30 research outputs found

    High level coordination and decision making of a simulated robotic soccer team

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Argumentation accelerated reinforcement learning

    Get PDF
    Reinforcement Learning (RL) is a popular statistical Artificial Intelligence (AI) technique for building autonomous agents, but it suffers from the curse of dimensionality: the computational requirement for obtaining the optimal policies grows exponentially with the size of the state space. Integrating heuristics into RL has proven to be an effective approach to combat this curse, but deriving high-quality heuristics from people’s (typically conflicting) domain knowledge is challenging, yet it received little research attention. Argumentation theory is a logic-based AI technique well-known for its conflict resolution capability and intuitive appeal. In this thesis, we investigate the integration of argumentation frameworks into RL algorithms, so as to improve the convergence speed of RL algorithms. In particular, we propose a variant of Value-based Argumentation Framework (VAF) to represent domain knowledge and to derive heuristics from this knowledge. We prove that the heuristics derived from this framework can effectively instruct individual learning agents as well as multiple cooperative learning agents. In addition,we propose the Argumentation Accelerated RL (AARL) framework to integrate these heuristics into different RL algorithms via Potential Based Reward Shaping (PBRS) techniques: we use classical PBRS techniques for flat RL (e.g. SARSA(λ)) based AARL, and propose a novel PBRS technique for MAXQ-0, a hierarchical RL (HRL) algorithm, so as to implement HRL based AARL. We empirically test two AARL implementations — SARSA(λ)-based AARL and MAXQ-based AARL — in multiple application domains, including single-agent and multi-agent learning problems. Empirical results indicate that AARL can improve the convergence speed of RL, and can also be easily used by people that have little background in Argumentation and RL.Open Acces

    A review on multi-robot systems categorised by application domain

    Get PDF
    Literature reviews on Multi-Robot Systems (MRS) typically focus on fundamental technical aspects, like coordination and communication, that need to be considered in order to coordinate a team of robots to perform a given task effectively and efficiently. Other reviews only consider works that aim to address a specific problem or one particular application of MRS. In contrast, this paper presents a survey of recent research works on MRS and categorises them according to their application domain. Furthermore, this paper compiles a number of seminal review works that have proposed specific taxonomies in classifying fundamental concepts, such as coordination, architecture and communication, in the field of MRS.peer-reviewe

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    USING COEVOLUTION IN COMPLEX DOMAINS

    Get PDF
    Genetic Algorithms is a computational model inspired by Darwin's theory of evolution. It has a broad range of applications from function optimization to solving robotic control problems. Coevolution is an extension of Genetic Algorithms in which more than one population is evolved at the same time. Coevolution can be done in two ways: cooperatively, in which populations jointly try to solve an evolutionary problem, or competitively. Coevolution has been shown to be useful in solving many problems, yet its application in complex domains still needs to be demonstrated.Robotic soccer is a complex domain that has a dynamic and noisy environment. Many Reinforcement Learning techniques have been applied to the robotic soccer domain, since it is a great test bed for many machine learning methods. However, the success of Reinforcement Learning methods has been limited due to the huge state space of the domain. Evolutionary Algorithms have also been used to tackle this domain; nevertheless, their application has been limited to a small subset of the domain, and no attempt has been shown to be successful in acting on solving the whole problem.This thesis will try to answer the question of whether coevolution can be applied successfully to complex domains. Three techniques are introduced to tackle the robotic soccer problem. First, an incremental learning algorithm is used to achieve a desirable performance of some soccer tasks. Second, a hierarchical coevolution paradigm is introduced to allow coevolution to scale up in solving the problem. Third, an orchestration mechanism is utilized to manage the learning processes
    corecore