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Abstract: According to the features of movementiuwhanoid
robot, a control system for humanoid robot walkerguneven
terrain is present. Constraints of stepping ovelirsstare
analyzed and the trajectories of feet are calcdlbgeintelligent
computing methods. To overcome the shortcomingsltess
from directly controlling the robot by neural netlkdNN) and
fuzzy logic controller (FLC), a revised particle swa
optimization (PSO) algorithm is proposed to trdie tweights
of NN and rules of FLC. Simulations and experimeats
different control methods are achieved for a dedhil
comparison. The results show that using the praposthods
can obtain better control effect.
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1. Introduction

In order to make humanoid robot able to “live” inet
human being environment, it must be able to perfeome
complex motions. There are two methods to plareticesnplex
motions: The first method is to first establish tygpropriate
model according to the type of movement, and than for the
trajectory of motions. Usually, the trajectoriesamikle and hip
of the robot are assumed by parameter interpolaSecondly,
trajectories of other joints are deduced by geametr
relationship. Finally, the optimal trajectories a@nfirmed by
optimal algorithms according to the MAX of stahjlior MIN
of energy consumed or similar strategies[1][2]. T$exond
method is firstly to design an ideal trajectory wfotion
according to the stability or optimal targets. Theime
movement of each joint will be calculated to matok ideal
trajectory through inverse kinematics. Finally, idgr process
of the real movement, the error between real trajgcand
ideal trajectory will be adjusted[3].

It is worth to study of humanoid robot of integratiinto
society and serving in the home, and it is a végllenging
subject. In face of all kinds of uncertain enviramt for
walking, robot might need to complete the task amiaus of
complex environment regularly, as shown in Fig.1.

Flgl hobot walks in complex environment

Walking on uneven terrain for humanoid robot is afe
the complex motions. It involves in planning andirolling
more than ten degrees of freedom of the robot,thisdsystem
is a high-dimensional nonlinear complex systentrdélitional
methods are used in this system, the optimizedraoeffect is
not very satisfactory. And especially when theeeraany more
uncertain initial variables, it is easy to fall dntlocal
optimization, slow optimization and poor adaptivdity of the
algorithm. Therefore, because almost all soft caingu
algorithms are highly versatile, and analyticity aljective
function is not required, evolutionary algorithmedaother soft
computing techniques can be considered in ordeodrol this
system. Rahul used GA with fuzzy logic method to tain
biped robot walking, and obtain good results[4]. &@hsn soft
computing Pandu designed a gait planner that kieeprdbot
stable when it walked on slop[2].

PSO algorithm has proven to be very effectivesolving
complex optimization problems. However, as with eoth
evolutionary algorithms, with PSO algorithm it is@ easy to
fall into local optimal solution. Maintaining theiversity of
population and avoiding prematurely falling int@db optimal
solution is a direct way to improve the PSO. Oney w@a
improve the evolutionary algorithm is an idea basadmulti-
population[5], and it has achieved very good ressblving
practical problems[6][7]. In order to control theultirrobots
formation, Seung-Mok used a coevolving particle rewa
optimization(CCPSO) algorithm to optimize the model
predictive control, and obtained good results[8lica¢l S.




Couceiro introduced an extension of PSO optimal outh
called RDPSO to control with 15 robots. RDPSO carefien
from the dynamical partitioning of the whole popida of
robots into multiple groups[9]. To avoid multi-rdisambstacles,
Ezequiel introduced a noise-resistant PSO algoritton
optimize the resource constraints of multi-robdd$[Mojtech
Vonasek utilized PSO technique to find the CPG-thametion
primitives, and then planed the global motion fobats using
RRT algorithm [11].

Artificial neural network (ANN) has a strong appcbato
solve the problem of nonlinear mapping. It canriieoduced to
control the robot arm, motion optimization and mamgblems
of robot control. Tao Li used a new recurrent neoedwork to
control the online robot arm to learn the behavBecause the
training time is too long, only weights of outputerg
trained[12]. Pedro introduced NN to recognize thstgres and
to control the moves of the industrial robot. Hehgaed the
data from data gloves and used two ANN to recogditferent
kinds of gestures. The rate of recognition is up9%86[13].
However, how to reduce the training time for NNaisgyood
question to discuss.

FLC is one of the soft computing techniques. It ues
controlling experience from human experts to make tie
adverse effects brought from nonlinear and unaefegtors in
dynamic characteristics of robot. However, it aldas
shortcomings. Its control rules and membership tfons
cannot be modified once established. Park[14] desiga
trajectory generator based on ZMP FLC. The trajés$oof
legs were the input, and the effectiveness of therighm was
proved by simulation. The ZMP trajectory produced this
algorithm can increase the stability of robot. Hear the main
defect of this algorithm is that the trajectory wah be the
optimum because of the lack of optimizer. Zhou[pEsented
a fuzzy reinforcement learning structure, which caaintain
the dynamic stability of biped robot while movingowever,
this algorithm used a gradient descent learninghatgt with
which is easy to fall into local optimum. One wayjump the
local optimum is to use the intelligence optimajaaithm. PSO
algorithm is less dependent on the objective famctind it can
be introduced to optimize the rules of FLC.

In this paper, constraints of movement for humamofabt
are analyzed at first. Then, an example of steppirgy stairs is
taken to feasibility analysis. And the kinematicsnfulas of
stepping over stairs are achieved. Based on the &@@ithm
present in [5], an idea of crossover from GA igadticed to
make the algorithm jump the local optimum, whichcaled
MPSO. In order to test the effects of different ttohmethods,
three methods of soft computing consisting of MPSP,SO
optimizing NN(MPSONN), MPSO optimizing
FLC(MPSOFLC) of are used to control the motion ofkived
on uneven terrain for humanoid robot. Finally, dimtions of
different methods are achieved.

2. External non-collision constraint for humanodthot

External non-collision constraint for humanoid rolean
be divided into two cases, one is collision betwiegis (mainly
considering the lower body of humanoid robot) amtemal
part, and the other is between feet and floor.

Constraint for the first case can be described by 2D
geometric constraints in sagittal plane[16]. Acdogdto a
fundamental theorem in computational geometry, mitleree

points, p, P,, P, the point p, is on the left(right) of the
directed line segmenp, p, if and only if the area composed of

these three pointsszpg >0(< 0). The point p, is on the
segmentﬁ if and only if A\apng =0. From the figure 2,
Aplpng and be easily computed by the coordinate values of
P, Py P3- The formula of computing is shown as bellow.

1
Aﬂlpzps =E|:Xl(y2 - y3) + Xz(ys_ yl) + X3(yl_ yz)]
(1)

Fig. 2 Distance of lines
When humanoid robot walks on uneven terrain, ifotst
trajectory is not handled properly, external obstcollision
happen very easily, and so the robot will loseibtabWe will
take robot stepping across obstacles within sisgigporting
period as example to analyze the constraints. Asvshin
figure 3, the supposed the starting point of feobm the point

s(s,,0) . the final location is on the poire(ex,O) , the
highest point of obstacle is Qj(cx,h), and the height i41.

f is defined as a fourth-order polynomial functidret f

contain those three points above, and

f'(S) = f'(C) = f'(e) =0. After a simple mathematical
iteration, the expression of (Ss(,eX,CZ) =0 can be achieved.
During the movement of robot, if the héél,h,) and toe

(tx,tz) are always over the movement trajectory, avoidance

will succeed, whichh, > f (hx) andt, > f (tx).



= (tot,)

&0 mh T e@0)

0 X

Fig.3 Model of foot for stepping over obstacle
3. Motion planning on uneven terrain

humanoid robot in stepping over stairs, constraihigng the
double supporting period can be obtained. The Idetaf
constraints are shown in formula (2)

max( A, Pz, ’Alosnzshl&uzﬁz) >0

max(AzazM Aoz, 'Azgsﬂzsnﬁmzﬁnz) > ¢
A..>0

@

Uneven terrain can be assumed to be convex part and _L;S X, <S,— X, + X2+|—7

concave part in 2D. For humanoid robot, crossingves part
and concave part can be analyzed as stepping oofasthirs
respectively. The model of movement is shown inrég4.

\/

Fig.4 Pararheters of model of going uneven termirhéimanoid robot
3.1 Geometric constraints

According to the stability constraints in [17], sbraints of
stepping off stairs for humanoid robot are showmdigure 5.
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Fig.5 Feasible model of going downstairs for hunidmobot
From formula (1), combined with geometric model of

Where, § and S, are the width and height of the stairs
respectively.Z (i =0,1, 2,3,4 represent the joints in legs of
robot. I1,|7 are the width of left and right legs respectively.

X, X, is distance between the center of foot and the edg

stairs. X, represents the abscissa of center of gravity. The

processing of stepping on stairs is similar to thistion, the
details can be found in[17].
3.2 Sability constraints

Regarding the stability constraints for a humanaidot,
we supposed the friction between the robot foot stadts is
large enough, and ensures that the robot doeslidetduring
the movement. Therefore, the stability constraints1 be
judged by calculating the ZMP of robot.
3.3 Kinematic analysis on uneven terrain

The period of stepping over staims is similar with
walking on flat terrain, which can be divided intmuble
support periodrd and single support periogl. In a case study

of sagittal plane motion it is supposed that thainocation of
robot is the following: its right leg is on the ista and the left
leg is under the right one. The distance betweertwio legs is
one step. After one periofl of walking, the robot reached the
final location, where the left leg is on the rightte, and the
distance between the two legs is also one step.nihement
is shown in figure 3. The details of parametershefrobot are
present above.

The single support period of the robot can be simd the
multi-link inverted pendulum motion. Supposing ik mass
of robot is even, and each COM coordinates
(x.z)(i=12...,7 leads to the formula (3)
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Where, I represents the distance between joint and COM,

|i is the length of link,X and Z; are the trajectories of

ankles[17]. The trajectory of ZMP of robot durirgpet
processing of stepping on stairs is shown in foen{d)

iﬁm(z+g)x mxz - 1,8,)
gm(vg)

Where, m is the mass of each link,, represents moment of

(4)

Xorp =

inertia of each linkg, is joint rotation angular acceleration.

(i=12..7

4. Hybrid Particle Swarm Optimization (MPSO)

In normal PSO algorithm, updating the location only

involves x ; (t +1) and x ; (t) , and actually, the middle points

X (t+2)if f(x(t+2)< f(x,(t+3)
and f (x (t+1)) < f (x(t+1)

X (t+ I £ (x(t+3) < f (x(t+9)
and f (x,(t+1)) < f (x(t +1))
x(t+1)  others

This algorithm divided the single-step updatingrata of
particle velocity in normal PSO into three steps] aelects the
best one of three position vectors. It can refime process of
searching particle trajectories and increase thdatgprate of
individual extreme.

This algorithm improves the performance of the athm
based on normal PSO without increasing the complexi
However, this method has defect on the avoidinglloptima.
To solve this problem, the concept of crossoverg@metic
algorithm is introduced. In each iteration, a sfiedinumber of
crossover particles are selected to put into thieriiypool
according to the crossover probability. The pagscin hybrid
pool will crossover randomly to produce the samenlber of
child particles¢hild ) and update the parent particlgafent )

X(t+1)= ©)

using child particles. The position of child can dizained by
cross computing the positions of parents. The desaé shown
in formula (11).
child (x) = p Cparent, (x) + (1~ p) Cparent, (x)
Where, p is a random number between 0 and 1. The

(11)

velocity of child can be reached by formula (12)
parent, (V) + parent, ( ‘ ‘
| parent, (v) + parent, (V)|

Meanwhile, for balancing the global search abiktyd
local improvement capacity in PSO algorithm, a finear

child (v) =

(12)

x (t+1) and x,(t+1) have been counted more than once. dynamic inertia weight coefficient formula is preed. The

However, these two points may be better than pxqi(tt+ 1) ,

therefore, single-step sequential addition in ndrM&O is
updated into distributed computing. The middle poican be
obtained as shown in formula (5) and (6).

x (t+1)=x(t)+v (t+2) (5)
% (t+1) =x(t+1) +clljil[ﬂ pbest; (t) = x (t)) (6)

The next step is to calculate the function valudabe two
middle location, and compare them with the objexfiinction

f (% (t+1)) .The smaller one is used to updafét +1) and

the detail of algorithm is shown as bellow[5].

vt +1)=v (t)ix(t+ D)= x (t) +v(t+9) QY
v, (t+1) = vy (t +1) + ¢, [F, poest; (t) = % (t)) -
X (t+1) =x(t+1) +v,(t+1)

Vi (t+1) = v, (t-+3) + c, 1, (goest (1) = % (1))
% (t+2) = (t+2) +vy(t+1)

expression of the formula is shown as bellow.

f-f
Wmin _ (Wmax m|n) ( mm) , f< favg
w= (favg - fmin) (13)
. B =
Where, W, and W_.. represent the MAX and MIN of

W respectively. T is the current value of objective function.

f., and f,, are the current average target and minimum target

for aII particles. When the target value of eachh&f particles
tends to converge into local optimum, the inerteght will be
increased. While the target values tend to dispehseinertia
weight will be decreased. Meanwhile, for the pé&tcwhose
objective functional value is better than averagesp their
corresponding factor of inertia weight should beaken, in
order to be protected. The details of the algorittmmshown as
bellow:

Step 1: Initial the position of particl@)(i’j and velocity



Vi j randomly, and initial the personal best valBg, and
global best valug,, .
Step 2: Evaluate fitness of each particle, stoeedilrrent

position and fithess of each particle ), , and store the best
position and fitness from the whok,, in G .

Step 3: Update the velocity and position from folan{¥)
to formula (10).

Step 4: Update the weight by formula (13)

Step 5: For each particle, compare its fithesshio lest
position it passed, and if it is better, update pleesonal best
position by current position and then compare thele/ current

P 10 Gy , and update th&,, .

Step 6: Select number of particles to put into higbrid
pool according to the crossover probability. Setext particles
randomly to crossover the same number of childigest
calculate the position and velocity of child pdeiby formula
(11) and (12).

Step 7: If the finishing condition is confirmed ¢plefined
computing precision or iteration numbers), stopra@ag,
output the result, else return step 3 to go onchaay.

5. Design of neural network optimized by MPSO ailtpon
5.1 Design of neural network

According to the features of humanoid robot stegmiver

stairs, two three-forward networks are designed[IfE input

layer of first network are parametets andX, , which are in
the double support period of stepping over stairgdbot. The
hidden layer haveM nerve cells and the output layer are
parametersL2 and H2 . Based on different input: and

X2 1

Xy, let Fy= ZMP><_7 Z(Il+|7) be fitness function,

which means the ZMP in initial condition is in tienter of
double support area of robo¥; (i=12;j=12,.M) are
weights between input layer and hidden layer wIWﬁle
(i=1,2.M:j=12 are weights between hidden layer and
output layer.

When parametek-2 and H2 are confirmed, the value of

6(i=5,6) in the most stable condition during the double
support period can be obtained. During the singlppert

period, let the value of@ (i =5,6) be the input of the second
neural network, and the output arég(i=12,3,9 |
Vi (i=1,2;j =1,2,..N) are the weights between input layer and

hidden layer, Wy (i=12.N;j=12,3% are the weights
between hidden layer and output layer.
5.2 Neural Network optimized by MPSO

The advantage of using PSO algorithm to train tleearkl
Network is without using the gradient informatiohlthough

the global convergence of PSO algorithm is rel&igeod, the
speed of convergence of PSO algorithm is sloweMRSO
algorithm is introduced to train the weight of NGiiven a NN,
only coding for connection weight is required, andpping to
individual with code string representation. Mearl@hieach
fitness function of weight is evaluated, and fimeslue is
calculated. Therefore, the problem of training fX can be
converted to a problem of finding a group of besights to
make the connection weights of NN MAX. The detdiltloe
algorithm is shown as bellow.

Step 1: Select suitable hidden cells, and initial IN.

Step 2: Code the particles of PSO, which consistéjof W;
and b

Step 3:Initial the position of particles; i and velocityV, i

and initial the personal best vall, and global best value

Gg -

Step 4: Each particle is mapped to the weights bf &hd
constitutes a NN.

Step 5: Select the samples randomly from sampleesjmatrain
NN.

The next steps are similar with the algorithm MP&cribed
above.

Final Step: Take the be§, ., to be used as a group of weights

for NN.
6. Design of Fuzzy Logic Controller optimized by MPS
algorithm

A fuzzy logic controller is designed and the rule®
optimized offline by MPSO algorithm. There are tfuzzy
logic controllers. The first one is used to calteléhe node
angle of robot during the double support periode Hecond
one is used to calculate the node angle changexbof during
the single support period.
6.1 design of fuzzy logic controller

The membership function distributions for input and
output variables of two fuzzy logic controllers akown in
figure 6 and 7.

VL L M H VH

VL L M H VH
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Fig.6 Membership function distributions for inputdaoutput variables
of the first module of fuzzy logic controller
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Fig.7 Membership function distributions for inpuideoutput variables
of the second module of fuzzy logic controller

Where VL,L,M\H,VH represent very small, small,
medium, high, very high. NL,NS,Z,PS,PL are negatshghtly
negative, zero, slightly positive, positive.

6.2 Fuzzy logic system optimized by MPSO
6.2.1 System framework

In the fuzzy control system the key factors tocidfit of
control are rules and membership. With traditiotrédl and
random method it is difficult to select the correontrol rules
and membership, resulting in incomplete controlesuland
impact of the effectiveness of the system contitierefore,
multiple control rules which are selected randomanlg used to
control the system, and according to the contri@cef optimal
control rules are determined through PSO optinomati
algorithm.

According to the first controller, each of two irpu
parameters has five linguistic variables, and tesplin 25
rules. First, the condition parts of the 25 rules ereated by
hand, and then two group integers are generatetbnaly, each
group has 25 integers varying between [-2,2], 2esponding
to VL, -1 corresponding to L, and so on. Therefdte two
group integers correspond to the L2 and H2 resgsygtiwhich
are results of Xand X% with fuzzy rules. According to the
second controller, which is similar with the fimte, 25 rules
are created by hand and four group integers arerged
randomly, each group correspondingd i =1,2,3,4 which

are the results 0bg, andog,. The vector dimension of each

particle is set to 150R5x 2+ 25x< 4),where, each particle
represents a rule set. The details of algorithm slrewn as
bellow.

Step 1: Select a proper fitness function and déterrine
fuzzy area and fuzzy reasoning methods.

Step 2: Code the particle of PSO, which are compos$ed
linguistic variables such as VL, L, M, H, VH and NNS, Z,
PS, PL

Step 3: Initiate the position of particleg " and velocity
Vi
valueG, .

Step 4: Give a group value to particle randomlye Th
group values are composed by the rules of fuzzyclog
controller.

Step 5: Calculate the result according to the rules.

The next steps are similar with the algorithm MPSO
described above.

Final Step: Take the be§,, to be used as a group of

and initiate the personal best valBg, and global best

weights for fuzzy logic controller.
6.2.2 Sensitivity Analysis for System

For the optimization of fuzzy logic controller, bothe
fitness and control rules can be optimized. Consider
optimization may increase the sensitivity of systmd reduce
the robustness of system. In this paper, only rues
optimized.
Take the first fuzzy logic controller as an exampAs input
values are the variables of, dnd X, output values are the
variables of H and L, a control rule can be expressed as
bellow:

IF X, =AandX,=B therH,=C

Where,A B C, D are the five linguistic variables of

and,=D, (16)

output, andi O{VL. L. M. H. VH}
When optimizing fuzzy rules based on MPSO, theefth

can be transformed. The sensitivity 6{x )/ Zn: f(x) can be
i=1

changed along with the iteration.

e- ek/K,"ax
f (X)=af ()ﬁ)+e+ek/;<max( max_fmin) (17)
Where, f__, is the current MAX fitness valuef;, is the

current MIN fitness valuek is the current iteration numbers,

K is the MAX iteration number, and >0 refers to a

max
constant. From the formula (17) we know that thisitool
method increases the computational efficiency,dmgends on
the system robust performance. Therefore, this otettan be
used on line.

7. Experiments
Simulation for humanoid robot walking on uneverraar

is created in Matlab. The parameters of each piatdescribed



as shown in table 1. The trajectories of all joints of robot during thecess of

Tab.1 Parameters of robot stepping over stairs are shown in figure 8.
Joint  Mass(m) L(m) r(m) Mi(kgm »
" T R R FEFEL + a1

1 0.4 0.05 0.02 0.0005 1ol . * e
2 1.8 0.10 0.15 0.0922
3 4.8 0.15 0.16 0.1882
4 12 0.25 0.40 3.7004 -
5 4.8 0.15 0.16 0.1882 g
6 1.8 0.10 0.15 0.0922 =
7 0.4 0.05 0.02 0.0005
7.1 Smulation of neural network optimized by
MPSO(MPSONN)

A BP neural network is used as a motion control netw 08} o . - - S !
The number of hidden cells of BP is 8, and thesiemnfunction /s
between the layers are purelin, tansig and loggigre are 500 Fig.8 Trajectories of joints based on MPSONN
samples for training. The learning rate is 0.39reis 10°. The The weights of NN optimized by MPSO are shown in

number of dimensions of selected PSO is 62, thebeurof  table 2.
particles is 30, learning facto(‘a,C2 are both 2, and number

of iteration is 500.
Tab.2 Weights of NN obtained after MPSO

v i=1 i=2 W' j=1 J=2

=1 095 1.01| j=1 097 0.73

094 1.02| j=p 1.02 095
098 099 j=3 093 0.86
=4 076 1.03|j=4 105 0.77
=5 091 092 j=5 099 0.94

Vg ood=t =2 w2 =1 j=2 j=3 j=4 =5 |=6

=1 084 123| j=1 106 092 076 056 1.03 1.21

= 082 051 j=p 121 1.03 1.02 111 045 0.53
3 096 069 j=3 054 092 044 056 056 1.23
=4 086 094 j=4 076 064 134 1.03 1.67 0.93
-5 090 082 j=5 123 086 084 1.02 155 0.69

7.2 Smulation of fuzzy logic controller optimized by
MPSO(MPSOFLC)

The number of particles used to simulate is 30;nieg
factors are both 2, number of iteration is 500. Trhest
common max-min from Mamdani method is introduced to
reason. A common trigonometric function is used ths
membership function. The weighted average judgmesethod

Anglesfrad

Z/U(Ui) w,
of membership function =1=——— is adopted to take
2 H(U)
i=1
defuzzification. The rules of two fuzzy logic cooiter 40 o . v s = g
optimized by MPSO are shown in table 3. Tis
Using method MPSOFLC, the trajectories of all joiofs Fig.9 Trajectories of joints based on MPSOFLC

robot are show in figure 9.



Tab.3 Optimized rule based for the module of fuzzyc controller
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z
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7.3 Comparison of different methods
7.3.1 Comparison of different PSO

In the process of using the basic PSO and MPSO to

optimize the weights of NN, the same number ofigad, the
same initial particles and the same learning factwe arrived.
After 500 iterations, the error is 20the process of iteration is
shown in figure 10. In figure 11, basic PSO and [@Rfe used
to optimize the rules of FLC, where the number ohefisions

is 150 and number of particles is 40.

Walue of Objective function

0 i I

Number of lterations

: ; ;
0 50 100 150 200 250 300

350 400 450 500

Fig.10 Iterations of NN based on different PSO

Value of Objective Function

0

50

100 150

200 250 300 350 400 450 500
Number of lterations

Fig.11 Iterations of optimizing rules of fuzzy lagiontroller based on

different PSO

7.3.2 Comparison of control methods

In the process of stepping over stairs for humamoimbt,
NN, PSONN, PSOFLC, MPSONN, and MPSOFLC are
introduced to control the robot. The time consurgdifferent
methods is displayed in figure 12.
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© 58_ % the robot is not a good method. MPSONN and MPSOF&AC ¢
- = control the robot to step over stairs and obtaitebstability.

Control methods
Fig.12Trainning time under different control metkod
From the figure 12, we can conclude that MPSONMhés
fastest method to control the robot to step ovarstompared
to other methods, and the NN is the slowest one ZNP
trajectory is used to compare the stabilizationotothrough
different methods.

7.4 Smulation of process of stepping over stairs for humanoid
robot

The simulations of stepping over stairs throughedsnt
methods are described in figure 14, 15 and 16.
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Fig.14 Simulations of going up and down stairsHfiomanoid robot (MPSO)
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in Tab.6
7.4 Experiments on real humanoid robot (NAO)

Tab. 6 Datas from FSR by NAO

Nao is a humanoid robot desigend by Aldebaran Rofoiti i
Distance(cm) 0 14 28 42 56 70 84 98

can run the method present in this paper effegtiv@he

Point(rad)
structure of robot NAO is described as in Fig.IMethod of LFsrRR 113 036 041 127 104 073 049 001
MPSONN is selected to achieve the stepping motiolNAO. LFsrRL 001 020 001 001 038 085 211 121
The parameters are shown in Tab.4-Tab.6. and so@psti  LFSIFR 0.18 000 001 001 000 0.00 007 002
stepping motion are shown in Fig.18. LFsrFL 002 002 002 002 002 000 003 003
LCOPy 000 107 000 021 007 069 012 0.00

Left Leg joint Right Leg joint

LCOPx 089 008 026 031 004 000 000 224
— RFsIRR 000 000 000 000 000 023 018 0.00
g RFsrRL 043 0.00 034 000 000 000 0.00 0.00
RFsIFR 002 002 002 000 001 002 002 001
- RFsrFL 001 003 002 003 003 001 003 003

Fig.17 structure of robot NAO
To perform the rotation of the body parts, we pladeame at
each joint. When the robot is at the zero posejoait frames
have the same orientation. Then, roll rotationse taltace
around the X axis, pitch rotations around the Ysaamd yaw
rotations around the Z axis. The detail of paranseté robot

between distance and jonts are described as i Balo. Tab.5
Tab.4 The Roll Motion

Distance(cm) 0 14 28 42 56 70 84 98

Joint(rad)
LAnkleRoll 045 059 059 044 0 0 016 O
LHipRoll 0.78 048 038 021 075 104 020 0.37

RAnkleRoll 050 0.36 0.38 0 0 049 061 0.52
RHipRoll 064 006 052 029 O 040 O 1.03

Tab.5 The Pitch Motion

Distance(cm) O 14 28 42 56 70 84 98
Joint(rad)

5. distance=56 cm 6. distance=70 cm

LAnklePitch 0.00 088 093 0.00 0.05 0.00 112
LKneePitch 076 027 032 094 084 109 0.08

LHipPitch 0.00 027 106 025 020 0.08 1.15
LHipYawPitch 0.84 0.61 068 050 055 0.53 1.02
RHipPitch 104 09 029 105 094 120 0.78

RKneePitch 021 045 024 049 011 085 0.30
RAnklePitch 102 025 135 075 105 0.16 1.21
RHipYawPitch 0.84 0.61 068 050 055 053 102 50.1

7. distance=84 cm 8. distance=98 cm

In ladder, the sole of robot's feet can feel défer
pressure.Through the monitor, we can get the valfie
FSC(Feedback Shift Register)of four point under féstFL,
FSFR, FarRL,FarRR, and the distance of offset: COOx, COOy8- Conclusion
The value returned for each FSR is similar to KgF&R are
calibrated (see robot configuration keys), the ealn kg is Stepping over stairs can be taken as an example of
about 20% precision (depending time and real f@astion).
Without calibration the error could be more impattaand is
specific to each sensor. The detail experimentasiare shown

Fig. 18 Snapshots of stepping motion by NAO

walking on uneven terrain for humanoid robot. A trother



based on NN and FLC are designed to control thetrobo([3]

walking. A mixed PSO algorithm is present to opfienithe

weights of NN and rules of FLC. Comparison of differe

control methods are achieved through the simulatamd tests

the effectiveness of the proposed methods.
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