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Abstract: According to the features of movements of humanoid 
robot, a control system for humanoid robot walking on uneven 
terrain is present. Constraints of stepping over stairs are 
analyzed and the trajectories of feet are calculated by intelligent 
computing methods. To overcome the shortcomings resulted 
from directly controlling the robot by neural network (NN) and 
fuzzy logic controller (FLC), a revised particle swarm 
optimization (PSO) algorithm is proposed to train the weights 
of NN and rules of FLC. Simulations and experiments on 
different control methods are achieved for a detailed 
comparison. The results show that using the proposed methods 
can obtain better control effect.  
Key words: Humanoid robot, PSO, NN, FLC, motion planning 
1. Introduction  

In order to make humanoid robot able to “live” in the 

human being environment, it must be able to perform some 

complex motions. There are two methods to plan these complex 

motions: The first method is to first establish the appropriate 

model according to the type of movement, and then plan for the 

trajectory of motions. Usually, the trajectories of ankle and hip 

of the robot are assumed by parameter interpolation. Secondly, 

trajectories of other joints are deduced by geometric 

relationship. Finally, the optimal trajectories are confirmed by 

optimal algorithms according to the MAX of stability or MIN 

of energy consumed or similar strategies[1][2]. The second 

method is firstly to design an ideal trajectory of motion 

according to the stability or optimal targets. Then the 

movement of each joint will be calculated to match the ideal 

trajectory through inverse kinematics. Finally, during process 

of the real movement, the error between real trajectory and 

ideal trajectory will be adjusted[3].   

It is worth to study of humanoid robot of integrating into 

society and serving in the home, and it is a very challenging 

subject. In face of all kinds of uncertain environment, for 

walking, robot might need to complete the task in various of 

complex environment regularly, as shown in Fig.1.  

 
Fig. 1 Robot walks in complex environment 

Walking on uneven terrain for humanoid robot is one of 

the complex motions. It involves in planning and controlling 

more than ten degrees of freedom of the robot, and this system 

is a high-dimensional nonlinear complex system. If traditional 

methods are used in this system, the optimized control effect is 

not very satisfactory. And especially when there are many more 

uncertain initial variables, it is easy to fall into local 

optimization, slow optimization and poor adaptive ability of the 

algorithm. Therefore, because almost all soft computing 

algorithms are highly versatile, and analyticity of objective 

function is not required, evolutionary algorithms and other soft 

computing techniques can be considered in order to control this 

system. Rahul used GA with fuzzy logic method to control 

biped robot walking, and obtain good results[4]. Based on soft 

computing Pandu designed a gait planner that keep the robot 

stable when it walked on slop[2]. 

    PSO algorithm has proven to be very effective in solving 

complex optimization problems. However, as with other 

evolutionary algorithms, with PSO algorithm it is also easy to 

fall into local optimal solution. Maintaining the diversity of 

population and avoiding prematurely falling into local optimal 

solution is a direct way to improve the PSO. One way to 

improve the evolutionary algorithm is an idea based on multi-

population[5], and it has achieved very good results solving 

practical problems[6][7]. In order to control the multi-robots 

formation, Seung-Mok used a coevolving particle swarm 

optimization(CCPSO) algorithm to optimize the model 

predictive control, and obtained good results[8]. Micael S. 
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Couceiro introduced an extension of PSO optimal method 

called RDPSO to control with 15 robots. RDPSO can benefit 

from the dynamical partitioning of the whole population of 

robots into multiple groups[9]. To avoid multi-robots obstacles, 

Ezequiel introduced a noise-resistant PSO algorithm to 

optimize the resource constraints of multi-robots[10]. Vojtech 

Vonasek utilized PSO technique to find the CPG-based motion 

primitives, and then planed the global motion for robots using 

RRT algorithm [11]. 

Artificial neural network (ANN) has a strong approach to 

solve the problem of nonlinear mapping. It can be introduced to 

control the robot arm, motion optimization and many problems 

of robot control. Tao Li used a new recurrent neural network to 

control the online robot arm to learn the behavior. Because the 

training time is too long, only weights of output were 

trained[12]. Pedro introduced NN to recognize the gestures and 

to control the moves of the industrial robot. He gathered the 

data from data gloves and used two ANN to recognize different 

kinds of gestures. The rate of recognition is up to 95%[13]. 

However, how to reduce the training time for NN is a good 

question to discuss. 

FLC is one of the soft computing techniques. It uses the 

controlling experience from human experts to make up the 

adverse effects brought from nonlinear and uncertain factors in 

dynamic characteristics of robot. However, it also has 

shortcomings. Its control rules and membership functions 

cannot be modified once established. Park[14] designed a 

trajectory generator based on ZMP FLC. The trajectories of 

legs were the input, and the effectiveness of the algorithm was 

proved by simulation. The ZMP trajectory produced by this 

algorithm can increase the stability of robot. However, the main 

defect of this algorithm is that the trajectory cannot be the 

optimum because of the lack of optimizer. Zhou[15] presented 

a fuzzy reinforcement learning structure, which can maintain 

the dynamic stability of biped robot while moving. However, 

this algorithm used a gradient descent learning method, with 

which is easy to fall into local optimum. One way to jump the 

local optimum is to use the intelligence optimal algorithm. PSO 

algorithm is less dependent on the objective function and it can 

be introduced to optimize the rules of FLC. 

In this paper, constraints of movement for humanoid robot 

are analyzed at first. Then, an example of stepping over stairs is 

taken to feasibility analysis. And the kinematics formulas of 

stepping over stairs are achieved. Based on the PSO algorithm 

present in [5], an idea of crossover from GA is introduced to 

make the algorithm jump the local optimum, which is called 

MPSO. In order to test the effects of different control methods, 

three methods of soft computing consisting of MPSO, MPSO 

optimizing NN(MPSONN), MPSO optimizing 

FLC(MPSOFLC) of are used to control the motion of walking 

on uneven terrain for humanoid robot. Finally, simulations of 

different methods are achieved.  

2. External non-collision constraint for humanoid robot 

External non-collision constraint for humanoid robot can 

be divided into two cases, one is collision between legs (mainly 

considering the lower body of humanoid robot) and external 

part, and the other is between feet and floor. 

Constraint for the first case can be described by 2D 

geometric constraints in sagittal plane[16]. According to a 

fundamental theorem in computational geometry, given three 

points,
 1 2 3, ,p p p , the point 3p  

is on the left(right) of the 

directed line segment 
1 2p p

uuuur

 
if and only if the area composed of 

these three points 
1 2 3

0( 0)p p pA > <
. 

The point 3p  is on the 

segment
 1 2p p
uuuur

 if and only if 
1 2 3

0p p pA = . From the figure 2, 

1 2 3p p pA  and be easily computed by the coordinate values of 

1 2 3, ,p p p . The formula of computing is shown as bellow.
 

( ) ( ) ( )
1 2 3 1 2 3 2 3 1 3 1 2

1

2p p pA x y y x y y x y y= − + − + −    

(1) 

3p′3p′′

1p

2p

3p

( )1 1,x y

( )2 2,x y

( )3 3,x y

 
Fig. 2 Distance of lines 

When humanoid robot walks on uneven terrain, if its foot 

trajectory is not handled properly, external obstacles collision 

happen very easily, and so the robot will lose stability. We will 

take robot stepping across obstacles within single supporting 

period as example to analyze the constraints. As shown in 

figure 3, the supposed the starting point of foot is on the point 

( ),0xs s ,  the final location is on the point ( ),0xe e , the 

highest point of obstacle is on ( ),xc c h , and the height is h . 

f  is defined as a fourth-order polynomial function. Let f
contain those three points above, and 

( ) ( ) ( ) 0f s f c f e′ ′ ′= = = . After a simple mathematical 

iteration, the expression of ( ), , 0x x zf s e c =  can be achieved. 

During the movement of robot, if the heel( ),x zh h  and toe

( ),x zt t are always over the movement trajectory, avoidance 

will succeed, which ( )z xh f h≥ and ( )z xt f t≥ . 
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Fig.3 Model of foot for stepping over obstacle 

3. Motion planning on uneven terrain 

Uneven terrain can be assumed to be convex part and 

concave part in 2D. For humanoid robot, crossing convex part 

and concave part can be analyzed as stepping on and off stairs 

respectively. The model of movement is shown in figure 4. 

 

  

Fig.4 Parameters of model of going uneven terrain for humanoid robot 

3.1 Geometric constraints  

According to the stability constraints in [17], constraints of 

stepping off stairs for humanoid robot are shown as in figure 5. 

 
Fig.5 Feasible model of going downstairs for humanoid robot 

From formula (1), combined with geometric model of 

humanoid robot in stepping over stairs, constraints during the 

double supporting period can be obtained. The details of 

constraints are shown in formula (2) 

( )
( )

0 3 0 3 0 31 2 2 1 1 2

3 4 3 4 3 41 2 2 1 1 2

0 3 4

71
1 2

max , 0

max , 0

0

2 2

h h h h h h

h h h h h h

z z s z z s z s s s z s

z z s z z s z s s s z s

z z z

com w

A A A A

A A A A

A

ll
x S X X

 >

 >
 >

 − ≤ ≤ − + +


           (2) 

Where, 
wS and 

hS  are the width and height of the stairs 

respectively. ( )0,1,2,3,4iz i =  represent the joints in legs of 

robot. 
1 7,l l  are the width of left and right legs respectively.

 

1 2,X X  is distance between the center of foot and the edge of 

stairs.
 comx  represents the abscissa of center of gravity. The 

processing of stepping on stairs is similar to this motion, the 

details can be found in[17].           

3.2 Stability constraints 

Regarding the stability constraints for a humanoid robot, 

we supposed the friction between the robot foot and stairs is 

large enough, and ensures that the robot does not slide during 

the movement. Therefore, the stability constraints can be 

judged by calculating the ZMP of robot. 

3.3 Kinematic analysis on uneven terrain 

The period of stepping over stairs T  is similar with 

walking on flat terrain, which can be divided into double 

support period 
dT  and single support period 

sT . In a case study 

of sagittal plane motion it is supposed that the initial location of 

robot is the following: its right leg is on the stairs, and the left 

leg is under the right one. The distance between the two legs is 

one step. After one period T  of walking, the robot reached the 

final location, where the left leg is on the right one, and the 

distance between the two legs is also one step. The movement 

is shown in figure 3. The details of parameters of the robot are 

present above.   

The single support period of the robot can be similar to the 

multi-link inverted pendulum motion. Supposing the link mass 

of robot is even, and each COM coordinates
 

( )( ), 1,2...,7i ix z i =  leads to the formula (3)      
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( )
( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1

1

2 2 2

2 2 2

3 3 3 2 2

3 3 3 2 2

4 4 4 3 3 2 2

4 4 4 3 3 2 2

5 5 5 5 3 3 2 2

5 5 5 5 3

sin

cos

- sin sin

cos cos

sin - sin sin

cos cos cos

- sin - sin sin

- - cos co

f

f

f

f

x x

z z

x r x

z r z

x r l x

z r l z

x r l l x

z r l l z

x l r l l x

z l r l

θ
θ

θ θ
θ θ

θ θ θ
θ θ θ

θ θ θ
θ

=
=

= × +

= × +

= × + × +

= × + × +

= × × + × +

= × + × + × +

= × × + × +

= × + × ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

3 2 2

6 6 6 6 5 5 3 3 2 2

6 6 6 6 5 5 3 3 2 2

7 1 2 7

7

s cos

- sin sin - sin sin

- - cos cos cos cos

/ 2

f

f

w

h

l z

x l r l l l x

z l r l l l z

x S X X l

z S

θ θ

θ θ θ θ
θ θ θ θ

+ × +

= × + × × + × +

= × + × + × + × +

= − + −
=

(3) 

Where, ir represents the distance between joint and COM,
 

il  is the length of link, x  and fz are the trajectories of 

ankles[17]. The trajectory of ZMP of robot during the 

processing of stepping on stairs is shown in formula (4) 

( )( )
( )

7

1
7

1

i i i i i i ix ix
i

zmp

i i
i

m z g x m x z I
x

m z g

θ
=

=

+ − −
=

+

∑

∑

&&&&&&

&&

                (4)  

Where,
 im  is the mass of each link, ixI represents moment of 

inertia of each link, ixθ&& is joint rotation angular acceleration.
 

( )1,2,...7i =  

4. Hybrid Particle Swarm Optimization (MPSO) 

In normal PSO algorithm, updating the location only 

involves ( ), 1i jx t +  and ( ),i jx t  , and actually, the middle points 

( )1 1x t +  and ( )2 1x t +  have been counted more than once. 

However, these two points may be better than point ( )1ix t +  , 

therefore, single-step sequential addition in normal PSO is 

updated into distributed computing. The middle points can be 

obtained as shown in formula (5) and (6). 

( ) ( ) ( )1 1 1i ix t x t v t+ = + +                                        (5) 

( ) ( ) ( ) ( )( )2 1 1 11 1 i ix t x t c r pbest t x t+ = + + ⋅ ⋅ −        (6) 

The next step is to calculate the function values of the two 

middle location, and compare them with the objective function 

( )( )1if x t + .The smaller one is used to update ( )1ix t +  and 

the detail of algorithm is shown as bellow[5]. 

 ( ) ( ) ( ) ( ) ( )1 1 11 ; 1 1i iv t v t x t x t v t+ = + = + +             (7) 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2 1 1 1

2 1 2

1 1 ;

1 1 1

i iv t v t c r pbest t x t

x t x t v t

+ = + + ⋅ −

+ = + + +
       (8) 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

3 2 2 2

3 2 3

1 1 ;

1 1 1

i iv t v t c r gbest t x t

x t x t v t

+ = + + ⋅ −

+ = + + +
            

 

( )

( ) ( )( ) ( )( )
( )( ) ( )( )

( ) ( )( ) ( )( )
( )( ) ( )( )

( )

1 1 2

1 3

2 2 1

2 3

3

1 1 1

1 1

1 1 1 1

1 1

1

i

x t if f x t f x t

and f x t f x t

x t x t if f x t f x t

and f x t f x t

x t others

 + + ≤ +

 + ≤ +
+ = + + ≤ +


+ ≤ +
 +

             (9)

 

This algorithm divided the single-step updating formula of 

particle velocity in normal PSO into three steps, and selects the 

best one of three position vectors. It can refine the process of 

searching particle trajectories and increase the update rate of 

individual extreme. 

This algorithm improves the performance of the algorithm 

based on normal PSO without increasing the complexity. 

However, this method has defect on the avoiding local optima. 

To solve this problem, the concept of crossover in genetic 

algorithm is introduced. In each iteration, a specified number of 

crossover particles are selected to put into the hybrid pool 

according to the crossover probability. The particles in hybrid 

pool will crossover randomly to produce the same number of 

child particles(child ) and update the parent particles(parent ) 

using child particles. The position of child can be obtained by 

cross computing the positions of parents. The details are shown 

in formula (11). 

( ) ( ) ( ) ( )1 21child x p parent x p parent x= ⋅ + − ⋅            (11) 

Where,
 

p  is a random number between 0 and 1. The 

velocity of child can be reached by formula (12)   

( ) ( ) ( )
( ) ( ) ( )1 2

1
1 2

parent v parent v
child v parent v

parent v parent v

+
=

+
         (12) 

Meanwhile, for balancing the global search ability and 

local improvement capacity in PSO algorithm, a non-linear 

dynamic inertia weight coefficient formula is proposed. The 

expression of the formula is shown as bellow. 

( ) ( )
( )

max min min
min

min

max

*
,

,

avg

avg

avg

w w f f
w f f

f fw

w f f

 − −
− ≤ −= 

 ≥

            (13) 

Where, maxw and minw  represent the MAX and MIN of 

w  respectively.
 f  is the current value of objective function. 

avgf and
 minf are the current average target and minimum target 

for all particles. When the target value of each of the particles 

tends to converge into local optimum, the inertia weight will be 

increased. While the target values tend to disperse, the inertia 

weight will be decreased. Meanwhile, for the particles whose 

objective functional value is better than average ones, their 

corresponding factor of inertia weight should be smaller, in 

order to be protected. The details of the algorithm are shown as 

bellow: 

Step 1: Initial the position of particles ,i jx  and velocity 
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,i jv
 
randomly, and initial the personal best value bestP  and 

global best value bestG . 

Step 2: Evaluate fitness of each particle, store the current 

position and fitness of each particle in bestP  , and store the best 

position and fitness from the whole bestP
 
in

 bestG . 

Step 3: Update the velocity and position from formula (7) 

to formula (10). 

Step 4: Update the weight by formula (13) 

Step 5: For each particle, compare its fitness to the best 

position it passed, and if it is better, update the personal best 

position by current position and then compare the whole current 

bestP  to bestG , and update the bestG .  

Step 6: Select number of particles to put into the hybrid 

pool according to the crossover probability. Select two particles 

randomly to crossover the same number of child particles, 

calculate the position and velocity of child particle by formula 

(11) and (12). 

Step 7: If the finishing condition is confirmed (predefined 

computing precision or iteration numbers), stop searching, 

output the result, else return step 3 to go on searching.     

5. Design of neural network optimized by MPSO algorithm 

5.1 Design of neural network 

According to the features of humanoid robot stepping over 

stairs, two three-forward networks are designed[17]. The input 

layer of first network are parameters1X  and 2X , which are in 

the double support period of stepping over stairs for robot. The 

hidden layer have M nerve cells and the output layer are 

parameters 2L  and 2H . Based on different inputs 1X and 

2X , let ( )1 7

2 1

2 4d x

X
F ZMP l l= − − +  be fitness function, 

which means the ZMP in initial condition is in the center of 

double support area of robot. 
1Vij ( )1,2; 1,2,...i j M= =  are 

weights between input layer and hidden layer while
1Wij

( )1,2... ; 1,2i M j= = are weights between hidden layer and 

output layer. 

When parameter 2L  and 2H  are confirmed, the value of 

( )5,6i iθ =  in the most stable condition during the double 

support period can be obtained. During the single support 

period, let the value of ( )5,6i iδθ =  be the input of the second 

neural network, and the output are ( )1,2,3,4i iδθ = , 

( )2V 1,2; 1,2,...ij i j N= = are the weights between input layer and 

hidden layer, 
2Wij ( )1,2... ; 1,2,3,4i N j= = are the weights 

between hidden layer and output layer. 

5.2 Neural Network optimized by MPSO 

The advantage of using PSO algorithm to train the Neural 

Network is without using the gradient information. Although 

the global convergence of PSO algorithm is relatively good, the 

speed of convergence of PSO algorithm is slower. A MPSO 

algorithm is introduced to train the weight of NN. Given a NN, 

only coding for connection weight is required, and mapping to 

individual with code string representation. Meanwhile, each 

fitness function of weight is evaluated, and fitness value is 

calculated. Therefore, the problem of training for NN can be 

converted to a problem of finding a group of best weights to 

make the connection weights of NN MAX. The detail of the 

algorithm is shown as bellow. 

Step 1: Select suitable hidden cells, and initial the NN. 

Step 2: Code the particles of PSO, which consists of 
1Vij，

1Wij  

and bi . 

Step 3: Initial the position of particles ,i jx  and velocity ,i jv
 
, 

and initial the personal best value bestP  and global best value

bestG . 

Step 4: Each particle is mapped to the weights of NN and 

constitutes a NN. 

Step 5: Select the samples randomly from sample space to train 

NN. 

The next steps are similar with the algorithm MPSO described 

above. 

Final Step: Take the best bestG  to be used as a group of weights 

for NN. 

6. Design of Fuzzy Logic Controller optimized by MPSO 

algorithm 

A fuzzy logic controller is designed and the rules are 

optimized offline by MPSO algorithm. There are two fuzzy 

logic controllers. The first one is used to calculate the node 

angle of robot during the double support period. The second 

one is used to calculate the node angle changes of robot during 

the single support period. 

6.1 design of fuzzy logic controller 

The membership function distributions for input and 

output variables of two fuzzy logic controllers are shown in 

figure 6 and 7. 

  
Fig.6 Membership function distributions for input and output variables 

of the first module of fuzzy logic controller 
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Fig.7 Membership function distributions for input and output variables 

of the second module of fuzzy logic controller 

Where VL,L,M,H,VH represent very small, small, 

medium, high, very high. NL,NS,Z,PS,PL are negative, slightly 

negative, zero, slightly positive, positive. 

6.2 Fuzzy logic system optimized by MPSO 

6.2.1 System framework 

In the fuzzy control system the key factors to efficient of 

control are rules and membership. With traditional trial and 

random method it is difficult to select the correct control rules 

and membership, resulting in incomplete control rules and 

impact of the effectiveness of the system control. Therefore, 

multiple control rules which are selected randomly are used to 

control the system, and according to the control effect, optimal 

control rules are determined through PSO optimization 

algorithm. 

According to the first controller, each of two input 

parameters has five linguistic variables, and resulting in 25 

rules. First, the condition parts of the 25 rules are created by 

hand, and then two group integers are generated randomly, each 

group has 25 integers varying between [-2,2], -2 corresponding 

to VL, -1 corresponding to L, and so on. Therefore, the two 

group integers correspond to the L2 and H2 respectively, which 

are results of X1 and X2 with fuzzy rules. According to the 

second controller, which is similar with the first one, 25 rules 

are created by hand and four group integers are generated 

randomly, each group corresponding to 1,2,3,4i iδθ =
,
 which 

are the results of 5δθ and 6δθ . The vector dimension of each 

particle is set to 150(25 2 25 4× + × ),where, each particle 

represents a rule set. The details of algorithm are shown as 

bellow. 

Step 1: Select a proper fitness function and determine the 

fuzzy area and fuzzy reasoning methods. 

Step 2: Code the particle of PSO, which are composed of 

linguistic variables such as VL, L, M, H, VH and NL, NS, Z, 

PS, PL 

Step 3: Initiate the position of particles ,i jx  and velocity 

,i jv
 
, and initiate the personal best value bestP  and global best 

value bestG . 

Step 4: Give a group value to particle randomly. The 

group values are composed by the rules of fuzzy logic 

controller. 

Step 5: Calculate the result according to the rules.  

The next steps are similar with the algorithm MPSO 

described above. 

Final Step: Take the best bestG  to be used as a group of 

weights for fuzzy logic controller. 

6.2.2 Sensitivity Analysis for System 

For the optimization of fuzzy logic controller, both the 

fitness and control rules can be optimized. Considering 

optimization may increase the sensitivity of system and reduce 

the robustness of system. In this paper, only rules are 

optimized. 

 Take the first fuzzy logic controller as an example. As input 

values are the variables of X1 and X2，output values are the 

variables of H2 and L2, a control rule can be expressed as 

bellow: 

1 2 2 2IF and then andi i i iX A X B H C L D= = = =      (16) 

Where, iA
, iB

, iC
, iD

,
are the five linguistic variables of 

output, and { }VL L M H VHi ∈ 、 、 、 、       

When optimizing fuzzy rules based on MPSO, the fitness 

can be transformed. The sensitivity of ( ) ( )
1

/
n

i i
i

f x f x
=
∑  can be 

changed along with the iteration. 

( ) ( ) ( )
max

max

/

max min/

k K

i i k K

e e
f x af x f f

e e

−′ = + −
+

           (17) 

Where, maxf  is the current MAX fitness value, minf  is the 

current MIN fitness value, k  is the current iteration numbers, 

max
K  is the MAX iteration number, and 0a >  refers to a 

constant. From the formula (17) we know that this control 

method increases the computational efficiency, but depends on 

the system robust performance. Therefore, this method can be 

used on line.  

7. Experiments 
Simulation for humanoid robot walking on uneven terrain 

is created in Matlab. The parameters of each joint are described 
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as shown in table 1. 
Tab.1 Parameters of robot 

Joint Mass(m) L(m) r(m) MI(kgm2) 

1 0.4 0.05 0.02 0.0005 

2 1.8 0.10 0.15 0.0922 

3 4.8 0.15 0.16 0.1882 

4 12 0.25 0.40 3.7004 

5 4.8 0.15 0.16 0.1882 

6 1.8 0.10 0.15 0.0922 

7 0.4 0.05 0.02 0.0005 

7.1 Simulation of neural network optimized by 
MPSO(MPSONN) 

A BP neural network is used as a motion control network. 

The number of hidden cells of BP is 8, and the transfer function 

between the layers are purelin, tansig and logsig. There are 500 

samples for training. The learning rate is 0.3, error is 10-5. The 

number of dimensions of selected PSO is 62, the number of 

particles is 30, learning factors 1 2,c c  are both 2, and number 

of iteration is 500. 

The trajectories of all joints of robot during the process of 

stepping over stairs are shown in figure 8. 

 
Fig.8 Trajectories of joints based on MPSONN 

The weights of NN optimized by MPSO are shown in 

table 2. 

Tab.2 Weights of NN obtained after MPSO 

1
ijV  i =1 i =2 1

ijW  j =1 j =2     

j =1 0.95 1.01 i =1 0.97 0.73     

j =2 0.94 1.02 i =2 1.02 0.95     

j =3 0.98 0.99 i =3 0.93 0.86     

j =4 0.76 1.03 i =4 1.05 0.77     

j =5 0.91 0.92 i =5 0.99 0.94     

2
ijV  i =1 i =2 2

ijW  j =1 j =2 j =3 j =4 j =5 j =6 

j =1 0.84 1.23 i =1 1.06 0.92 0.76 0.56 1.03 1.21 

j =2 0.82 0.51 i =2 1.21 1.03 1.02 1.11 0.45 0.53 

j =3 0.96 0.69 i =3 0.54 0.92 0.44 0.56 0.56 1.23 

j =4 0.86 0.94 i =4 0.76 0.64 1.34 1.03 1.67 0.93 

j =5 0.90 0.82 i =5 1.23 0.86 0.84 1.02 1.55 0.69 

7.2 Simulation of fuzzy logic controller optimized by 

MPSO(MPSOFLC) 

The number of particles used to simulate is 30, learning 

factors are both 2, number of iteration is 500. The most 

common max-min from Mamdani method is introduced to 

reason. A common trigonometric function is used as the 

membership function. The weighted average judgments method 

of membership function
( )

( )
1

1

n

i i
i

n

i
i

U U
u

U

µ

µ
=

=

⋅
=
∑

∑
 is adopted to take 

defuzzification. The rules of two fuzzy logic controller 

optimized by MPSO are shown in table 3. 

Using method MPSOFLC, the trajectories of all joints of 

robot are show in figure 9. 

 

Fig.9 Trajectories of joints based on MPSOFLC 
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Tab.3 Optimized rule based for the module of fuzzy logic controller 

X1 X2 H2 L2 
5δθ  6δθ  1δθ  2δθ  3δθ  4δθ  

VL VL - - NL NL NL NL NL NL 

VL L L L NL NS NS NS NS NS 

VL M - - NL Z Z Z NL Z 

VL H H H NL PS NL Z NL NS 

VL VH VH VH NL PL NS NL NS Z 

L VL L VL NS NL Z NS Z PL 

L L - - NS NS PS Z NL NL 

L M L M NS Z PL PS S NS 

L H L VH NS PS - - - - 

L VH VL L NS PL NL NS PS PL 

M VL VH VL Z NL NS Z Z PS 

M L L L Z NS - - - - 

M M H H Z Z NS NL NS PL 

M H - - Z PS PS NS Z PL 

M VH VH VH Z PL PS Z NL PL 

H VL VL VL PS NL NL NL NS NL 

H L L L PS NS NS NS Z NS 

H M H M PS Z Z NL NL Z 

H H H H PS PS NL NS NS PL 

H VH - - PS - - - - - 

VH VL VL VL PL NL Z PS PL NS 

VH L L L PL NS NS NL NL Z 

VH M VH M PL Z Z NS NS NS 

VH H H H PL PS NL Z Z Z 

VH VH VH VH PL PL NL PS PS PS 

 

7.3 Comparison of different methods 
7.3.1 Comparison of different PSO 

In the process of using the basic PSO and MPSO to 

optimize the weights of NN, the same number of particles, the 

same initial particles and the same learning factors are arrived. 

After 500 iterations, the error is 10-5, the process of iteration is 

shown in figure 10. In figure 11, basic PSO and MPSO are used 

to optimize the rules of FLC, where the number of dimensions 

is 150 and number of particles is 40. 

 
Fig.10 Iterations of NN based on different PSO  

 
Fig.11 Iterations of optimizing rules of fuzzy logic controller based on 

different PSO 

7.3.2 Comparison of control methods 

In the process of stepping over stairs for humanoid robot, 

NN, PSONN, PSOFLC, MPSONN, and MPSOFLC are 

introduced to control the robot. The time consumed by different 

methods is displayed in figure 12.  
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Fig.12Trainning time under different control methods 

From the figure 12, we can conclude that MPSONN is the 

fastest method to control the robot to step over stairs compared 

to other methods, and the NN is the slowest one. The ZMP 

trajectory is used to compare the stabilization robot through 

different methods.  

 
Fig.13 ZMP Trajectories under different controll methods 

From figure 13, we can see, using direct PSO to control 

the robot is not a good method. MPSONN and MPSOFLC can 

control the robot to step over stairs and obtain better stability.   

7.4 Simulation of process of stepping over stairs for humanoid 
robot 

The simulations of stepping over stairs through different 

methods are described in figure 14, 15 and 16. 

 
Fig.14 Simulations of going up and down stairs for humanoid robot (MPSO) 

 
Fig.15 Simulations of going up and down stairs for humanoid robot (MPSOFLC) 

 
Fig.16 Simulations of going up and down stairs for humanoid robot (MPSONN) 
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7.4 Experiments on real humanoid robot (NAO) 

Nao is a humanoid robot desigend by Aldebaran Robotics, it 

can run the method present in this paper effectively. The 

structure of robot NAO is described as in Fig.17 . Method of 

MPSONN is selected to achieve the stepping motion by NAO. 

The parameters are shown in Tab.4-Tab.6. and snapshots of 

stepping motion are shown in Fig.18. 

 
Fig.17 structure of robot NAO 

To perform the rotation of the body parts, we place a frame at 

each joint. When the robot is at the zero pose, all joint frames 

have the same orientation. Then, roll rotations take place 

around the X axis, pitch rotations around the Y axis and yaw 

rotations around the Z axis. The detail of parameters of robot  

between distance and jonts are described as in Tab.4 and Tab.5 
Tab.4 The Roll Motion 

Distance(cm) 

Joint(rad) 

0 14 28 42 56 70 84 98 

LAnkleRoll 0.45 0.59 0.59 0.44 0 0 0.16 0 

LHipRoll 0.78  0.48 0.38 0.21 0.75 1.04 0.20 0.37 

RAnkleRoll 0.50 0.36 0.38 0 0 0.49 0.61 0.52 

RHipRoll 0.64 0.06 0.52 0.29 0 0.40 0 1.03 

Tab.5 The Pitch Motion 

Distance(cm) 

Joint(rad) 

0 14 28 42 56 70 84 98 

LAnklePitch 0.00 0.88 0.93 0.00 0.05 0.00 1.12 0.71 

LKneePitch 0.76 0.27 0.32 0.94 0.84 1.09 0.08 0.38 

LHipPitch 0.00 0.27 1.06 0.25 0.20 0.08 1.15 0.03 

LHipYawPitch 0.84 0.61 0.68 0.50 0.55 0.53 1.02 0.15 

RHipPitch 1.04 0.96 0.29 1.05 0.94 1.20 0.78 1.70 

RKneePitch 0.21 0.45 0.24 0.49 0.11 0.85 0.30 0.11 

RAnklePitch 1.02 0.25 1.35 0.75 1.05 0.16 1.21 0.76 

RHipYawPitch 0.84 0.61 0.68 0.50 0.55 0.53 1.02 0.15 

 

In ladder, the sole of robot's feet can feel different 

pressure.Through the monitor, we can get the value of 

FSC(Feedback Shift Register)of four point under feet: FsrFL, 

FsFR, FarRL,FarRR, and the distance of offset: COOx, COOy. 

The value returned for each FSR is similar to Kg. If FSR are 

calibrated (see robot configuration keys), the value in kg is 

about 20% precision (depending time and real force position). 

Without calibration the error could be more important, and is 

specific to each sensor. The detail experimental datas are shown 

in Tab.6 

 
Tab. 6 Datas from FSR by NAO 

Distance(cm) 

Point(rad) 

0 14 28 42 56 70 84 98 

LFsrRR 1.13 0.36 0.41 1.27 1.04 0.73 0.49 0.01 

LFsrRL 0.01 0.20 0.01 0.01 0.38 0.85 2.11 1.21 

LFsrFR 0.18  0.00 0.01 0.01 0.00 0.00 0.07 0.02 

LFsrFL 0.02 0.02 0.02 0.02 0.02 0.00 0.03 0.03 

LCOPy 0.00 1.07 0.00 0.21 0.07 0.69 0.12 0.00 

LCOPx 0.89  0.08 0.26 0.31 0.04 0.00 0.00 2.24 

RFsrRR 0.00  0.00 0.00 0.00 0.00 0.23 0.18 0.00 

RFsrRL 0.43 0.00 0.34 0.00 0.00 0.00 0.00 0.00 

RFsrFR 0.02  0.02 0.02 0.00 0.01 0.02 0.02 0.01 

RFsrFL 0.01 0.03 0.02 0.03 0.03 0.01 0.03 0.03 

 

 

Fig. 18 Snapshots of stepping motion by NAO 

8. Conclusion 

Stepping over stairs can be taken as an example of 

walking on uneven terrain for humanoid robot. A controller 
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based on NN and FLC are designed to control the robot 

walking. A mixed PSO algorithm is present to optimize the 

weights of NN and rules of FLC. Comparison of different 

control methods are achieved through the simulations and tests 

the effectiveness of the proposed methods.  
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