
Reinforcement Learning in Plan
Space

.

Matteo Leonetti

a thesis submitted for the degree of
Doctor of Research (Ph.D)
in Computer Engineering

.

December 2010

Contents

Contents ii

List of Figures v

Aknowledgements vii

Introduction ix
Aim . xi
Contributions . xi
Summary . xiv

I Background and Related Work 1

1 Reinforcement Learning 3
1.1 Markov Decision Processes . 4

1.1.1 Policies and rewards . 5
1.1.2 Value functions . 6
1.1.3 The Bellman operator . 7

1.2 Value prediction . 8
1.2.1 Every-visit Monte Carlo . 8
1.2.2 Temporal Difference methods 9

1.3 Semi-Markov Decision Processes . 11
1.4 Hierarchical Reinforcement Learning 11

1.4.1 Introduction to Temporal Abstractions 12
1.4.2 Hierarchy of Abstract Machines 12
1.4.3 ALisp . 13

1.5 Non-Markovian Decision Processes 14
1.5.1 Policies for POMDPs . 15

ii

1.5.2 Value prediction in NMDPs 16
1.5.3 Learning equilibria . 17
1.5.4 A theoretically sound algorithm for local searching 19

2 Plan Representation and Petri Nets 21
2.1 Overview of FSA and PNs for plan representation 21
2.2 Petri Nets and related formalisms . 24

2.2.1 Introduction to Petri Nets . 24
2.3 Petri Net Plans . 25
2.4 A model-based approach with Petri Nets 29
2.5 Summary of related work . 30

II Combining Planning and Learning 33

3 From Plans to Controllable Stochastic Processes 35
3.1 Plan Representation . 35

3.1.1 The main components . 36
3.1.2 Plan schemas . 38
3.1.3 On events and conditions . 40

3.2 Learning Framework . 41
3.2.1 Definition of a controllable stochastic process 42
3.2.2 Markovian and non-Markovian rewards 47

3.3 Summary . 48

4 Learning Algorithms 51
4.1 What is wrong with direct RL . 51

4.1.1 Consistency . 52
4.1.2 Action values . 53

4.2 The algorithm: SoSMC . 54
4.2.1 Exploration: gathering information 56
4.2.2 Assessment . 58

4.3 Choosing the parameters . 60
4.4 Credit assignment for parallel execution 61
4.5 Summary . 62

5 LearnPNP 63
5.1 Learning in Petri Nets . 64

iii

Contents

5.1.1 Petri Net Plans vs. State Charts 64
5.2 Introducing non-deterministic choice points 65
5.3 The operational semantics . 66
5.4 The learning problem . 67

5.4.1 Definition of the controllable process 67
5.5 Other possible extensions to PNP . 68
5.6 Summary . 74

III Experimental Results 75

6 Grid Worlds 77
6.1 Parr and Russell’s Grid World . 77

6.1.1 The Plan . 78
6.1.2 Experimental results . 79

6.2 About learning equilibria . 81
6.3 SoSMC and Sarsa more closely . 84
6.4 Sutton’s Grid World . 85

7 Keepaway 89
7.1 Task Definition . 90
7.2 Single-agent learning . 91
7.3 Multi-agent learning . 93

8 Conclusions 97

Bibliography 99

iv

List of Figures

1 Modelling, planning, and learning. x

2.1 Nodes of a Petri Net . 24
2.2 Ordinary and sensing actions in a Petri Net Plan 26
2.3 The sequence operator . 26
2.4 The interrupt operator . 27
2.5 The fork and join operators . 28
2.6 A Petri Net Plan for a football playing robot 29

3.1 A simple behaviour for a football playing robot 36
3.2 A non-deterministic choice point in the domain of RoboCup Soccer . . 39
3.3 A simple example of a sub-procedure . 40
3.4 The non deterministic choice point from the example of Figure 3.2 . . . 43
3.5 The transformation of the non deterministic choice point into an TNMDP 43
3.6 Example of a non Markovian reward . 48
3.7 A different structure for the formed example that allows to distinguish

the actual state . 49

4.1 An example on consistent exploration . 52
4.2 An NMDP in which the exploration can damage the current estimation

of the value function . 53
4.3 A simple example of an NMDP (a). The four policies return a reward

normally distributed whose means and standard deviations are shown
in (b). The evolution of the Q-function for the first state (actions A1
and B1) is represented in Figure (c), while for the second state (actions
A2 and B2) is represented in Figure (d). 58

5.1 An example of a simple choice point between two ordinary actions . . 66
5.2 Example of a non Markovian reward . 69

v

List of Figures

5.3 A tree structure to disambiguate choices 70
5.4 A memory place, to remember previous choices 70
5.5 Marking after WalkStraight has been executed 71
5.6 Marking after Turn has been executed . 71
5.7 A compact way to count loops . 72
5.8 A PNP for a domain with four states and four actions 73
5.9 A LearnPNP for more compactly represents the same behaviour 73

6.1 Parr and Russell’s Grid World . 78
6.2 The plan for Parr and Russell’s Grid World 78
6.3 Average reward across 200 runs, on the short term for different con-

trollers. SoSMC is evaluated without any exploration in the second
phase. 79

6.4 Average reward across 200 runs on the long term allowing exploration
in the second phase of SoSMC . 80

6.5 Q-learning with ε-greedy exploration . 82
6.6 Sarsa with ε-greedy exploration . 82
6.7 Q-learning with SoftMax exploration, τ = 0.01 83
6.8 Sarsa with SoftMax exploration, τ = 0.01 83
6.9 Sarsa with SoftMax exploration, τ = 1 . 84
6.10 SoSMC with SoftMax exploration . 85
6.11 Sarsa(λ) . 86
6.12 Sutton’s Grid World . 86
6.13 Results for Sutton’s domain . 87

7.1 The field for Keepaway . 90
7.2 The procedural part of the plan for playing Keepaway 91
7.3 Single agent learning the passing behaviour 92
7.4 Positions available to the agents in the learning task 93
7.5 Multi-agent Keepaway, learning positioning 94
7.6 The value of each action during a particular run. Note how the first

and third agent switch roles between going to corner 3 and middle
point 1 . 95

vi

Aknowledgements

Thanks to my tutor, Dr Luca Iocchi, for his constant support throughout this long,
as much as exciting, part of my life. He has been on my side since my first clumsy
attempts at programming AIBOs for the RoboCup team SPQR, to appointing me
the leader of that team, and for both my master’s and PhD thesis. Along the same
line I would like to thank Prof. Daniele Nardi, for the trust he has always placed
in me, and his dedication to teaching and research.

One of the best opportunities this PhD has given me has been the chance
to work with amazing people from all over the world. Among them, I would
like to thank Prof. Andrew Barto, who kindly agreed in having me as a visiting
scholar at the University of Massachusetts Amherst. The insights about RL from
him, his co-director Prof. Sridhar Mahadevan, and the members of their group
have proved fundamental to this work. Prof. Barto, by showing how being an
outstanding and renown scientist can be matched by kindness and inter-personal
skills, gives hope to us all. Among the ALL (Autonomous Learning Laboratory)
members, I would like to thank in particular George Konidaris, who has taken
care of me during my whole stay, both scientifically and providing a continuous
source of fun.

During my last year, I have also had the chance to work at the University
of Edinburgh with Dr Subramanian Ramamoorthy, whose helpfulness and long
term vision I could greatly appreciate. Our weekly discussions have provided a
huge boost to my research, and his different background has been of a crucial
benefit in broadening my view of Machine Learning, and AI.

Thanks to those who helped me, supported me, taught me a lot, laughed with
me, and kept me going. And to Flavia for all of the above.

vii

Introduction

Robotic applications are characterised by highly dynamic domains, where the
agent has neither full control of the environment, nor full observability. Deci-
sion making, in such domains, requires high reactivity and adaptation to uncer-
tainty. Several sources of computational complexity of planning are simultane-
ously present in robotic tasks, such as: time constraints, parallel action execution,
multiple agents, exogenous events, time extended actions, partial observability,
and noise on sensors and actuators. We target our approach at such domains,
considering the major difficulty that arises: the knowledge about the environ-
ment cannot be complete, and even the descriptions of the state space are quite
arbitrary, made by the designers at their best to fit their needs. This has implica-
tions at every level, from modelling to execution, and we are aware of no other
framework that does not make restrictions in any of the respects we mentioned.

As the problem grows complex, the solution must clearly be approximated.
Optimality is not the focus of this work, we rather aim at improving the agent’s
behaviour as much as the current amount of knowledge allows, and at requiring
as little knowledge about the domain as possible. This is motivated by the obser-
vation that, at the moment, robotic agents can rarely have a deep understanding
of what surrounds them. The methods designed for optimal control give good
results when the environment is the agent itself and little more: reading joints,
controlling grasping, balancing a pole, is not the same as playing football, driving
a car, or tending elderly people.

As a consequence of the difficulty of correctly modelling the environment,
automatic planning can result in brittle plans that might need to be repaired
or frequently recomputed. Execution Monitoring (Pettersson, 2005) is a field of
research that deals with unreliable planning, but being able to recognise and react
to failures might be not enough: an intelligent agent should learn from its mistakes
and avoid them as much as possible in the future. The Reinforcement Learning
(RL, Sutton and Barto, 1998) paradigm suits perfectly to this scenario, since it is

ix

Introduction

Figure 1: Modelling, planning, and learning.

based on trial-and-error and the agent can have little knowledge about the domain
prior to execution. Learning alone, however, has proved to be impractical as the
size of the domain scales. In order to address this issue, two methods are usually
employed: generalising with function approximation, and simplifying the task by
breaking it hierarchically, abstracting the least relevant details of the domain. We
follow the latter approach, although at a different level than the work on state
abstraction (Li et al, 2006; Giunchiglia and Walsh, 1992; Rogers et al, 1991) and
Relational RL (Dzeroski et al, 2001), since we are going to intervene not on the
model that generates the plan, but on the plan itself.

A simple representation of the possible strategies for the creation of agent
behaviours is depicted in Figure 1. Traditional, flat, Reinforcement Learning relies
on a state description to improve the agents’ performance from experience. Model-
free methods can learn without a complete model of the environment. The input
to the learning algorithm, on the path from the designer to the RL block via
the model, can be interpreted as either a problem formulation in terms of state
description and reward, or a model-based approach. Another possible strategy is
creating a complete model and feed it to a planner, whose output may or may not
be subject to learning itself. Hierarchical RL (HRL, Barto and Mahadevan, 2003;
Marthi et al, 2005; Dietterich, 2000) takes as input a partially specified behaviour,
and can be placed on top of a planning process, although who produces such
a behaviour is usually not specified. HRL has been developed on the model of
MDPs as a way to restrict the set of policies considered. As a consequence, those
frameworks only allow full observability and single agents, while we extend our
work to partial knowledge and multi-agent systems.

x

Aim

Aim

The main objective of this work is devising and implementing a framework to
improve agent behaviours in environments that challenge the assumptions of the
other existing methodologies. We combine planning and reinforcement learning
in a novel way that can be interpreted from three different perspectives:

• Automated planning: increase the robustness of plans in the case of par-
tial knowledge, and optimise the behaviour on the aspects not completely
modelled.

• Reinforcement learning: constrain the search space and speed up learning.
Since the exploration considers only those actions that the planner has re-
garded as reasonable, time is not wasted on costly exploration of all the
possible action sequences.

• Human designer: the framework allows the designer to act on the plan at
an intelligible level (as opposed, for instance, to the weights of a neural
network), and cooperate with the learning algorithm in a possibly cyclic
process of iterative improvements.

Contributions

The main contributions of this work can be briefly summarised as follows:

1. Definition of a learning problem in a state space derived from a partial
specification of the agent’s behaviour

2. Since the controllable stochastic process generated by the framework is non-
Markovian, we devise an algorithm of stochastic search for learning that
does not rely on the Markov property.

3. The problem of representing plans is addressed together with the possibility
opened up by learning. Petri Nets (PN) are used to overcome the limitations
of finite state machines in terms of memory, compactness, and full paral-
lelism of actions. Doing so, a novel way of learning in a language based on
Petri Nets is defined.

4. We carry out an experimental evaluation on different domains, implement-
ing a publicly available software library for learning with a language based

xi

Introduction

on Petri Nets, and shedding some light on non-Markovian domains. We
compare our algorithm with the traditional ones that make use of value
functions in tabular form.

The first contribution is the definition of a learning problem in plan space. It
applies to a quite general category of plans that are represented as hierarchical
state machines, with parallel action execution, sensing, loops, and interrupts. By
allowing machine learning to help solve the planning problem, the system can
adapt to unknown environments and the demand on the correctness of the model
used for planning can be loosened. The learning algorithm does not rely on a
model on its own, since its state space is derived directly from the plan. The
balance between planning and learning is up to the designer and to the capability
of the underlying planner: from few choice points to the full search in plan
space. This also allows the system to benefit from the advances in modelling
and planning, as much as to supply a powerful tool to the human designer for
providing his knowledge about the task in the form of a sketch of a plan.

The vast majority of RL methods rely on Markov Decision Processes (Puter-
man, 1994) as a model of the domain. Assuming the Markov property means
assuming the agent has complete knowledge of the aspects it would like to pre-
dict, and that affect how the reward is collected. As mentioned at the beginning,
the domains we address do not allow for such an assumption to be fulfilled. In-
deed, the controllable stochastic process generated from the plan is in general
non-Markovian. An analogous problem is faced in Partially Observable MDPs
(Monahan, 1982; Kaelbling et al, 1998), where it is assumed an underlying Marko-
vian system, but not all of its states can be distinguished. The observations over
the hidden MDP form a non-Markovian process, and it has already been noticed
(Littman, 1994; Perkins, 2002; Crook, 2006) that memory-less policies on such a
process can be quite appealing. Most of the techniques for POMDPs rely on a
description of the state space and attempt some form of state estimation. Belief
states are usually used to summarise the experience as a distribution over the pos-
sible states of the MDP. Again this requires a description of such an MDP, that is
unfortunately not available or excessively complex. We follow the research line
on direct RL over the observations of POMDPs, but we apply it to a different state
space, since it is already the result of a planning process. This makes the system
to control much more versatile than what could be achieved with memory-less
policies on observations. The second contribution of this dissertation is a stochas-
tic search algorithm for learning in non-Markovian domains. Non-Markovian

xii

Contributions

processes are the most general, therefore as a consequence of the no free lunch the-
orem for optimisation (Wolpert and Macready, 1997) no search algorithm in policy
space can perform better that random searching on all the possible processes. In
our algorithm, Stochastic Search Monte Carlo (SoSMC), we rely on the fact that
the subset of all possible non-Markovian processes generated by our method are
subject to the constraints and the regularities that real-world domains impose. Al-
though there is no theoretical guarantee, as usual in stochastic search with noisy
evaluation functions, that the algorithm performs better than the traditional ones
(only Perkins’s MCESP by is sound on NMDPs though, and it is a local method)
we provide an experimental evaluation on a realistic domain.

Finite state machines become easily impractical when the plan is large and the
number of actions and agents increases. To make sure our framework is applica-
ble in complex robotic tasks we address the representation problem, and develop
a formalism specifically tailored for learning in parallel or multi-agent systems.
The third contribution is a novel way of using Petri Nets in learning. Memory,
full parallelism among actions, and compact representation of the aspects of the
state space that must be taken into account by the controller (in a way that re-
calls factored MDPs) allow for the definition of an extremely powerful tool for
representation and learning.

The fourth and last contribution is an experimental evaluation of the tradi-
tional Q-learning, Sarsa(0), Sarsa(λ), and SoSMC, on non-Markovian domains.
We start with two grid worlds that are quite popular in the literature of par-
tially observable domains, and then perform a thorough evaluation on Keepaway
(Stone et al, 2005), a domain whose size is more realistic with respect to real-world
applications. We show that our algorithm can learn (therefore solving the credit
assignment problem) in NMDPs, and also on multi-agent systems. Moreover, we
show behaviours based on very little knowledge that perform better (collect more
reward) than the complex solutions presented in the literature. This result makes
us claim that enriching the representation, with the intention to let the algorithm
make more informed choices, and the system to be Markovian, might be counter-
productive. While RL on MDPs is proved to converge to the optimal policy, we
demonstrate that such a policy is not reached in any reasonable time, by showing
a policy that gets more reward and can be expressed in the state representation
chosen. A simpler representation, requiring less knowledge of the domain and an
appropriate method for learning, can speed up the process, while the optimality
given up is more of a theoretical concern than a practical limitation.

xiii

Introduction

Summary

The dissertation is organised in three parts.
Part I provides the essential background and introduces the notation. The

work most closely related to our own is described, pointing out the respects in
which our work differs. In particular, Chapter 1 introduces the basic concepts of
Reinforcement Learning, and discusses the different models of Markovian, Semi-
Markovian, and Non-Markovian Decision Processes. Chapter 2 gives an overview
of the formalisms for plan representation, and briefly introduces Petri Nets. It also
describes the two formalisms based on Petri Nets most related to our framework.

Part II provides the main contributions of this dissertation. Chapter 3 intro-
duces the learning framework and how to derive a controllable stochastic process
from a partially specified plan. Chapter 4 faces the problem of learning a con-
troller for such a process, introducing an algorithm for non-Markovian domains.
Chapter 5 addresses the representation problem, giving a novel, model-free, way
of learning in Petri Nets, overcoming the limitations of finite state machines.

Part III provides an experimental validation of the framework developed through-
out the dissertation, comparing the results with previous, direct, RL methods.
Chapter 6 illustrates the behaviour of our algorithm in simple grid worlds, giv-
ing an insight on non-Markovian domains, and underlining the characteristics of
SoSMC. Chapter 7 introduces a more complex domain, in which the framework
can be fully evaluated in both the single and multi-agent case.

xiv

Part I

Background and Related Work

1

1
Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm which has led to a set of
techniques and algorithms for solving sequential decision making problems. In
such problems, the decision maker (or agent) has to face a sequence of choices, and
the decisions at a certain time depend on those made in the past. Time is a fun-
damental aspect of RL, which poses it in between supervised and unsupervised
learning. A single signal, called reward, is provided to the agent to evaluate its
behaviour in order to maximise the performance. The problem of associating the
reward to the action that has caused it is called the credit assignment problem, and
is one the main issues that RL aims at solving. Before becoming more specific on
the models and algorithms developed in RL, we focus on the principles that a few
decades of research have established as the foundation of the paradigm (Sutton
and Barto, 1998):

• The reward hypothesis: all of what we mean by goals and purposes can
be well thought of as maximisation of the expected value of the cumulative
sum of a received scalar signal (reward).

• The agent hypothesis: for the purposes of artificial intelligence, psychology,
control theory and related fields, the universe is well thought of as consist-
ing of exactly two subsystems that exchange signals over time, where the

3

1. Reinforcement Learning

signals in one direction are thought of as choices and the signals in the other
direction are thought of as informing the choices.

• The value-function hypothesis: all efficient methods for solving sequen-
tial decision problems determine (learn or compute) value functions as an
intermediate step. Value functions summarise the knowledge of the agent
in terms of reward, they provide an estimate of the reward the agent can
expect from each situation it can be in.

• The empirical knowledge hypothesis: (all) world knowledge is translatable,
without loss of meaning, into statements about, and comparable with, future
lowest-level sensations and actions.

Interaction with the environment, trial and error, self-evaluation, prediction, ver-
ification, experience, sampling, are all key aspects of an RL agent. The balance
between short-term goals (immediate rewards) and long-term ones (cumulative
expected reward) is expressed by the value function, that summarises the current
knowledge of the agent.

Such principles have mainly been grounded in the context of Markov Decision
Problems, a formulation of sequential decision making based on the model of
Markov Decision Processes (MDP). The theory of Markov Decision Processes has
been thoroughly developed (Puterman, 1994; Bertsekas and Tsitsiklis, 1996), and
dynamic programming (DP) techniques to solve MDPs are highly correlated to
the algorithms for reinforcement learning.

In the following, we briefly introduce the general framework in which most
of the work on RL has been conducted. The agent is seen as the only controller
of an environment it can completely perceive. The model of such an environment
is an MDP that is supposed to capture all the relevant aspects of the domain, all
those the agent is interested in predicting.

1.1 Markov Decision Processes

A Markov Decision Process is a tuple MDP = 〈S,A, T, ρ〉 where:

• S is a set of states

• A is a set of actions

• T : S × A × S → [0, 1] is the transition function. T (s, a, s′) = Pr(st+1 =
s′|st = s, at = a) is the probability that the current state changes from s to

4

Markov Decision Processes

s′ by executing action a. Since T (s, a, ·) is a probability distribution, then∑
s′∈S T (s, a, s′) = 1 ∀ s ∈ S and a ∈ A. If T (s, a, s′) = {0, 1} the system is

said to be deterministic, otherwise it is stochastic.

• ρ : S × A × R → [0, 1] is the reward function. ρ(s, a, r) = Pr(rt+1 = r|st =
s, at = a) is the probability to get a reward r from being in state s and
executing action a. Analogously to the transition function, ρ(s, a, ·) is a
probability density function and

∫
R ρ(s, a, r)dr = 1. If the reward function

is defined over a discrete subset P ⊂ N, ρ is a probability distribution and
the reward is said to be deterministic if ρ(s, a, r) = {0, 1} ∀s ∈ S, a ∈ A, and
r ∈ P .

We consider the system at discrete time steps. Let t ∈ N be the current time,
and st be the state at time t. The decision maker interacts with the environment
by choosing an action at and perceiving the next state st+1, such that:

st+1 ∼ T (st, at, ·) = Pr(st+1 = s′|st = s, at = a) ∀s, s′ ∈ S and a ∈ A

It also receives a reward rt+1:

rt+1 ∼ ρ(st, at, ·)

If a state is never left, after it is entered for the first time, it is said to be a
terminal or an absorbing state. If s is a terminal state then st+1 = s holds almost
surely given that st = s. If an MDP has a terminal state it is said to be episodic.

1.1.1 Policies and rewards

The behaviour of the agent is represented as a function πt : S × A→ [0, 1] called
a policy, where πt(s, a) is the probability of selecting action a in state s at time t.
If πt(s, a) = π′(s, a) for some π′ and each t, the policy is said to be stationary, in
which case we shall omit the subscript t. If π(s, a) = {0, 1} ∀ s ∈ S and a ∈ A the
policy is deterministic.

A policy π and an initial state s0 determine a probability distribution over the
possible sequences (〈st, at, rt+1〉, t ≥ 0). Given such a sequence, we define the
cumulative discounted reward as

R =
∑
t≥0

γtrt+1 (1.1)

where 0 < γ ≤ 1 is the discount factor. If γ = 1 the reward is undiscounted,
which is allowed only if the MDP is episodic otherwise the total reward could

5

1. Reinforcement Learning

diverge. The discount factor expresses the preference towards earlier rewards
over later ones. When a stationary policy controls an MDP the sequence of states
st+1 = P (st, π(st, at), ·) is a Markov Chain.

1.1.2 Value functions

We can now define the expected cumulative discounted reward, that is the reward
expected from each state s following a policy π, as:

V π(s) = E

∑
t≥0

γtrt+1 |s0 = s

 (1.2)

where rt+1 is the reward in the sequence (〈st, at, rt+1〉, t ≥ 0) generated by π. The
function V : S → R is called the value function, commonly referred to just as the
V-function.

Analogously to the V-function we can define an action-value function, that
returns the expected cumulative discounted reward of executing each action from
each state. It is usually represented as Q : S×A→ R and known as the Q-function.
Its value is given by:

Qπ(s, a) = E

∑
t≥0

γtrt+1 |s0 = s, a0 = a


The reward is accumulated by executing a in s and following π thereafter.

A Markov Decision Problem is defined by an MDP and a criterion to maximise.
Assuming as the criterion the cumulative discounted reward of Equation 1.1, the
problem can be rephrased in terms of the value function as determining the
policy π∗such that V π∗(s) is maximum for each s. We denote such an optimal
value function as V ∗ (and analogously Q∗ for the Q-function). If we represent
with Πstat the set of all stationary policies, and with ρ(s, a) ∼ ρ(s, a, ·) the reward
extracted according to ρ, V ∗ is defined as:

V ∗(s) = sup
π∈Πstat

V π(s) = sup
a∈A

Q∗(s, a) s ∈ S

Q∗(s, a) = ρ(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′) s ∈ S, a ∈ A

Stationary Markov Decision Processes, in which neither the transition func-
tion nor the reward depends on time, always admit an optimal stationary policy.
Having either V ∗ or Q∗ it is possible to derive an optimal policy by acting greedily

6

Markov Decision Processes

with respect to it. A greedy policy is one that always chooses the action with the
highest action-value (or the expected value of the next state, in the case of the
V-function), that is: ∑

a∈A
π∗(s, a)Q∗(s, a) = V ∗(s) s ∈ S

Moreover, for an MDP, there always exists a deterministic optimal policy. There-
fore, in the following we are going to consider only deterministic policies, written
for simplicity as π : S → A.

1.1.3 The Bellman operator

The definition of V π can be rewritten in a recursive form in which the dynamics
of the system are made explicit:

V π(s) = ρ(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′) ∀s ∈ S (1.3)

This linear system of equations is called the Bellman equation, and can be rewritten
as:

TπV π = V π

Where T : RS → RS is the Bellman operator and is defined as:

(TπV)(s) = ρ(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V (s′) s ∈ S

Finally, we define the Bellman optimality operator that constitutes the foundation
of the dynamic programming algorithm for solving MDPs. The optimal value
function V ∗ is the unique fixed-point of the following equation:

V ∗(s) = sup
a∈A

{
ρ(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

}
, ∀s ∈ S

That can be written as:

(T∗V (s)) = sup
a∈A

{
ρ(s, a) + γ

∑
s′∈S

T (s, a, s′)V (s′)

}
, ∀s ∈ S

T∗V ∗ = V ∗

The Bellman operator, and optimality operator, can be similarly defined for
the Q-function:

(TπQ)(s, a) = ρ(s, a) + γ
∑
s′∈S

T (s, a, s′)Q(s′, π(s′)) ∀ s ∈ S, a ∈ A

(T∗Q)(s, a) = ρ(s, a) + γ
∑
s′∈S

T (s, a, s′) sup
a′∈A

Q(s′, a′) ∀ s ∈ S, a ∈ A

7

1. Reinforcement Learning

Most of the current RL algorithms use an estimate of the value function to
store intermediate results of the optimisation process, and make it converge to the
optimal function. Once the optimal value function has been reached, as previously
mentioned, a deterministic stationary optimal policy can be trivially obtained, by
just choosing the action with the highest state-action value in each state.

The term learning usually characterises those problems in which some aspects
of the environment, generally the dynamics of the system modelled by the T

function, are unknown. In such cases the solution cannot be computed, but the
system must be either simulated or on-line experience must be gathered, in order
to generate traces from the underlying, unknown, MDP.

Since part of the system is unknown two aspects of the learning process be-
come particularly relevant: evaluating the current policy, and exploring new areas
of the state space. Evaluation is the key component of the methods based on value
functions, therefore a huge effort has been dedicated to it, especially in the early
years. In the following, we summarise the main methods for policy evaluation
as they will later be used to discuss our own algorithm. RL methods are usually
described as composed by prediction and control. Once the value function pre-
dicts the reward returned on the long term by an action, the decision of which
action to choose is still up to the agent. Clearly if the prediction is exact the
choice is trivial. During the learning process, however, the agent might favour
sub-optimal choices to improve their prediction. A common and simple control
algorithm is ε-greedy, which chooses the best action with probability 1− ε, while
with probability ε chooses an action at random. In the next section we discuss
a few methods for both control and prediction, we shall then move to the case
where not only the dynamics of the environment is unknown, but the state is
only partially observable.

1.2 Value prediction

In this section we describe the two main algorithms for value prediction, that
is, the problem to evaluate, state by state, the expected cumulative discounted
reward of a specific policy.

1.2.1 Every-visit Monte Carlo

The first method consists in waiting for an episode to terminate and average the
return obtained from each state. Clearly it can only be applied to episodic tasks,

8

Value prediction

which are those having an absorbing state (cf. Section 1.1). Given a sequence
(〈st, at, rt+1〉, t ≥ 0) obtained following a policy π, let ts be the first time step at
which the state s appears in the sequence. The reward collected from s onward
is:

Rts =
∑
t≥ts

γt−tsrt+1

This value is used as the target of the update for each state. Let V̂ π
t be the estimate

at time t of the value function. Every-visit Monte Carlo is characterised by the
update rule:

V̂ π
t+1(s) = V̂ π

t (s) + αt(Rts − V̂ π
t (s))

for each state s in the sequence.
Monte Carlo (MC) is a multi-step method, in that it uses the reward from

multiple time steps in the future (indeed, from the whole sequence). It relies on
an estimate of the reward since it is sampled.

1.2.2 Temporal Difference methods

Temporal Difference methods are characterised by basing the current prediction
on other predictions, the ones for the following states. The update rule, therefore,
has a different target with respect to MC, namely:

rt+1 + γV π
t (st+1)

At each step 〈st, at, rt+1, st+1〉 it performs the update:

V̂ π
t+1(st) = V̂ π

t (st) + αt(rt+1 + γV̂ π
t (st+1)− V̂ π

t (st))

This particular case of TD, called TD(0), is a single-step method. The prediction
for the next iteration is computed, at each step, on a sample from the reward and
the current prediction for the single next state. Since it makes use of a temporary
prediction it is said that the algorithm bootstraps. While MC looks all the way
down to the end of the episode, TD(0) looks forward just one step, therefore it
does not need the task to be episodic. Considering this equivalence for the value

9

1. Reinforcement Learning

function:

V π(s) = Eπ [Rt(s)|st = s] (1.4)

= Eπ

∑
t≥ts

γt−tsrt+1|st = s


= Eπ

[
rt+1 + γ

∑
t>ts

γt−ts+1rt+2|st = s

]
= Eπ [rt+1 + γV π(st+1)|st = s] (1.5)

we may say that MC uses an estimate of Equation 1.4, while TD(0) uses an estimate
of Equation 1.5.

There is an intermediate view, between the one step of TD(0) and the full look-
ahead of MC. It consists in averaging different look-ahead lengths by interpolating
through another parameter λ = [0, 1] between MC and TD(0). This algorithm is
called TD(λ), and its variants are the most used in practise since it converges
much faster than TD(0). To understand its update rule, let’s first define the n-step
look-ahead as:

R
(n)
t = rt + γrt+1 + . . .+ γn−1rt+n−1 + γnRt+n

then we weight them with λ:

Rλt = (1− λ)
∑
n>0

λn−1R
(n)
t (1.6)

where (1−λ) normalises the weights to make sure they sum to one. Equation
1.6 is the target of TD(λ), and substituting λ = 0 we obtain TD(0), hence the
name. TD(λ) provides the basis for a form of policy iteration (Sutton and Barto,
1998) method know as Sarsa(λ) that applies TD(λ) to the Q-function and keeps
updating the policy to be greedy with respect to the value function.

1.2.2.1 Q-learning

The two methods presented earlier estimate the value function of the current
policy. There exists also an instance of TD methods that computes the optimal
value function while following any policy. Such an algorithm is called Q-learning
(Watkins, 1989) and updates the Q-function as follows:

Q̂t+1(s, a) = Q̂t(s, a) + αt(rt+1 + γmax
a′∈A

Q̂t(st+1, a
′)− Q̂t(s, a))

10

Semi-Markov Decision Processes

where the presence of the max operator makes the resulting system of equations
highly non-linear. Q-learning has been proved to converge to the optimal value
function if

∞∑
t

αt =∞ and
∞∑
t

α2
t <∞

and each state-action pair is visited infinitely often.

1.3 Semi-Markov Decision Processes

Semi-Markov Decision Processes (SMDPs) are a generalisation of MDPs in which
transitions can take a time longer than a single time step. The transition function
is defined as T : S × A × S × R+ → [0, 1] (where R+ denotes the set of positive
real numbers) and:

T (s, a, s′, τ) = Pr(tk+1 − tk = τ, sk+1 = s′|sk = s, ak = a)

This stochastic process is called semi-Markov because at time tk, that is when
the agent has to make a choice, the future of the system statistically depends only
on the current state, but at other instants it may depend also on the time elapsed
since the preceding transition. The reward function must take time into account
too, therefore considering only discrete time steps we indicate with ρ(s, a, k) the
reward obtained while executing a in s after k time steps since the beginning of
a. The Bellman equation for SMDPs becomes:

V ∗(s) = sup
a∈A

{ ∞∑
τ=0

τ∑
t=0

γtρ(s, a, t+ 1) +
∑
s′∈S

γτ+1T (s, a, s′, τ)V ∗(s′)

}
, ∀s ∈ S

SMDPs allow the modelling of temporally extended actions that are the building
blocks of the hierarchical methods that will be described in the next section.

1.4 Hierarchical Reinforcement Learning

The description of the domain as a single MDP can grow quite large for any
problem of practical interest. There are usually two ways, not mutually exclusive,
to deal with this issue: function approximation and abstraction. Function approxi-
mation (Buşoniu et al, 2010) is the representation of the value function in a form
other than the tabular one (that stores a value for each state, or each state-action
pair). We are not going to need function approximation in this work, so in the

11

1. Reinforcement Learning

following we shall focus on the second method: abstraction. Abstraction is quite
a general term, and it refers to coarsening the granularity at which we consider
our system. A common distinction is made between temporal abstraction, that is
the process of considering procedures longer than one time step as if they were
atomic, and spatial abstraction, that is the process of aggregating states simplifying
their representation. In this work we are mainly concerned with the former type,
as the latter affects the level of models (rather than plans) and our framework is
meant to sit on top of a pre-existing planning system, which includes a model on
its own.

1.4.1 Introduction to Temporal Abstractions

Temporal abstractions are characterised by temporally extended actions (or activ-
ities), i.e., actions that take more than one time step to complete. There are four
main Hierarchical RL frameworks, two of which share the same model for the
activities: HAM (Parr and Russell, 1998; Andre and Russell, 2002), ALisp (Marthi
et al, 2005), MAXQ (Dietterich, 2000), and Options (Sutton et al, 1999). The models
for activities are respectively state machines, Lisp programs, and options. In this
work we propose a new framework for Hierarchical RL in partially observable
domains, that is related to both HAM and ALisp. Hence, these two frameworks
are briefly described in the following, in order to outline the relationship to ours.

1.4.2 Hierarchy of Abstract Machines

“ A HAM is a program which, when executed by an agent in an environment,
constraints the actions that the agent can take in each state” (Parr and Russell,
1998). A set of state machines encodes the program, and a machine can have four
possible types of states:

• Action states, that specify an action to execute in the environment

• Call states, that execute another machine

• Choice states, that non-deterministically select the next state machine

• Stop states, that halt the execution of the machine and return control to the
calling machine

A HAM is defined by an initial machine and the closure of all the machines
reachable from the initial one. Together with the HAM H , it is assumed that the

12

Hierarchical Reinforcement Learning

description of the MDP M , that models the domain, is available. The composition
H ◦M , that is the application of H on M , is obtained by: making the Cartesian
product of the state spaces of H and M , and picking transitions either from the
machine, if the state is an action state, or from the MDP if it is a choice state,
expanding the corresponding machine otherwise. The reward is taken from the
MDP if the transition is an action, while it is zero otherwise. The resulting process
is still an MDP, and it is proved that there is no need to store the entire state
space, since there exists always an SMDP such that its optimal policy is the same
as H ◦M , but it has only the states 〈m, s〉 ∈ H×M in which m (the machine state)
is a choice state. Learning is performed at choice points, and for each transition
from 〈mc, s〉 to 〈m′c, s′〉, where m and m′ are both choice states, the Q-function is
updated as in:

Qt+1(〈mc, s〉, a) = Qt(〈mc, s〉, a) + α(rc + γτVt(〈m′c, s′〉)−Qt(〈mc, s〉, a))

where rc is the cumulative discounted reward collected during the execution of
action a and τ is the time that a has taken to terminate.

The agent executes the actions specified by the machine in the underlying MDP
as long as such a specification is deterministic. When a non-deterministic choice
point is encountered during execution, the full MDP is used to learn the best choice
among the ones selected by the machine in that specific state. This effectively
reduces the policies available for learning to those compliant to the structure of
the HAM. HAMs can be seen as the model-free counter-part of decision theoretic
planning, like for instance DTGolog (Boutilier et al, 2000), although in the latter
case, besides the golog program, there is also a symbolic model in the situation
calculus.

HAMs are limited to single agent systems, with complete knowledge, and that
can execute one single action at a time. Our work introduces a Hierarchical RL
framework that can be used in domains with only partial knowledge, multiple
actions, and also multiple agents. Differently from HAMs, we do not flatten the
hierarchical structure all the way down to an MDP (that we do not assume to
have), but learn on the hierarchy itself.

1.4.3 ALisp

ALisp is an extension of the Lisp programming language to implement the same
learning mechanism as HAMs. A few new operations are added to the language to
implement the non-deterministic choice, and to specify which action must be exe-

13

1. Reinforcement Learning

cuted on the underlying MDP. Several features have been developed over HAMs,
and in particular over programmable HAMs (Andre and Russell, 2001). Since Lisp
is a full programming language, both the variables and the program counter en-
rich the description of the machine’s state space. Moreover, the framework has
been extended to include function approximation, state abstraction (Andre and
Russell, 2002), and concurrency (Marthi et al, 2005).

In the concurrent setting the state of all the threads is considered, and the
global state is regarded as a choice point when at least one thread is in a choice
state. The actions available at such choice states are the joint actions available to
the threads at a choice point. Thus, choices are made globally and at the same
time for all agents. The framework we are defining in Chapter 3 has similar
global choice states, while its extension with Petri Nets in Chapter 5 allows to
make distributed choices for different agents, or threads, separately.

1.5 Non-Markovian Decision Processes

Non-Markovian Decision Processes (NMDPs) are the most general class of con-
trollable stochastic processes, in which the statistical dependency of the dynamics
or the reward is not limited in any way. While in a Markov Decision Process
the current state is sufficient to determine the distributions of both the next state
and the reward, this cannot be assumed on NMDPs. For finite processes, that is
those in which both the set of states and actions are finite, the number of pos-
sible policies is also finite, but it is exponential in the number of states. On the
other hand, we know that for MDPs Dynamic Programming can find an optimal
policy in time polynomial in the number of states. As stated by the no free lunch
theorem for optimisation (Wolpert and Macready, 1997), there is no algorithm that
performs better than random search on any possible domain. Every algorithm
must then be tailored for a specific sub-class of problems, and we have seen how
we can successfully solve MDPs in both the model-free (Monte Carlo and Tempo-
ral Difference methods, cf. Section 1.1) and model-based (Dynamic Programming)
setting, indeed exploiting the Markov property.

Assuming the Markov property presumes that the designer has full knowledge
about the environment and the agent full observability. This clearly does not mean
that any of them must be omniscient. It means that the designer must be able
to come up with a description of the state space that: (1) includes the aspects
that the agent is interested in predicting, and (2) such that both the distribution

14

Non-Markovian Decision Processes

of the next state and the reward statistically depend solely on the current state.
The agent, on the other hand, must be able to perceive those aspects at any
time. This assumption is quite strong for robotic applications, especially when
the decisions to be made are not at the level of joints, but involve many aspects
of the environment and possibly other agents.

In order to cope with partial observability, the model of Partially Observable
Markov Decision Process (POMDP) has been developed. A POMDP is a tuple
〈S, A, T, ρ, Z, O〉, where 〈S,A, T, ρ〉 is an underlying MDP whose current state
is not directly accessible. Instead of perceiving an element from S, the agent is
given an element of Z, the set of observations, which relates to the underlying state
through the function O : Z ×A×S → [0, 1] such that O(z, a, s) = Pr(z|s, a) is the
probability of observing z when executing a in s. Most of the methods for dealing
with POMDPs take advantage of some form of memory, often implemented as
belief states. A belief state is a distribution over the possible states of the MDP,
and summarises the agent’s belief about where the past actions might have taken
it. The process built on top of belief states is still an MDP, but its complexity is
prohibitive, since the space of all possible distributions is continuous even if the
state space is discrete. If the distribution is ignored, and we pose the problem of
controlling the system with a memory-less policy on the observations, the result-
ing process is not Markovian anymore. This problem is similar to the one we are
considering, but we move a step further in the knowledge assumptions. POMDPs
still assume that a Markovian description of the state space is available. In this
dissertation we consider the implications of having only a partial specification
of the state space, that is, a model with partial knowledge for which we cannot
assume the Markov property. Such an assumption leads to the general case of
Non-Markovian domains.

The literature about RL methods in Non-Markovian domains is far less rich
than for MDPs, and less well organised. In the following, we gather the results
about such settings, and summarise the current understanding about what RL
methods learn when the Markov property is not guaranteed. Most of the work
on the subject has been carried out assuming a POMDP setting, which we can
consider acceptable if no use is made in the algorithms of both the dynamics of
the underlying MDP and the definition of the state space, other than to set up the
theoretical framework.

15

1. Reinforcement Learning

1.5.1 Policies for POMDPs

Singh et al (1994) showed how, despite for MDPs there always exists an optimal
deterministic stationary policy, this is not true for POMDPs. They point out that
in a POMDP:

• just confounding two states of an MDP can lead to an arbitrary high absolute
loss in the return, or cumulative infinite discounted payoff

• the best stationary stochastic policy can be arbitrary better than the best
stationary deterministic policy

• the best stationary stochastic policy can be arbitrary worse than the optimal
policy in the underlying MDP

• the optimal policy can be non-stationary

• there need not be a stationary policy that maximises the value of each ob-
servation simultaneously

Despite these negative results, we are interested in deterministic stationary poli-
cies for they are computationally more appealing, and because there are several
experimental results in which a simple, memory-less, deterministic policy can
perform little worse than the optimal one. Also the examples used to prove the
former sentences have been tailored specifically, and there is a chance that real
problems do not have the characteristics of the worst cases. This is often true
with NP-complete problems, where SAT solvers can solve industrial problems
with thousands of variables, despite the existence of intractable instances.

1.5.2 Value prediction in NMDPs

The value of an observation depends on the underlying state and, every time an
observation is obtained, the reward will correspond to the one returned by the
hidden state associated to the observation. Given the definition of the value of
a state s under a policy π of Equation 1.3, reported in the following for ease of
reference

V π(s) = ρ(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′) ∀s ∈ S

the value of an observation o under π depends on the probability with which each
state can be the one underlying o when following π. Singh et al (1994) define a

16

Non-Markovian Decision Processes

function Prπ(s|o), calling it the asymptotic occupancy distribution, as :

Prπ(s|o) =
Pr(o|s)Prπ(s)

Prπ(o)
=

Pr(o|s)Prπ(s)∑
s′∈S Pr(o|s′)Prπ(s′)

∀s ∈ S, o ∈ O

where Prπ(s) is the limiting distribution over the hidden state space and is well
defined under the assumption that such an MDP is ergodic under any stationary
distribution, that is, the corresponding Markov chains are aperiodic, and the ex-
pected time for each state to appear again in the chain is finite. They then define
the value function for POMDPs in terms of Prπ as:

V π(o) =
∑
s∈S

Prπ(s|o)V π(s) ∀o ∈ O (1.7)

The authors also prove what TD(0) and Q-learning converge to in such a
setting. TD(0) converges with probability one, under the same conditions required
on MDPs plus the condition that the learning rates (α) are non-increasing, to the
solution of the following system of equations:

V (o) =
∑
s∈S

Prπ(s|o)

[
ρ(s, π(o)) + γ

∑
o′∈O

∑
s′∈S

T (s, π(o), s′)Pr(o′|s′)V (o′)

]
∀o ∈ O

such a solution does not necessarily correspond to the desired value function
of Equation 1.7. As for Q-learning, since the policy used while collecting data
impacts the occupancy distribution, it is not possible to retain its off-policy be-
haviour (learning the optimal value function while following any policy). Under
one more assumption, namely that the policy followed assigns a non-zero proba-
bility to every action in every state, Q-learning converges with probability one to
the solution of the following system of equations, ∀o ∈ O, a ∈ A:

Q(o, a) =
∑
s∈S

Prπ(s|o, a)

[
ρ(s, a) + γ

∑
o′∈O

∑
s′∈S

T (s, a, s′)Pr(o′|s′) max
a′∈A

Q(o′, a′)

]

This solution has the same problems as for TD(0) because of the 1-step Markov
assumption, and the fact that it searches for a deterministic policy.

1.5.3 Learning equilibria

In Markov Decision Processes sub-optimal policies are unstable under policy it-
eration, so that each step produces not only a different policy, but a better one.
MDPs are, therefore, well suited to hill-climbing, since all the optima form a sin-
gle, connected, plateau. Optimal policies, and only those, are equilibrium points

17

1. Reinforcement Learning

in MDPs, while in NMDPs it is possible that a sub-optimal policy is an equilib-
rium point for policy iteration. Pendrith and McGarity (1998) define a class of
POMDPs in which the history is enough to determine the state (hPOMDP, where
“h“ stands for history) and analyse the stability of TD(λ) (that was missing in the
work described in the former section) and first-visit MC. Given a sequence ω =
(〈st, at, rt+1〉, 0 ≤ t ≤ n) the reward accumulated during the sequence is:

R(ω) =
n∑
t=0

γtrt

The authors define the value of a policy π as:

J(π) =
∫
w∈T

R(ω)dPrπ(ω)

where T is the set of all possible traces, and Prπ(ω) is the probability of the policy
π to generate the trace ω. In this setting, they prove the following results:

• if a first-visit MC method of credit assignment is used for an hPOMDP
where γ = 1, then the optimal observation-based policies will be learning
equilibria.

• the previous result does not apply to γ = [0, 1)

• if a TD(λ) method of credit assignment is used for direct RL on a NMDP,
then for γ < 1 it is not guaranteed that there exists an optimal observation-
based policy representing a learning equilibrium.

Perkins and Pendrith (2002) carry this analysis further, and include the exploration
policy explicitly. They prove that there exists a learning equilibrium for 1-step TD
methods if the exploration policy is continuous in the action values, while most
of the former analysis had been conducted with ε-greedy which is discontinuous.
So, for instance, following SoftMax, that assigns to every action a probability
according to a Gibbs, or Boltzmann, distribution:

Pr(a|s) =
eQ(s,a)/τ∑

a′∈A e
Q(s,a′)/τ

(1.8)

both Sarsa and Q-learning have at least one action-value function that is a learning
equilibrium, i.e., a fixed point for

Q = QSarsa(Softmax(Q))

18

Non-Markovian Decision Processes

and
Q = QQ−learning(Softmax(Q))

respectively, where QU is the update rule that uses method U , and Softmax is
the function that selects an action according to the probability in Equation 1.8.
The parameter τ in 1.8 balances exploration and exploitation: the highest τ the
more the agent is likely to select a sub-optimal action (according to the current
value function). The results presented prove that there exists a fixed point with
respect to the update rule and a continuous exploration policy, but do not prove
that such a fixed point can actually be reached. Moreover, the presented results
do not consider that the exploration may change, for instance letting τ tend to
zero.

Summarising, first-visit Monte Carlo and TD in the undiscounted case admit
a learning equilibrium for their optimal observation-based policy. Moreover, TD
admits at least one equilibrium in the discounted case under a continuous strategy
for action selection, if the hidden MDP is ergodic.

1.5.4 A theoretically sound algorithm for local searching

The work on fix points has inspired a theoretically sound algorithm for POMDPs
based on ideas of stochastic search, while retaining an RL-style update. Perkins
(2002) redefined the value function to overcome the aforementioned difficulties
with discounted problems.

Let µ(π) be the probability distribution over the possible trajectories deter-
mined by a policy π. The author splits the reward with respect to an observation
o from one of these trajectories ω in:

V π = Eπω∼µ(π) [R(ω)]

= Eπω∼µ(π) [Rpre−o(ω)] + Eπω∼µ(π) [Rpost−o(ω)] (1.9)

where Rpre−o(ω) is the cumulative discounted reward before o is encountered in
ω for the first time, while Rpost−o(ω) is the reward after the first occurrence of
o. In the following, we shall omit the subscript ω ∼ µ(π), but all traces must
be intended to be extracted from µ(π) if not otherwise noted. The value of an
observation-action pair 〈o, a〉, with respect to a policy π, is the value of the policy
when π is followed everywhere except for o, in which a is executed instead. Such
a policy is represented as π ← 〈o, a〉, and clearly π = π ← 〈o, π(o)〉. Its value is:

Qπ(o, a) = Eπ←〈o,a〉 [Rpost−o(ω)] (1.10)

19

1. Reinforcement Learning

This definition differs from the usual definition for MDPs, given in Equation 1.2, in
two important respects: (1) every time (and not just the first one) the observation
o is encountered, the agent executes the action a; (2) the value of an observation-
action pair is not the discounted return following o, but the expected discounted
reward following o in that point of the trace. Since an observation can happen at
different times, in different positions of the trace, the discount factor in Rpost−o(ω)
is different depending on this time.

While in MDPs the optimal policy is greedy with respect to the action-value
function, as mentioned in Section 1.5.2, this is not necessarily true for POMDPs.
With the definition of the value function just given, this property is retained to
some extent. In particular, it is proved that given two policies π and π′ = π ←
〈o, a〉:

V π(o) + ε ≥ V π′(o)⇐⇒ Qπ(o, π(o)) + ε ≥ Qπ′(o, a)

MCESP is a family of algorithms that make use of the value function of Equa-
tion 1.9 to compute a locally optimal policy, updating one observation-action pair at
a time. At the beginning of each trial it chooses a policy π ← 〈o, a〉 that is used to
generate a trajectory. At the end of the episode the value Q(o, a) is updated based
on Rpost−o and the algorithm checks whether the current policy should change.
The scheduling of the constants (α, ε), the way in which the observation-action
pair to explore is chosen, and the conditions under which the procedure termi-
nates, determine different algorithms that incorporate various ideas from RL and
stochastic search.

Although the gained capability to hill-climb guarantees at least a local opti-
mality, updating one state-action pair at a time, and spending a few episodes per
attempt to evaluate the new policy, make MCESP quite slow. To address this issue,
in Chapter 4 we define a new algorithm for stochastic search that retains some of
the ideas behind MCESP, while attempting a biased global search. Our algorithm
relies on the ability of MC policy evaluation to estimate the current policy, and
performs a form of branch and bound related to confidence bounds (Auer, 2002;
Auer et al, 2009) for NMDPs.

20

2
Plan Representation and Petri

Nets

The frameworks for plan representation and execution (while generation is a dif-
ferent subject) can generally be categorised into three approaches, distinguished
by the formal model they are based on: Finite State Automata (FSA), program-
ming languages, and Petri Nets (PN). From a theoretical point of view, if we do
not limit automata to be finite, the three models are equivalent (can simulate one
another). Petri Nets are strictly more expressive than FSA (Murata, 1989), and
have a broad tradition as a modelling tool for engineering and manufacturing
applications (Viswanadham and Narahari, 1992; van der Aalst, 1998). The models
we are mainly interested in are FSA and PN, since we are going to develop our hi-
erarchical framework for both. In the following, we shall first give an overview of
the current systems using both models, and then introduce the closest formalisms
to the one developed in this work.

2.1 Overview of FSA and PNs for plan representation

Most robot programming languages are based on Finite State Automata (FSA).
FSA are either used explicitly, possibly supported by a graphical language, or

21

2. Plan Representation and Petri Nets

they provide the underlying semantic model for the language.
Colbert (Konolige, 1997) is a robot programming language which was devel-

oped as a component of the Saphira architecture (Konolige et al, 1997). Despite the
fact that Colbert has a syntax which is a subset of ANSI C, its semantic is based
on FSA. In particular, states correspond to actions while edges are events associ-
ated to conditions. Moreover, Colbert allows some simple form of concurrency
although, in this case, the semantics is considerably different from standard FSA
semantics and it is very hard to guarantee coherence in the behaviours. Probably,
the most interesting feature associated to concurrency in Colbert is the possibility
to monitor and interrupt actions.

The limitations of FSA have raised the issue of finding more expressive for-
malism to control robots. Some approaches, such as ESL (Gat, 1992), address the
problem by defining constructs commonly used in robotics, without limiting the
expressiveness of the programming language which is based on Lisp. In a similar
way, the Task Description Language (TDL Simmons and Apfelbaum, 1998) extends
C++ in order to include asynchronous constrained procedures, called Tasks. TDL
programs have a hierarchical structure, called Task Tree, where each child of a
given task is an asynchronous process and execution constraints among siblings
are explicitly represented. Xabsl (Loetzsch et al, 2006) is a more recent approach,
mainly developed in the frame of the RoboCup competition and is somehow simi-
lar to TDL. This approach is based on a hierarchical structure and is bundled with
a set of highly engineered tools which allow efficient development of behaviours.

The Reactive Action Packages (RAPs, Firby, 1989) is the robot programming
language of the Animate Agent Architecture (Firby et al, 1998). RAPs are ex-
pressed in Lisp-like syntax and describe concurrent tasks along with execution
constrains. RAPs are an ad-hoc tool for the execution of concurrent tasks in
robotic applications which have some similarities with PNs. Nevertheless, it is
not possible to perform analysis of RAPs, mainly because there is no underlying
formal model.

Although FSA-based approaches have been very successful in modelling many
single-robot systems, their expressive power limits their applicability to multi-
robot ones. In general, more expressive formalisms are required in order to model
the inherent concurrency of multi-robot systems. The extensions of FSA-based
approaches to handle concurrency usually have ad-hoc semantics and do not allow
formal analysis, making it difficult to develop robust and effective behaviours.

In the past few years, approaches to plan generation and representation based

22

Overview of FSA and PNs for plan representation

on Petri Nets have gained increasing interest. PNs provide a mathematical and
graphical framework for the representation of discrete event systems. An advan-
tage provided by PNs to this extent is the possibility to provide formal properties
of the produced models, using some standard analysis methods.

Petri Nets have been used for both single and multi-agent systems. Celaya
et al (2007) present a framework to build multi-agent systems using Petri Nets,
that allows to perform static analysis to assess some important properties of the
system, for instance for deadlock avoidance. The model is limited to purely re-
active agents: actions are instantaneous, represented by Petri Net transitions, and
the places of the Petri Net model represent the environmental state of the agent.
The assumption of instantaneous actions does not allow to adequately model
robotic systems where actions have a duration and must be monitored during ex-
ecution. Similar considerations apply to the work by Best et al (2001), where the
authors present a Petri Net Algebra, which allows the design of multi-agent sys-
tems (MAS) using a component-model approach, based on composition operators.
In this approach, individual and system goals are specified as reachable markings
in the Petri Net representing the MAS. Interestingly, the proposed methodology is
property-preserving, and ensures that formal characteristics of the net are main-
tained in the composition of the multi agent system.

There has been other work which addresses specifically robotic systems. Nev-
ertheless, these approaches develop ad-hoc models for specific applications, rather
than providing a general language. For example, Sheng and Yang (2005) use PNs
to model a multi-robot coordination algorithm, based on an auction mechanism, to
perform environment exploration. Similarly, Xu et al (2002) show an agent-based
extension of Fuzzy Timed Object-Oriented Petri Nets (proposed by Maier and
Moldt (2001)) for the design of cooperative multi-robot systems for a specific in-
dustrial application. Moreover, Kuo and Lin (2006) reports the use of distributed
agent-oriented Petri Nets for the modelling of a multi-robot system for soccer
playing.

King et al (2003) provide a general approach able to model multi-agent sys-
tems, in which plans for each single robot are generated either using a graph-
ical interface, or using some automated planning method. The plans are then
compiled into Petri Nets for analysis, execution, and monitoring of their joint
execution. The operators that are used for the PN representation of the plans
are inspired by the STRIPS Fikes and Nilsson (1971) planning system. Supervi-
sory control techniques are applied to the Petri Net controller in order to identify

23

2. Plan Representation and Petri Nets

possible conflicts that may arise due to the presence of shared resources among
the multiple robots. To deal with unforeseen events re-planning is used at run-
time severely limiting the applicability of this approach to real-rime systems in
dynamic environments.

Milutinovic (2002) proposes an approach for modelling single-agent systems
extended in several respects, including multi-agent domains, by Costelha and
Lima (2007). The designer provides a layered model of the environment, the
actions available to the agent, and their interactions, then the system composes
those models into a Petri Net used for analysis. The resulting process is an MDP,
whose evolution can be studied with the methods of Chapter 1, and that provides
a model-based approach for decision making. As already discussed, writing a
complete and reliable model for a robotic domain is particularly hard, so we
prefer an approach closer to the one by Ziparo et al (2010), where the agent’s
behaviour is modelled but the environment is not. Both have their merits and
drawbacks, so before developing a system that contributes to overcome some of
the disadvantages in both cases, these two formalisms will be introduced in the
next sections.

2.2 Petri Nets and related formalisms

The two approaches most closely related to our work are those by Ziparo et al
(2010) and by Costelha and Lima (2007). After a brief introduction about Petri
Nets to clarify the notation, we are going to introduce those two formalisms and
discuss their features and how they are related to our own work.

2.2.1 Introduction to Petri Nets

Petri Nets (Murata, 1989) are directed, weighted, and bipartite graphs. A Petri
Net has two types of nodes connected by directed weighted arcs (which defaults
to one if not otherwise specified). Nodes of the first type are called places (Fig.
2.1(a)) and may contain zero or more tokens (Fig. 2.1(c)). The number of tokens
in each place is called marking, and denotes the state of the system.

Nodes of the second type, called transitions (Fig. 2.1(b)), represent the events
modelled by the system.

A Petri Net can be defined as a tuple

PN = 〈P, T, F,W,M0〉

24

Petri Net Plans

Figure 2.1: Nodes of a Petri Net

where:

• P = {p1, p2, . . . , pm} is a finite set of places.

• T = {t1, t2, . . . , tn} is a finite set of transitions.

• F ⊆ (P × T) ∪ (T × P) is a set of edges.

• W : F → N+ is a weight function and w(ns, nd) denotes the
weight of the edge from ns to nd.

• M0 : P → N+ is the initial marking.

• P ∪ T 6= ∅ and P ∩ T = ∅

Transitions can produce or consume tokens from places according to the rules
defining the dynamic behaviour of the Petri Net. The dynamic behaviour of the
network, that is how the state changes, is defined by the following firing rule

1. A transition t is enabled, if each input place pi (i.e. (pi, t) ∈ F) is marked
with at least w(pi, t) tokens.

2. If an enabled transition t fires, w(pi, t) tokens are removed for each input
place pi and w(t, po) are added to each output place po such that (t, po) ∈ F .

There are different semantics for Petri Nets depending on how and when
an enabled transition is chosen for firing. If the particular semantic should be
relevant to a specific application, it will be clarified when necessary.

2.3 Petri Net Plans

Petri Net Plans (PNPs) are particular Petri Nets whose operational semantics is
enriched with the use of conditions verified at run-time over an external Knowl-
edge Base. No restriction is imposed on the KB, which is supposed to be updated
by other modules according to the agent’s perceptions.

25

2. Plan Representation and Petri Nets

(a) Ordinary Action (b) Sensing Action

Figure 2.2: Ordinary and sensing actions in a Petri Net Plan

The basic actions of a PNP are ordinary actions (see Figure 2.2(a)), which repre-
sent a durative action, and sensing actions (figure 2.2(b)), representing procedures
whose outcomes reflect the truth of one or more conditions (equivalent to an if-
statement). Places and transitions of a PNP are partitioned into sets that represent
specific aspects of the plan:

• Input places model initial configurations of the network, before the plan has
been executed.

• Execution places model the configurations during which actions (and sub-
plans) are executed.

• Output places represent the time after the execution has terminated

• Connector places are used to compose networks by means of operators

In the example of Figure 2.2 the input, execution, and output places can easily be
picked out for the small networks that represent single actions. A sensing action
has more than one output place, having more than a possible outcome.

Transitions are partitioned as well, in particular:

• Start transitions represent the beginning of an action or a plan.

• Termination transitions model the end of an action or a plan

• Control transitions, as well as connector places, are used in operators

A Petri Net Plan is the composition of the aforementioned basic actions by
means of a set of operators. We introduce the operators informally and refer to
the original paper (Ziparo et al, 2010) for a formal definition:

26

Petri Net Plans

Figure 2.3: The sequence operator

Figure 2.4: The interrupt operator

• Sequence. A sequence is obtained by merging two places of different PNPs.
It can be applied to any place but execution ones; an example is provided
in Figure 2.3

• Interrupt. Interrupts connect the execution place of an action (or a sub-
plan) to a non-execution place of another network. It causes the temporary
termination of such an action under anomalous circumstances, that is, other
than those accounted for by terminating transitions. An example is provided
in Figure 2.4

• Fork and Join. Each token in a Petri Net Plan can be thought of as a thread in
execution. Through Fork and Join threads can be created and synchronised,
as usually done in most programming languages. An example of a fork
followed by a join is shown in Figure 2.5. Interrupts are often used to repeat
a portion of a plan that did not realise its post-conditions, implementing
while-loops.

There are also operators for multi-agent plans but for now we limit ourselves to
single-agent plans.

Summarising, a Petri Net Plan is formally a tuple

PNP = 〈P, T,W,M0, G〉

27

2. Plan Representation and Petri Nets

Figure 2.5: The fork and join operators

in which 〈P, T,W,M0〉 is a Petri Net, and where:

• P is a set of places that represent the execution phases of actions. Each action
is described by three places: the initiation, execution, and termination place.
Those places denote respectively the time before the action starts, during its
execution, and after the action terminates.

• T is a set of transitions that represent events and are grouped in different
categories: action-starting transitions, action-terminating transitions, inter-
rupts, and control transitions (which are part of an operator). Transitions
may be labelled by conditions to control their firing.

• W : T → {0, 1} is the weight function. In PNP an arc either does not exist
(zero weight) or has weight one.

• G is a set of goal markings that indicate the termination of the plan. It must
be a proper subset of the possible markings in which a PNP can be.

Moreover, it must have the following characteristics:

Definition 1 (Safety). A PNP is safe if any reachable marking M satisfies:

M(p) ≤ 1 ∀pi ∈ P

In Petri Net terms the network is said to be 1-bounded.

Definition 2 (Minimality). A PNP is minimal if every transition is in at least one
possible firing sequence from the initial marking.

28

Petri Net Plans

Figure 2.6: A Petri Net Plan for a football playing robot

In Petri Net terms the network is said to be L1-live (where from L1 to L4
transitions range from being possibly fired to being fired infinitely often). These
two structural properties are decidable and verifiable trough standard reachability
and liveness techniques for PNs. Finally, Petri Nets, in order to be PNPs, must
have one last property, due to their interpretation as plans:

Definition 3 (Effectiveness). A PNP is effective if every goal marking is reachable from
any state.

As an example of a Petri Net Plan, consider the behaviour in Figure 2.6 which is
a simple plan for a football playing robot. The plan starts with a sensing action to
check whether the agent knows the position of the ball or not. This determines two
branches (but still one token), each of which has two actions executing in parallel.
Therefore, the fork operators double the number of tokens, that are reconciled by
their respective join if the control must leave the parallel section. The action Kick

can be interrupted in two different ways: by its normal termination condition, that
is when the movement has finished, or by the undesirable condition of ballLost,
that is when the ball is not in the robot’s sight anymore. In this particular case
the goal set is empty, as the behaviour keeps going indefinitely.

Petri Net Plans are particularly effective in representing the constraints among
actions in parallel or multi-agent plans (in which case all actions have a further la-
bel that denotes the agent in charge of executing the action). PNPs are just plans,
and there is no element modelling the environment. Sensing actions bridge the
gap between the agent’s beliefs and the action execution. In terms of learning,
using conditions to determine the state before each decision can result in unman-

29

2. Plan Representation and Petri Nets

ageably large plans. In Chapter 5, we extend PNP for learning and show how to
exploit PNs’ expressive power for representing memory and compactly factorise
the state space.

2.4 A model-based approach with Petri Nets

Costelha and Lima (2007) propose a model-based framework for modelling the
environment and the agent behaviour in a layered structure. The lowest layer
represents the environment, and has a place for each predicate describing the state
space. A token in a place is interpreted as the corresponding predicate being
true, and transitions impose constraints on the possible evolutions of the state.
The second layer is the action layer, in which each action is separately modelled
with pre, execution (conditions that must hold for the action to keep executing),
and post-conditions. A place is also dedicated to represent the execution status
of each action, so that when there is a token in it the action is considered active.
Such a place is the conjunction with the above layer, the layer of plans, or action
coordinator. In this layer actions are composed to form plans and behaviours.
The topmost layer is the coordination one, in which the agents are assigned to
the tasks. Once the modelling is completed, all the Petri Nets representing the
various elements of the system are merged, into one single network that can then
be analysed as an SMDP with formal tools for Timed Petri Nets.

The approach described requires a deep knowledge of the domain, and quite
some confidence on action models. Since we argue that this is difficult to achieve
in complex tasks, we prefer to use the procedural approach of PNP, and combine
it with perceptions at run-time and decisions learnt for experience, creating a
model-free framework.

2.5 Summary of related work

The analysis of related work moves along three different lines: Hierarchical RL,
algorithms for non-Markovian domains, and representation and learning agent
behaviours with Petri Nets.

For what concerns HRL, we are going develop a framework for parallel exe-
cution under partial knowledge suitable for both single and multi-agent systems.
The closest formalism in the literature are HAM and ALisp (cf. Section 1.4), which
are limited to the case of full observability. HAM is also limited to a single action

30

Summary of related work

at a time, while ALisp has been extended for multi-threaded execution, although
the choices are made globally to retain the Markov property. Both frameworks
assume the existence of an MDP and the description of the state space to be avail-
able. On such a description, they flatten the structure imposed by the hierarchical
state machine and obtain an SMDP that can be used for learning. Since we do not
assume to have a Markovian description of the state space, we retain the hierarchy
during learning, and decompose the value function accordingly.

Since the stochastic process whose controller we learn is not Markovian in
general, we have followed the research line about such domains and gathered the
results obtained so far in Section 1.5. A difficulty for direct RL on NMDPs is that
the best deterministic policy does not necessarily maximise the value function in
each state. With a different definition of the value function, though, this limitation
can be overcome subject to local searching. We connect a few ideas from MCESP
(the only sound algorithm for local search in NMDP), the work on consistent ex-
ploration, confidence bounds, and stochastic optimisation, we devise an algorithm
for stochastic global search in policy space for non-Markovian environments.

In order to make our framework easier to use on robotic systems, after hav-
ing developed our argument for finite state machines, we extend it to Petri Nets,
whose expressive power is particularly helpful in parallel and multi-agent sys-
tems. We provide a brief survey of the available formalisms in Section 2.1, and
then discuss Petri Net Plans (cf. Section 2.3) that define a language for represent-
ing complex single and multi-agent plans, and a model-based approach for the
analysis of behaviours with PNs (cf. Section 2.4). The former turns out to be not
suitable for learning as it is, while the latter cannot be use with partial knowledge.
In order to address both those issues, we extend PNP and define a novel way for
learning agent behaviours with Petri Nets.

31

Part II

Combining Planning and
Learning

33

3
From Plans to Controllable

Stochastic Processes

Our approach addresses the planning problem in complex domains, where the
agent is not the only one affecting the environment. A complete description of
the causes of state changes is generally not available, and several aspects of the
environment may be not observable. We therefore focus on the only aspect that
is always available: the plan. We do not want to limit the expressiveness of
plans we consider in any way, so we allow hierarchical plans with parallel action
execution, sensing, loops, and interrupts. We are going to develop our argument
for State Charts (Harel, 1987) first, to which every formalism equivalent to a finite
state machine can be cast, and then address the expressiveness in case of multiple
actions executable at the same time.

3.1 Plan Representation

We consider reactive plans represented as generic state machines, like state charts
(Harel, 1987), in which every state corresponds to a set of actions and each tran-
sition corresponds to an event. An action may also be a machine itself. Figure
3.1 shows a simple machine defining the overall behaviour of a football playing

35

3. From Plans to Controllable Stochastic Processes

Figure 3.1: A simple behaviour for a football playing robot

robot, as those used in the RoboCup Soccer (Kitano et al, 1997). This example
will be further developed later.

3.1.1 The main components

A plan state is a configuration of the machine that encodes the plan, as opposed
to an environment state that is a configuration of the domain independent from the
agent. Each plan state is associated the set of actions that is being executed at that
point of the plan. Notice that the same set of actions may occur several times in
different plan states. The state of the whole system is the Cartesian product of
the plan and the environment state spaces. Such a product cannot be computed
though (and doing so is probably not even desirable), since a description of the
external environment is not generally available. In our example, every node is a
plan state and each state is associated with two actions (except for the first state,
that will be explained soon), one to control the head of the robot and one for the
body. The two actions must be executed in parallel and need not be atomic, but
might be time-extended procedures therefore machines themselves. During the
execution of an action, the environment state changes continuously while the plan
state does not. Indeed, this representation does not model explicitly the agent’s
knowledge, but only the execution state of the plans.

The outcome of actions may be uncertain, and we assume that a knowledge
base (KB) exists such that at any moment it is possible to check whether or not it

36

Plan Representation

entails a certain condition. We also assume that appropriate modules keep the KB
updated with respect to the agent’s perceptions. Such a knowledge representation
interferes in the plan execution in two different ways: events and conditions.

An event is a happening in the environment that the agent is capable of detect-
ing, for instance: a condition that becomes true, a message received from another
agent, a timeout expired or a joint that reached its target position. Events mark
perceivable changes that are particularly relevant, among all the possible percep-
tions, since they trigger a change of the current state. Events model the conditions
under which a set of actions is considered successful and at least some, of the
generally many, sources of failure. For instance, in Figure 3.1 closeToBall is the
event detected when the agent gets nearer to the ball than a certain threshold,
and is the correct termination of the set of actions {GoToBall,TrackBall}. On the
other hand, ballLost is the event detected when the ball is not on the robot’s sight
any longer, and is an incorrect termination for the actions {Kick,TrackBall}. There
is no difference, at the plan level, between ballLost and kickTerminated, where the
latter is the correct termination of that set of actions. We do not impose any se-
mantic interpretation to the symbols and it is the responsibility of the planner to
make sure that the plan is correct.

In addition to events, edges are labelled with guard conditions that must hold for
the edge to be enabled. The behaviour of the machine is the following: the current
state contains the set of actions executed at the moment, which is performed until
one of the events associated to the outgoing edges happens. Whenever such an
event is sensed by the agent, we say that the event triggers the transition which
makes it available for execution. For the edge to be actually enabled at that time
another condition must be met, namely the guard of the transition must hold.
When an edge is triggered (the associated event happens) and enabled (its guard
condition holds) it is allowed to be followed and the next state represents the set
of actions the agent is to execute next. If an action was present in the previous
plan state and it is not in the next one, that action must be terminated. On
the other hand, if an action appears in the next state it must be started. All
actions that are both in the previous and next plan state keep being executed. To
make the operational semantic clearer we assume that all events are external (i.e.
they cannot be generated by the machine itself) and transitions are instantaneous,
so that no event can be lost during a transition execution. If the machine is
hierarchical, the edges are processed from the top level to the bottom one, and
if an edge at a higher level is triggered and enabled, that preempts any edge at

37

3. From Plans to Controllable Stochastic Processes

lower levels. Final states are absorbing states that cannot be left once entered and
determine the execution termination.

In our example, the leftmost state has two outgoing edges with a guard con-
dition each. Every time the machine is in that state both the edges are triggered
(if no event is explicitly specified the empty event is assumed, which is always
triggered) and since the conditions, [BallSeen] and [not BallSeen], are mutually
exclusive, exactly one must be enabled and will be followed. Such a structure
simply represents an IF-statement common in any programming language. In
the same way as events, when no condition is specified the true condition is as-
sumed, which is the condition that always holds. Two, or more, edges triggered
by the same event, and guarded by non mutually exclusive transitions, might
be triggered and enabled at the same time. Such a situation characterises a non
deterministic choice that can be interpreted as a choice between different plans.
This way, a transition system represents a set of plans, that divert at the choice
points and may or may not join later on.

3.1.2 Plan schemas

After having informally introduced the representation, we are going to provide a
formal definition of the learning framework. We refer to our transition systems as
plan schemas, which can be considered either as a set of plans merged at the points
they share, or as a partially specified plan in which non-determinism characterises
a choice left unspecified:

Definition 4 (Plan Schema). A Plan Schema is a tuple 〈S, s0, F, E, Φ, A, L, T 〉
where:

• S is a finite set of plan states
• s0 is the initial plan state
• F ⊂ S is a set of final plan states
• E is a finite set of events
• Φ is a set of conditions
• A is a set of actions
• L : S → ℘(A) is a total labelling function that maps plan states on actions
• T : S × E × Φ → S is a transition relation augmented with a trigger and a

condition. For each s ∈ S, e ∈ E and φ ∈ Φ, φ must entail the pre-conditions of
all the actions in L(T (s, e, φ))

38

Plan Representation

Figure 3.2: A non-deterministic choice point in the domain of RoboCup Soccer

If the state machine is deterministic (it can never happen that two transitions
are triggered and enabled at the same time), then the plan schema is actually
a single plan since no choices are left to the executor and the entire behaviour
is specified. On the other hand, if the machine is non-deterministic, the plan
schema represents multiple plans and each non-deterministic choice is a fork
among them. Nothing prevents different plans from sharing common paths and
depart only where their behaviour differs.

Consider again the example of the football playing robot, and let PuntKick
and SideKick be two different kick actions. PuntKick needs to be executed when
the agent is facing the goal, while SideKick is meant for when the agent is far
from the goal. The two actions are made available to the agent refining the
plan of Figure 3.1 as shown in Figure 3.2. The event closeToBall triggers the
termination of the set of actions {GoToBall,TrackBall} during the execution of
which the agent approaches the ball while keeping it on sight. At this point the
two kicks are available, each with its precondition, that is expressed in the edges’
guards. The two conditions are not mutually exclusive, so it may happen that
when closeToBall is perceived the agent is both facing the goal and far from
it. In this case two plans are available, namely the plan that when the agent is
facing the goal and far from it executes a PuntKick, and the plan that executes a
SideKick. In such non-deterministic choice points we intend to make an informed
choice, and learn which behaviour performs best in practise, depending on the

39

3. From Plans to Controllable Stochastic Processes

Figure 3.3: A simple example of a sub-procedure

adversaries, or the many aspects that the planner couldn’t take into account.
The states in which {PuntKick, TrackBall} and {SideKick, TrackBall} are ex-

ecuted share the same set of outgoing edges, therefore are good candidates to
be factored out and separated in a sub-procedure. The action Kick of the plan
schema in Figure 3.1 can indeed be the machine represented in Figure 3.3. Both
the actions PuntKick and SideKick generate the event kickTerminated, and if
during any of them an event ballLost should be detected, the procedure would
be terminated, regardless of the action currently in execution.

3.1.3 On events and conditions

Events and conditions are not sharply separated concepts; it is, to some extent,
up to the designer to decide what will be represented by which.

The main difference between the two categories lies in timing. Events are
pinned to a timestamp, they are detected in a precise moment, are instantaneous
(their perception is assumed instantaneous, in practise it will take time, but the
time of the computation should be irrelevant compared to the rate at which the
environment changes) and we assume that two events cannot be perceived at ex-
actly the same time. Conditions, on the other hand, represent a partial description
of the environment and as such describe regions of the environment state space.
When the KB entails a condition the agent believes to be in that region, and two
conditions can be true at the same time, if their respective regions intersect. A
condition may hold for any amount of time.

Some particular regions of the environment state space might have both a
condition and an event associated to them: the condition to characterise the re-

40

Learning Framework

gion, the event to mark the moment in which such a region is entered. So, for
instance, plan schemas can represent sets of plans of classical planning, where ac-
tions are operators characterised by pre- and post-conditions, and the goal is also
described by a formula. In such a setting, every plan state has a single action; the
pre-condition of each action maps to the guard of the edge towards the state with
that action; the post condition maps to an event corresponding to the condition
becoming true; finally the goal maps to an event that takes the machine to a final
state where no action is executed.

Events, moreover, can represent aspects that can be particularly useful for
reactive plans, especially in robotics, and are quite cumbersome if taken into
account by adding them to the description of the environment state space. For
instance, if a timeout that expires, or a message received, or a joint that has
reached its target position, should be represented by creating a binary variable in
the state representation, that would duplicate the space unnaturally. Events do
not impact the size of the state space, and mark a distinction between the aspects
of the environment that call for a new decision and those upon which such a
decision must be made.

3.2 Learning Framework

The learning framework is focused on exploiting the non determinism of a plan
schema to make an informed choice.

Reinforcement Learning allows us to make use of experience to improve an
agent’s performance over time and seems a reasonable choice to achieve our goal.
RL has been thoroughly studied within the MDP framework, since this framework
provides a formal and neat mathematical notation for analysing an important class
of sequential decision problems. In traditional RL applications it is assumed that
all the relevant knowledge about an agent’s environment can be encoded in a
structure, usually a Markov Decision Process (MDP). Moreover, both in “model-
free” and “model-based” RL techniques, it is assumed that even though the agent
might not know exactly what the structure of the MDP is (e.g., the transition
matrix), all sample observations are drawn from some underlying MDP. In the
class of problems we are considering, however, assuming the existence of a fully
observable MDP is usually unrealistic. Even trying to come up with a reason-
able possible encoding for the states, which could somehow guarantee that the
Markovian assumption is respected, might be infeasible.

41

3. From Plans to Controllable Stochastic Processes

For this reason we rely on a generic knowledge base that reflects the beliefs
of the agent about the environment, without building a dynamic model of it. In
the following, we will define a stochastic decision process by deriving it from the
plan and we will use this model to gather the experience to use in subsequent
trials.

The state of the system is composed by both the state of the plan and the state
of the environment, but the latter is in general not completely known. The reward
depends on how the state of the environment is perceived by the agent. In order
to make a decision in non-deterministic choice points, we want to look forward
in the plan having a value function associated with plan states, but not looking
forward in the environment state space trying to predict the outcome of actions
(i.e., the next environment state).

The plan executor must adhere to the state machine operational semantic as
long as the choices are deterministic. Whenever a non-deterministic choice must
be taken, the executor can refer to the value function to evaluate the alternatives
and then exploit or explore as usual in RL.

3.2.1 Definition of a controllable stochastic process

In order to properly characterise the stochastic process associated to the previously
described state machine, and to set the proposed method in the RL framework, we
define it in terms of a Timed Non-Markovian Decision Process (TNMDP). We call
it so, since it borrows from SMDPs (cf. Section 1.3) the way actions with different
durations accumulate the reward, and is Non-Markovian because, in general, the
description of the environment given by conditions and events will not be enough
to predict the reward from each state. This latter aspect will be explained more
in detail later.

We first show the construction of the TNMDP with the example of the pre-
vious chapter, and then provide its formal definition. Let’s consider the non-
deterministic choice point shown in Figure 3.2, extrapolated and reported for
ease of reference in Figure 3.4

The nodes that allow for non-determinism (i.e., that have more than a transi-
tion associated with the same event, and whose guard conditions are not mutually
exclusive) are split into a number of nodes equal to the constituent events of the
conditions. In the example, the event closeToBall is associated to the conditions
FacingGoal and FarFromGoal. This gives four possible constituents, namely: only
FacingGoal is true, only FarFromGoal is true, both are true or none of them is.

42

Learning Framework

Figure 3.4: The non deterministic choice point from the example of Figure 3.2

(a) First step (b) Second Step

Figure 3.5: The transformation of the non deterministic choice point into an TN-
MDP

To the first three we associate a state and an arc from the initial state, in which
the actions GoToBall and TrackBall are executed. The last situation, in which
none of the conditions holds, translates into a loop on the initial state. The result
of the first step of this transformation is represented in Figure 3.5 (a).

In this section we make use of the term “action” as it is done in the literature
of stochastic processes when we refer to the TNMDP. Therefore, while an action
in the plan schema is the actual intervention of the agent in the environment,
an action in the TNMDP is an instantaneous transition available to the controller.
An action in the TNMDP causes a change in the state of the process, but cannot
modify the state of the environment while this is the primary intention of an

43

3. From Plans to Controllable Stochastic Processes

action in the plan schema. All the created edges correspond to the same non-
deterministic action of the TNMDP reported as closeToBall. Since it is caused by
the perception of the event closeToBall, the result of this action depends on the
environment and cannot be chosen by the agent.

Next, each node associated to a constituent of the conditions is connected to
the action node containing the actions enabled by that constituent. In our exam-
ple, FacingGoal is connected to the node representing the action PuntKick, while
FarFromGoal is connected to SideKick and FacingGoal&FarFromGoal is connected to
both. At this level the edges reaching different action nodes are associated to
different actions of the TNMDP. The resulting graph has a choice point in the
state FacingGoal&FarFromGoal since in that case two actions are simultaneously
available.

The number of nodes in which a choice point in the original plan is split
is exponential in the number of conditions. This is not surprising, as in the
case of full observability and discrete state space this number would be equal to
the number of states storing an entire Q-function. Nonetheless, the underlying
assumption is that the domain is continuous and partially observable so that there
is no notion of single state, and considering single states or many small regions
is not possible nor desirable. Hence, even if it is possible to consider function
approximation, we are not going to need it necessarily.

To give a formal definition of the TNMDP we have informally previously
introduced, we define the set Ccnd(s, e) of the constituent events generated by
overlapping conditions in a specific choice point (denoted as 〈s, e〉) of a plan
schema PS = 〈S, s0, F, E,Φ, A, L, T, 〉 as follows:

Ccnd(s, e)


= ℘({φk}) \ ∅ if there exist k conditions

φ1 . . . φk and a state sj s.t.
〈s, e, φi, sj〉 ∈ T ∀i ∈ {1, . . . , k}

= ∅ otherwise

In our example

Ccnd({GoToBall, T rackBall}, closeToBall) = { {FacingGoal},
{FarFromGoal},
{FacingGoal, FarFromGoal}}

Next, we define the set Sc of the states generated by condition overlapping in
all choice points:

Sc = {〈s, e, cond〉|s ∈ S, e ∈ E, cond ∈ Ccnd(s, e)}

44

Learning Framework

In our example

Sc = { 〈{GoToBall, T rackBall}, closeToBall, {FacingGoal}〉,
〈{GoToBall, T rackBall}, closeToBall, {FarFromGoal}〉,
〈{GoToBall, T rackBall}, closeToBall, {FacingGoal, FarFromGoal}〉,
〈{PuntKick, TrackBall}, kickTerminated, {true}〉, . . . , }

Where the last state has again been taken from the full plan of Figure 3.2, to
illustrate the case of an event with no condition associated. Those states constitute
the second layer of Figure 3.5 (b). Finally, we also define a function Sec to select
in Sc the states that are generated by a specific choice point as follows:

Sec (s, e) = {〈s, e, cond〉 ∈ Sc}

and a function Cscnd to extract from the states in Sc the set of conditions:

Cscnd(〈s, e, cond〉 ∈ Sc) = cond

Time has not been addressed yet. We consider time in discrete time steps and
actions can take multiple time steps to complete. We use the following notation
(Bertsekas, 1995):

• tk: the time of occurrence of the kth transition. By convention we denote
t0 = 0
• sk = s(tk) where s(t) = sk for tk ≤ t < tk+1

• ak = a(tk) where a(t) = ak for tk ≤ t < tk+1

We define a Timed Non-Markovian Decision Process TNMDP = 〈 Ssp, Asp,
Tsp, ρsp〉 such that:

• Ssp = Sc∪S, is the state set. Sc is the set generated by overlapping conditions,
whereas S is borrowed directly from the plan schema and accounts for action
states, that is states that are not the result of a choice point split but are
associated to actions in execution. The first and last layer of Figure 3.5 (b)
are an example of the states in S while the intermediate layer is an example
of the states in Sc.
• Asp = {a ∈ ℘(A)|∃s ∈ S s.t. L(s) = a} ∪E, is the action set. The first part is

the co-domain of the labelling function in the plan schema. We create an ac-
tion for each possible set that labels the states of the plan schema. Notice that
those actions are deterministic and we give them the same name as their tar-
get state. In our example of Figure 3.4 the co-domain of labelling function is

45

3. From Plans to Controllable Stochastic Processes

{{GoToBall,TrackBall}, {PuntKick,TrackBall}, {SideKick,TrackBall}}.
You can spot the corresponding actions in Figure 3.5. The set E (events in
the plan schema) is used to define the actions on which the agent has no
control. These actions are non-deterministic and their outcome depends on
the environment. Again, in Figure 3.5, closeToBall is an example of such an
action.
• Tsp(s, a, s′, τ) = Pr(tk+1 − tk ≤ τ, sk+1 = s′|sk = s, ak = a) is the probability

for action a to take τ time steps to complete, and to reach state s′ from state
s

– if a /∈ E: the action is deterministic. An action that is not in E connects a
state in Sc to the state in S (second to third layer in the example) labelled
with the actions enabled by the condition in that state. Moreover, those
actions do not reflect any change in the environment so they always
complete in zero time. That is,

Tsp(s, a, s′, τ)


= 1 if ∃ si, e, φ.

〈si, e, φ, s′〉 ∈ T ∧ s ∈ Sec (si, e)
∧ φ ∈ Cscnd(s) ∧ L(s′) = a ∧ τ = 0

= 0 otherwise

A state s is connected to the state s′ by a iff s is a state generated by
a condition constituent, it is linked to s′ by the plan schema, and a is
the label of that link.

– if a ∈ E: the action is non-deterministic. These actions take the time
spent in the previous state waiting for the event. An action that is in
E connects a state in S to itself and to all the condition states that its
split generates (first to second layer in the example). Therefore, events
cannot connect all pairs of states, which translates into:

Tsp(s, a, s′, τ)


= 0 if s /∈ S ∨ s′ /∈ Sec (s, a) ∪ {s}
=
∫
H p(tk+1 − tk = τ, sk+1 = s′

|sk = s, ak = a,~h)p(~h) d~h
otherwise

If a connection between s and s′ through e exists according to the plan
schema, the value of the transition function is the probability for the
event a to happen in the state 〈s,~h〉 ∈ S×H where H is the domain of
(continuous) hidden variables. Since those variables are not observable,

46

Learning Framework

the sample distribution is the (hidden) underlying one marginalised
over the hidden variables. This makes the stochastic process non Mar-
kovian due to partial observability.

• ρsp(s, a, s′, k, r) = Pr(rt+k = r|st = s, st+k = s′, at = a) is the reward func-
tion. As for MDP and SMPDs (cf. Section 1.1 and 1.3) we denote with
ρsp(s, a, s′, k) ∼ ρsp(s, a, s′, k, .) the reward extracted from ρ. We define its
value to be 0 if a /∈ E. Therefore the immediate reward is non-zero only for
events (which can take time).

In order to define a decision problem, we establish a performance criterion
that the controller of the stochastic decision process tries to maximise. As such,
we consider the expected discounted cumulative reward, defined for a stochastic
policy π(s, a) and for all s ∈ Ssp and a ∈ Asp as:

Qπ(s, a) = Eπ
[∞∑
i=1

γi−1ri

∣∣∣∣∣ s0 = s, a0 = a

]

=
∑
s′∈Ssp

∞∑
τ=0

T (s, a, s′, τ)
(τ∑
t=0

γtρ(s, a, s′, t+ 1) + γτ+1V π(s′)
)

(3.1)

The optimal discounted reward function is defined as:

Q∗(s, a) = maxπ Qπ(s, a), s ∈ Ssp, a ∈ Asp (3.2)

3.2.2 Markovian and non-Markovian rewards

In order to understand why the stochastic process resulting from the plan is in
general non-Markovian, consider the following example again from the RoboCup
Soccer domain.

A robot is positioned at the edge of the penalty area and is about to shoot a
penalty kick. It starts facing the goal with the ball in front of it. Kicking straight
results in a goal and a reward of 10 with probability 1, while turning before
kicking causes the robot to miss the ball and get a reward of zero after a timeout
has expired with no goal scored. The robot executes the plan shown in Figure
3.6. Since the plan is very simple, there are no conditions and not more than an
event connected to each state, the stochastic process generated is not significantly
different from the plan itself. So, for the sake of the argument, let’s just consider
this plan as a stochastic process, in which the only choice left to the controller is
in the initial (leftmost) state. When the transition with the event goal is executed

47

3. From Plans to Controllable Stochastic Processes

Figure 3.6: Example of a non Markovian reward

the agent receives the reward of 10, while all other transitions give a reward of
0. Finally let’s assume that the task is restarted indefinitely so that each state and
each action can be visited infinitely often.

When the agent executes Kick after WalkStraight it faces the goal and scores
every time, while when it kicks after having executed Turn it faces the wrong di-
rection and never scores. Q-learning would give both the edges that enter Walk-

Straight and Turn the same value, since they lead to the same state (Kick) with
no intermediate reward. Their effects, though, are clearly different. In this exam-
ple all transitions are deterministic, therefore Markovian. What is not Markovian
is the reward in the state Kick that depends on the robot’s orientation which is not
taken into account. This particular example is an hPOMDP, that is one of those
partially observable processes in which the history is enough to discriminate the
actual state. Rewriting the plan as in Figure 3.7 it would be possible to learn the
correct behaviour. This is not possible in general, however, and even when it is
possible it duplicates the states creating a tree that grows exponentially with the
number of choice points.

3.3 Summary

We have introduced a translation of a partially specified plan into a controllable
stochastic process. The framework allows for both constraining the search in the

48

Summary

Figure 3.7: A different structure for the formed example that allows to distinguish
the actual state

space of the possible policies, and loosen the requirements on the accuracy of the
model used for planning. Plans can be hierarchical, calling sub-plans instead of
atomic actions. From the topmost plan down, the executor is triggered by events
and verifies conditions on a knowledge base. When a sub-procedure is called in a
state, the execution of the calling plan is suspended and the reward accumulated
for that state. Each layer of the hierarchy learns separately, aiming at recursive
rather than hierarchical optimality (Dietterich, 2000). Moreover, each layer faces a
learning problem that is in general non-Markovian, as explained in Section 3.2.2.
For this reason, Chapter 4 is devoted to the definition of an algorithm for learning
in such a context.

49

4
Learning Algorithms

After having introduced a framework for Hierarchical Reinforcement Learning al-
lowing partial knowledge and parallel actions, we analyse the problem of learning
a policy in such a challenging context. There are a few domains in the literature
in which, despite the fact that the observations make it difficult to distinguish
different states, TD(λ) can learn the optimal policy. The eligibility trace, that is the
multi-step, exponentially decaying, trace along which the updates are performed,
can help sort out the differences where the previous history matters. When the
reward is affected by factors external to the agent though, credit assignment is
particularly complicated. In the following, we first try to highlight the respects
in which an algorithm for policy iteration based on TD(λ), such as Sarsa(λ), fails
at estimating the value function. Then, we try to overcome the limitations with
a new algorithm that is created on the basis of considerations about real world
domains, the theory of chapter 1.5, and stochastic search.

4.1 What is wrong with direct RL

It has already been shown (cf. Section 1.5.3) that the policy followed by the agent
while learning affects not only the value function learnt (as one would expect from
any on-policy method), but also the capability to converge to the value function

51

4. Learning Algorithms

Figure 4.1: An example on consistent exploration

of the current policy. Q-learning and Sarsa can cycle through different policies,
although the overall performance is not necessarily worse than a stable but sub-
optimal policy. In the next sections we consider two sources of difficulties for
direct methods: exploration and estimation.

4.1.1 Consistency

It is common in MDPs that every time the agent encounters a state a new decision
is made. When the method used to learn the value function is multi-step though,
if a state is encountered multiple times during the same episode, the choice made
at later times can affect the value of the choice made the first time. This causes
the value of the two choices to combine, making it hard to distinguish which one
caused the reward. Crook (2007) proposes the following example to underline
the importance of a consistent exploration. Consider the grid world in Figure 4.1
in which grey states are aliased, that is, indistinguishable. If the agent explores
moving south in the left-most aliased state, and exploits the current value function
going north from the right-most one, it reaches the goal faster than if it went
north from the first state. The higher value for the action south in the first
state is obtained through a sequence of actions that can be performed only by
a stochastic policy, and we indeed know that stochastic policies on NMDPs can
perform arbitrarily better than deterministic policies (cf. Section 1.5.1). As long
as we are looking for a deterministic policy, however, this kind of exploration,
that performs actions that a deterministic policy may not do, can be misleading.
Therefore, the first element of our algorithm is a consistent exploration, that was
already present in MCESP in the definition of the value function of equation 1.10,

52

What is wrong with direct RL

Figure 4.2: An NMDP in which the exploration can damage the current estimation
of the value function

reported here for ease of reference:

Qπo,a = Eπ←〈o,a〉 [Rpost−o(ω)]

In this equation π ← 〈o, a〉 is followed, instead of just executing a in o once,
which means that every time the observation o is perceived, the action a must
be executed. In our algorithm though, we implement a global search method,
allowing more than one exploratory step per episode. Our implementation makes
a decision for each observation the first time that it is encountered, and then
remembers it in case that observation should be seen again.

4.1.2 Action values

In non-Markovian domains, an exploratory move in some part of the state space
can ruin the estimation of the value of another action in some other part of the
space. Consider, for instance, the NMDP in Figure 4.2. The actions with solid
lines form the optimal path from s0 to the goal state. Any dotted action is on a
path that gets a reward much lower than the optimal one. If the agent follows
the route 〈s0, s1, s2, s4, goal〉 it receives a low reward and updates its estimate of
all the actions on the way. The last, optimal, action is incorrectly underestimated,
and its value can become lower than the value of its alternative action, possibly
causing it to be wrongly not chosen again. If it is not chosen along the optimal
path, that is the agent reaches s4 and goes to s2, the value of the whole path is
underestimated, and the value function completely disrupted.

53

4. Learning Algorithms

In an MDP, the expected cumulative discounted reward can be temporarily
underestimated too, if after an action is executed, some sub-optimal action is
taken. In that case though, the correct value will be eventually restored, since
the value depends only on the current state. In MDPs, as the action-values closer
to the reward get more precise, the right estimation is propagated backward.
Therefore, if the agent acts greedily almost always, even an on-policy method can
converge to the right value.

In order to prevent the behaviour just described, we introduce two elements
in our algorithm. First, if at least one exploratory move is taken, the whole
episode is marked as part of the exploration and treated accordingly. Second,
after an exploratory episode, the value function is updated only on those state-
action pairs that have received a reward higher than the current one. This means
that an exploratory episode cannot lower the value of any action. This way, a
state-action pair that is not part of the optimal policy will keep raising under any
policy that returns a value higher than the optimal one. Every action not currently
optimal gets overestimated (since its value cannot be lowered, it converges to the
maximum ever seen) and is not taken into account as long as its overestimation
is lower than the average of the current best action for that state. In the following
section the algorithm is described in detail.

4.2 The algorithm: SoSMC

As mentioned in the background section, if we do not rely on the Markov property,
there must be some other aspect of the domains that makes our algorithm more
effective than just random searching. We informally introduce here the ideas
behind the algorithm, motivating some of them with assumptions on the domains:

• Stochastic search. Since we assume that the NMDP is finite, the number of
possible policies is also finite. By making sure the probability to select each
policy is non-zero, we guarantee that every policy is, in the limit, sampled
infinitely often. Instead of just randomly picking policies, however, we bias
the search towards the ones that look more promising, in a sense that will
be explained later.

• Value function. Several methods that search directly in policy space usually
represent the policy explicitly (e.g., policy gradient (Sutton et al, 2000)),
rather than computing the value function. We try to use the value function

54

The algorithm: SoSMC

in a different way: for the policy currently in use, the value of the actions
converge to the expected cumulative discounted reward as usual, while for
any other action, the algorithm stores an upper bound on the value of that
action, given the knowledge acquired until then. Confidence bounds have
been used on MDPs (Auer, 2002; Auer et al, 2009) building a model of the
system and estimating uncertainty. In our algorithm, we cannot tighten the
bound along the way, but we try to keep it updated, that is to memorise the
highest value seen to compare it to the current average value, and perform
a sort of branch and bound on action values.

• Locality. The value function is updated globally, that is, if a policy per-
formed better than the current one, all the action-values that have been
found higher than the expectation are updated simultaneously. This is in
contrast with MCESP that implements a local search, therefore updating one
action-value at a time. On the other hand, decisions are made locally, state
by state, and possibly independently in different parts of the hierarchy (as
opposed to ALisp, cf. Section 1.4.3).

• Stability. Action-values in NMDPs depend not only on the state but also
on the policies under which they have been computed. For such values
to make sense, the policies sampled must not be totally unrelated and far
apart in the policy space. This is the main motivation behind MCESP’s local
search: no more than one choice at a time can be reliably evaluated. We
admit the possibility that an action-value is the result of blended policies,
if those policies are not too far, but still farther than the one-step distance
allowed by MCESP. What we mean by related policies will be clarified in the
next section.

• Regularities. We know that there exist worst cases in which there is nothing
better to do than evaluate every policy. Unfortunately, at the rate at which
the number of policies grows with the number of states, performing such a
search in any reasonable amount of time is hopeless. We have to rule out,
then, all those problems in which the solution can only be found by combi-
natorial optimisation: no needles in haystacks. Reality usually proves to be
less pathological than worst cases. We informally assume that it is unlikely
(not impossible, but at least improbable) that a policy with a low mean can
give extremely high rewards. Moreover, although we know that actions in
different parts of a sequence may be related to each other, we assume that

55

4. Learning Algorithms

this does not affect the whole policy. Therefore, there are parts of the policy
that are independent of others, and the choices on those localities can be
made independently.

The main idea behind the algorithm, Stochastic Search Monte Carlo (SoSMC),
is based on the intuition that often a few bad choices disrupt the value of all the
policies that include them. Taking those policies as if they were as valuable as any
other just wastes samples. We would rather like to realize that those actions are
not promising and not consider them unless we have tried all the other options.
The strategy would consider all the policies with a probability proportional to
how promising they are, which we believe is beneficial in at least two ways: (1)
the algorithm reaches the optimal policy earlier; (2) during the phase of evaluation
of those promising but suboptimal policies, the behaviour is as good as the current
information allows.

The algorithm (cf. Algorithm 1) is constituted by two parts: the exploratory
phase and the assessing phase, as described in the next section.

4.2.1 Exploration: gathering information

The exploration initialises the Q-function to drive the execution in the subsequent
phase. The aim of the initial exploration is to determine an upper bound for
each state-action pair. For a number of episodes exp length the agent chooses
a policy according to some strategy Σ (e.g., uniformly at random), and in each
pair 〈s, a〉 stores the highest value that any policy, going through 〈s, a〉, has ever
obtained. Consider the simple example of the N-MDP in Figure 4.3(a). This
N-MDP has three states and four actions with a total of four policies. Let the
reward returned by each of those policies be normally distributed, with means
and standard deviations represented in Figure 4.3(b). Figure 4.3(c) and 4.3(d) show
the value of the Q-function for each action during a particular run. The first 100
episodes belong to the exploratory phase, in which the actions A1 and A2 obtain
the highest reward, making the policy A1-A2 look particularly promising. An
action is considered as promising as the highest value of the reward that choosing
that action has ever given. In the case of A1-A2, its good result is due to the
high variance, rather than the highest mean. This aspect will be addressed by the
second phase of the algorithm.

The number of episodes in the exploratory phase should ideally allow for
the sampling of each policy above its mean at least once. Depending on the

56

The algorithm: SoSMC

Algorithm 1 SoSMC
exp length← number of episodes in the exploratory phase
n← current episode
t← last exploratory episode
α(n, o, a)← learning step parameter
initialize Q(s, a) pessimistically
{Exploratory phase}
for i = 1 to exp length do

generate a trajectory ω according to a policy π extracted from a strategy Σ
for all o ∈ O, a ∈ A s.t.〈o, a〉 is in ω do
Q(o, a) = max(Q(o, a), Rpost−o(ω))

end for
end for
{Assessing phase}
for all other episodes : n do

if n is such that the current estimate is considered accurate then
t = n
π ← a policy chosen from Σ

else
π ← the last policy chosen

end if
{Possible policy change after an exploratory episode}
if n = t+ 1 then
π ← the policy that greedily maximizes Q

end if
generate a trajectory ω from π
if n = t then

for all o ∈ O, a ∈ A s.t.〈o, a〉 is in ω do
Q(o, a) = max(Q(o, a), Rpost−o(ω))

end for
else

for all o ∈ O, a ∈ A s.t.〈o, a〉 is in ω do
Q(o, a) = (1− α(n, o, a))Q(o, a) + α(n, o, a)Rpost−o(ω)

end for
end if

end for

particular strategy Σ and the shape of the distributions of the policies, such a
number for exp length might be computable. In practice, unless the problem
is effectively hierarchically broken into much smaller problems, the number of
episodes required is hardly feasible. In those cases, the exploration has to be
shorter than what would be required to complete, and the algorithm will start with

57

4. Learning Algorithms

(a) (b)

(c) (d)

Figure 4.3: A simple example of an NMDP (a). The four policies return a reward
normally distributed whose means and standard deviations are shown in (b). The
evolution of the Q-function for the first state (actions A1 and B1) is represented in
Figure (c), while for the second state (actions A2 and B2) is represented in Figure
(d).

an upper bound for the limited number of policies visited, and keep exploring
during the second phase.

If the domain does not allow for the estimation of a helpful upper bound, for
instance because every action can potentially give high rewards, the first phase
can be skipped initializing all actions optimistically. We conjecture that this may
happen on synthetic domains in which the stochasticity is artificially injected, but
it is rarer in real-world applications.

4.2.2 Assessment

We want to maximize the expected cumulative discounted reward, rather than
the maximum obtainable one, therefore an evaluation of the promising policies is
needed.

A random searching algorithm is an algorithm that picks a candidate πk, at

58

The algorithm: SoSMC

iteration k, from a given distribution on the space of all possible policies. It evalu-
ates πk and either updates the current best solution or discards the candidate. We
rely on the main theorem behind stochastic search (Spall, 2003, pag. 40) which
states that if the search space if finite and each point has a non-zero probability
to be picked, then πk → π∗ almost surely as k → ∞. In order to guarantee that
the conditions expressed by the theorem are met we: (1) limit the search space
to the finite set of deterministic stationary policies; (2) require immediate rewards
to be bound; (3) require that the strategy Σ according to which the policies are
picked assigns a non-zero probability to each of them. Since the value of opti-
mal solutions is, in general, not known in advance, there is no obvious stopping
criterion. In practice, and as it is common in stochastic search, we may define a
threshold above which we accept any solution.

In the second phase the algorithm picks a policy according to Σ, evaluates it
with first-visit Monte Carlo, and stops if the policy’s reward is above a threshold.
Monte Carlo methods wait until the end of the episode to update the action-value
function, therefore the task needs to be episodic. The novel aspect of SoSMC
is the way in which the search is biased. Reinforcement learning algorithms
can traditionally be considered as composed by prediction and control. While
the prediction part is borrowed from the literature (first-visit MC, and Perkins’s
definition) the control part is based on the estimate of upper bounds, their storage
in the action-value function, and their use to generate the next policy to try.
Moreover, differently from MCESP, it performs a global search. It also employs a
consistent exploration Crook (2006), that is, during the same episode, every time
the agent perceives an observation it performs the same action.

If the reward is deterministic a single evaluation per policy is sufficient. Such
a case may, for instance, occur on POMDPs in which the underlying MDP is de-
terministic and there is a single initial state. If the reward is stochastic, on the
other hand, the capability to have an accurate estimate of the reward depends
on the distribution. For some distributions it may be possible to compute con-
fidence bounds and ensure that the reward returned by a policy is higher than
the threshold with some probability. In general, the estimated mean cannot be
guaranteed to be correct after any finite number of samples. In such cases, we
use a fixed number of samples k which empirically proves to be reliable. While
losing some of the theoretical guarantees, we experimentally show how SoSMC
can outperform the best results in the literature for different domains. While an
inaccurate estimation of a policy may deceive the stopping criterion, if the thresh-

59

4. Learning Algorithms

old is not too tight on the optimal value a good policy is in practice always found
in the domains we have used. The example of Figure 4.3 shows an assessment
phase with k = 50.

4.3 Choosing the parameters

Different choices are possible for the exploration strategy Σ and for the schedule
of the step-size parameters α, actually making SoSMC a family of algorithms.

For what concerns the exploration strategy, we have used both ε-greedy and
SoftMax (cf. Section 1.5.3). In the case of ε-greedy (where we refer to the algo-
rithm as ε-SoSMC), the choice has been made for each state the first time it is
encountered, and then remembered throughout the episode. Therefore, the poli-
cies closest to the current optimal one are more likely to be selected, and become
less and less probable as the distance from the optimal policy increases. This is
meant to implement that principle of stability mentioned in Section 4.2, that is
to avoid the sampled policies to leap irregularly through the policy space, since
the value function would not be able to track them. As for SoftMax, again the
current optimal policy is the most likely to be selected, but the neighbourhood
is considered not just in the distance from such a policy, but also in the value of
its actions, evaluated locally. SoSMC with SoftMax, referred to as Soft-SoSMC,
performs particularly well in those domains in which the combinatorial aspect
is minimal, and the choices can often be made separately. If some actions have
low values, regardless of the choices made elsewhere, SoftMax can avoid select-
ing those actions making a better use of the samples. In particular for the first,
exploratory phase, SoftMax with a decreasing temperature, as the exploration be-
comes closer to the end, allows to focus on that set of policies that has given the
highest rewards and proved to be more effective than ε-greedy.

For what concerns the step-size parameter, we identify at least two possible
schedules. If α is set to a constant lower than 1/n(s, a) (where n(s, a) is the
number of episodes in which the state-action pair 〈s, a〉 has been visited since
the last policy change) the value of an action is affected by different policies.
Depending on the domain this might or might not be helpful on the probability
for that action to be picked again. We empirically found that for the actions that
are better or worse than their alternatives regardless of the rest of the policy,
an estimate that is built across policies has a favourable impact on the selecting
distribution. If α = 1/n(s, a) on the other hand, the estimate is memoryless and

60

Credit assignment for parallel execution

every policy change produces a new one for each state-action pair visited. This
is the case of the example in Figure 4.3

4.4 Credit assignment for parallel execution

When the agent can perform more than one action at the same time, credit as-
signment is complicated by the fact that it is hard to distinguish whether it was
the particular combination of actions that generated the reward, or some of the
actions alone. Determining what should be rewarded is then non-trivial. In this
section we consider single agents that can perform multiple actions in parallel,
and multi-agent systems in which all the agents share the same reward signal. In
both cases the choices are made independently by the different branches (possibly
in different layers of a hierarchy) of the agent’s policy, or by the different agents
respectively. From now on we shall just refer to the multi-agent case, but it is
understood the same considerations apply to parallel single-agent systems.

What we want to avoid is that while an agent is exploiting the current best
policy, therefore making its value converge to the average, some other agent at-
tempts an exploratory move, and the effect of the exploration of one is mixed to
the exploitation of the other. In order to prevent that, every agent must be aware
that the reward it is going to receive is affected by someone’s exploration, there-
fore it must not let the value of its current best policy decrease. In addition to the
reward signal, then, the agents must share the knowledge of which episodes are
exploratory, and not decide whether to exploit or explore randomly as in Algo-
rithm 1. An easy way to implement this mechanism, without communication, is
to deterministically decide whether each episode is an exploratory one depending
on the current episode number. Exploring every n episodes, for instance, would
give the value of the eventual new policy n episodes to converge to its average,
before a new policy is tried. The system is globally rewarded and if a joint policy
gives a reward higher than the current average, it is stored separately and inde-
pendently by all the agents at the same time. During the exploiting episodes, on
the other hand, all the agents know that the reward they are receiving is from the
current best joint policy, therefore they are allowed to decrease its value making
it converge to the average.

We believe that blending the evaluation of some action with the exploration
of others is at the root of the difficulties for Sarsa(λ) on Non-Markovian domains.
This is the main reason behind the mechanism of rises and falls, in which we

61

4. Learning Algorithms

reward the policy that has returned a high sample, and then lower its value to
the average. During such an assessment though, no exploration is allowed, so
that the value of the current policy can be reliably estimated. This idea must
be implemented globally on the joint policy space on a multi-agent system, by
having the agents agree on when it is appropriate to explore, so that no one ruins
its current estimation.

4.5 Summary

We have analysed the behaviour of the traditional, direct, RL algorithms, iden-
tifying two possible sources of failure in non-Markovian domains: inconsistency
during exploration, and interaction of different parts of a policy in the action-value
estimation. Then, we have introduced a family of algorithms, Stochastic Search
Monte Carlo (SoSMC), for stochastic optimisation in policy space. Our algorithm
uses the value function to store an upper bound for each action under the best
policy visited, and keeps updating it while the behaviour improves. The upper
bound is continually compared to the value of the currently selected action, while
the value of the latter converges to the average. As long as the upper bound is
lower than the average of the current best action the policy is left unchanged. By
not allowing exploration and policy evaluation to mix, we introduce a method
of credit assignment suitable for NMDPs, including the case in which multiple
actions are executed at the same time.

62

5
LearnPNP

State Charts are extremely powerful in what they can represent, but not particu-
larly compact. Parallelism among actions can result in a number of states expo-
nential in the number of actions, and using conditions to make different decisions
in different situations can lead to a huge number of edges. While this might not
be a problem if the plan is automatically generated, it can be particularly tedious
when, on the contrary, it is manually written. As mentioned in the introduction,
helping the designer to easily convey his knowledge to the learning algorithm is
one of the aims of this work. The designer must be able to devise the sketch of a
plan, and let the learning algorithm figure out what the agent should do where
the human cannot decide. A fundamental aspect in this respect is that not only
the designer can be vague in the temporal specification (the sequence of actions)
but also on the spacial specification, since the possibility that the model will not
completely justify the reward is always taken into account.

In this chapter, we apply the ideas that led to the transformation of a generic
plan into a controllable stochastic process to Petri Nets. We work on Petri Nets to
overcome the limitation of finite state machines, and to have a framework feasibly
applicable in practise in single-agent as much as multi-agent systems.

63

5. LearnPNP

5.1 Learning in Petri Nets

We extend Petri Net Plans to create a formalism for model-free learning with Petri
Nets. Petri Net Plans are a compact way to represent reactive, conditional, parallel
plans (cf. Section 2.3). Before defining our new construct to include choice points,
and showing how to exploit Petri Nets’ expressive power for learning, we discuss
the relationship between PNs and State Charts. Then, we introduce our extension
of PNP, LearnPNP, and show how to effectively model and learn multi-agent
behaviours. We develop an argument similar to the one that led to the definition
of the controllable stochastic process for State Charts, applying it to the language
based on Petri Nets that provides the foundation to LearnPNP.

5.1.1 Petri Net Plans vs. State Charts

State machines are a subset of Petri Nets and, with the limitations imposed by
PNP on the structure of the net, a plan is indeed a state machine with at most
2|P | states, where |P | is the number of places. Therefore, the main difference
between the two lies in compactness, rather than expressiveness. If the number
of actions executed in parallel is small, State Charts can still be more compact
than PNPs, as in the examples of Figure 2.6 and 3.2. When the number of actions
soars though, and the coordination among actions becomes complex, Petri Net
Plans allow to have a clearer view of the synchronisation among actions in both
single and multi-agent plans.

The two formalisms also make different assumptions on the interface with the
environment. In particular, PNP relies only on the KB, and the events it considers
are solely of the type of conditions that become true. On the other hand, State
Charts, as discussed in Section 3.1.3, allow different form of perceptions to deter-
mine a state change. For this reason, in PNP, all the aspects of the environment
that might affect the execution must be included in the description of the state
space, which might make keeping track of the changes a little harder. To partially
overcome this limitation, later versions of the executor allowed to declare so called
internal conditions to be tested internally by each action. Thus, an action can trig-
ger its own termination, checking aspects of the environment not included in the
Knowledge Base. This way of terminating actions has proved particularly useful
for actions whose termination depends on proprioceptive sensors, like reading
joints, that pertain to each specific action and are of no interest to the rest of the
plan. Adding conditions related to such situations in the main KB would increase

64

Introducing non-deterministic choice points

the description of the domain, with no improvement in modelling the knowledge
about the environment. Although increasing the number of predicates does not
necessarily increase the state space, as the latter depends on the actual abstraction
employed by the plan, it does make the design and maintenance of the knowledge
base more onerous.

In the rest of this work, we are going to make use of such internal conditions,
so that when an action terminating transition has no condition associated, it is
implicitly internally terminated. Thus, for instance, the action Kick generates itself
the event of its termination when the joints reach the target position, without
having to declare the condition kickTerminated, that would make little sense
other than during Kick’s execution.

Finally, extending PNP by allowing to break some of the restrictions it makes
over Petri Nets, can significantly increase the expressiveness over State Charts.
In the next section we define the first extension, that allows the introduction of
non-deterministic choices to be controlled by a learning algorithm. The resulting
formalism is called LearnPNP and constitutes the main element of the learning
framework we developed.

5.2 Introducing non-deterministic choice points

In addition to the basic actions and operators described, we also make use of non-
deterministic choices, that are structures similar to sensing actions, but not labelled
with conditions. Therefore, when the transitions of a non-deterministic choice
are enabled, the path chosen by the executor is not determined by the operational
semantics, thus leaving the possibility of making an informed choice based on
experience. An example of non-deterministic choice is reported in Figure 5.1. In
the following we will refer to this structure also as choice operator. The choice

operator connects an input PNP Γi and n output PNPs Γo1, . . . ,Γ
o
n, sequencing

all of the output networks to the input one, and adding for each of them a new
transition. Both the choice and fork operators transfer the control to a set of
networks, but with a fundamental difference: the fork operator adds a single
transition, which multiplies the number of tokens by the number of output net-
works, transferring the control to all of them and indeed creating new threads
of execution; the choice operator, on the other hand, has one transition for each
output network, and all those transitions are conflicting since they would consume
a token each, but there can be at most one token in their input places. The latter

65

5. LearnPNP

Figure 5.1: An example of a simple choice point between two ordinary actions

case creates the non-determinism.

5.3 The operational semantics

In this section we describe the rules that govern the evolution of such networks,
and define under which circumstances a transition is allowed to fire. PNPs differ
from ordinary PNs in their operational semantics. The presence of conditions to
enable transitions might cause the network to freeze for several time steps, until
the knowledge base entails a condition which labels a transition that can fire.

We report here the definitions of a possible and an executable transition making
the role of time more explicit with respect to their original formulation. We
consider time in discrete timesteps and actions can take multiple timesteps to
complete. As for State Charts, we use the following notation:

• tk: the time of occurrence of the kth marking transition. By convention we
denote t0 = 0

• Mk = M(tk) where M(t) = Mk for tk ≤ t < tk+1 is the marking at time t

• KBk = KB(tk) where KB(t) = KBk for tk ≤ t < tk+1 is the state of the
Knowledge Base at time t

Definition 5 (Possible transition in a PNP). Given two markings Mi, Mi+1, a transi-
tion from Mi to Mi+1 is possible iff ∃t ∈ T such that (i) ∀p′ ∈ P s.t W (p′, t) = 1
then Mi(p′) = 1; (ii) Mi+1(p′) = Mi(p′) − 1 ∀p′ ∈ P s.t. W (p′, t) = 1; (iii)
Mi+1(p′′) = 1 ∀p′′ ∈ P s.t. W (t, p′′) = 1.

66

The learning problem

Definition 6 (Executable transition in a PNP). Given two markings Mi, Mi+1 and
a Knowledge Base Ki at time ti, a transition from Mi to Mi+1 is executable iff ∃t ∈ T ,
such that a transition from Mi to Mi+1 is possible and the event condition φ labelling
the transition t (denoted with t.φ) holds in Ki (i.e. Ki |= φ).

The executor works at discrete time steps. At every step, it computes the
possible transitions, verifies their respective conditions, and fires all the executable
ones. Doing so, it calls any function that is associated with the transition, which
means it starts, ends, or interrupts actions and plans.

If two or more transitions are executable at the same time but they are con-
flicting, that is, firing one would prevent the others from firing, it computes all
the possible next markings, and delegates the decision to the learner. The learner
evaluates the possible next markings (for instance through a value function) and
makes the choice returning the set of non-conflicting transitions to fire. Then, the
reward since the last change in the marking is computed (and opportunely dis-
counted), and fed to the learner so that it can update its estimate of the markings.

At this point, for each execution place active (with a token in it) the executor
invokes the corresponding action. If that is not an atomic action but actually a
plan, the sub-plan performs the same procedure in turn. A plan might activate
more than a sub-plan at the same time, having different sub-plans executing in
parallel, and forming a tree of activation (rather then the usual single threaded
stack). This way, interrupts in higher-level plans preempt those in lower-level
ones. If a plan is terminated the entire sub-tree is terminated downward towards
the leaves.

5.4 The learning problem

The central idea of learning in PNP is considering the stochastic process over
markings that derives from the semantics of a Petri Net Plan, and learn how to
control it in those choice points in which the behaviour is partially specified. In
the following we define and analyse such a stochastic process, in an analogous way
to what we have done for State Charts, to clarify what we are actually controlling.

5.4.1 Definition of the controllable process

Given a PNP = 〈P, T,W,M0, G〉 we define a decision process

DP = 〈S,A, Tr, ρ〉

67

5. LearnPNP

where:

• S = {Mi} is the set of reachable markings executing a sequence of possible
transitions from T . This is the state space of our controllable process.

• A is the set of actions. We define an action for each transition introduced
by a choice operator, plus one unnamed action to account for all the other
transitions that there is no need for the controller to distinguish.

• Tr(s, a, s′, τ) = Pr(tk+1 − tk = τ, sk+1 = s′|sk = s, ak = a) is the probabil-
ity for the action a to take τ time steps to complete, and to reach state s′

from state s. This probability is defined to be 0 unless the transition corre-
sponding to a is possible in the marking corresponding to s and when it fires
it transforms such a marking to the marking corresponding to s′. In this
latter case, the probability is in general unknown (which accounts for the
necessity of learning, otherwise the problem would be solvable by dynamic
programming).

• ρ(s, a, s′, k) is the reward function, analogous to its counterpart for state
charts. Instantaneous rewards are defined over perceptions, that is they are
a function of the state of the knowledge base.

Notice that the states for which we learn a policy are a small subset of the reach-
able markings, being only the markings that make possible the few transitions
used in choice operators. Both the transition and the reward function depend on
the chosen action which is derived from a transition of a Petri Net Plan. If such
a transition is not labelled, there is nothing that prevents it from firing when it
becomes possible and its probability to complete in one time step is 1. On the
other hand, if the transition is labelled by a condition the probability of that con-
dition to be true at a specific time step depends on the state of the Knowledge
Base and of the environment. The reward might thus depend on the hidden vari-
ables of the environment that cause (through the conditions) the transitions to
fire. The dependency of the reward from a hidden state can make the process
non-Markovian.

5.5 Other possible extensions to PNP

The possibility to partially specify the plan through choice operators, and de-
lay those decisions at run time, makes different needs arise with respect to pre-

68

Other possible extensions to PNP

Figure 5.2: Example of a non Markovian reward

encoding everything before the execution. Learning, for instance, may be helped
with memory, remembering the previous choices, and it is probably appropri-
ate, in general, to make different decisions in different situations. Petri Nets in
this respect prove to be an invaluable tool, and exploiting their representational
power the designer can create very compact, clear, and effective structures. In
the following we show two possible extensions to PNP, that together with choice

operators make LearnPNP a powerful tool. Petri Nets allow many different encod-
ings for the same behaviours, so we show a few possible ones with the guideline
of keeping the exposition clear. Trickier structures can probably be more compact
or more effective, and by no means we intend to limit the designer’s degrees of
freedom by imposing a particular practise.

5.5.0.1 Memory

Memory can be implemented structurally, in terms of places and transition, in
quite the same way as for state machines. For instance a tree structure would
store a different Q-value for each branch, remembering each choice. Consider for
instance the example of Section 3.2.2 reported for ease of reference in Figure 5.2
Since the choice in Kick gives different rewards depending on the action taken
at a previous step, this is a case of hPOMDP (cf. Section 1.5). In such domains,
keeping track of that choice can help disambiguate the states that provide different
rewards. A possible way to do so is turning the plan into a tree, unwinding
the structure for all possible choices. This is represented in Figure 5.3 In a tree

69

5. LearnPNP

Figure 5.3: A tree structure to disambiguate choices

Figure 5.4: A memory place, to remember previous choices

structure the action Kick is duplicated and the two branches receive different
rewards, so that when seen from the choice point they do not look the same
anymore. Duplicating the action can hardly scale though, and Petri Nets can be
used much more carefully.

Recall that we associate a value of the cumulative expected reward to each
marking, so we can use tokens, instead of duplicating entire portions of the net-
work, to store previous choices. In Figure 5.4 we show the same behaviour as the
tree, without duplicating the branches. A fork operator is used to create a new
token that stores the choice. The marking of the new place is 0 if WalkStraight

has been chosen and 1 otherwise. When the execution reaches the action Kick, it
does so with two possible markings, represented in Figure 5.5 and 5.6, therefore
along the whole path after the choice point the markings are different depending
on the choice, and get rewarded differently. These plans break the assumption
made by PNP that each token represents a thread in execution, since no action is
associated to the memory places. Moreover when defining goal markings memory
must be taken into account, since the route that has led to the goal becomes part
of the goal definition. To prevent this from happening a join operator, mirroring
the fork operator that created the memory token, can remove the token before
the plan reaches any goal marking. It is also possible to define goal markings
considering only a subset of the set of places. When such a subset is in a goal
marking the whole network is considered to have reached the goal, regardless of

70

Other possible extensions to PNP

Figure 5.5: Marking after WalkStraight has been executed

Figure 5.6: Marking after Turn has been executed

the marking of the other places not in that subset.
If we also discard the assumption of 1-boundedness, memory places allow

to count loops, in order to make a different choice (and store a separate value)
at each pass. This is particularly useful when at the each step the same actions
are available. Consider, for instance, a maze with binary junctions. A plan to
reach the end should have a choice for each junction. With a state machine, or
a traditional PNP, we must have at least a state (or a place) for each junction to
associate to it the respective choice. With LearnPNP we can write the plan in
Figure 5.7, in which a new marking is created at each iteration, adding a token to
the memory place. This still generates a state for each choice (a marking in the Petri
Net) but the representation is much more compact. Considering expressiveness,
this simple network can hold a plan of any finite length, without having to pre-
encode a number of choices in the plan. No finite state machine can achieve the
same representation without adding states while going. Therefore, in this case
the number of choices can be unknown in advance, and the network will generate
as many marking as necessary, without having to guess, or bound this number.

71

5. LearnPNP

Figure 5.7: A compact way to count loops

5.5.0.2 Environment modelling

In the previous section we have made use of the expressive power of Petri Net
to memorise previous choices, and create a more compact structure for time-
extended procedures. In this section we show a similar application to the state
space. Making different decisions in different parts of the state space is funda-
mental, even if such an environment can only be partially observable. In PNP
the only way to do so is using sensing actions to sort out the part of the space
the agent believes to be in, and then choose the corresponding action. Having
one token per thread though is quite inefficient, and the number of places re-
quired grows high fairly quickly. On the other hand, conditions may be quite
effective for factored representations, and again the network itself can generate a
marking for each state, with no need to use a place to represent it. Consider for
instance a small domain with two binary variables, determining four states. Let
the number of actions available in each state be again four. The PNP to make a
different decision in every state would look like the one in Figure 5.8. Initially an
instantaneous sensing action is performed with the four possible states, and then
the actions available in each state are replicated. Unfortunately this structure is
impractical even with a small number of states. If we again relax the assumption
of one token per thread, and make the network not connected, we can devote a
part of the network to track the changes in the environment. The other part of
the network keeps being the procedural one, with actions and choice points, but

72

Other possible extensions to PNP

Figure 5.8: A PNP for a domain with four states and four actions

Figure 5.9: A LearnPNP for more compactly represents the same behaviour

gets enormously simplified. The same behaviour of Figure 5.8 can be represented
as in Figure 5.9. In this case the right-most part of the network keeps track of
change in the environment. The transitions labelled with guard conditions can
be considered as instantaneous sensing actions, and if the respective transition is
fired the agent believes that condition to be true. At each time step the marking
of that portion of the network reflects the knowledge of the agent about the state.
Therefore, when the executor is at the choice points and compute the possible
next marking they will include that state description and there will be a differ-
ent marking for each state. There is no need to replicate the actions if they are
available in all (if necessary but a few) states.

73

5. LearnPNP

5.6 Summary

We have introduced LearnPNP, an extension of Petri Net Plans to make use of
Petri Nets for learning parallel and multi-agent behaviours. PNP can be effective
in designing the synchronisation of actions, but it is not quite suitable for learning
as it is, as every choice point should replicate the structure of the choice several
times. With the modifications to the formalism proposed in Section 5.5, we can
exploit the expressiveness of Petri Nets providing a powerful tool that allows a
novel way of modelling and learning behaviours under partial knowledge with
PNs.

74

Part III

Experimental Results

75

6
Grid Worlds

We begin our experimental evaluation of the ideas and algorithms of this dis-
sertation with a simple domain, that can help us compare the results with the
literature on non-Markovian environments. We are then going to move to a more
complex domain that provides a benchmark for RL methods. In this first part
we test our algorithm SoSMC and compare it with Sarsa, that has a similar way
of using samples (averaging through a parameter α), and leave the hierarchical
modelling and multi-agent evaluation to the next chapter.

6.1 Parr and Russell’s Grid World

This small grid world has been used as a test domain by several authors (Parr
and Russell, 1995; Loch and Singh, 1998; Perkins, 2002) and provides a simple
and structured environment with a reasonable branching factor. It has 11 states
(Figure 6.1) in a 4 by 3 grid with one obstacle. The agent starts at the bottom
left corner. There is a target state and a penalty state whose rewards are +1 and
-1 respectively. Both are absorbing states, that is when the agent enters them
the episode terminates. Moreover, after every action the agent receives a reward
of −0.04. The actions available in every state are move north, move south, move
east, and move west which succeed with probability 0.8. With probability 0.1 the

77

6. Grid Worlds

Figure 6.1: Parr and Russell’s Grid World

Figure 6.2: The plan for Parr and Russell’s Grid World

agent moves in one of the directions orthogonal to the desired one. In all of the
previous cases if the movement is prevented by an obstacle the agent stays put.
In any state the agent can only observe the squares east and west of it, having a
total of four possible observations. Those observations form the state space of an
NMDP whose controller we are going to learn.

6.1.1 The Plan

We use LearnPNP to represent a controller for the agent. As described in the
previous section there are four actions available in each of the four possible ob-
servations. We use the compact representation allowed by Petri Nets, dedicating
part of the network to represent the factored aspects of the environment taken
into account. The remaining part turns out to be hugely simplified, having just a
choice point for the four actions, as shown in Figure 6.2. Recall that as a conse-
quence of Petri Nets’ semantics a separate marking will be created at every choice,
storing a value for each alternative. We define two conditions, WallLeft and Wall-
Right, that hold when there is an obstacle to the immediate left and right of the
agent respectively. Any marking that has a token in the state labelled with goal

is considered a goal state, and when entered the episode terminates.

78

Parr and Russell’s Grid World

Figure 6.3: Average reward across 200 runs, on the short term for different con-
trollers. SoSMC is evaluated without any exploration in the second phase.

6.1.2 Experimental results

We conducted an evaluation of our algorithm on this grid world, in order to show
how the different parameters impact the behaviour of the agent. Every 20 episodes
for the short term experiments, and every 100 episodes for the long term ones, we
pause the learning and evaluate the current controller for 20 episodes. The results
are averaged over 200 runs. By “evaluating the controller” we mean that, during
the evaluation, the behaviour of the agent is the same as if it were learning, but
the Q-function is left unchanged. Thus, if at a specific point the agent would
choose a policy at random, it would do so even during the evaluation. Notice
that choosing a policy at random, in this context, is different from following the
random policy. In the former case the same decision is always made in the same
state, while in the latter case each time a state is hit a random choice is made.

We compare our results with two control strategies: Sarsa(λ) with ε-greedy
exploration, and Sarsa(λ) with optimistic initialisation. The latter strategy consists
in initialising the Q-function at an optimistic value for each state-action pair, and
exploiting the current estimate at any time. We borrowed a few parameters from
the literature (Loch and Singh, 1998; Perkins, 2002) and spent some time optimis-
ing others. When not differently specified the Q-function has been initialised at
-4. The best behaviour we could achieve for ε-greedy was with ε starting at 0.2

79

6. Grid Worlds

Figure 6.4: Average reward across 200 runs on the long term allowing exploration
in the second phase of SoSMC

and linearly decaying to 0 in 80000 actions. For the optimistic initialisation, the
Q-function has been initialised at 1. In both cases α = 0.01 and λ = 0.9

Figure 6.3 shows the rewards obtained by different controllers. SoSMC has
been evaluated here with ε-greedy as its strategy Σ during the first phase, and
without any exploration in its second phase. Sarsa(0.9) with optimistic initialisa-
tion reliably converges to the optimal policy a lot faster than ε-greedy. It is this
behaviour that we want to improve, pruning some of the exploration by getting
a more realistic initialisation. With an initial phase of 100 episodes and α = 0.01,
SoSMC always converges to the optimal policy shortly after the initial exploration.
We also evaluated the behaviour of the agent with 50 episodes, in order to un-
derstand the consequences of little initial sampling. In case the agent could not
afford a longer initial phase, we would like that it still quickly converged to a
“good” policy, if not the optimal one. Indeed, after 50 episodes the average re-
ward stabilises at around 0.1, while the optimum is around 0.25. Considering that
most of the policies give a reward of -4 and that the average reward obtained is
non-decreasing, this can be probably considered a good result.

In the second set of experiments we tried to establish whether, by allowing
some exploration also on the second phase, it is eventually possible to reach the
optimal policy even from a short initial phase. Clearly exploration is a double-

80

About learning equilibria

edged sword: on the one hand it allows to discover the optimal policy, on the
other hand it worsens the average behaviour of the agent that leaves its current
“good” policy. Figure 6.4 shows the results for two different settings, compared
with Sarsa(λ) and ε-SoSMC after 100 initial episodes as already described. In one
setting we let ε start at 0.2 and reach 0.01 in 5000 episodes, remaining constant
afterwords. In the other setting ε started at 0.1. The two results fall in between
Sarsa and the optimum obtained with 100 initial episodes. Moreover, the increase
in the performance is linear and follows perfectly the decay of ε. This probably
means that the optimal policy is identified early and, from that point on, the
exploration is the only responsible for the sub-optimal behaviour. We have not
performed an extensive evaluation over the possible values for the initial ε and
its decaying rate, therefore we cannot state exactly how close the behaviour can
be pushed towards the optimal line above by varying these two values. It seems
reasonable though, that the linear dependence allows for a faster convergence up
to a point when the exploration becomes too short, and we fall into the initial
case of Figure 6.3 with no exploration at all.

6.2 About learning equilibria

We performed several runs to verify the behaviour of Q-learning and Sarsa with
a continuous (SoftMax) and a discontinuous (ε-greedy) exploration strategy on
this non-Markovian domain (cf. Section 1.5.3). We show the value of the four
actions in the initial observation during one run for each combination of strategy
and algorithm. Both Q-learning (Figure 6.5) and Sarsa (Figure 6.6) showed
instability under ε-greedy, realising a peculiar cyclic behaviour. Nonetheless, the
action selected (the one with the highest value) is the correct one (moving north)
most of the time. Under SoftMax both algorithms (Figure 6.7 and Figure 6.8)
have been much more stable and their behaviour almost identical. It has proved
difficult, however, to find a value for the parameter τ with which they picked the
right action. Both graphs show a run with τ = 0.01, while with an higher value
the equilibrium reached does not convey any good behaviour. A run with τ = 1
and Sarsa is shown in Figure 6.9

81

6. Grid Worlds

Figure 6.5: Q-learning with ε-greedy exploration

Figure 6.6: Sarsa with ε-greedy exploration

82

About learning equilibria

Figure 6.7: Q-learning with SoftMax exploration, τ = 0.01

Figure 6.8: Sarsa with SoftMax exploration, τ = 0.01

83

6. Grid Worlds

Figure 6.9: Sarsa with SoftMax exploration, τ = 1

6.3 SoSMC and Sarsa more closely

Finally, we show the value function for the same observation-action pair during
a run of Soft-SoSMC and Sarsa(λ). The simplicity of this domain allows to con-
centrate on one choice point, and clearly spot the differences between the two
algorithms. We can then discuss the features of SoSMC introduced in Chapter
4. In Figure 6.10, we have explicitly shown a point for each episode, in order to
display the respective frequency with which actions are sampled. After the initial
exploration phase, the action move east obtained a higher reward and therefore
looked more promising. Indeed move east can be more effective than moving
north if, by chance, due to the probabilistic effect of the actions, the agent goes
north right after the obstacle. Clearly such a lucky combination is not reliable, and
when in the second phase its average is evaluated move north prevails. During
the assessment phase some exploration is performed as well, and it can be noticed
how, according to SoftMax’s definition, the actions whose values are closer to the
optimal one are tried more often than the others. In particular, move west, that
indeed makes little sense in the initial observation, is never tried after the first
phase. Moreover, the upper bound for move south remains far lower than the
highest two values, and that action is never chosen during the exploitation.

Figure 6.11 shows a run of Sarsa(λ). Notice how the scale is ten times larger

84

Sutton’s Grid World

Figure 6.10: SoSMC with SoftMax exploration

than for our algorithm. This run reproduces the results by Loch and Singh
(1998). Sarsa is nowadays known to be quite sample-inefficient, and indeed
faster algorithms have been developed in conjunction with function approxima-
tion (Szepesvári, 2010). With a tabular representation, however, our algorithm is
similar to Sarsa in the way of utilising samples, therefore the difference in the
performance between the two algorithms is owing to the ideas that led to the def-
inition of SoSMC. We suggest a way of helping the control strategy select the most
promising actions, and exploit only those that proved to be so, by continually es-
timating an upper bound for each action and comparing it with the alternatives.
Sample efficiency may be addressed as a future direction, once the features of the
algorithm are proved to be effective.

6.4 Sutton’s Grid World

Sutton’s (1990) grid world is a 9 by 6 grid with several obstacles and a goal state
in the top right corner (Figure 6.12). At any given time the agent can observe
its 8 neighbouring states, making it a POMDP. Only 30 observations are actually
possible in the grid world, and the initial state is chosen at every episode uni-
formly at random. The actions are the same as the previous domain, but they
are deterministic. For this reason, we devised a partially specified behaviour in

85

6. Grid Worlds

Figure 6.11: Sarsa(λ)

Figure 6.12: Sutton’s Grid World

which the agent is allowed to take only those actions that do not lead into an
obstacle, as those are certainly useless. The resulting Petri Net Plan is similar to
the one for the previous domain, with a larger number of places to take care of
the higher number of available perceptions. In order to make the task episodic
we set the maximum number of actions in any given episode to 20.

The problem is undiscounted, and after each action the agent receives a reward
of -1, except for when it enters the goal state, in which case it is 0. Every 200
episodes we pause the learning and take a sample, from each initial state, of the
current best policy, whose average reward per episode is plotted in Figure 6.13.

In this domain ε-SoSMC and Soft-SoSMC obtained similar results, therefore
we only show Soft-SoSMC. We used SoftMax with no initial phase. The value

86

Sutton’s Grid World

Figure 6.13: Results for Sutton’s domain

function has been optimistically initialised and SoSMC launched from its second
phase. In this experiment τ = 4 and the algorithm explores every 20 episodes.
The results show how Soft-SoSMC finds, on average, a policy better than Sarsa in
the number of episodes considered. Sarsa obtains a value slightly, but statistically
significantly smaller, as shown by the 95% confidence intervals which have been
plotted on the graph every three points in order to not clutter the image.

87

7
Keepaway

One of the main challenges of RL is scaling to more complex domains. Most of
the methods are evaluated on domains synthesised for RL methods, with little
practical impact. The number of states is often one of the main concerns, while
that is not necessarily the main cause of difficulties in real-world environments. In
general, domains specifically tailored for learning help isolate the learning prob-
lem from all the other issues that characterise a robotic agent (time consumption,
noisy sensors, failing actuators, to name but a few). In complex tasks, however,
we expect learning to be seen as part of the system, rather than treated in iso-
lation, and require different solutions for problems that can be very different.
The RoboCup (Kitano et al, 1997) provides several domains for both simulated
and real robots in different scenarios: home environments, disaster and rescue
areas, and football players. Stone et al (2005) proposed a sub-problem of the 2D
RoboCup Simulation League as a challenging benchmark for RL methods. We
evaluate our framework on this domain, and show a few ways of modelling the
problem, with their respective implications.

89

7. Keepaway

Figure 7.1: The field for Keepaway

7.1 Task Definition

Keepaway is a subtask of RoboCup Soccer in which one team, the keepers, must
keep possession of the ball in a limited region as long as possible while another
team, the takers, tries to gain possession. The task is episodic, and one episode
ends whenever the takers manage to catch the ball or the ball leaves the region.
We conducted our experiments on the 3 vs 2 task, i.e., with three keepers and
two takers.

The simulation is performed at cycles of 1/10 of second. Every 1/10 of sec-
ond the agents can send a command to the simulator. On top of the available
commands, two different procedures are defined: hold and pass(k). Hold keeps
possession of the ball until the next decision can be made, while pass(k) passes
the ball to the k-th team mate, where the team mates are sorted by their distance
to the agent. The reward signal rt+1 returns the time elapsed since rt was re-
turned, therefore the sum of rewards equals the global duration of the episode.
In the initial formulation, the agents make a decision only when they are the
closest one to the ball, and have possession of it. In all other cases, they execute
a predefined procedure. We have translated such a procedure into a plan, so that
we can write plan schemas for such agents in LearnPNP. The procedural part of
the plan for Keepaway is shown if Figure 7.2. Apart from the procedural part
there is a network that keeps track of the environment changes, and it depends
on what we take into account as our observation space.

The original paper proposes a representation for the state space with 13 con-
tinuous variables, accounting for the distances among the agents, the distances
among the agents and the centre of the field, and the angles among the agents.

90

Single-agent learning

Figure 7.2: The procedural part of the plan for playing Keepaway

Such a representation favours generalisation, being mostly relative to the agent
and the centre of the field, and independent of specific locations.

7.2 Single-agent learning

In the experiments shown in this section we have fixed the behaviour of two
keepers and learnt the behaviour of the third one. We simplify the representa-
tion choosing only three variables: the two distances between the takers and the
lines of pass towards the team mates, and the distance between the agent and the
closest taker. Moreover, for each variable we consider only one threshold, having
8 observations in total. Certainly these features are not enough to completely
justify the reward, leading to a non-Markovian environment. Instead of enriching
the representation and generalising from the samples, we pose a different prob-
lem, that is, given a (possibly simple) representation, determine the action that
performs best across all the possible situations that might occur, even though the
representation does not take them into account. The sampling is biased by the
actual situations, so that the most common ones impact such an average the most.

The two agents that are not learning wait holding the ball until the takers are
closer than a threshold, and then pass the ball to the team mate whose line of
pass is farthest from the takers. This simple behaviour, when executed by all the
agents, outperforms the currently best results published (Kalyanakrishnan and
Stone, 2009), showing that there is indeed hope for simple representations to play

91

7. Keepaway

Figure 7.3: Single agent learning the passing behaviour

a role, if an adequate method for learning with them is employed. Clearly, creating
such a representation is a separate task which has drawn great attention in recent
years. In this work, though, the representation is not particularly sophisticated,
and we focus on learning the best behaviour under an incomplete, and inaccurate
representation.

We first want to determine whether our algorithm can indeed improve the
agent’s behaviour where Sarsa(λ) fails to do so. Figure 7.3 shows the reward
collected in 10000 episodes averaged over 20 runs by Sarsa(0.9) and Soft-SoSMC.
The initial phase of Soft-SoSMC has a length of 100 episodes. While Sarsa(λ)
only learns a behaviour that on average holds the ball for 9 seconds, despite
the small number of states, our algorithm reaches 16 seconds in less than 1000
episodes and goes up to 20s in the next 4000 episodes. The figure also shows the
value of the hand-crafted policy provided with the Keepaway framework, meant
to be a benchmark for other methods. Such a policy has, on our system, an
average of about 16 seconds, and we have set the threshold for our algorithm at
18s. Therefore, when the performance during the exploiting episodes (exploratory
ones are not taken into account) is, on average, higher than 18 seconds across 200
episodes, the exploration is suspended, and resumed only if the reward falls below
the threshold.

A future direction, suggested by the ability of learning in these abstract states,

92

Multi-agent learning

Figure 7.4: Positions available to the agents in the learning task

would be learning at a high level, in which the choice made can be implemented
by different strategies (as the decision to pass can be realised by either passing
to the closest or to the farthest team mate). This recalls the angelic semantics by
Marthi et al (2007), in which a high level action has a set of possible realisations
among which the agent can choose. With our method, we can estimate an upper
bound for the high level actions, possibly connecting hierarchical planning and
RL in non-Markovian domains.

7.3 Multi-agent learning

From now on we let all the agents learn at the same time. We consider in this
section the problem of positioning, that is, learning a strategy for the agents that
are not closest to the ball. We have chosen nine points on the field, as represented
in Figure 7.4, and written a plan similar to the previous ones, in which the choice
point is on the positioning branch. Each agent executes the same plan, but they
separately learn different value functions. In this set of experiments we do not
include any state information: the agents just pick a position the first time they
have to make a choice and then remain there. The initial state is not always the
same, since the simulator places the agents at different corners at random at the
beginning. Therefore, they should learn the positions from which the episodes
last the longest, across all possible initial states. The three plans executing in
parallel can be considered as the second level of a centralised multi-agent plan,
since the reward is the same for all of them, but they are executed at the same
time making their decision independent.

Figure 7.5 shows the results of the experiment, averaged over 20 runs. Sarsa(λ)

93

7. Keepaway

Figure 7.5: Multi-agent Keepaway, learning positioning

with ε-greedy, and the degree of exploration decreasing linearly from 0.2 to 0 in
4500 episodes improves the agents’ behaviour up to 14.7 ± 0.35 seconds . We
have tried several sets of parameters but with no significantly different result.
Soft-SoSMC, on the other hand, improves the behaviour quite above the imposed
threshold at 18 seconds (which means that the exploration has been suspended
at some point).

Analysing the achieved behaviour more closely, we noticed that most of the
times each agent picks an action and keeps executing it till the end of the epoch,
if that action belongs to a policy whose reward is higher than the threshold.
Sometimes, however, the team oscillates between two different policies, equivalent
in terms of reward. Consider for instance Figure 7.6 which shows the value of all
the actions in a particular run. The second agent, when the policy has stabilised
over the threshold, executes the action to go to corner 2 (the top-right corner)
and never changes. The first and third agent, on the contrary, switch between
going to corner 3 (the bottom-right corner) and going to middle point 1 (the
leftmost middle point). When one agent does one action, the other one chooses
the other action. They never perform the same action that the other agent is doing,
and switch a few times between these two equivalent configurations without any
communication. Just by sharing the reward function they reach an interesting
coordination without the need to communicate.

94

Multi-agent learning

(a) First agent (b) Second agent

(c) Third agent

Figure 7.6: The value of each action during a particular run. Note how the first
and third agent switch roles between going to corner 3 and middle point 1

95

8
Conclusions

Reasoning and learning are both characteristic of intelligent agents, but are rarely
developed together. We have defined a way in which the two methods can benefit
from each other, and make the agent more effective in environments that challenge
most of the assumptions of the current frameworks.

We provided a tool that allows designers to let the behaviour autonomously
improve, and still be able to revise the choices made by the learner, and modify
the plan at an intelligible level. We defined the learning problem on top of a
planning process, using the sensing actions of the plan as the only sources of
information about the state space. Moreover, we have analysed the resulting
controllable process and provided an algorithm to learn in such a context.

In our experimental evaluation, we have shown how a simple behaviour can
outperform the one obtained by much more complex representations, although
for the latter ones optimality is guaranteed in the limit. Identifying a way to learn
such behaviours may then be particularly valuable, as reaching the optimal one
is often, in practise, a mirage anyway.

An interesting future direction is moving the same ideas one step further, and
apply them to the reasoner rather than to the plan itself. We have shown how a
value function can be learnt for fairly high level concepts, such as abstract states.
Reasoning at that level can benefit from the experience, and help make a better

97

8. Conclusions

use of the samples by recognising similarities, and generalising through inference.
Reasoning about what we are learning would be the next step.

Sample complexity is still an issue. In our experiments we have cut the scale
of at least one order of magnitude with respect to the previous work, but the
number of experiments is still quite high for a real robot. With our algorithm, we
have tried to let the performance of the agent be as good as possible even during
learning, and more advanced techniques may be pursued to make a better use of
each sample.

We discussed how the Markov assumption can actually be a limitation: if
on the one hand the results are theoretically comforting, on the other hand, the
amount of knowledge required is difficult to achieve. In the attempt to enrich the
representation and obtain a globally optimal behaviour, the learning problem can
become overly complicated, even for the sophisticated work on generalisation and
function approximation. Simpler representations can indeed be more effective, as
we have shown on the tested domains, and the conclusion drawn might be less
specific and more prone to transfer.

If not as Markovian processes, the domains encountered in real applications
should be better understood, and characterised from the agent’s point of view.
Specific, and theoretically sound, algorithms would then hopefully follow. We
like to believe this work can lead to further developments, on both the learning
and reasoning side, and make autonomous agents much more effective on the
problems where AI still does not seem to scale.

98

Bibliography

van der Aalst WMP (1998) The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers 8(1):21–66

Andre D, Russell SJ (2001) Programmable reinforcement learning agents. Ad-
vances in Neural Information Processing Systems pp 1019–1025

Andre D, Russell SJ (2002) State abstraction for programmable reinforcement
learning agents. In: Proceedings of the National Conference on Artificial In-
telligence, pp 119–125

Auer P (2002) Using confidence bounds for exploitation-exploration trade-offs.
The Journal of Machine Learning Research 3:397–422

Auer P, Jaksch T, Ortner R (2009) Near-optimal regret bounds for reinforcement
learning. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in
Neural Information Processing Systems 21, pp 89–96

Barto AG, Mahadevan S (2003) Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems 13(1-2):41–77

Bertsekas DP (1995) Dynamic Programming and Optimal Control. Athena Scien-
tific

Bertsekas DP, Tsitsiklis JN (1996) Neuro-Dynamic Programming. Athena Scientific

Best E, Devillers R, Koutny M (2001) Petri net algebra. Springer-Verlag New York,
Inc., New York, NY, USA

Boutilier C, Reiter R, Soutchanski M, Thrun S (2000) Decision-theoretic, high-level
agent programming in the situation calculus. In: Proceedings of the National
Conference on Artificial Intelligence, pp 355–362

99

Bibliography

Buşoniu L, Babuška R, De Schutter B, Ernst D (2010) Reinforcement Learning and
Dynamic Programming Using Function Approximators. CRC Press, Boca Raton,
Florida

Celaya JR, Desrochers AA, , Graves RJ (2007) Modeling and analysis of multi-
agent systems using petri nets. In: IEEE International Conference on Systems,
Man and Cybernetics, 2007. ISIC., pp 1439–1444

Costelha H, Lima P (2007) Modelling, analysis and execution of robotic tasks using
petri nets. In: Proceeding of Interantional Conference on Intelligent Robots and
Systems (IROS), pp 1449–1454

Crook PA (2006) Learning in a state of confusion: Employing active perception
and reinforcement learning in partially observable worlds. Tech. rep., University
of Edinburgh

Crook PA (2007) Learning in a state of confusion: Employing active perception and
reinforcement learning in partially observable worlds. PhD thesis, University of
Edinburgh. College of Science and Engineering. School of Informatics.

Dietterich TG (2000) Hierarchical reinforcement learning with the maxq value
function decomposition. Journal of Artificial Intelligence Research 13:227–303

Dzeroski S, Raedt LD, Driessens K (2001) Relational reinforcement learning. Ma-
chine Learning 43(1/2):7–52

Fikes R, Nilsson N (1971) STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2:189–208

Firby RJ (1989) Adaptive execution in complex dynamic worlds. PhD thesis, Yale

Firby RJ, Prokopowicz PN, Swain MJ (1998) The animate agent architecture. Ar-
tificial intelligence and mobile robots: case studies of successful robot systems
pp 243–275

Gat E (1992) Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In: Proceedings of the
Tenth National Conference on Artificial Intelligence, pp 809–815

Giunchiglia F, Walsh T (1992) A theory of abstraction. Artificial Intelligence 57(2-
3):323–389

100

Harel D (1987) Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8(3):231–274

Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101(1-2):99–134

Kalyanakrishnan S, Stone P (2009) Learning Complementary Multiagent Behav-
iors: A Case Study. In: Proceedings of the 13th RoboCup International Sympo-
sium, pp 153–165

King J, Pretty RK, Gosine RG (2003) Coordinated execution of tasks in a multia-
gent environment. IEEE Transactions on Systems, Man, and Cybernetics, Part
A 33(5):615–619

Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawa E, Matsubara H (1997) Robocup:
A challenge problem for ai. AI Magazine 18(1):73–85

Konolige K (1997) COLBERT: A language for reactive control in saphira. Lecture
Notes in Computer Science 1303:31–50

Konolige K, Myers K, Ruspini E, Saffiotti A (1997) The Saphira architecture: A
design for autonomy. Journal of Experimental and Theoretical Artificial Intelli-
gence 9(1):215–235

Kuo CH, Lin IH (2006) Modeling and control of autonomous soccer robots us-
ing distributed agent oriented petri nets. In: IEEE International Conference on
Systems, Man and Cybernetics, vol 5, pp 4090–4095

Li L, Walsh TJ, Littman ML (2006) Towards a unified theory of state abstraction
for MDPs. In: Proceedings of the Ninth International Symposium on Artificial
Intelligence and Mathematics, pp 531–539

Littman ML (1994) Memoryless policies: Theoretical limitations and practical re-
sults. In: From Animals to Animats 3: Proceedings of the Third International
Conference on Simulation of Adaptive Behavior, pp 238–247

Loch J, Singh S (1998) Using eligibility traces to find the best memoryless policy in
partially observable Markov decision processes. In: Proceedings of the Fifteenth
International Conference on Machine Learning, pp 323–331

101

Bibliography

Loetzsch M, Risler M, Jungel M (2006) Xabsl - a pragmatic approach to behavior
engineering. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006, pp 5124–5129

Maier C, Moldt D (2001) Object coloured petri nets - a formal technique for object
oriented modelling. Concurrent object-oriented programming and petri nets:
advances in petri nets pp 406–427

Marthi B, Russell SJ, Latham D, Guestrin C (2005) Concurrent hierarchical rein-
forcement learning. In: Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI), pp 779–785

Marthi B, Russell SJ, Wolfe J (2007) Angelic semantics for high-level actions. In:
17th international conference on automated planning and scheduling (ICAPS)

Milutinovic DLP (2002) Petri net models of robotic tasks. In: IEEE International
Conference on Robotics and Automation (ICRA’02)

Monahan G (1982) A survey of partially observable Markov decision processes:
Theory, models, and algorithms. Management Science 28(1):1–16

Murata T (1989) Petri nets: Properties, analysis and applications. Proceedings of
the IEEE 77(4):541–580

Parr R, Russell S (1998) Reinforcement learning with hierarchies of machines.
Advances in neural information processing systems pp 1043–1049

Parr R, Russell SJ (1995) Approximating optimal policies for partially observable
stochastic domains. In: Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, pp 1088–1095

Pendrith MD, McGarity M (1998) An analysis of direct reinforcement learning in
non-markovian domains. In: Proceedings of the Fifteenth International Confer-
ence on Machine Learning (ICML), pp 421–429

Perkins TJ (2002) Reinforcement learning for POMDPs based on action values and
stochastic optimization. In: Proceedings of the National Conference on Artificial
Intelligence, pp 199–204

Perkins TJ, Pendrith MD (2002) On the existence of fixed points for Q-learning
and Sarsa in partially observable domains. In: Proceedings of the Nineteenth
International Conference on Machine Learning, pp 490–497

102

Pettersson O (2005) Execution monitoring in robotics: A survey. Robotics and
Autonomous Systems 53(2):73–88

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience

Rogers D, Plante R, Wong R, Evans J (1991) Aggregation and disaggregation tech-
niques and methodology in optimization. Operations Research 39(4):553–582

Sheng W, Yang Q (2005) Peer-to-peer multi-robot coordination algorithms: petri
net based analysis and design. Advanced Intelligent Mechatronics Proceedings,
2005 IEEE/ASME International Conference on pp 1407–1412

Simmons R, Apfelbaum D (1998) A task description language for robot control.
In: IROS, Victoria, BC, Canada, vol 3, pp 1931–1937

Singh S, Jaakkola T, Jordan M (1994) Learning without state-estimation in par-
tially observable Markovian decision processes. In: Proceedings of the eleventh
international conference on machine learning, pp 284–292

Spall JC (2003) Introduction to Stochastic Search and Optimization, 1st edn. John
Wiley & Sons, Inc., New York, NY, USA

Stone P, Sutton RS, Kuhlmann G (2005) Reinforcement learning for RoboCup-
soccer keepaway. Adaptive Behavior 13(3):165–188

Sutton R, Barto A (1998) Reinforcement Learning: An Introduction. MIT Press

Sutton R, Precup D, Singh S (1999) Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence
112(1):181–211

Sutton R, McAllester D, Singh S, Mansour Y (2000) Policy gradient methods for
reinforcement learning with function approximation. Advances in neural infor-
mation processing systems 12:1057–1063

Sutton RS (1990) Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In: Proceedings of the Sev-
enth International Conference on Machine Learning, pp 216–224

Szepesvári C (2010) Algorithms for Reinforcement Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning 4(1):1–103

103

Bibliography

Viswanadham N, Narahari Y (1992) Performance modeling of automated manu-
facturing systems. NASA STI/Recon Technical Report A 93:17,572

Watkins C (1989) Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, England

Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE
transactions on evolutionary computation 1(1):67–82

Xu D, Volz R, Ioerger T, Yen J (2002) Modeling and verifying multi-agent behaviors
using predicate/transition nets. In: SEKE ’02: Proceedings of the 14th interna-
tional conference on Software engineering and knowledge engineering, ACM,
New York, NY, USA, pp 193–200

Ziparo V, Iocchi L, Lima P, Nardi D, Palamara P (2010) Petri Net Plans. Au-
tonomous Agents and Multi-Agent Systems pp 1–40

104

