485 research outputs found

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der kĂŒnstlichen Intelligenz. Die flexible und echtzeitfĂ€hige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung fĂŒr die Generierung menschenĂ€hnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle fĂŒr die antizipatorische Bewegungssynthese. Diese Dissertation prĂ€sentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung fĂŒr Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden fĂŒr die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthĂ€lt ein echtzeitfĂ€higes Pfadplanungssubsystem zur Hindernisvermeidung wĂ€hrend der DurchfĂŒhrung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und fĂŒr alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu ĂŒbertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese fĂŒr Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von rĂ€umlichen und rĂ€umlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs ĂŒbergĂ€ngen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fĂ€higer Synthesealgorithmus fĂŒr Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde fĂŒr verschiedene Probleme der Bewegungssynthese fĂŒr die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil prĂ€sentiert neue mathematische Werkzeuge fĂŒr die StabilitĂ€tsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    Advanced human inspired walking strategies for humanoid robots

    Get PDF
    Cette thĂšse traite du problĂšme de la locomotion des robots humanoĂŻdes dans le contexte du projet europĂ©en KoroiBot. En s'inspirant de l'ĂȘtre humain, l'objectif de ce projet est l'amĂ©lioration des capacitĂ©s des robots humanoĂŻdes Ă  se mouvoir de façon dynamique et polyvalente. Le coeur de l'approche scientifique repose sur l'utilisation du controle optimal, Ă  la fois pour l'identification des couts optimisĂ©s par l'ĂȘtre humain et pour leur mise en oeuvre sur les robots des partenaires roboticiens. Cette thĂšse s'illustre donc par une collaboration Ă  la fois avec des mathĂ©maticiens du contrĂŽle et des spĂ©cialistes de la modĂ©lisation des primitives motrices. Les contributions majeures de cette thĂšse reposent donc sur la conception de nouveaux algorithmes temps-rĂ©el de contrĂŽle pour la locomotion des robots humanoĂŻdes avec nos collĂ©gues de l'universitĂ© d'Heidelberg et leur intĂ©gration sur le robot HRP-2. Deux contrĂŽleurs seront prĂ©sentĂ©s, le premier permettant la locomotion multi-contacts avec une connaissance a priori des futures positions des contacts. Le deuxiĂšme Ă©tant une extension d'un travail rĂ©alisĂ© sur de la marche sur sol plat amĂ©liorant les performances et ajoutant des fonctionnalitĂ©es au prĂ©cĂ©dent algorithme. En collaborant avec des spĂ©cialistes du mouvement humain nous avons implementĂ© un contrĂŽleur innovant permettant de suivre des trajectoires cycliques du centre de masse. Nous prĂ©senterons aussi un contrĂŽleur corps-complet utilisant, pour le haut du corps, des primitives de mouvements extraites du mouvement humain et pour le bas du corps, un gĂ©nĂ©rateur de marche. Les rĂ©sultats de cette thĂšse ont Ă©tĂ© intĂ©grĂ©s dans la suite logicielle "Stack-of-Tasks" du LAAS-CNRS.This thesis covers the topic of humanoid robot locomotion in the frame of the European project KoroiBot. The goal of this project is to enhance the ability of humanoid robots to walk in a dynamic and versatile fashion as humans do. Research and innovation studies in KoroiBot rely on optimal control methods both for the identification of cost functions used by human being and for their implementations on robots owned by roboticist partners. Hence, this thesis includes fruitful collaborations with both control mathematicians and experts in motion primitive modeling. The main contributions of this PhD thesis lies in the design of new real time controllers for humanoid robot locomotion with our partners from the University of Heidelberg and their integration on the HRP-2 robot. Two controllers will be shown, one allowing multi-contact locomotion with a prior knowledge of the future contacts. And the second is an extension of a previous work improving performance and providing additional functionalities. In a collaboration with experts in human motion we designed an innovating controller for tracking cyclic trajectories of the center of mass. We also show a whole body controller using upper body movement primitives extracted from human behavior and lower body movement computed by a walking pattern generator. The results of this thesis have been integrated into the LAAS-CNRS "Stack-of-Tasks" software suit

    SLoMo: A General System for Legged Robot Motion Imitation from Casual Videos

    Full text link
    We present SLoMo: a first-of-its-kind framework for transferring skilled motions from casually captured "in the wild" video footage of humans and animals to legged robots. SLoMo works in three stages: 1) synthesize a physically plausible reconstructed key-point trajectory from monocular videos; 2) optimize a dynamically feasible reference trajectory for the robot offline that includes body and foot motion, as well as contact sequences that closely tracks the key points; 3) track the reference trajectory online using a general-purpose model-predictive controller on robot hardware. Traditional motion imitation for legged motor skills often requires expert animators, collaborative demonstrations, and/or expensive motion capture equipment, all of which limits scalability. Instead, SLoMo only relies on easy-to-obtain monocular video footage, readily available in online repositories such as YouTube. It converts videos into motion primitives that can be executed reliably by real-world robots. We demonstrate our approach by transferring the motions of cats, dogs, and humans to example robots including a quadruped (on hardware) and a humanoid (in simulation). To the best knowledge of the authors, this is the first attempt at a general-purpose motion transfer framework that imitates animal and human motions on legged robots directly from casual videos without artificial markers or labels.Comment: accepted at RA-L 2023, with ICRA 2024 optio

    Motion Primitives and Planning for Robots with Closed Chain Systems and Changing Topologies

    Get PDF
    When operating in human environments, a robot should use predictable motions that allow humans to trust and anticipate its behavior. Heuristic search-based planning offers predictable motions and guarantees on completeness and sub-optimality of solutions. While search-based planning on motion primitive-based (lattice-based) graphs has been used extensively in navigation, application to high-dimensional state-spaces has, until recently, been thought impractical. This dissertation presents methods we have developed for applying these graphs to mobile manipulation, specifically for systems which contain closed chains. The formation of closed chains in tasks that involve contacts with the environment may reduce the number of available degrees-of-freedom but adds complexity in terms of constraints in the high-dimensional state-space. We exploit the dimensionality reduction inherent in closed kinematic chains to get efficient search-based planning. Our planner handles changing topologies (switching between open and closed-chains) in a single plan, including what transitions to include and when to include them. Thus, we can leverage existing results for search-based planning for open chains, combining open and closed chain manipulation planning into one framework. Proofs regarding the framework are introduced for the application to graph-search and its theoretical guarantees of optimality. The dimensionality-reduction is done in a manner that enables finding optimal solutions to low-dimensional problems which map to correspondingly optimal full-dimensional solutions. We apply this framework to planning for opening and navigating through non-spring and spring-loaded doors using a Willow Garage PR2. The framework motivates our approaches to the Atlas humanoid robot from Boston Dynamics for both stationary manipulation and quasi-static walking, as a closed chain is formed when both feet are on the ground

    Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives

    Get PDF
    In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS) generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space), they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well

    Using human-inspired models for guiding robot locomotion

    Get PDF
    Cette thĂšse a Ă©tĂ© effectuĂ©e dans le cadre du projet europĂ©en Koroibot dont l'objectif est le dĂ©veloppement d'algorithmes de marche avancĂ©s pour les robots humanoĂŻdes. Dans le but de contrĂŽler les robots d'une maniĂšre sĂ»re et efficace chez les humains, il est nĂ©cessaire de comprendre les rĂšgles, les principes et les stratĂ©gies de l'homme lors de la locomotion et de les transfĂ©rer Ă  des robots. L'objectif de cette thĂšse est d'Ă©tudier et d'identifier les stratĂ©gies de locomotion humaine et crĂ©er des algorithmes qui pourraient ĂȘtre utilisĂ©s pour amĂ©liorer les capacitĂ©s du robot. La contribution principale est l'analyse sur les principes de piĂ©tons qui guident les stratĂ©gies d'Ă©vitement des collisions. En particulier, nous observons comment les humains adapter une tĂąche de locomotion objectif direct quand ils ont Ă  interfĂ©rer avec un obstacle en mouvement traversant leur chemin. Nous montrons les diffĂ©rences entre la stratĂ©gie dĂ©finie par les humains pour Ă©viter un obstacle non-collaboratif et la stratĂ©gie pour Ă©viter un autre ĂȘtre humain, et la façon dont les humains interagissent avec un objet si se dĂ©plaçant en manier simil Ă  l'humaine. DeuxiĂšmement, nous prĂ©sentons un travail effectuĂ© en collaboration avec les neuroscientifiques de calcul. Nous proposons une nouvelle approche pour synthĂ©tiser rĂ©alistes complexes mouvements du robot humanoĂŻde avec des primitives de mouvement. Trajectoires humaines walking-to-grasp ont Ă©tĂ© enregistrĂ©s. L'ensemble des mouvements du corps sont reciblĂ©es et proportionnĂ©e afin de correspondre Ă  la cinĂ©matique de robots humanoĂŻdes. Sur la base de cette base de donnĂ©es des mouvements, nous extrayons les primitives de mouvement. Nous montrons que ces signaux sources peuvent ĂȘtre exprimĂ©es sous forme de solutions stables d'un systĂšme dynamique autonome, qui peut ĂȘtre considĂ©rĂ© comme un systĂšme de central pattern generators (CPGs). Sur la base de cette approche, les stratĂ©gies rĂ©actives walking-to-grasp ont Ă©tĂ© dĂ©veloppĂ©s et expĂ©rimentĂ© avec succĂšs sur le robot humanoĂŻde HRP-2 au LAAS-CNRS. Dans la troisiĂšme partie de la thĂšse, nous prĂ©sentons une nouvelle approche du problĂšme de pilotage d'un robot soumis Ă  des contraintes non holonomes par une porte en utilisant l'asservissement visuel. La porte est reprĂ©sentĂ©e par deux points de repĂšre situĂ©s sur ses supports verticaux. La plan gĂ©omĂ©tric qui a Ă©tĂ© construit autour de la porte est constituĂ©e de faisceaux de hyperboles, des ellipses et des cercles orthogonaux. Nous montrons que cette gĂ©omĂ©trie peut ĂȘtre mesurĂ©e directement dans le plan d'image de la camĂ©ra et que la stratĂ©gie basĂ©e sur la vision prĂ©sentĂ©e peut Ă©galement ĂȘtre liĂ© Ă  l'homme. Simulation et expĂ©riences rĂ©alistes sont prĂ©sentĂ©s pour montrer l'efficacitĂ© de nos solutions.This thesis has been done within the framework of the European Project Koroibot which aims at developing advanced algorithms to improve the humanoid robots locomotion. It is organized in three parts. With the aim of steering robots in a safe and efficient manner among humans it is required to understand the rules, principles and strategies of human during locomotion and transfer them to robots. The goal of this thesis is to investigate and identify the human locomotion strategies and create algorithms that could be used to improve robot capabilities. A first contribution is the analysis on pedestrian principles which guide collision avoidance strategies. In particular, we observe how humans adapt a goal-direct locomotion task when they have to interfere with a moving obstacle crossing their way. We show differences both in the strategy set by humans to avoid a non-collaborative obstacle with respect to avoid another human, and the way humans interact with an object moving in human-like way. Secondly, we present a work done in collaboration with computational neuroscientists. We propose a new approach to synthetize realistic complex humanoid robot movements with motion primitives. Human walking-to-grasp trajectories have been recorded. The whole body movements are retargeted and scaled in order to match the humanoid robot kinematics. Based on this database of movements, we extract the motion primitives. We prove that these sources signals can be expressed as stable solutions of an autonomous dynamical system, which can be regarded as a system of coupled central pattern generators (CPGs). Based on this approach, reactive walking-to-grasp strategies have been developed and successfully experimented on the humanoid robot HRP at LAAS-CNRS. In the third part of the thesis, we present a new approach to the problem of vision-based steering of robot subject to non-holonomic constrained to pass through a door. The door is represented by two landmarks located on its vertical supports. The planar geometry that has been built around the door consists of bundles of hyperbolae, ellipses, and orthogonal circles. We prove that this geometry can be directly measured in the camera image plane and that the proposed vision-based control strategy can also be related to human. Realistic simulation and experiments are reported to show the effectiveness of our solutions

    Trajectory planning for biped robot walking on uneven terrain – Taking stepping as an example

    Get PDF
    Abstract According to the features of movements of humanoid robot, a control system for humanoid robot walking on uneven terrain is present. Constraints of stepping over stairs are analyzed and the trajectories of feet are calculated by intelligent computing methods. To overcome the shortcomings resulted from directly controlling the robot by neural network (NN) and fuzzy logic controller (FLC), a revised particle swarm optimization (PSO) algorithm is proposed to train the weights of NN and rules of FLC. Simulations and experiments on different control methods are achieved for a detailed comparison. The results show that using the proposed methods can obtain better control effect

    The Meaning of Action:a review on action recognition and mapping

    Get PDF
    In this paper, we analyze the different approaches taken to date within the computer vision, robotics and artificial intelligence communities for the representation, recognition, synthesis and understanding of action. We deal with action at different levels of complexity and provide the reader with the necessary related literature references. We put the literature references further into context and outline a possible interpretation of action by taking into account the different aspects of action recognition, action synthesis and task-level planning
    • 

    corecore