1,860 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    RBFNN based adaptive control of uncertain robot manipulators in discrete time

    Get PDF

    Admittance-based adaptive cooperative control for multiple manipulators with output constraints

    Get PDF
    This paper proposes a novel adaptive control methodology based on the admittance model for multiple manipulators transporting a rigid object cooperatively along a predefined desired trajectory. First, an admittance model is creatively applied to generate reference trajectory online for each manipulator according to the desired path of the rigid object, which is the reference input of the controller. Then, an innovative integral barrier Lyapunov function is utilized to tackle the constraints due to the physical and environmental limits. Adaptive neural networks (NNs) are also employed to approximate the uncertainties of the manipulator dynamics. Different from the conventional NN approximation method, which is usually semiglobally uniformly ultimately bounded, a switching function is presented to guarantee the global stability of the closed loop. Finally, the simulation studies are conducted on planar two-link robot manipulators to validate the efficacy of the proposed approach

    Adaptive RBFNN control of robot manipulators with finite-time convergence

    Get PDF

    Adaptive Control of Robotic Manipulators using Deep Neural Networks

    Get PDF
    In this paper, we present a lifelong deep learning-based control of robotic manipulators with nonstandard adaptive laws using singular value decomposition (SVD) based direct tracking error driven (DTED) approach. Moreover, we incorporate concurrent learning (CL) to relax persistency of excitation condition and elastic weight consolidation (EWC) for lifelong learning on different tasks in the adaptive laws. Simulation results confirm theoretical conclusions
    corecore