2,735 research outputs found

    Leveraging Formulae and Text for Improved Math Retrieval

    Get PDF
    Large collections containing millions of math formulas are available online. Retrieving math expressions from these collections is challenging. Users can use formula, formula+text, or math questions to express their math information needs. The structural complexity of formulas requires specialized processing. Despite the existence of math search systems and online community question-answering websites for math, little is known about mathematical information needs. This research first explores the characteristics of math searches using a general search engine. The findings show how math searches are different from general searches. Then, test collections for math-aware search are introduced. The ARQMath test collections have two main tasks: 1) finding answers for math questions and 2) contextual formula search. In each test collection (ARQMath-1 to -3) the same collection is used, Math Stack Exchange posts from 2010 to 2018, introducing different topics for each task. Compared to the previous test collections, ARQMath has a much larger number of diverse topics, and improved evaluation protocol. Another key role of this research is to leverage text and math information for improved math information retrieval. Three formula search models that only use the formula, with no context are introduced. The first model is an n-gram embedding model using both symbol layout tree and operator tree representations. The second model uses tree-edit distance to re-rank the results from the first model. Finally, a learning-to-rank model that leverages full-tree, sub-tree, and vector similarity scores is introduced. To use context, Math Abstract Meaning Representation (MathAMR) is introduced, which generalizes AMR trees to include math formula operations and arguments. This MathAMR is then used for contextualized formula search using a fine-tuned Sentence-BERT model. The experiments show tree-edit distance ranking achieves the current state-of-the-art results on contextual formula search task, and the MathAMR model can be beneficial for re-ranking. This research also addresses the answer retrieval task, introducing a two-step retrieval model in which similar questions are first found and then answers previously given to those similar questions are ranked. The proposed model, fine-tunes two Sentence-BERT models, one for finding similar questions and another one for ranking the answers. For Sentence-BERT model, raw text as well as MathAMR are used

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Image Understanding by Socializing the Semantic Gap

    Get PDF
    Several technological developments like the Internet, mobile devices and Social Networks have spurred the sharing of images in unprecedented volumes, making tagging and commenting a common habit. Despite the recent progress in image analysis, the problem of Semantic Gap still hinders machines in fully understand the rich semantic of a shared photo. In this book, we tackle this problem by exploiting social network contributions. A comprehensive treatise of three linked problems on image annotation is presented, with a novel experimental protocol used to test eleven state-of-the-art methods. Three novel approaches to annotate, under stand the sentiment and predict the popularity of an image are presented. We conclude with the many challenges and opportunities ahead for the multimedia community

    æłšç›źé ˜ćŸŸæ€œć‡șăźăŸă‚ăźèŠ–èŠšçš„æłšæ„ăƒąăƒ‡ăƒ«èš­èšˆă«é–ąă™ă‚‹ç ”ç©¶

    Get PDF
    Visual attention is an important mechanism in the human visual system. When human observe images and videos, they usually do not describe all the contents in them. Instead, they tend to talk about the semantically important regions and objects in the images. The human eye is usually attracted by some regions of interest rather than the entire scene. These regions of interest that present the mainly meaningful or semantic content are called saliency region. Visual saliency detection refers to the use of intelligent algorithms to simulate human visual attention mechanism, extract both the low-level features and high-level semantic information and localize the salient object regions in images and videos. The generated saliency map indicates the regions that are likely to attract human attention. As a fundamental problem of image processing and computer vision, visual saliency detection algorithms have been extensively studied by researchers to solve practical tasks, such as image and video compression, image retargeting, object detection, etc. The visual attention mechanism adopted by saliency detection in general are divided into two categories, namely the bottom-up model and top-down model. The bottom-up attention algorithm focuses on utilizing the low-level visual features such as colour and edges to locate the salient objects. While the top-down attention utilizes the supervised learning to detect saliency. In recent years, more and more research tend to design deep neural networks with attention mechanisms to improve the accuracy of saliency detection. The design of deep attention neural network is inspired by human visual attention. The main goal is to enable the network to automatically capture the information that is critical to the target tasks and suppress irrelevant information, shift the attention from focusing on all to local. Currently various domain’s attention has been developed for saliency detection and semantic segmentation, such as the spatial attention module in convolution network, it generates a spatial attention map by utilizing the inter-spatial relationship of features; the channel attention module produces a attention by exploring the inter-channel relationship of features. All these well-designed attentions have been proven to be effective in improving the accuracy of saliency detection. This paper investigates the visual attention mechanism of salient object detection and applies it to digital histopathology image analysis for the detection and classification of breast cancer metastases. As shown in following contents, the main research contents include three parts: First, we studied the semantic attention mechanism and proposed a semantic attention approach to accurately localize the salient objects in complex scenarios. The proposed semantic attention uses Faster-RCNN to capture high-level deep features and replaces the last layer of Faster-RCNN by a FC layer and sigmoid function for visual saliency detection; it calculates proposals' attention probabilities by comparing their feature distances with the possible salient object. The proposed method introduces a re-weighting mechanism to reduce the influence of the complexity background, and a proposal selection mechanism to remove the background noise to obtain objects with accurate shape and contour. The simulation result shows that the semantic attention mechanism is robust to images with complex background due to the consideration of high-level object concept, the algorithm achieved outstanding performance among the salient object detection algorithms in the same period. Second, we designed a deep segmentation network (DSNet) for saliency object prediction. We explored a Pyramidal Attentional ASPP (PA-ASPP) module which can provide pixel level attention. DSNet extracts multi-level features with dilated ResNet-101 and the multiscale contextual information was locally weighted with the proposed PA-ASPP. The pyramid feature aggregation encodes the multi-level features from three different scales. This feature fusion incorporates neighboring scales of context features more precisely to produce better pixel-level attention. Finally, we use a scale-aware selection (SAS) module to locally weight multi-scale contextual features, capture important contexts of ASPP for the accurate and consistent dense prediction. The simulation results demonstrated that the proposed PA-ASPP is effective and can generate more coherent results. Besides, with the SAS, the model can adaptively capture the regions with different scales effectively. Finally, based on previous research on attentional mechanisms, we proposed a novel Deep Regional Metastases Segmentation (DRMS) framework for the detection and classification of breast cancer metastases. As we know, the digitalized whole slide image has high-resolution, usually has gigapixel, however the size of abnormal region is often relatively small, and most of the slide region are normal. The highly trained pathologists usually localize the regions of interest first in the whole slide, then perform precise examination in the selected regions. Even though the process is time-consuming and prone to miss diagnosis. Through observation and analysis, we believe that visual attention should be perfectly suited for the application of digital pathology image analysis. The integrated framework for WSI analysis can capture the granularity and variability of WSI, rich information from multi-grained pathological image. We first utilize the proposed attention mechanism based DSNet to detect the regional metastases in patch-level. Then, adopt the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to predict the whole metastases from individual slides. Finally, determine patient-level pN-stages by aggregating each individual slide-level prediction. In combination with the above techniques, the framework can make better use of the multi-grained information in histological lymph node section of whole-slice images. Experiments on large-scale clinical datasets (e.g., CAMELYON17) demonstrate that our method delivers advanced performance and provides consistent and accurate metastasis detection

    Information access tasks and evaluation for personal lifelogs

    Get PDF
    Emerging personal lifelog (PL) collections contain permanent digital records of information associated with individuals’ daily lives. This can include materials such as emails received and sent, web content and other documents with which they have interacted, photographs, videos and music experienced passively or created, logs of phone calls and text messages, and also personal and contextual data such as location (e.g. via GPS sensors), persons and objects present (e.g. via Bluetooth) and physiological state (e.g. via biometric sensors). PLs can be collected by individuals over very extended periods, potentially running to many years. Such archives have many potential applications including helping individuals recover partial forgotten information, sharing experiences with friends or family, telling the story of one’s life, clinical applications for the memory impaired, and fundamental psychological investigations of memory. The Centre for Digital Video Processing (CDVP) at Dublin City University is currently engaged in the collection and exploration of applications of large PLs. We are collecting rich archives of daily life including textual and visual materials, and contextual context data. An important part of this work is to consider how the effectiveness of our ideas can be measured in terms of metrics and experimental design. While these studies have considerable similarity with traditional evaluation activities in areas such as information retrieval and summarization, the characteristics of PLs mean that new challenges and questions emerge. We are currently exploring the issues through a series of pilot studies and questionnaires. Our initial results indicate that there are many research questions to be explored and that the relationships between personal memory, context and content for these tasks is complex and fascinating
    • 

    corecore