning.  

The DIANNE error driven learning policy is based on the heuristics proposed in section 

4.8.   

 

Any change to a long-term preferred outcome is viewed as being a long-term change 

and therefore accommodated rapidly into the network.  Section 4.8 explained how in 

network terms, a long-term preferred outcome will have a much higher connection 

strength to the current context than all other outcomes.  Therefore, when network error 

is greater, the error will be reduced more rapidly.  Equally, any change to a short-term 

preferred outcome is viewed as being a short-term change and therefore accommodated 
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less rapidly into the network.  A short-term preferred outcome will have a connection 

strength to the current context that is similar to all other outcomes.  Therefore, when 

network error is smaller, the error will be reduced less rapidly.   

 

To reduce error the DIANNE boosts the potential of the active node by some degree, 

allowing the active node to better compete with the winner node in an acceptable time 

frame.  Based on the statements above, the rate of error reduction is proportional to the 

size of the error.  In other words the DIANNE boosts the active node potential 

            by some value   which is a factor of the error such that the new potential of 

the active node is 

                            

 

To determine the boost value we must specify the error as a percentage of the entire 

possible error.  The error is the difference between the active node potential             

and the winner node potential         . 

 

                             

 

The maximum possible error is 2 due to the dynamic squashing function normalising all 

outcome node potentials between limits of -1 and +1.  Therefore the difference between 

the potentials of the two conflicting nodes must be identified as a percentage of 2. 

 

                 
     

 
     

 

The active node potential             is then boosted by the percentage error.  The 

adaptation value   becomes 

 

    
                        

   
 

 

Expanding this equation into its original values we can simplify it as follows: 
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Interestingly, the simplified equation is equivalent to the Stochastic Gradient Descent 

learning rule (also called the Incremental Gradient Descent learning rule) used by other 

incremental algorithms such as WINNOW and the Pocket Algorithm.  This result 

provides encouraging support for the heuristics proposed in section 4.8 as the heuristics 

appear to be in line with standard error driven learning policies utilised in existing 

incremental algorithms. 

 

As the potential of the active node is now boosted, the change must be reflected down 

through the synapses on the connections between this node and the currently activated 

context nodes otherwise the sum of the inputs to the active node will no longer match 

the node's potential.  The weights of all active synapses (where context pre-node is 

activated) should also be boosted by some equal value.  This value is identified by 

dividing the active node boost value   by the number of active synapses.  Note that only 

active synapses are updated as inactive synapses are not currently contributing to the 

potential of the active node. 

 

When a conflict is identified, boosting of the active node potential only occurs once.  

Boosting the active node potential on subsequent algorithm iterations would reduce 

error extremely rapidly simulating undesirable one instance learning.  Instead the boost 

operation is only performed when the conflict is initially discovered.  After that 

Hebbian learning is applied as usual on subsequent algorithm iterations allowing 

temporal reinforcement policies to regain dominance. 
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6.3 DIANNE Application - The PERSIST Project 

The DIANNE has been successfully implemented and deployed within the PSS 

platform, developed as part of the EU Framework 7 PERSIST project [140].  The 

PERSIST (PERsonal Self-Improving SmarT spaces) project ran over two and a half 

years from April 2008 to September 2010 involving 10 partners from academia and 

industry.  The goal of the project was to define and develop a pervasive system platform 

based on the concept of a Personal Smart Space (PSS) [135, 136]. 

6.3.1 The Personal Smart Space (PSS) 

Pervasive computing research often centres on the development of pervasive systems 

within a local or a global domain.  When pervasive technology is applied to a local 

domain we refer to this as a smart space.  This is a bounded physical environment filled 

with adaptive devices (such as lights, window shutters, etc.) that can be automatically 

managed to meet the needs of individual users.  In a global domain the goal is to 

provide mobile users with devices, networks and services to meet their needs wherever 

they may be. This is often provided by some telecommunications provider allowing the 

mobile user to access and use services on the provider's network wherever they are.  

 

These two research tracks have tended to remain independent of one another, resulting 

in islands of pervasiveness separated by voids in which the support for pervasiveness is 

limited.  For example, in a local domain users will not experience pervasive behaviour 

besides smart spaces and in a global domain pervasive services provided are often 

restricted to some provider with the result that the user cannot make use of other 

services in their environment.  The PSS approach integrates these two by unifying local, 

or fixed, smart spaces (associated with buildings) and global pervasiveness, mediated 

via mobile ad hoc networks (associated with users).   

 

A PSS is based on a personal area network constructed from a variety of devices 

ranging from static resources (e.g. printer) to smaller mobile and wearable devices to 

minute devices such as smart dust.  It can be mobile in which case its physical boundary 

moves with the PSS owner (who may be a person or legal entity) or fixed in that it is 

implemented within a static structure.  Figure 26 shows examples of what a mobile PSS 

associated with a person might look like and what a fixed PSS implemented inside an 

office building might look like. 
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Figure 26.  Example PSSs. a) A mobile PSS, typically associated with an individual; b) A fixed PSS, 

implemented inside a static structure. 
 

One key feature of the PSS is its ability to interoperate with other PSSs utilising ad-hoc 

network technology.  This allows one PSS to share information and services with other 

PSSs.  Each PSS broadcasts it existence to the world so that other PSSs can see it.  The 

broadcast messages also include advertisements for services that the PSS owner has 

decided to share with others. 

6.3.2 The PSS Platform 

To make a networked device PSS enabled, it is simply a matter of downloading and 

running an instance of the PSS platform in the device.  PSS enabled devices can then be 

linked to other PSS enabled devices (i.e. added to an existing PSS) or the device can 

constitute a new PSS.  The PSS platform developed within the PERSIST project has a 

layered architecture with each layer providing various functionalities to enable 

pervasive behaviour.  Figure 27 shows a high-level view of the PSS Platform 

architecture. 

 

 

Figure 27.  High-level view of the PSS Platform layered architecture. 
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The lower layers of the platform manage ad-hoc networking, PSS advertisements, 

inter/intra PSS messaging and service runtime.  The upper layer provides intelligence 

and self-improvement within the PSS, enabling it to take decisions on behalf of the user 

and learn from previous behaviours as well as interactions with other PSSs.  Privacy and 

security is paramount within the PSS architecture and is provided across all layers.  The 

platform provides an administration GUI through which the PSS owner can manage the 

behaviour of the platform, the devices within their PSS and the sharing and consuming 

of services.  The platform also supports the development of pervasive third party 

services which can run on top of the platform and utilise the functionality of the 

components within. 

6.3.3 DIANNE Implementation with the PSS Platform 

The DIANNE is implemented within the Learning Management system in the upper 

layer of the PSS platform.  In terms of inputs, context updates are received from the 

Context Management system and user actions are received from the User Interaction 

system.  In terms of outputs, all DIANNE output is forwarded to the Proactivity 

component which handles the application of all behaviours based on platform 

intelligence, such as user preferences and user intent models.  

 

When implemented within the PSS, the DIANNE topology and algorithm does not 

change from that outlined in previous sections.  However, in some cases it is necessary 

to adhere to PSS concepts.  Significantly, within the PSS platform the DIANNE does 

not communicate directly with services.  Instead all communications between the 

DIANNE and services are wrapped by other components of the platform.  The reasons 

for this are two-fold.  Firstly, the service input required by the DIANNE is also required 

by other learning processes within the platform.  Hence service input is processed by the 

User Interaction system and then disseminated to the appropriate processes throughout 

the platform.  Secondly, the PSS platform adopts a proactivity policy that all intelligent 

systems adhere to.  Where possible, the PSS platform implements behaviours 

proactively on behalf of the user but final control is always passed to the user when 

required.  This policy is realised by the functionality within the proactivity system.  As 

well as receiving input from the DIANNE, the proactivity system also receives input 

from a Preference Management subsystem and a User Intent subsystem.  The Preference 

Management subsystem creates and maintains user preferences using a batch decision 
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tree learning algorithm (provided by the Learning Management system).  The User 

Intent subsystem creates and maintains user intent models using a pattern discovery 

algorithm (also provided by the Learning Management system).   

 

All three intelligent sources forward all outputs to the proactivity system where any 

conflicts are resolved.  Following this, accepted behaviours are applied proactively 

using the appropriate user control/feedback mechanism.  User control mechanisms 

range from requiring no user input, to requiring input only if the user does not approve 

of the behaviour, to requiring explicit user input before the behaviour is implemented.  

All feedback is returned to the intelligent sources allowing them to accommodate the 

information into their internal knowledge. 

 

As well as proactive behaviour, at all times the privacy of the user is paramount as 

illustrated by the vertical Security & Privacy Management system that spans all layers 

of the architecture.  Another major policy adopted within the PSS is that of multiple 

identities.  This allows the user to masquerade behind a number of different identities 

with each one potentially disclosing different information about the user.   

 

For example, the user may have one identity which they use to interact with a highly 

trusted banking service.  This identity may contain sensitive personal information such 

as transaction details, credit card numbers, etc.  The user may also have another identity 

which they use to interact with a less trusted restaurant finder service.  This identity 

may only contain information such as favourite food, current city, etc.  It is important 

that the information under the two identities is managed and disclosed correctly.   

 

This includes behaviours and preferences that may be learnt when the user is assuming 

one of the identities.  If a preference for adult bars is identified under the more sensitive 

identity (based on transaction information), this preference should not be available to 

the restaurant finder service used under another identity.  Therefore, what the DIANNE 

learns under the one identity should remain under that identity alone and not be 

transferable to another identity.  To ensure this is the case, additional functionality is 

required to make the DIANNE identity aware. 

 

To respect the multiple identities concept a DIANNE manager is implemented to hold a 
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one-to-one mapping between DIANNEs and identities, meaning that there is one 

DIANNE for every identity of the user.  The DIANNE Manager listens for all context 

updates and user actions and directs them to the appropriate DIANNE depending on the 

identity that the context update or user action originated from.  This allows all DIANNE 

learnt preferences to remain completely identity dependent and stops transfer of learnt 

behaviours across multiple identities. 

6.3.4 DIANNE Demonstration 

During the PERSIST project final review (in October 2010), proactivity was 

demonstrated based on each of the three input sources mentioned above (Preference 

Management, User Intent and the DIANNE).  The DIANNE was demonstrated in a 

Disaster Management scenario driven by German project partners from the Deutsches 

Zentrum für Luft und Raumfahrt (DLR).  

 

The scenario described a disaster situation where relief workers were using PSSs to 

orchestrate aid and rescue operations.  Over time the PSSs self-improve by learning the 

behaviours and needs of the relief workers.  In one scenario scene the PSS must learn 

what views and information a relief worker would like to share with his colleagues.  

The demonstration of this scene took place in real-time utilising two PSSs, one for the 

relief worker and one for his colleague. 

 

The demonstration successfully showed how the DIANNE could incrementally learn 

user behaviours in real-time from initial system usage.  Through the course of the 

demonstration the DIANNE accurately learnt what views and information to share with 

the colleague.  It was also possible to show how the DIANNE could pick up new 

behaviours in real-time should the relief worker change the views and information they 

preferred to share. 

 

The success of the DIANNE within the PSS platform has guaranteed its adoption within 

the recently started EU FP7 SOCIETIES project [143] which will utilise and build upon 

many of the successful aspects of the PSS.  The latest open source version of the PSS 

platform including the DIANNE is available to download from the PERSIST 

Sourceforge website [144]. 
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6.4 Summary 

Several other incremental learning algorithms employ single layer neural networks.  

Their linear structure and lack of hidden layers reduces complexity allowing local 

updates to be performed in an incremental fashion without the possibility of affecting 

global network stability.  The DIANNE topology includes several novel features 

including a dynamic squashing function but its main defining feature is the use of a 

temporal learning algorithm that iterates continuously allowing the network to learn 

associations based on the duration of vector state co-occurrences. 

 

This enables the DIANNE to overcome several of the sampling issues outlined in 

Chapter 4 some of which are specific to the problem domain of preference learning in a 

pervasive environment.  The DIANNE temporal algorithm includes two major steps.  

Firstly, the DIANNE is updated to reflect any environmental changes that have occurred 

since the last iteration.  Secondly the DIANNE updates synaptic weights to learn 

associations between current context and outcome vectors. 

 

However, it is possible that what the DIANNE believes to be the most preferred 

preference outcome is not in line with what the user has actually implemented.  In such 

cases conflicts are resolved by reducing network error.  The DIANNE temporal learning 

policy is not sufficient for this purpose as it could potentially take an unacceptably long 

period of time to reduce errors sufficiently.  Therefore an error driven learning policy is 

utilised.   

 

The DIANNE error driven learning policy is based on the heuristics proposed in section 

4.8 but on further investigation, the final equation for DIANNE error reduction matches 

the Stochastic/Incremental Gradient Descent rule used for error reduction within other 

incremental neural networks such as WINNOW or the Pocket Algorithm.  However, 

such algorithms are often solely error driven, differing from the DIANNE where two 

learning policies are utilised.  The DIANNE utilises the Hebbian (and Anti Hebbian) 

learning rule for temporally driven learning and also utilises the Stochastic Gradient 

Descent rule for error driven learning. 

 

An implementation of the DIANNE has been successfully integrated into the PSS 

platform within the EU Framework 7 PERSIST project.  The DIANNE topology and 
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algorithm remained consistent and did not require adjustment within this real world 

pervasive architecture but additional management functionality was required to respect 

PSS concepts such as multiple identities. 

 

The PSS platform was presented and demonstrated at the final project review in October 

2010 during which the DIANNE took a lead role in a disaster management 

demonstration driven by German partners from DLR.  The DIANNE was successfully 

showcased and the demonstration illustrated how the DIANNE could identify user 

preferences from initial system usage and also adapt preferences in real-time as user 

behaviour changed.  The success of the DIANNE implementation within PERSIST has 

ensured its adoption in the EU FP7 SOCIETIES project. 
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7 DIANNE Evaluation and Testing 

7.1 Introduction 

The aim of the testing and evaluation process was to analyse the DIANNE both in terms 

of performance (specifically accuracy) as well as the DIANNEs utility as a preference 

learning tool for use in pervasive environments.  Therefore the testing and evaluation 

process was divided into two parts; benchmark testing and user evaluations.   

 

Firstly the DIANNE was applied to several commonly cited datasets.  The goal of this 

process was to determine DIANNE accuracy over such datasets and investigate how 

additional training data affects accuracy figures.  The benchmark datasets chosen for 

DIANNE testing have been used to evaluate many algorithms (both batch and 

incremental) in the past and hence it was possible to draw comparisons with DIANNE 

accuracy figures. 

 

Secondly the DIANNE was evaluated in live user trials conducted within a pervasive 

environment.  The goal of this process was to analyse DIANNE performance as a 

preference learner in the pervasive personalisation domain.  The user trials provided real 

time, temporal inputs which were not available from existing datasets.  In this domain, 

the DIANNE's temporal reinforcement algorithm and conflict resolution mechanisms 

(for handling concept drift) were fully tested as was the ability of the DIANNE to drive 

personalised adaptations, based on continuously changing internal knowledge in a real 

world pervasive environment.   

 

Another key goal of the user trials was to gather subjective views of DIANNE 

performance from end users.  In a user centric domain the accuracy of the learner is 

only one of several key factors for acceptance alongside others such as processing and 

storage speeds, recall speed, learning rate and concept drift response rate.  All factors 

were implicitly evaluated through the user's subjective view of their trial experience. 
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7.2 DIANNE Benchmark Testing 

7.2.1 Datasets 

All datasets for the benchmark testing process were sourced from the UCI Machine 

Learning Repository [145].  An initial search was performed for classification datasets 

with integer or categorical attribute and class values.  From the results, six classification 

datasets were selected due to their frequent citations and previous usage to evaluate 

learning algorithms.  This allows us to compare the DIANNE's performance with these 

other algorithms.  The selected datasets are: 

 Breast Cancer (CANCER) - Provided by the University Medical Centre, 

Ljubljana, Slovenia for the problem of predicting the reoccurrence of breast 

cancer five years after the removal of a tumour. 

 Breast Cancer Wisconsin (CANCERW) - Provided by the University of 

Wisconsin Hospitals for the problem of predicting whether a lump is cancerous. 

 Congressional Voting (VOTE) - Provided by the Congressional Quarterly 

Almanac for the problem of predicting whether a member of Congress will vote 

democrat or republican. 

 Lymphography (LYMPH) - Provided by the University Medical Centre, 

Ljubljana, Slovenia for the problem of determining the type of cancer in 

lymphography. 

 Primary Tumor (TUMOUR) - Provided by the University Medical Centre, 

Ljubljana, Slovenia for the problem of locating the primary tumour in patients 

with metastases. 

 SPECT Heart (HEART)- Provided by the Medical College of Ohio for the 

problem of diagnosing cardiac SPECT images. 

 

Table 3 gives an overview of the main characteristics of each dataset. 
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Dataset Name Completeness # Instances # Attributes # Class Values Entropy 

CANCER Incomplete 286 9 2 0.73 

CANCERW Complete 699 10 2 0.93 

VOTE Incomplete 435 16 2 0.96 

LYMPH Complete 148 18 4 1.28 

TUMOUR Incomplete 339 17 22 3.89 

HEART Complete 267 22 2 0.73 

 

Table 3.  Datasets used for DIANNE performance testing 

 

A mixture of complete and incomplete datasets were used to identify how the DIANNE 

performs under each.  The datasets also vary in size ranging from 148 instances to 699 

with differing numbers of attributes.  Most of the datasets have a low number of class 

values with the exception of the TUMOUR dataset with 22 class values. The entropy of 

each dataset was also calculated to observe how the DIANNE handled datasets with 

higher entropy. 

7.2.2 Evaluation Harness 

A test harness was created to control the DIANNE performance tests.  It interacts with 

the DIANNE providing inputs and collecting outputs for comparison as illustrated in 

Figure 28. 

 

 

Figure 28.  DIANNE performance test harness 

 

The datasets were stored as individual scripts which were then read into the Evaluator 

one at a time.  When a dataset was fed into the Evaluator it was divided into training 

and testing subsets.  The training set was then fed into the DIANNE one instance at a 

time with the attributes feeding into the context layer and the class value feeding into 

the outcome layer.  The DIANNE processed each instance and updated internal 

knowledge accordingly. 
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Once all the training instances were fed into the DIANNE, the Evaluator began to feed 

the testing set into the DIANNE one instance at a time.  The attributes were fed into the 

context layer and based on this new vector the DIANNE returned a class value as output 

to the Evaluator.  The Evaluator then checked the output against the correct class value 

for that instance and kept a tally of the number of correct and incorrect outputs received 

from the DIANNE.  This gave a percentage accuracy over the testing set. 

 

The first variable that was defined was the way in which the dataset was split into 

training and testing proportions.  The most common proportions are a 70/30 split of 

training to testing data [140, 141, 142, 89] although 80/20 splits [149] and 67/33 splits 

[150] have also been used.  However, for a more complete evaluation it was useful to 

investigate how DIANNE performance improved as the proportion of training data 

increased.  Indeed this was the approach adopted by Syed et al [151] when evaluating an 

incremental SVM algorithm.   

 

For DIANNE testing, the training data proportion was initialised at 10% and increased 

in increments of 10% to a maximum of 90%.  For each training data proportion a test 

was repeated ten times.  Firstly, the training subset was randomly selected from the 

dataset leaving the rest as the testing subset.  Secondly, the training and testing subsets 

were applied to the DIANNE to give an accuracy value.  The ten accuracy values from 

the ten tests are then averaged to give an average accuracy for the DIANNE on each 

training data proportion.  The DIANNE was reset between each test for every data 

proportion so that each test (and its result) was independent of any other. 

7.2.3 Results and Discussion 

The DIANNE accuracy results for each dataset are illustrated in graphs (a) - (f) in 

Figure 29. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 29.  Graphs illustrating DIANNE accuracy on datasets as the proportion of training data 

increases 

 

One of the most notable outcomes is that all graphs present relatively straight lines 

which are not representative of the curves that one would expect to see due to 

improvement with increased training data.  In almost all cases the improvement in 

accuracy from 10% training data to 90% training data is less than 10%.  Initial 

assumptions about the cause of such results were towards an error in the testing 

procedure such as insufficient resetting processes between tests, enabling tests on 

minimal training data to benefit from latent network connections left behind after tests 

on maximal training data.  However, this does not appear to be the case.  Table 4 below 

shows the results from all individual tests on all data proportions. 
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Table 4.  Individual results for each of the ten tests per training proportion on all six datasets. 
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The table shows that in some cases there is much variation between the individual test 

results for each training data proportion.  This indicates that the DIANNE was properly 

reset between each test as there are no inexplicable patterns in the results table.  It 

should also be noted that for each dataset the testing proportions began at 10% 

increasing to 90% so there was no possibility that the tests on 10% training data could 

have benefitted from network connections that had not been properly reset after tests on 

90% training data.   

 

After ensuring that no errors had been made in the testing procedure further 

investigations were carried out to identify an explanation.  This began by looking at the 

results of other researchers who have performed similar evaluations, using equivalent 

datasets, with incrementing training set sizes.  Graphs presented by Syed et. al [151] and 

Ratanamahatana et. al [149] convey learning curves but in both works the graphical 

scale used to present the results is zoomed into a range that accentuates the slight 

curves.  When viewed at a graphical scale of 0% to 100% their results reflect the 

relatively straight lines shown in the graphs above.  Michalski [95] also makes reference 

to strong patterns within the CANCER and LYMPH datasets, used to evaluate his 

AQ15 algorithm. 

 

Considering that the CANCER, CANCERW, VOTE and HEART datasets only have 

two possible class values it may not be so surprising that such high accuracy figures are 

achievable with minimal training data.  Randomly selecting a classification for each 

testing instance could potentially give around 50% accuracy.  Graphs (a) - (f) in Figure 

30 compare the accuracies achieved by applying a simple default rule (shown in red) 

with the DIANNE accuracies (shown in blue).  The default rule uses the most common 

class value from the training subset as the predicted class value for all testing instances 

regardless of their attributes. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 30.  Graphs illustrating the accuracies of the DIANNE (blue) and the default rule (red) over the 

datasets 

 

The acceptable results achieved by the default rule on most of the datasets illustrates 

that in many cases a small percentage of the dataset is representative of the entire 

dataset.  This also appears to be the case for the LYMPH dataset with four possible 

class values.  Indeed, when the C45 algorithm was run on the LYMPH dataset with 

increasing training set sizes from 10% to 90% a similarly straight line was achieved 

with accuracies between 60% and 75% (see Annex A).  However, accuracy drops 

significantly for the TUMOUR dataset with a total of twenty two class values.  Graph 

(e) shows that the default rule achieves low accuracies of just above 20% on the 

TUMOUR dataset; however, these accuracies are higher than the accuracies achieved 

by the DIANNE.  Indeed, the DIANNE achieves high accuracy values on all datasets 

apart from TUMOUR. 
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Looking more closely at the TUMOUR dataset several factors are identified as probable 

causes for the poor accuracies achieved.  Firstly, the TUMOUR dataset appears to be 

relatively noisy.  This suggestion is reinforced by considering historic accuracy figures 

obtained from the UCI repository.  Other algorithms have typically performed 

unsatisfactorily on this dataset achieving accuracies ranging from 29% to 51%.  Human 

experts only achieve an accuracy of 42%.  Michalski also shows that there are very few 

strong patterns in this dataset by illustrating that decision rule complexes typically only 

cover two instances from the dataset. 

 

Secondly, there is a significantly large number of class values (22 in all) in the 

TUMOUR dataset compared to the other datasets.  Since DIANNE training data is not 

processed or re-ordered in any way prior to the training phase it cannot be guaranteed 

that instances related to each of the class values are in the training dataset.  In the 

situation where a class isn't represented in the training dataset the DIANNE will not 

represent such instances in the testing phase and therefore cannot provide the correct 

classification of such instances.  Batch algorithms can improve performance to some 

degree when confronted by such datasets as it is possible to be selective over training 

data.  However, since the DIANNE is designed as an incremental network this pre-

processing step is not an option. 

 

Thirdly, the combination of a noisy dataset and a large number of class values can also 

potentially cause issues when adding new nodes into the DIANNE during the training 

phase.  In an unstable outcome node group where the winner node regularly changes the 

potentials of all nodes will tend towards -1.  In such a situation, if a new outcome node 

is introduced with an initial potential of zero, this new outcome will over-ride all others 

for a period of time during which incorrect classifications are likely.  The factors 

leading to this situation are strongly apparent in the TUMOUR dataset. 

Benchmark Comprisons 

As well as investigating the DIANNEs performance in terms of accuracy across a 

variety of different datasets, further testing was also performed to compare DIANNE 

accuracy against the accuracy of other machine learning algorithms (both batch and 

incremental) on the benchmark datasets.  Fortunately, many of the datasets in the UCI 
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repository contain details of past usage, citing several algorithms that have been 

evaluated with the dataset and the accuracy they achieved. 

 

Since many of the algorithms are evaluated with a set proportion of training and testing 

data (i.e. no increases are made to the training dataset proportion), comparisons between 

the DIANNE and each algorithm were made with equivalent training/testing data 

proportions.  Figure 31 shows the comparison graphs illustrating the accuracies of 

various algorithms (where an accuracy figure could be obtained) on each dataset.   
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(c) (d) 
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(e) (f) 

Figure 31.  Comparison graphs illustrating the accuracies of various algorithms on the datasets 

 

Accuracy values could not be obtained for all the algorithms on all the datasets.  The 

graphs above compare the DIANNE against algorithms for which accuracy values were 

available on that particular dataset.  As can be seen, many well recognised machine 

learning algorithms, both batch and incremental in nature are available for comparison.  

A primary observation is that all algorithms (for which results were obtainable) showed 

unsatisfactory results when applied to the TUMOUR dataset.  However, the results in 

graph (e) show that DIANNE accuracy on this dataset is much lower than that achieved 

by other algorithms. 

 

Notably, over the other five datasets the DIANNE achieves accuracy figures as good, if 

not better, than other algorithms.  Compared to batch algorithms, the DIANNE performs 

comparably with C45 and outperforms CN2, Simple Bayes and Assistant on the 

CANCER dataset.  The Naive Bayes algorithm is outperformed on the HEART and 

VOTE datasets.  These are encouraging results since the DIANNE does not have a 

priori knowledge of the entire dataset and cannot re-process past training data. 

 

Compared to incremental algorithms, the DIANNE outperforms AQ15 on the CANCER 

dataset and achieves accuracies comparable to that of the STAGGER algorithm on the 

VOTE dataset.  Encouragingly the graphs show that the DIANNE is able to compete 

with current algorithms (both incremental and batch) in most instances. 

7.3 User Trials 

In addition to the benchmark tests, DIANNE performance was also evaluated in a real 

world pervasive environment with end users.  This was important for several reasons.  
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Firstly, the datasets used for the benchmark tests do not include any temporal 

information and hence the DIANNE could not fully perform as intended.  Although the 

results achieved on benchmark datasets are encouraging it was important to investigate 

how the DIANNE incrementally learns on temporal data.  No appropriate temporal 

datasets were found to exist and therefore it was necessary to create them by capturing 

behavioural and contextual inputs in real-time during a trial situation with an end user.   

 

Secondly, the pervasive personalisation domain for which the DIANNE is intended is 

user centric.  Hence it was necessary to obtain feedback on the user experience of 

system behaviour driven by DIANNE learning.  Most significantly, it was important to 

understand from a user perspective, how appropriately the DIANNE learnt preferences 

based on user behaviours and how appropriately the DIANNE was perceived to adapt 

learnt preferences when the user changed their behaviour. 

 

The user trials were based on a personalised television experience where the DIANNE 

would incrementally learn viewing preferences and apply them to drive personalised 

adaptations.  Trial participants were asked to choose channels to watch on various 

screens placed in different locations around a building.  The learning challenge for the 

DIANNE was to incrementally associate location context input with channel selection 

input to identify what channel the trial participant preferred to watch on which screen.  

Based on this information the DIANNE could drive personalised adaptations to show 

the correct channel to the user on each screen.   

 

During the trial, participants were also asked to reconsider their channel selections 

allowing them to change their viewing behaviours if desired.  The learning challenge for 

the DIANNE then became one of incrementally adapting internal knowledge to 

appropriately learn any new over-riding behaviours (i.e. incrementally handle concept 

drift). 

7.3.1 User Group 

The user trials took place over a two week period from Monday 11th April 2011 until 

Friday 22nd April 2011.  A total of 24 people took part in the trials.  Figure 32 

illustrates the gender and age demographics of the user trial group.  (Note: percentages 

are rounded to the nearest whole number). 
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(a) (b) 

Figure 32.  Pie charts illustrating the (a) Gender and (b) Age ratios of user trial participants 

 

The majority of the participants were male and aged between 26 and 35.  Figure 33 

illustrates the occupation of the participants from several viewpoints. 

 

Occupation 

  

(a) (b) 

 

 

(c)  

Figure 33.  Pie charts illustrating the (a) occupation, (b) academic background and (c) the computing 

background of the user trial participants 
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The most common occupation among trial subjects was PhD student, closely followed 

by research associate.  Indeed most of the trial participants were related to academia in 

some way with a small minority from an industrial background.  We can also see that 

the majority of trial subjects have an occupation related to computer science.  These 

demographics reflect the population of individuals who received an invitation to take 

part.  Due to accessibility constraints, the majority of invitation emails were sent to 

colleagues and students within the School of Mathematical and Computer Sciences 

(MACS) at Heriot-Watt University. 

7.3.2 The Test Environment 

A test environment was set up within the MACS department at Heriot-Watt University.  

Figure 34 shows the network diagram of the test environment.   

 

Figure 34.  Test environment network diagram. 

 

Screens and Content 

Three screens, A, B and C (each attached to a PC), were positioned at different locations 

in the MACS department building and connected to the MACS ethernet network.  Each 

screen could display the same three channels and a default channel.  Channel 1 showed 

several University promotional videos.  Channel 2 showed a number of 3D animations 

that were the results of student coursework.  Channel 3 showed several research project 

videos.  All three channels played on loop so the trial participant did not watch each 
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channel from the beginning every time it was selected.  The default channel was a 

splash page which was displayed by a screen when no other channels were selected. 

The Trial Server 

The trial server was a PC connected to the MACS network via a wireless access point.  

It ran the PSS (Personal Smart Space) platform developed in the PERSIST project and 

acted as the 'University PSS'.  The PSS platform provided service sharing, context 

management and pro-activity features; all of which are required for this trial.  The 

DIANNE is also fully integrated into the PSS platform.  The University PSS used the 

PSS platform's service sharing mechanisms to provide University related services for 

other PSSs to use.  One such service was the 'DisplayScreen Service' which gave users 

control over the three screens.  The service communicated directly with each screen via 

sockets sending channel selection commands.  These commands were received and 

implemented by a socket listener running on each screen.  The University PSS 

advertised itself throughout the MACS network so other PSSs could discover it, interact 

with it and use its services.   

The Remote Control 

The remote control was a wireless tablet device illustrated in Figure 35.   

 

Figure 35.  Remote Control device 

 

It also ran the PSS platform and acted as the 'User PSS' of the trial participant.  The 

User PSS advertised itself through the MACS network via the wireless access point so 

other PSSs could discover it and interact with it.  The University PSS and the User PSS 

discovered each other and the DisplayScreen service (hosted by the University PSS) 

was executed on the User PSS.  The User PSS (and the trial participant using this 

device) could now control the display screens. 
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The DisplayScreen service was context-dependent, only allowing control over the 

screen that the trial participant is close to, if any.  In other words, the trial participant 

could only control a screen if they were beside it.  If the trial participant was not beside 

any of the screens then they could not control any of the screens.  The DisplayScreen 

service provided a GUI that displayed location information to the trial participant 

indicating if they were beside (and hence had control of) any of the screens. 

Indoor Location using RFID Technology 

An RFID system was utilised to provide the indoor location of the trial participant.  The 

system consisted of several elements.  Three RFID wakeup units were positioned, one at 

each screen.  This created a 'hotspot' with a 5 metre radius around each screen.  The trial 

participant was given an RFID tag to wear around their neck during the trial.  When the 

trial participant entered a hotspot, the RFID wakeup unit instructed the RFID tag to 

begin broadcasting its location to the RFID reader (connected directly to the MACS 

network).  On receiving location updates from a tag, the RFID reader forwarded this 

information through the MACS network to the remote control device (and the 

DisplayScreen service running there) so it knew what screen, if any, to control. 

The DIANNE in the Test Environment 

The DIANNE is integrated into the PSS platform hence DIANNE learning was 

available on the trial server and the remote control device.  For these trials it was only 

utilised on the remote control device where the participant interacted with the 

DisplayScreen service and where the RFID reader sent location updates.  The 

DisplayScreen service provided outcome updates that are processed by the DIANNE's 

outcome layer in real time.  The RFID reader provides location updates to the PSS 

Context Management system on the remote control device.  These updates are then 

propagated to the DIANNE where they are processed in real time by the DIANNE's 

context layer.  In this way the DIANNE could perform incremental learning based on 

live, temporal inputs.  During the trials, all other learning and intelligent behaviour in 

the PSS platform was disabled to ensure adaptations were only driven by the DIANNE. 

7.3.3 Trial Format 

Throughout the user evaluation process care was taken to reduce bias and ensure that all 

trials were equivalent.  The following steps were followed for each trial: 
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1. When the participant arrived for the trial they were taken to an introduction area 

where they were seated.  They were given an information sheet (see Annex B) to 

read which outlined the format of the trial and then introduced the participant to 

important aspects such as the screens, their locations, the different channels and 

the remote control device.  Once the participant had read the information sheet 

the tester answered any questions. 

2. The participant was given an RFID tag to wear around their neck.  They were 

also given a clipboard with a trial sheet (see Annex C) and the remote control 

device so they could control the screens (Figure 36 (a)).  The tester shadowed 

the participant during the trial to give ensure the trial format was adhered to, 

discretely note observations, answer any questions and handle any technical 

issues if they occurred (Figure 36 (b)).  The tester did not interfere with the 

participant in any way during the course of the trial and apart from answering 

questions or solving technical issues, tester/participant interactions were kept to 

a minimum of scripted instructions. 

 

  

(a) (b) 

Figure 36.  Images of (a) the participant's trial equipment  and (b) the participant and shadowing tester 

during a trial 

 

3. The participant was instructed to visit each screen in turn and pick a channel for 

each screen.  The participant was made aware that channel selection was 

completely at their discretion.  They were also made aware that how they go 

about selecting a channel at each screen was also up to them; they could browse 

the channels or simply select one and move on. 

4. Primary Selection Circuit - The participant visited each screen, selected a 

channel and wrote the channel number in a box beside the screen name on their 

trial sheet. 
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5. Primary Test Circuits (PT1, PT2, PT3) - The participant was then instructed to 

complete a further three circuits of the screens.  During the circuits, if a screen 

didn't show the correct channel (i.e. the channel that the participant selected and 

wrote in the box beside that screen name) the participant had to correct the 

screen using the remote control to set the screen to the correct channel.  If a 

screen did show the correct channel then the participant was not required to 

perform any action. 

6. Once the primary selection and primary test circuits were complete the 

participant was instructed to visit each screen again in turn where they could 

revise their channel selection if desired.  The participant was made aware that 

the decision of whether or not to revise their original channel selections was at 

their discretion.  Channel selections were explicitly unscripted to encourage a 

wide range of behaviours across all trials, allowing for richer analysis of 

DIANNE performance. 

7. Secondary Selection Circuit - The participant visited each screen, selected a 

channel (which may be the channel they originally selected for that screen) and 

wrote the channel number in a box beside the screen name on their trial sheet. 

8. Secondary Test Circuits (ST1, ST2, ST3, ST4, ST5) - The participant was then 

instructed to complete a further five circuits of the screens (extra circuits were 

added to ensure the learning of new over-riding behaviours was observed).  As 

with the primary test circuits (step 5), if the screen did not show the correct 

channel the participant had to the screen using the remote control.  If the screen 

did show the correct channel no further action was required. 

9. Once the secondary selection and test circuits were completed the tester 

retrieved the trial sheet, remote control and RFID tag from the participant. 

10. The participant completed a short questionnaire (see Annex D) about their trial 

experience. 

7.3.4 Generated Datasets 

During each trial a number of datasets were generated for later analysis and processing.  

Table 5 describes the datasets that were generated during each trial. 
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Dataset Description 

Tester Observations 

(TO) 

During the primary and secondary test circuits the tester 

notes what channel is automatically presented each time the 

participant comes into proximity of a screen and whether or 

not this is the correct channel. 

Monitored Behaviour 

(MB) 

All interactions between the participant and the 

DisplayScreen service are captured.  When the participant 

interacts with the DisplayScreen service to select a channel 

on some screen the channel number is stored with the current 

location of the participant (provided by the RFID reader).  

This creates a list of channel-location pairs representing the 

channel selections made on each screen.  This dataset is 

typical of the monitored behaviour histories gathered for 

preference learning in many pervasive systems. 

Temporal Monitored 

Behaviour (TMB) 

This dataset is an extension of the Monitored Behaviour 

dataset.  Temporal information is included to represent the 

duration that each channel-location pair prevails.  To achieve 

this the latest channel-location pair is duplicated in the 

dataset for every second that it prevails.  Therefore this 

dataset represents the channel selections made on each screen 

and how long the participant watches the various channels on 

each screen. 

Questionnaire Results 

(QR) 

The questionnaire answers provided by each participant help 

to capture qualitative data regarding DIANNE learning and 

the subsequent driving of automatic adaptations. 

 

Table 5.  Generated Dataset Descriptions 

7.3.5 Results and Discussion 

Four datasets were collected during each trial so that different aspects of DIANNE 

learning could be analysed.  Firstly the Tester Observation (TO) datasets were analysed 

to investigate how accurately and rapidly the DIANNE learnt channel preferences as 

well as how accurately and rapidly it updated internal knowledge to handle concept 

drift.  Secondly the Monitored Behaviour (MB) and Temporal Monitored Behaviour 

(TMB) datasets were applied to the benchmark C45 tree building algorithm (utilised for 
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preference learning in both the DAIDALOS and PERSIST projects) to compare the 

performance of a batch algorithm with that of the DIANNE in this problem domain.  

Thirdly the Questionnaire Results (QR) datasets were analysed to investigate the end 

user experience of adaptations driven by the DIANNE. 

DIANNE Performance 

The TO datasets were analysed to investigate the accuracy and learning rate of the 

DIANNE over the primary and secondary test circuits.  At the beginning of each trial 

the DIANNE had no internal knowledge and was essentially starting from scratch.  The 

DIANNE's internal knowledge was initially generated as the participant selected 

different channels and visited different screens on the primary selection circuit.  The 

DIANNE continued to update and reinforce internal knowledge as the participant 

revisited, and where necessary corrected, the screens during the primary test circuits.  

On each primary test circuit the tester noted if the DIANNE drove the presentation of 

the correct channel to the participant at each screen.  Looking at these figures over 24 

trials we can identify a percentage accuracy for the DIANNE on each primary test 

circuit.  Figure 37 illustrates that the DIANNE retains a high percentage accuracy over 

the three primary test circuits (PT1, PT2 and PT3) and also shows a slight increase in 

accuracy as the DIANNE improves internal knowledge over time with each circuit. 

 

 

Figure 37.  Graph illustrating the percentage accuracy of the DIANNE over the three primary test 

circuits 

 

After the primary selection and test circuits the DIANNE had an internal knowledge 

that tended towards the initial viewing preferences of the participant.  During the 

secondary selection circuit the participant could change their viewing preferences if 

they wished by selecting a different channel to view on a screen.  The DIANNE updated 
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internal knowledge as the participant made their secondary channel selections.  Over the 

course of the five secondary test circuits (ST1, ST2, ST3, ST4 and ST5) the DIANNE 

continued to update and reinforce internal knowledge as the participant revisited, and 

where necessary corrected, the screens. 

 

As before, during the secondary test circuits the tester noted if the DIANNE drove the 

presentation of the correct channel to the participant at each screen.  Taking these 

figures over 24 trials we can identify a percentage accuracy for the DIANNE on each 

secondary test circuit.  Figure 38 illustrates that DIANNE accuracy is below 10% on 

ST1 but increases rapidly to an accuracy above 95% by ST5.  

  

 

Figure 38.  Graph illustrating the percentage accuracy of the DIANNE over the five secondary test 

circuits 

 

Such a curve is what one would expect to see from an incremental learning system and 

shows that the DIANNE continued to incrementally update internal knowledge on each 

circuit, accommodating new behaviours to learn new, over-riding preferences.  The 

graph shows that the accuracy on ST1 is not 0%.  All instances where the participant did 

not change their preferred channel on the second selection circuit have been removed 

from the results.  Therefore, this shows that for some participants the DIANNE has 

rapidly accommodated the new behaviours, learning over-riding preferences simply 

from the behaviours exhibited on the secondary selection circuit.  Indeed the rate at 

which the DIANNE updates internal knowledge is heavily dependent on the behaviour 

of each individual.  It is useful to investigate further how participant behaviour affects 

DIANNE preference learning and handling of concept drift. 
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During the selection circuits, each participant had flexibility in terms of how many 

times they could switch between channels and how long they could spend watching 

channels at each screen.  This led to two distinct categories of participant; browsers and 

non-browsers.  Browsers tended to spend more time viewing and switching between 

channels during the selection circuits.  Non-browsers tended to select a channel based 

on a pre-meditated decision and hence did not spend much time viewing or switching 

between channels during the selection circuits. 

 

This is relevant from a DIANNE perspective since channel switches translate to 

conflicts within the DIANNE invoking the conflict resolution strategy.  Additionally 

long viewing times translate to greater temporal reinforcements while short viewing 

times translate to fewer temporal reinforcements.  Therefore it is useful to investigate 

how the DIANNE handles learning and concept drift for the two different categories of 

user and hence under different conflict and temporal reinforcement conditions. 

 

From the 24 trial participants, 16 have been identified as browsers and 8 as non-

browsers.  Figure 39 shows how the average number of channel switches made at each 

screen in the selection circuits differs between the two groups. 

 

 

Figure 39.  Graph illustrating the average number of channel switches made by browsers and non-

browsers during the selection circuits 
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On the primary selection circuit, the browsers performed almost three times as many 

channel switches compared with non-browsers who performed less than three switches 

on the primary selection circuit (averaging less than one channel switch per screen).  

The trend continued on the secondary selection circuit with the browsers again 

performing significantly more channel switches than the non-browsers.  Comparing 

primary and secondary circuits, the browsers performed nearly double the channel 

switches on their primary selection circuit compared to their secondary whereas the 

non-browsers performed almost exactly the same number of channel switches on their 

primary and secondary selection circuits. 

 

Figure 40 shows the time that browsers and non-browsers spent viewing channels 

during the primary and secondary selection circuits. 

 

Figure 40.  Graph illustrating the time that browsers and non-browsers spent viewing channels during 

the primary and secondary selection circuits 

 

Browsers spent twice as long viewing channels as the non-browsers on the primary 

selection circuit.  This trend continued in the secondary selection circuit with the 

browsers again spending twice as long viewing channels as the non-browsers.  Looking 

at the difference between primary and secondary circuits, both browsers and non-

browsers spent roughly twice as long viewing channels on their primary selection 

circuit compared with their secondary.  However, looking at how much time browsers 

and non-browsers spent viewing channels on the primary and secondary test circuits the 

results are very different as illustrated in Figure 41. 
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Figure 41.  Graph illustrating the average time that browsers and non-browsers spent viewing channels 

on each primary and secondary test circuit 

 

This graph shows that both browsers and non-browsers spent a comparable time 

viewing channels on each primary and secondary test circuit.  For browsers, this was 

significantly less time than that spent viewing channels on the selection circuits.  For 

non-browsers this is also less time but the difference is less significant.  During the 

primary and secondary test circuits, typical participant behaviour was to approach a 

screen and immediately move away again after observing the automatic channel change 

and correcting it if necessary.  Neither browsers nor non-browsers spent any significant 

time viewing channels during the primary and secondary test circuits.  Therefore the 

main behavioural differences between the two groups were observed on the primary and 

secondary selection circuits. 

 

By splitting the Tester Observations (TO) datasets into two groups for browsers and non 

browsers we can compare DIANNE performance for the two groups.  Figure 42 

illustrates DIANNE accuracy over the primary and secondary test circuits for the 

sixteen browsers. 
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(a) (b) 

Figure 42.  Graphs illustrating DIANNE accuracy over (a) primary and (b) secondary test circuits for 

Browsers 

 

Graph (a) shows that DIANNE accuracy is very high over the three primary test circuits 

marginally improving from around 98% to 100% as the circuits progress.  Graph (b) 

shows that initial accuracy is around 10%, steadily increasing to around 97% during the 

course of the five secondary test circuits.  Figure 43 illustrates DIANNE accuracy over 

the primary and secondary test circuits for the eight non-browsers. 

 

  

(a) (b) 

Figure 43.  Graphs illustrating DIANNE performance over (a) primary and (b) secondary test circuits for 

Non-browsers 

 

Graph (a) shows that for non-browsers, the DIANNE was 100% accurate over the three 

primary test circuits.  Graph (b) shows that over the course of the secondary test 

circuits, DIANNE accuracy rose from 0% on ST1 to 100% on ST5 taking a significant 

jump from below 20% accuracy to above 90% accuracy between ST3 and ST4. 

 

Comparing the two sets of graphs raises some interesting points.  In comparing the two 

primary circuit graphs; Figure 42 (a) and Figure 43 (a), we can see that the DIANNE 
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performs better for non-browsers than browsers, achieving 100% accuracy over all non-

browser primary test circuits.  This is likely because the DIANNE often faces a more 

complex learning challenge with browsers as described below. 

 

During the primary selection circuit non-browsers tend to only watch one channel at 

each screen for a short duration.  This leads to a simple network structure and a simpler 

association challenge for the DIANNE compared to browsers who tend to watch 

numerous channels at each screen for longer periods of time.  By the end of the primary 

selection circuit browsers will often have larger, more complex networks than non-

browsers and hence the association challenge for the DIANNE will be more complex. 

 

In the situations where the DIANNE did not predict the correct channel during the 

primary test circuits it was usually the case that the participant had trouble choosing a 

preferred channel on the selection circuit, switching between channels numerous times 

and watching channels for comparable durations before finally selecting a preferred 

channel and immediately moving away from the screen.  Based on conflicts and 

viewing durations the DIANNE occasionally predicted the unselected channel in error.  

However, this was quickly rectified on subsequent primary test circuits as the 

participant corrected the screen causing the DIANNE to perform conflict resolution and 

correct internal knowledge.   

 

In conclusion one can say that increased channel switches and longer viewing times 

(exhibited by browsers) does not greatly affect the accuracy of the DIANNE when 

learning participant viewing preferences from scratch.  In network terms one can 

conclude that the DIANNE remains stable and accurate when learning from scratch in 

situations with both numerous and few conflicts and both greater and fewer temporal 

reinforcements. 

 

 By comparing the two secondary circuit graphs; Figure 42 (b) and Figure 43 (b) we can 

see that DIANNE accuracy on ST1 is better for browsers (around 10%) than non-

browsers (0%).  In contrast at ST5 the DIANNE achieves a better accuracy for non-

browsers (100%) than browsers (around 97%).  Consider the accuracies at ST1 where 

for browsers this is around 10%.  During the secondary selection circuit browsers often 

make numerous channel switches and watch channels for long periods of time.  This 
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combination of increased conflicts (caused by channel switches) and greater temporal 

reinforcements (caused by long viewing times) can lead to the over-riding of the old 

preferred channel with the new preferred channel during the secondary selection circuit.  

Hence in some situations the DIANNE can accurately predict the new preferred channel 

by ST1. 

 

In contrast, non-browsers typically select one channel during the secondary selection 

circuit and immediately move away from the screen with little time spent viewing the 

newly selected channel.  Therefore, with minimal conflicts and minimal temporal 

reinforcements it is very unlikely that the old preferred channel will be over-ridden by 

the new preferred channel during the secondary selection circuit.  This is reflected in the 

0% accuracy for non-browsers during ST1. 

 

Now consider the accuracies at ST5 where for browsers this is around 97% compared 

with 100% for non-browsers.  This discrepancy is minimal showing that by ST5 the 

DIANNE can handle concept drift equally well under situations with both numerous 

and few conflicts and both greater and fewer temporal reinforcements.   

 

Looking closer at the learning curves in Figure 42 (b) and Figure 43 (b) one can see that 

the learning curve for the browser group is much smoother and more gradual than for 

the non-browser group where a significant leap between 20% and 90% accuracy occurs 

between ST3 and ST4.  This leap is likely due to the uniform behaviour displayed by 

non-browsing participants.  Since the majority of non-browsers only selected one 

channel during the selection circuits and spent minimal time viewing the channels the 

DIANNE learnt the new preferred channel at roughly the same rate for non-browsers 

(i.e. between ST3 and ST4).  In contrast, the varied behaviours displayed by the 

browsers meant that the DIANNE learnt the new preferred channel at different rates, 

affected by the number of channel switches and the time spent viewing channels during 

the selection circuits. 

DIANNE Comparison 

The Monitored Behaviour (MB) datasets are a list of action-context pairs that can be 

applied to other learning algorithms to give a comparison with DIANNE performance.  

In this instance the C45 tree building algorithm has been chosen as the algorithm for 

comparison as it has been utilised for preference learning in several research projects 
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such as DAIDALOS and PERSIST due to both its accuracy and tree based output which 

can be translated into human readable form. 

 

At the end of each trial the DIANNE and C45 algorithms were tested to see if they 

could correctly predict the participant's secondary viewing preferences (i.e. the channel 

selections that the participant made during their secondary selection circuit).  The MB 

dataset was applied to the C45 algorithm and from the tree based output an IF-THEN-

ELSE preference rule was generated indicating a channel number for each location.  

This was compared with the participant's secondary viewing preferences to give an 

accuracy figure for the C45 algorithm.  The preferences held in the DIANNE's final 

state were also compared with the participant's secondary viewing preferences to give a 

final accuracy figure for the DIANNE.    

 

In addition the Temporal Monitored Behaviour (TMB) dataset was also applied to the 

C45 algorithm at the end of each trial.  The TMB dataset includes extra context-action 

pairs extending the MB dataset with temporal information.  The TMB dataset replicates 

DIANNE input allowing the C45 algorithm to take advantage of extra environmental 

data.  The reason for this additional dataset is to ensure that the C45 algorithm is not 

hampered by less inputs or environmental updates than the DIANNE.  As with the MB 

dataset, the TMB dataset was applied to the C45 algorithm and from the tree based 

output an IF-THEN-ELSE preference rule was generated indicating a channel number 

for each location.  This was compared with the participant's secondary viewing 

preferences to give an accuracy figure for the C45 algorithm operating on a temporal 

dataset.  Taking the accuracies of the DIANNE, C45(MB) and C45(TMB) over all 24 

trials gives an average accuracy for each algorithm illustrated in Figure 44. 
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Figure 44.  Graph illustrating the final accuracy of the DIANNE, the C45 algorithm on a non-temporal 

dataset (MB) and the C45 algorithm on a temporal dataset (TMB) over all 24 trials 

 

The graph shows that the DIANNE is over three times more accurate at learning the 

participant's secondary viewing preferences as the C45 algorithm on the MB dataset.  

The graph also shows that there is some improvement in the accuracy of the C45 

algorithm on the TMB dataset suggesting that extra environmental input capturing 

temporal information is of benefit.  However, even with added temporal information the 

C45 algorithm still only achieves an accuracy of less than 50%, roughly half that of the 

DIANNE at 96%.  In the case of the TMB datasets both algorithms have essentially 

received the same input except the DIANNE processes inputs in real time as they occur 

throughout the trials whereas the C45 algorithm processes all inputs in batch after the 

trial is completed. 

 

Looking more closely at the IF-THEN-ELSE preferences generated by the C45 

algorithm on the MB and TMB datasets it can be seen that they often portray the 

participant's primary viewing preferences (i.e. the channels they selected during the 

primary selection circuit).  This is understandable since most participants spent 

significantly longer selecting channels on their first primary selection circuit than on 

their second, meaning that their primary channel selections often appear more 

frequently in the MB and TMB datasets. 

 

It is understood that these test results do not provide a like for like comparison as the 

C45 algorithm is not designed for changing rules, but rather for static situations.  Recent 

data is not weighed more heavily than less recent data.  However, the MB and TMB 
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datasets illustrate a typical preference learning situation.  User preferences are not static 

and often change over time for various reasons.  What this comparison confirms is that 

algorithms such as C45 are not best suited to the preference learning problem domain.  

In comparison the DIANNE can respond more rapidly to changes in behaviour (or 

concept drift in learning terms), returning to a high performance accuracy in an 

acceptable time frame.  This reflects the findings of Segal et al when comparing 

incremental and batch learning techniques for Swiftfile [113].   

 

The DIANNE can also match many non-network based algorithms in terms of its 

translatability into human understandable form.  This is highly important in the 

pervasive domain where internal knowledge should be available for presentation to end 

users.  

Questionnaire results 

At the end of each trial the participant was asked to complete a short survey related to 

their trial experience.  There are nine multiple choice questions in total, covering 

aspects such as automatic behaviours, DIANNE learning rates, user monitoring and 

prediction.  The first two questions, presented in Figures 45 and 46, query user 

satisfaction and annoyance at correct and incorrect automatic behaviours driven by the 

DIANNE. 

 

1. On a scale of 1 to 5, how pleasing 

did you find it when the screens 

automatically changed to the 

correct channel? 

 

Figure 45.  Question 1 text and responses 
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2. On a scale of 1 to 5, how annoying 

did you find it when the screens 

automatically changed to the 

incorrect channel? 

 

Figure 46.  Question 2 text and responses 

 

In this particular instance where the automatic behaviour corresponds to channel 

selection Figure 45 shows that the majority of participants were very pleased when the 

automatic behaviour was correct with no participants rating their pleasure at 2 or below.  

Additionally, Figure 46 shows that annoyance at incorrect automatic behaviours is 

relatively low with the majority of participants rating their annoyance in the middle of 

the scale at 2 or 3.  Of course it can be argued that pleasure and annoyance ratings will 

depend on the type of automatic behaviour with some causing more pleasure/annoyance 

than others. 

 

Identifying whether or not a participant would wish to have such technology in their 

own home is often a good test of its acceptability.  This was queried in question 3 

presented in Figure 47.  

 

3. Would you use such functionality in 

your own home if it were freely 

available? 

 

Figure 47.  Question 3 text and responses 
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Only 12% of participants stated that they would not wish to have such technology in 

their own home.  In most cases the reason was a dislike of not being in control.  Some 

participants were also concerned about how multiple occupant situations would be 

handled.  However, the significant majority of participants answered 'yes' or 'maybe' 

suggesting that for most participants such automatic behaviours do not provoke negative 

feelings. 

 

The next question, presented in Figure 48, relates to the learning rate of the DIANNE 

throughout the trial.  Since the DIANNE is not a single instance learner it is useful to 

investigate the expectations of participants regarding the rate at which their viewing 

preferences are learnt.  

 

4. Did you feel that the system learnt 

your channels too slowly? 

 

Figure 48.  Question 4 text and responses 

 

The graph shows that half of the participants do not regard DIANNE learning as too 

slow.  29% of participants found it to be too slow sometimes and only 21% of 

participants felt it was too slow throughout the trial.  This suggests that from an end user 

perspective the DIANNE both learns preferences and handles concept drift within an 

acceptable time frame. 

 

The next two questions, presented in Figures 49 and 50, relate to the monitoring of 

behaviour and the predicting of behaviour.  They aim to identify how comfortable 

participants are with having their behaviour monitored and predicted throughout the 

trial. 
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5. On a scale of 1 to 5, how 

comfortable did you feel about the 

system monitoring your behaviour 

during the trial? 

 

Figure 49.  Question 5 text and responses 

 

6. On a scale of 1 to 5, how 

comfortable did you feel about the 

system predicting your behaviour 

during the trial? 

 

Figure 50.  Question 6 text and responses 

 

Both graphs in Figures 49 and 50 show that the majority of participants are very 

comfortable with the system monitoring and predicting their behaviour.  71% of 

participants rated their comfort level at 4 or above for behaviour monitoring and 75% of 

participants rated their comfort level at 4 or above for behaviour prediction.  Of course 

in this closed trial environment privacy issues are not a concern as they would be if such 

monitoring and prediction was performed in the real world by a third party. 

 

Questions 7 and 8 aim to identify any notable links between the channel that a 

participant personally prefers, the channel that they think they watch most often and the 

channel that they actually do watch most often over the course of the trials.  Question 7 

asks the participant to select the channel that they personally preferred.  Question 8 asks 

the participant to select the channel that they thought they watched the most during the 

trial.  In addition, the TMB dataset can provide the channel that the participant actually 

watched the most during the trial. 
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Comparing the responses to question 7 with the TMB datasets, the results show that 

50% of participants watched their personally preferred channel for the longest time 

during their trial.  This is surprising as one would expect to see the majority of users 

viewing their personally preferred channel for the longest time.  The fact that the results 

are equally divided suggests that under trial conditions the link between preferred 

channel and viewing time is inconclusive.  However, this result may be influenced by 

the trial setting itself.  In particular it is noted that non-browsers appeared to select 

channels based on pre-meditated decisions rather than preferred content.  Indeed it is 

difficult to manufacture a trial situation where participants can express preferences 

through behaviour in a completely natural way. 

 

Comparing the responses to questions 7 and 8 with the TMB datasets highlights another 

interesting point.  Of the 50% of participants who thought they watched their preferred 

channel the most, only half of them actually did according to their TMB datasets.  

Equally, of the 50% of participants who didn't think they watched their preferred 

channel the most, one third of them actually did according to their TMB datasets.  This 

highlights the discrepancy between how people believe they behave and how they 

actually do behave in reality.  This discrepancy can have implications on what 

personalised adaptations a user expects to experience.  A user's belief of their preference 

related behaviour may not match reality and hence they may assume personalised 

adaptation to be incorrect when in fact it is in line with observed user behaviours. 

 

Question 9 queried whether the participant was aware that viewing time was a key 

factor in how preferences were learnt throughout the trial.  To reduce bias it is best if 

participants are not aware of how the DIANNE performs incremental learning.  Only 

12% of participants answered positively with the rest being completely unaware that 

viewing time was a key factor.  On further investigation the participants who stated they 

were aware clarified that it was an assumption made during their trial and not something 

they explicitly knew prior to the trial. 

7.4 Summary 

The DIANNE was tested and evaluated in a two step process involving benchmark tests 

and user trials.  The aim of the benchmark tests was to investigate performance as a 
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machine learning algorithm.  The aim of the user trials was to evaluate utility as a 

preference learner in the pervasive domain.   

 

For the benchmark tests several well cited datasets were applied to the DIANNE with 

increasing training data proportions.  The results were unexpected in that they 

demonstrated very shallow learning curves.  For most datasets the DIANNE achieved 

high accuracy figures with only 10% of training data.  In most cases accuracy figures do 

improve as additional training data is provided but improvements are typically around 

10%.  However, these anomalies were attributed to the characteristics of the datasets 

and not an error in the evaluation process.   Since many datasets only contained a small 

number of class values, high accuracies were achievable with minimal training data. 

 

To illustrate this, a default rule was applied to the datasets.  The default rule uses the 

most common class in the training dataset to classify all instances in the test dataset 

regardless of their attributes.  Results showed that the default rule could achieve high 

accuracies for most datasets since the most common class in the training set was also 

the most common class in the test set. 

 

Although obvious learning curves were not observable, the DIANNE achieved very 

good accuracy figures for most of the datasets.  However, accuracy figures dropped for 

the particularly noisy TUMOUR dataset which contains a large number of class values.  

Later comparisons showed that all algorithms struggle with this dataset but the poorer 

accuracies achieved by the DIANNE suggest that there are other driving factors.  

Notably, the TUMOUR dataset establishes conditions under which the addition of new 

nodes into the network can reduce DIANNE accuracy. 

 

The DIANNE was then compared with several other learning algorithms, both batch 

and incremental, in terms of accuracy over the selected datasets.  With the exception of 

the TUMOUR dataset, the DIANNE performed comparably with, if not better than, 

many of those algorithms.  With regard to batch algorithms the DIANNE outperformed 

CN2, Assistant, Simple Bayes and Naive Bayes on various datasets despite no a priori 

knowledge of the problem domain and no reprocessing of past data.  With regard to 

incremental algorithms the DIANNE performed comparably with STAGGER and 

outperformed AQ15 on various datasets. 
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The second part of the testing and evaluation process involved live user trials.  The 

trials took place in a real world pervasive environment providing contextual and 

behavioural inputs that the DIANNE could process and act upon in real time.  A total of 

24 participants took part in the trials that centred around a personalised TV scenario.  A 

test environment was implemented within a University department building including 

several personalisable screens, a remote control device and an indoor location tracking 

system (based on RFID technology).  

 

For the first part of the trial, participants were asked to select a preferred channel on 

each screen.  They were then asked to revisit each screen a number of times to see if 

each screen (driven by the DIANNE) would automatically switch to their preferred 

channel for that screen.  If the screen did not switch to the correct channel, the 

participant corrected it, allowing the DIANNE to refine internal knowledge towards the 

participant's viewing preferences.  For the second part of the trial participants were 

given the chance to revise their preferred channel on each screen.  Again they were 

asked to revisit the screens a number of times, correcting the screens if they showed the 

wrong channel. 

 

The first part of the trial evaluated the ability of the DIANNE to learn from scratch and 

continue to refine learning over time.  The second part of the trial evaluated the ability 

of the DIANNE to handle concept drift due to changes in the participant's viewing 

behaviour.  The results showed that the DIANNE was able to identify initial viewing 

preferences very rapidly, meaning that the participant was almost always shown the 

correct channel at each screen during the first part of the trial.  The results also show 

that during the second part of the trial DIANNE accuracy dropped immediately after the 

user changed their viewing behaviour.  However, the accuracy steadily increased to 

almost 100% over the course of the second part of the trial, showing that the DIANNE 

can rapidly respond to concept drift. 

 

During each trial a temporal and non-temporal behaviour dataset was logged.  At the 

end of each trial both datasets were applied to the C45 tree building algorithm in order 

to compare the performance of a batch algorithm with that of the DIANNE in the 

problem domain.  The temporal dataset was equivalent to the input received by the 
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DIANNE during the course of the trial.  The non-temporal dataset was typical of those 

generated by preference learning systems.   

 

The results show that the DIANNE outperformed the C45 algorithm regardless of 

whether the temporal or non-temporal dataset is used.  However, C45 performance is 

improved with the temporal dataset confirming that extra temporal information is of 

benefit.  These results reflect the findings of several other works that concluded an 

incremental learning system is best suited to incremental problem domains such as 

preference learning in pervasive environments. 

 

During each trial the participant was requested to complete a short questionnaire about 

their trial experience.  The responses received highlighted several interesting points.  

Firstly, when asked about pleasure and annoyance of correct and incorrect automatic 

channel switches most participants found it very pleasing when the screen automatically 

changed to the correct channel and only mildly annoying when it didn't.  In this case the 

benefits appear to outweigh any detriment.  This is reflected by the fact that the majority 

of participants would use such technology in their own home if it were freely available. 

 

Many people did not feel that the DIANNE learnt their preferences too slowly, even 

when the incorrect channel was shown a number of times on the second part of the trial.  

This is an important indicator of the expectations that end users may have of a pervasive 

system employing machine learning technology.   

 

Regarding behaviour monitoring and prediction, the majority of people stated that they 

felt very comfortable having their behaviour monitored and predicted during the course 

of the trial.  Two major issues often encountered by pervasive systems are that end users 

often state their unease at being monitored by technology (the "Big Brother" issue) and 

their unease at technology performing actions on their behalf (the "loss of control" 

issue).  However, it is noted that the views relating to this closed trial environment will 

be different from a real world scenario where privacy issues are more critical.  It is also 

noted that the demographics of the trial participants are limited and that views may 

differ among users from different backgrounds. 
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To further investigate the connection between preferences and temporal behaviour, each 

participant was asked to state their personally preferred channel.  When compared with 

the channel they actually watched the most during the trial, the results are inconclusive 

with exactly half of participants watching their personally preferred channel for the 

longest time and half watching another channel the longest.  It is suggested that under 

trial conditions it is often difficult to replicate normal preference related behaviour.  

However, further comparisons between the channel that the participant believed they 

watched the most and the channel that they actually did watch the most highlights that 

there is often a gulf between how users believe they behave and how they actually do 

behave.  This can have implications on the end user's perception of what personalised 

adaptations should occur. 
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8 Conclusion 

The previous chapters have demonstrated the main ideas and research of the thesis and 

presented a solution to learning accurate and up to date preferences for personalisation 

in a pervasive environment.  This concluding chapter affirms that the initial research 

question has been answered by concluding several discussion points and summarising 

the main work of this thesis.  Finally, several suggestions are presented for future work 

that builds on the outcomes and findings of this thesis.   

8.1 Discussion 

The main research question of this thesis is: 

How can a system learn and provide accurate and up to date user preferences for 

personalisation in a pervasive environment? 

To affirm that this question has been answered by the final solution provided, firstly the 

requirements stated in Chapter 4 are discussed in terms of their fulfilment and, 

secondly, further discussion points are revisited and concluded. 

8.1.1 Fulfilment of Design Requirements 

Chapter 4 outlined a list of design requirements to be met by a learning system for 

preference learning in a pervasive environment.  The requirements were identified from 

related literature and personal experience gained while developing the preference 

learning system for the DAIDALOS project.  Considering this list again allows one to 

confirm that the DIANNE satisfies all the requirements of a pervasive preference 

learning system. 

 

The initial requirements relate to incremental properties and learning properties.  In 

terms of incremental properties the DIANNE does process one input at a time over time, 

doesn't reprocess past data, doesn't require a priori knowledge of the problem domain 

and does support a growing topology.  The concept of a shrinking topology has not been 

fully investigated in this body of research and is identified as relevant future work.  In 

terms of learning properties the DIANNE is a hetero-associative neural network which 

supports unsupervised learning. 

 

The third requirement states that the learning system should represent internal 

knowledge in a format that is easy to maintain, quick to update and translatable into 
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human understandable form.  Exporting, storing and maintaining internal knowledge as 

IF-THEN-ELSE rules proved to be complex and inefficient in the DAIDALOS project.  

The DIANNE represents internal knowledge as a single layer network allowing for easy 

maintenance and rapid updates.  The single layer topology also allows for rule 

extraction on demand since complexity introduced by hidden layers is not an issue.  

Developing rule extraction mechanisms for the extraction of rules from the DIANNE 

has not been fully investigated in this body of research and is identified as relevant 

future work. 

 

The fourth requirement states that the learning system should have a dynamic topology 

with the ability to handle continuously changing input and output vectors.  This is 

essential in a pervasive environment where context sources and services can appear and 

disappear through time.  The DIANNE supports a dynamic topology allowing for the 

addition of new context/outcome groups and nodes allowing the DIANNE to represent 

new context sources and preferences throughout its lifetime.  The removal of 

context/outcome groups and nodes has not been fully investigated in this body of 

research and is identified as relevant future work. 

 

Requirement five states that the learning system should be able to learn positive and 

negative preferences.  Many preference learning systems only support the learning of 

positive preferences due to action-triggered environment monitoring (which only occurs 

when the user performs some interaction).  In contrast the DIANNE holds an internal 

representation of the environmental state, allowing for continuous updating of internal 

knowledge irrespective of whether the user performs an interaction or not.  This enables 

the DIANNE to learn both positive and negative preferences. 

 

The next requirement states that the learning system should be able to overcome pre-

actions.  During development of the DAIDALOS preference learning system it was 

identified that sometimes users will perform some action while in context A in 

preparation for entering context B.  This led to incorrect action-context associations.  

The DIANNE overcomes this issue by basing association strengths on the temporal 

duration that an action prevails in some context. 
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Finally, the seventh requirement states that the learning system should incrementally 

handle concept drift and resolve conflicts in an appropriate and timely manner.  The 

DIANNE supports a conflict resolution strategy to handle concept drift driven by 

changes in user behaviour.  The conflict resolution strategy is based on two proposed 

heuristics that distinguish between long-term and short-term behaviour changes and 

hence the rate at which network error should be reduced.  No reprocessing of past data 

is required and all conflicts are handled at one instance in time.  The results from the 

user trials show that the DIANNE can learn over-riding preferences in a timely manner 

utilising the conflict resolution strategy in conjunction with temporal reinforcements.  

The DIANNE does not learn over-riding preferences in a one instance manner nor does 

it take an unacceptably long time. 

8.1.2 Incremental vs. Batch 

This thesis adopts the use of an incremental learning algorithm for preference learning 

in a pervasive domain; however, it is interesting to consider the success of this decision 

and whether incremental approaches are actually superior to batch in this problem 

domain. 

 

It is stated in Section 2.3.6 that incremental tasks (such as user modelling, of which 

preference learning is a subset) are best handled by incremental learning algorithms.  It 

is also noted in Section 3.5.5 that batch algorithms have several constraints when 

utilised for preference learning, the most significant being their lack of rapid response to 

an ever changing environment.  The scheduled executions of batch algorithms do not 

seem in line with the open-world, continuous and dynamic characteristics of pervasive 

environments.  However, batch algorithms seem to be the favoured approach for 

preference learning in numerous research projects. 

 

Indeed, incremental tasks such as preference learning can be handled well with batch 

algorithms as shown by several projects including DAIDALOS where a C45 algorithm 

was utilised for preference learning.  System evaluations and analysis return good 

results in terms of the accuracy of the preferences learnt although a key issue is that 

such preferences can become out of date between learning executions if user behaviour 

changes (manifested as concept drift in learning terms).  For this reason it is noted that 

several projects take additional measures to handle changing behaviours between 
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executions.  However, an incremental algorithm provides natural support for rapid 

response to behaviour changes since inputs are processed as they occur through time. 

 

The findings of this body of work suggest that an incremental algorithm is superior to a 

batch algorithm at learning accurate and up to date preferences in a pervasive 

environment.  When directly compared with a batch algorithm during user trials the 

DIANNE achieves significantly better accuracy figures than the batch algorithm.  The 

batch algorithm often struggles to learn recent over-riding behaviours when prominent 

past behaviours exist.  Results also show that the DIANNE can rapidly respond to 

concept drift enabling accuracy to recover in a respectable time frame. 

8.1.3 DIANNE as a Preference Learning System 

Through the course of the thesis research the DIANNE has been implemented as a 

preference learning system in the PSS platform developed by the EU FP7 project 

PERSIST.  Within this platform the DIANNE has been successfully demonstrated at a 

final project review and also utilised for live user trials. 

 

The results of the user trials show that the DIANNE is successful as a preference 

learning system providing advantages over the approach implemented in the 

DAIDALOS project.  Apart from improved accuracy and response rates the DIANNE 

also subsumes the functionality of the entire DAIDALOS personalisation system in a 

lighter and more efficient way.  Since preferences are represented as weights within the 

network, no separate preference management system is required.  Since the DIANNE 

updates preferences in real time as inputs are received, no separate learning system is 

required and since the DIANNE provides real time outputs as new input is received, no 

separate preference condition monitoring system is required. 

 

The DIANNE provides the learning power and efficiency of a neural network but its 

single layer topology also allows the extraction of human readable preference rules.  

This is essential in a user centric domain allowing the end user to stay informed of what 

preferences the network has learnt about them.  Although the DIANNE cannot represent 

non-linear problems (such as XOR) it is explained that in the preference learning 

domain the DIANNE will never need to represent such problems.   
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The user trials confirm that the DIANNE answers the main research question of this 

thesis.  Although the context and behaviour vectors in the trial are non-complex, the 

DIANNE produced high accuracy values for preference learning from scratch in a 

variety of learning situations driven (due to varied user behaviour across trials).  The 

DIANNE as also capable of rapid recovery of accuracy values when behaviour changes 

occurred.  According to user feedback, this recovery happened in an adequate time 

frame without demonstrating one instance learning. 

8.2 Future Work 

The testing and evaluation process described in Chapter 7 has highlighted some areas 

for possible improvement within the DIANNE algorithm.  Additionally, the discussion 

on requirements fulfilment in section 8.1 has also highlighted several research questions 

for future work. 

8.2.1 DIANNE Extensions and Improvements 

Initial Weight Assignments 

When a new node is added into the DIANNE, all weights on the newly generated 

connections are initialised to zero so that they are neither excitatory nor inhibitory.  

However, this initialisation strategy can be problematic in some instances.  In an 

unstable outcome node group the potentials of all outcome nodes tend towards -1.  If the 

new node is an outcome node, when added to such an unstable outcome node group, the 

initial zero potential of the new node (sum of all weighted inputs) may be much higher 

than the potentials of all other group nodes.  Hence the new node will over-ride all other 

outcomes in a one instance learning manner.  This problem manifested itself during the 

benchmark test when the DIANNE was applied to the TUMOUR dataset. 

 

It is interesting to investigate if an alternative weight initialisation strategy would 

improve DIANNE performance.  However, an alternative strategy would require one to 

consider how weight initialisation should be applied relative to the potentials of the 

already existing outcome nodes in the outcome node group.  For example, should the 

new node be initialised with weights that sum to a potential relative to (a) the winner 

node potential, (b) the loser node potential or (c) the average of the winner and loser 

node potentials? 
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Forgetting 

Anti-Hebbian learning is implemented in the DIANNE although there is no general 

forgetting strategy applied across the network.  The research question raised is whether 

applying a forgetting strategy within the DIANNE will enhance DIANNE performance 

in terms of accuracy. 

Network Pruning 

Anti-Hebbian learning can reduce the potential of network nodes to -1.  At present, 

nodes with minimal potentials remain within the DIANNE.  Although such nodes are 

rarely or never active, by remaining in the network they continue to affect the potentials 

of other group nodes.  The research question raised is whether pruning such nodes from 

the DIANNE will enhance DIANNE performance in terms of efficiency and accuracy. 

 

Handle Continuous Inputs 

The DIANNE has been designed to handle discrete inputs only and it is assumed that 

inputs will be discretised before presentation to the DIANNE.  If continuous inputs 

were presented to the current configuration it would result in the creation of excessive 

numbers of network nodes and would ultimately degrade efficiency and accuracy. 

Significant redesign would be required to enable the DIANNE to appropriately handle 

continuous inputs. 

8.2.2 DIANNE Related Research 

Rule Extraction 

The DIANNE is a single layer neural network with no hidden layers.  It should 

therefore be relatively trivial to extract human readable rules from the network.  Other 

single layer incremental networks such as the Pocket Algorithm already employ rule 

extraction techniques which could be transferrable to the DIANNE.  This on-demand 

rule extraction allows end users to view and understand what knowledge the network 

holds regarding their preferences.  However in a pervasive personalisation domain it is 

useful to go beyond rule extraction.  As well as viewing their preferences end users may 

also wish to manually change them. 

 

This will require a bi-directional translation mechanism that can translate network 

format into rule format and rule format into network format.  The end user could view 
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and manually change their preferences in the rule format.  The alterations to the 

preferences would then be translated back from rule format into network format.  This 

challenge will be investigated within the EU FP7 SOCIETIES project where the 

DIANNE will be implemented as a key preference learning system. 

Link Between Temporal Behaviour and Preferences 

The solution provided in this thesis utilises a temporal reinforcement approach 

assuming some connection between the temporal nature of preference related 

behaviours and the actual preferences of an individual.  The solution is successful but 

user trial results regarding the existence or strength of such a link are inconclusive.  

This may be due to trial conditions rendering abnormal preference related behaviour but 

in any case further investigation into this suggested link would prove useful. 

 

8.3 Contributions of this Thesis 

A final summary of the key contributions of this thesis is given below: 

 Identification of key requirements for the provision of an efficient solution for 

preference learning in a pervasive environment.  Most notably: 

o the identification that an incremental learning approach is the most 

natural and flexible way to handle incremental tasks, such as learning 

user preferences. 

o the identification that the temporal duration in which a preference 

prevails is an important piece of information.  Utilising this information 

enables the learning system to perform negative preference learning and  

overcome learning issues caused by pre-actions. 

 Design of Dynamic Incremental Associative Neural NEtwork (DIANNE) 

topology.  Most notably: 

o The use of a single layer network for rapid and non-complex updating of 

internal knowledge.  A single layer topology is shown to be sufficient for 

the preference learning problem domain and allows network knowledge 

to be translated into human understandable form for user review. 

 Design of DIANNE temporal learning algorithm including several novel aspects 

such as: 

o an incremental approach to preference learning, processing inputs as they 

occur in real time. 
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o continuous learning through temporal reinforcements.  Weight updates 

occur in a temporal fashion based on the amount of time that an active 

input renders an active output. 

o the use of two learning rules.  Hebbian/anti-Hebbian is used for 

continuous temporal learning.  An error reduction approach is used for 

learning under conflict conditions when network output conflicts with 

the real world situation. 

o a dynamic squashing function applied to the outcome nodes to limit their 

potentials between -1 and +1 and stop the occurrence of saturation. 

o an incremental conflict resolution strategy that can resolve conflicts at 

one instance in time based on current knowledge.  The strategy is based 

on two heuristic for incremental conflict resolution that are proposed in 

line with end user expectations and the notion of preference time 

constants. 

 Implementation of DIANNE as a standalone system which has been tested on 

benchmark datasets and compared with other learning algorithms in terms of 

accuracy. 

 Implementation of DIANNE as a preference learning system in the Personal 

Smart Space (PSS) platform.  This integrated system was demonstrated to EU 

project reviewers and utilised during the evaluation of the DIANNE in live user 

trials. 
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Appendix A:  C45 Algorithm Performance on LYMPH 

Dataset with 10% - 90% Training Data 

This annex includes a graph showing the accuracy results achieved by the C45 

algorithm when applied to the LYMPH dataset with an increasing training set size from 

10% to 90%.  The C45 algorithm was also applied to the other five datasets (CANCER, 

CANCERW, TUMOUR, HEART, VOTE) with training dataset sizes of 10-20%.  These 

tests confirmed high accuracies with minimal training data. 
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Appendix B:  User Trial Documents - Information Sheet 

 

This appendix includes the information sheet given to each trial subject to read at the 

beginning of their trial session.   
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Introduction 
Welcome and thanks for taking part in this user trial!  

This trial consists of 2 steps: 

1. Practical Trial 

2. Questionnaire 

Before you embark on the practical trial, this document will introduce and explain some 

important aspects.  Please read it carefully.   

The Practical Trial 

During the practical trial you will be asked to visit 3 different screens which have been set up in 

rooms EM1.69 and EM1.70.  You will select your preferred channel for each screen using the 

provided remote control device.  Over time the screens will attempt to identify what channel 

you prefer to watch there and automatically change to the appropriate channel. 

The practical trial involves several things that you will be introduced to here: 

 3 Screens 

 3 Channels 

 Remote Control 

 RFID Tag 

 

The sections below will introduce you to each of these things before you start the trial. 
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The  3 Screens 

There are 3 screens set up in various rooms:    

Screen A 
EM1.69  (next to the door) 

 
 

Screen B 
EM1.69  (next to the 

window) 

 
 

Screen C 
EM1.70  (next door) 

 
    

The map below shows the screen locations.  Signs are also in place to guide you to the screens. 
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The 3 Channels 

Each screen can play 3 different channels. 

Channel 1  
This channel shows HWU promotional 
videos. 

 
  

Channel 2  
This channel shows 3D animations created 
by MACS students for a coursework 
assignment 

 
  

Channel 3  
This channel shows promotional videos of 
several EU projects that the MACS 
department is involved in. 

 

The Default Image 
The default image is displayed on all screens 
at the start of the trial.  During the trial, 
when you move away from a screen, the 
screen will return to displaying the default 
image. 

 

 
 
 
 

  



Appendix B 

 

 183  

The Remote Control 

You will be given a small device that will act as your remote control.  The remote control looks 

like this: 

 

 

The remote control has two functions.   

Firstly, the white box at the top of the remote control GUI shows the screen you are closest to.   

 When you are near screen 1 the remote control will display:  "Screen A" 

 

 

 

 

 When you are near screen 2 the remote control will display:  "Screen B" 
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 When you are near screen 3 the remote control will display:  "Screen C" 

 

 

 If you are not near any screen the remote control will display:  "Unknown location" 

 

Secondly, the remote control has 3 buttons - one for each channel.  This is how you change 

channel on the screens.  The remote control will change the channel on the screen that you 

are closest to. 

 If the remote control displays "SCREEN A" the remote control will change screen A 

 If the remote control displays "SCREEN B" the remote control will change screen B 
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 If the remote control displays "SCREEN C" the remote control will change screen C 

 If the remote control displays "Unknown location" the remote control will not change 

any screen. 
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The RFID Tag 

The RFID tag is shown in the picture below: 

 

 

It is a small credit card sized object that allows the remote control and the screens to know 

where you are.  Please wear it round your neck at all times and try not to obscure it with 

clothing. 

 

Please note that sometimes when you are standing in front of a screen the RFID tag will 

momentarily lose connection.  When this happens the remote control will show "Unknown 

Location" and the screen will revert to the default image.  Wait for a few seconds and it should 

rectify itself. 
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You are now ready to begin the practical part of the trial.   

 

The tester will now give you: 

 A clipboard with a trial instruction sheet and pen 

 An RFID tag 

 A remote control 

 

If the remote control becomes unresponsive at any point during 

the trial or if you feel there is a problem please return to EM1.69 

and alert the tester. 

 

Thank you. 
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Appendix C: User Trial Documents - Trial Sheet 

 

This appendix contains the trial sheet given to each trial subject during their trial session 

to note their channel selections.   
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Appendix D:  User Trial Documents - Questionnaire 

 

 

This appendix includes the questionnaire given to trial subjects to complete at the end of 

their trial session.   
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Questionnaire 
1. On a scale of 1 to 5, how pleasing did you find it when the screens 

automatically changed to the correct channel? 
5   (Most pleasing) 

4    

3    

2    

1   (Least pleasing) 

n/a   The screens never changed to the correct channel 

 

2. On a scale of 1 to 5, how annoying did you find it when the screens 

automatically changed to an incorrect channel? 
5   (Most annoying) 

4    

3    

2    

1   (Least annoying) 

n/a   The screens never changed to an incorrect channel 

 

3. Would you use such functionality in your own home if it were freely 

available? 
Yes    

No   If you selected NO, please explain why below. 

Maybe    

 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

4. Did you feel that the system learnt your selected channels too slowly? 
Yes    

No    

Sometimes    

 

5. On a scale of 1 to 5, how comfortable did you feel about the system 

monitoring your behaviour during the trial? 
5   (Most comfortable) 

4    
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3    

2    

1   (Least comfortable) 

 

6. On a scale of 1 to 5, how comfortable did you feel about the system 

predicting your behaviour during the trial? 
5   (Most comfortable) 

4    

3    

2    

1   (Least comfortable) 

 

7. What channel was your personal favourite? 
Channel 1    

Channel 2    

Channel 3    

 

8. What channel do you think you spent the most time watching? 
Channel 1    

Channel 2    

Channel 3    

 

9. Were you aware that the system predicted your preferred channel on 

each screen based on the TIME you spent watching it on that screen? 
Yes    

No    
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