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Abstract: In this paper, we present a lifelong deep learning-based control of robotic manipulators with 

nonstandard adaptive laws using singular value decomposition (SVD) based direct tracking error driven 

(DTED) approach. Moreover, we incorporate concurrent learning (CL) to relax persistency of excitation 

condition and elastic weight consolidation (EWC) for lifelong learning on different tasks in the adaptive 

laws. Simulation results confirm theoretical conclusions. 
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1. INTRODUCTION 

Advanced control techniques are necessary in order for the 

robot manipulators to be applied successfully in industry 

applications. The well-known computed torque scheme from 

Lewis et al. (1998) for robot manipulator control suffers from 

performance degradation in the presence of model 

uncertainties. The addition of a neural network (NN) in the 

feedback-loop compensates from smooth uncertainties.  

In Bengio et al. (2010), it is shown that NN can approximate 

continuous functions uniformly to an arbitrary degree of 

accuracy. For the approximation, an adaptive weight tuning 

law should be derived, and closed-loop stability must be 

demonstrated. Many NN weight updates, such as gradient 

descent in Benesty et al.(1992), have been introduced. 

Although the tracking performance is acceptable for a single 

task they do not focus on learning performance. Available 

online NN control techniques from Lewis et al. (1998) are 

unsuitable for lifelong learning, which requires a continuous 

stream of available information due to changes in tasks and 

dynamics. In addition, established online NN robot control 

schemes in Werbos et al. (1991), use either a single-layer NN 

with basis functions which is difficult to select for an unknown 

system or two-layer NN in Lewis et al. (1998) with 

nonstandard weight tuning.Convergence due to the addition of 

hidden layers is not straightforward. 

 Nonlinear functions, which can be approximated by a NN 

having a polynomial number of nodes with p layers, may need 

an exponential number of nodes with p − 1 layers as shown in  

Bengio et al.(2010). Moreover, in Bengio et al. (2010) it was 

shown that deep NN with more than two hidden layers can 

approximate any nonlinear function smoothly. A two-layer NN 

based control technique in continuous time in Lewis et al. 

(1998), is presented using Taylor series expansion. Extension 

of this method by Lewis et al. (1998) to more hidden layers are 

challenging and is not reported.  

 In the literature, backpropagation as shown in Baldi et al. 

(1995) using stochastic gradient descent method (SGD) and 

supervisory learning is widely employed. Though 

backpropagation method can be used with deep NN, however, 

it is proven to be unsuitable for feedback control applications 

due to the difficulty in finding target values and demonstrating 

stability analysis. Due to the number of layers, a deep NN 

trained by backpropagation using SGD can face vanishing and 

exploding gradient Zhang et al. (2018), Wang et al (2021).  

In addition, in order to show the convergence of the weight 

estimates and robustness in the presence of parameter drift, a 

persistency of excitation (PE) condition is normally required 

as shown in Bitmead et al. (1984) and Narendra et al. (1989).  

Since it is difficult to either verify or guarantee a PE condition, 

modified updates have been introduced in Narendra et al. 

(1989). While PE condition can be relaxed in Lewis et al. 

(1998) with these methods from Narendra et al. (1989), a 

uniformly ultimately bounded (UUB) performance can only be 

determined.  In addition, it is not well understood how to 

monitor the PE effects for a deep NN with hidden layers.  

Recently, an alternate condition in Chaudhary et al. (2010) 

known as the interval excitation condition, which is similar to 

PE, but only over a fixed time interval can be utilized by using 

online data for traditional adaptive control. This concurrent 

learning method is shown to provide exponentially parameter 

convergence in the ideal case of no disturbances and 

unmodeled dynamics. However, it is not used in conjunction 

with deep NN weight tuning for adaptive NN control. In 

addition, when the number of tasks is increased, the NN with 

online learning suffers from catastrophic forgetting 

Kirkpatrick et al. (2016); hence the performance gets degraded. 

The main contribution of this paper has three folds. First a deep 

learning based NN control scheme is introduced wherein 

multiple hidden layers are tuned simultaneously online and 

without any offline learning phase. The multiple layered NN 

weight adjustment is accomplished by using tracking error 

directly instead of propagating the error backward in the case 

of traditional SGD-based backpropagation. With the proposed 

SVD based direct tracking error driven (DTED) approach, the 
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(1998) with these methods from Narendra et al. (1989), a 
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online data is used as part of deep NN based weight adaptation 
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will be shown that with the additional term, the overall system 
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Notation: Throughout the paper, the notations adopted are ℝ 

denotes the set of real numbers, ‖. ‖ denotes the Euclidean 

norm and induced two norms for a vector and matrix 

respectively,  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚,𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  denote the minimum and maximum 

eigen values respectively, tr (‘) means trace of a matrix, and I 

represent identity matrix. Next, the manipulator dynamics are 

revisited before introducing the proposed method. 

2. ROBOT DYNAMICS 

The dynamics of manipulator having n degrees-of-freedom is 

given in Lewis et al. (1998) as 

𝑀𝑀(𝑝𝑝)𝑝̈𝑝 + 𝑉𝑉𝑚𝑚(𝑝𝑝, 𝑝̇𝑝) 𝑝̇𝑝 + 𝐺𝐺 (𝑝𝑝) + 𝐹𝐹𝑑𝑑(𝑝̇𝑝) + 𝜏𝜏𝑑𝑑 = 𝜏𝜏,      (1) 

where 𝑝𝑝,  𝑝̇𝑝(𝑡𝑡),  𝑝̈𝑝(𝑡𝑡)  ∈  𝑅𝑅𝑛𝑛  represent joint angle, angular 

velocity, acceleration, respectively, 𝑀𝑀(𝑝𝑝) ∈ ℝ𝑛𝑛×𝑛𝑛 is the 

symmetric positive definite inertia matrix, 𝑉𝑉𝑚𝑚(𝑝𝑝, 𝑝̇𝑝) ∈ ℝ𝑛𝑛×1 is 

a Coriolis and centripetal torque matrix, 𝐺𝐺(𝑝𝑝) ∈ ℝ𝑛𝑛×1 is the 

gravitational vector, 𝜏𝜏 ∈ ℝ𝑛𝑛×1 is the joint actuator torque, 

𝜏𝜏𝑑𝑑 ∈ ℝ𝑛𝑛×1 denotes the unknown bounded disturbance and 

𝐹𝐹𝑑𝑑(𝑝̇𝑝) ∈ ℝ𝑛𝑛×1 is the viscous friction. The robot dynamics has 

the following properties: 

Property 1: 𝑀̇𝑀 − 2𝑉𝑉𝑚𝑚 is skew symmetric. 
     Property 2: The unknown disturbance satisfies ‖𝜏𝜏𝑑𝑑‖ <
       𝑏𝑏𝑑𝑑, 𝑏𝑏𝑑𝑑 > 0. 

 The objective is to develop a deep or multilayer NN 

controller so that the joint angles, p, of the robotic manipulator 

can track the reference input 𝑝𝑝𝑑𝑑 ∈ ℝ𝑛𝑛 with bounded and small 

error while mitigating the unstable gradient problem and 

maintaining lifelong learning.  

3. PROPOSED METHOD 

 A deep learning-based control method for robotic 

manipulators in the continuous-time domain using a direct 

tracking error-driven approach (DTED) via singular value 

decomposition (SVD) is being developed to enhance 

performance and for lifelong learning. We can use n-layers 

using this method, however for the sake of simplicity four- 

layer NN is considered. The weight matrix for each layer is 

denoted as V, W, B, D for the first, second, third, and fourth 

layers, respectively. The robotic filtered tracking error 

dynamics and the deep NN learning approach using SVD are 

introduced next.  

 The vanishing and exploding gradient as discussed in 

Zhang et al. (2018) that normally occurs in deep NN, as the 

name suggests, must be mitigated.  Usually, a special type of 

activation function, RELU, is employed whereas in this paper 

we will use SVD, sigmoid and nonstandard weight tuning law 

to mitigate the instability of the gradients by using the singular 

values. Next, four-layer NN based control design is explained. 

3.1 Four-layer Neural Network-based Control Design 

Define tracking error and filtered tracking error as 

𝑒𝑒 = 𝑝𝑝𝑑𝑑 − 𝑝𝑝,                                     (2) 

𝑟𝑟 = 𝑒̇𝑒 +∧ 𝑒𝑒,                                    (3) 

where ∧ ∈ ℝ𝑛𝑛×𝑛𝑛   is a positive diagonal matrix, 𝑒𝑒(𝑡𝑡) ∈ ℝ𝑛𝑛 is 

the position tracking error, 𝑟𝑟(𝑡𝑡) ∈ ℝ𝑛𝑛 is the filtered tracking 

error. Taking the derivative of (3) with respect to time and 

multiplying by 𝑀𝑀(𝑝𝑝) and substituting in (1), we get 

𝑀𝑀𝑟̇𝑟 = −𝑉𝑉𝑚𝑚𝑟𝑟 − 𝜏𝜏 + 𝜏𝜏𝑑𝑑 + 𝑓𝑓,                       (4) 

where  
𝑓𝑓(𝑋𝑋) = 𝑀𝑀(𝑝𝑝)(𝑝̈𝑝𝑑𝑑 +  ∧ 𝑒̇𝑒) + 𝑉𝑉𝑚𝑚(𝑝𝑝, 𝑝̇𝑝)(𝑝̇𝑝𝑑𝑑 +∧ 𝑒𝑒) + 𝐺𝐺(𝑝𝑝) + 𝐹𝐹(𝑝̇𝑝). 

The vector 𝑋𝑋 = [1, 𝑋̅𝑋] ∈ ℝ𝑛𝑛1+1, 𝑋̅𝑋 = [𝑥𝑥1, … 𝑥𝑥𝑛𝑛1]𝑇𝑇 ∈
ℝ𝑛𝑛1in our case 𝑋̅𝑋  ≡ [𝑒𝑒𝑇𝑇 𝑒̇𝑒𝑇𝑇 𝑝𝑝𝑑𝑑

𝑇𝑇 𝑝𝑝𝑑̇𝑑
𝑇𝑇 𝑝̈𝑝𝑑𝑑

𝑇𝑇] which can be 

measured. 

A general sort of approximate based controller is designed 

as shown in Lewis et al. (1998) as 

𝜏𝜏 = 𝑓𝑓 + 𝐾𝐾𝑣𝑣𝑟𝑟 − 𝑣𝑣,                                   (5) 

where 𝑓𝑓(𝑥𝑥) is an estimate of  𝑓𝑓(𝑥𝑥), 𝐾𝐾𝑣𝑣 = 𝐾𝐾𝑣𝑣
𝑇𝑇 > 0 is the 

𝑛𝑛 × 𝑛𝑛 gain matrix and  𝑣𝑣 provides robustness in the face of 

higher order terms. Substituting (5) in (4) yields 

𝑀𝑀𝑟̇𝑟 = −𝑉𝑉𝑚𝑚𝑟𝑟 − 𝐾𝐾𝑣𝑣𝑟𝑟 + 𝑓𝑓 + 𝜏𝜏𝑑𝑑 + 𝑣𝑣,                  (6) 

where 𝑓𝑓(𝑋𝑋) = 𝑓𝑓(𝑋𝑋) − 𝑓𝑓(𝑋𝑋), the unknown nonlinear function 

approximation error given by a four-layer NN.  

Considering 𝑦̂𝑦 = [𝑦̂𝑦1, … 𝑦̂𝑦𝑛𝑛2]𝑇𝑇 ∈ ℝ𝑛𝑛2. Let a NN estimate 

of 𝑓𝑓(𝑥𝑥) by using a four -layer NN is given by 

𝑓𝑓(𝑋𝑋) = 𝐷̂𝐷𝑇𝑇𝜎𝜎1 (𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))) + 𝜖𝜖1,                  (7) 

where 𝜖𝜖1 is the NN reconstruction error that is considered to 

be bounded such that  ‖𝜖𝜖1‖ <  𝜖𝜖𝑁𝑁, where 𝜖𝜖𝑁𝑁 is known 

constant and  𝑉̂𝑉, 𝑍̂𝑍, 𝑊̂𝑊, 𝐷̂𝐷 represent the actual NN weights 

given by tuning scheme. The first hidden layer has 𝑚𝑚1 

neurons, the second hidden layer has 𝑚𝑚2 neurons, the third 

hidden layer has 𝑚𝑚3 neurons, the NN weight matrices  

 𝑉̂𝑉 ∈ ℝ(𝑛𝑛1+1)×𝑚𝑚1 , 𝑍̂𝑍 ∈ ℝ(𝑚𝑚1+1)×𝑚𝑚2 , 𝑊̂𝑊 ∈ ℝ(𝑚𝑚2+1)×𝑚𝑚3, 𝐷̂𝐷 ∈
ℝ(𝑚𝑚3+1)×𝑛𝑛2 . We use 𝜎𝜎1(. ) ∈ ℝ𝑚𝑚3+1, 𝜎𝜎2(. ) ∈ ℝ𝑚𝑚2+1, 𝜎𝜎3(. ) ∈
ℝ𝑚𝑚3+1. Let’s define 𝜎̃𝜎𝑘𝑘 = 𝜎𝜎𝑘𝑘 − 𝜎̂𝜎𝑘𝑘, 𝑉̃𝑉 = 𝑉𝑉 − 𝑉̂𝑉, 𝑊̃𝑊 = 𝑊𝑊 −
𝑊̂𝑊, 𝑍𝑍 = 𝑍𝑍 − 𝑍̂𝑍, 𝐷̃𝐷 = 𝐷𝐷 − 𝐷̂𝐷.  Let’s define 𝜎𝜎1 =
𝜎𝜎(𝑊𝑊𝑇𝑇𝜎𝜎2), 𝜎𝜎2 = 𝜎𝜎(𝑍𝑍𝑇𝑇𝜎𝜎3), 𝜎𝜎3 = 𝜎𝜎(𝑉𝑉𝑇𝑇𝑋𝑋).  

Moreover, we express 𝜎̂𝜎1
′ = 𝑑𝑑𝜎𝜎1(𝑠𝑠)

𝑑𝑑𝑑𝑑 |𝑊̂𝑊𝑇𝑇𝜎̂𝜎2,  𝜎𝜎2̂
′ = 𝑑𝑑𝜎𝜎2

𝑑𝑑𝑑𝑑 |𝑠𝑠 =
𝑍̂𝑍𝑇𝑇𝜎̂𝜎2,  𝜎̂𝜎3 = 𝑑𝑑𝜎𝜎3(𝑠𝑠)

𝑑𝑑𝑑𝑑 | 𝑠𝑠 = 𝑉̂𝑉𝑇𝑇𝑋𝑋. 

Using value of 𝑓𝑓 = 𝑓𝑓 − 𝑓𝑓 in (6) 

𝑀𝑀𝑟̇𝑟 = −(𝐾𝐾𝑣𝑣 + 𝑉𝑉𝑚𝑚)𝑟𝑟 + 𝑓𝑓 − 𝑓𝑓 + 𝑣𝑣 + 𝜏𝜏𝑑𝑑                  (8)                                                                                              

𝑀𝑀𝑟̇𝑟 = −(𝐾𝐾𝑣𝑣 + 𝑉𝑉𝑚𝑚)𝑟𝑟 − 𝐷̂𝐷𝑇𝑇𝜎𝜎 (𝑊̂𝑊𝑇𝑇𝜎𝜎 (𝑍̂𝑍𝑇𝑇𝜎𝜎(𝑉̂𝑉𝑇𝑇𝑋𝑋))) +

𝐷𝐷𝑇𝑇𝜎𝜎 (𝑊𝑊𝑇𝑇𝜎𝜎(𝑍𝑍𝑇𝑇𝜎𝜎(𝑉𝑉𝑇𝑇𝑋𝑋))) + 𝜖𝜖 + 𝜏𝜏𝑑𝑑 + 𝑣𝑣.                            (9)      

Following the procedure Lewis et al (1996) one can write 

𝑓𝑓 − 𝑓𝑓 = 𝐷𝐷𝑇𝑇𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋))) −

                      𝐷̂𝐷𝑇𝑇𝜎𝜎1 (𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))) + 𝜖𝜖                  (10)                

 𝑓𝑓 − 𝑓𝑓 = 𝐷𝐷𝑇𝑇𝜎𝜎1 − 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1 + 𝜖𝜖 .                       (11)                                                                                               
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Add and subtract  𝐷𝐷𝑇𝑇𝜎̂𝜎1 in (9) we get 

𝑓𝑓 − 𝑓𝑓 = 𝐷𝐷𝑇𝑇𝜎̃𝜎1 − 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1 + 𝐷𝐷𝑇𝑇𝜎̂𝜎1 + 𝜖𝜖 ,          (12)                                                                                       

add and subtract 𝐷̂𝐷𝑇𝑇𝜎̃𝜎1 in (11) 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇 𝜎̂𝜎1 + 𝐷̃𝐷𝑇𝑇𝜎̃𝜎1 + 𝐷̂𝐷𝜎̃𝜎1 + 𝜖𝜖 .         (13)                                                                                              

Taylor series expansion of       

𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)))  𝑎𝑎𝑎𝑎 𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)), 
𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) 𝑎𝑎𝑎𝑎 𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎  𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋) 𝑎𝑎𝑎𝑎 𝑉̂𝑉𝑇𝑇𝑋𝑋 can 
be written as 

𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋))) = 𝜎𝜎1 (𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))) +

𝜎̂𝜎1
′ [𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) − 𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))] + 𝑂𝑂1(. ), 

𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) = 𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)) + 𝜎𝜎2̂
′[𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋) −

𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)] + 𝑂𝑂2(. )       

    𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋) = 𝜎̂𝜎3 + 𝜎̂𝜎3
′𝑉̃𝑉𝑇𝑇𝑋𝑋 + 𝑂𝑂3(. ) .                 (14) 

                                                                                             

Note that 𝑂𝑂1(. ),  𝑂𝑂2(. ),  𝑂𝑂3(. ) are short notations for 

𝑂𝑂(𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) − 𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))), 

𝑂𝑂 (𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋) − 𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)) , 𝑂𝑂(𝑉̃𝑉𝑇𝑇𝑋𝑋) respectively. 

From (14) it is evident that  

𝜎̃𝜎1 = 𝜎𝜎1̂
′[𝑊𝑊𝑇𝑇𝜎𝜎2 − 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2] + 𝑂𝑂1(. )  ,               (15)                                                                                            

𝜎̃𝜎2 = 𝜎̂𝜎2
′[𝑍𝑍𝑇𝑇𝜎𝜎3 − 𝑍̂𝑍𝑇𝑇𝜎̂𝜎3] + 𝑂𝑂2(. )  ,                  (16)                                                                                                

𝜎̃𝜎3 = 𝜎̂𝜎3
′[𝑉̃𝑉𝑇𝑇𝑋𝑋] + 𝑂𝑂3(. )  ,                         (17)                                                                                                               

Substituting (15) into (12) 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇 (𝜎̂𝜎1 + 𝜎̂𝜎1
′[𝑊𝑊𝑇𝑇𝜎𝜎2 − 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2] + 𝑂𝑂1(. )) + 𝐷̂𝐷𝑇𝑇𝜎̃𝜎1 + 𝜖𝜖                                             

  (18) 

where 

𝑊𝑊𝑇𝑇𝜎𝜎2 = (𝑊̃𝑊 + 𝑊̂𝑊)(𝜎̃𝜎2  + 𝜎̂𝜎2) = 𝑊̃𝑊𝜎̃𝜎2 + 𝑊̃𝑊𝜎̂𝜎2 + 𝑊̂𝑊𝜎̃𝜎2 +
𝑊̂𝑊𝜎𝜎2̂ .                                              (19) 

Using (19) in (18) and rearranging (18) yields 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 + 𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̃𝜎2) + 𝐷̂𝐷𝑇𝑇𝜎̃𝜎1 +
            [𝐷̃𝐷𝑇𝑇 (𝜎̂𝜎1

′[𝑊̃𝑊𝑇𝑇𝜎𝜎2 + 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2] + 𝑂𝑂1(. )) + 𝜖𝜖] .               (20) 

From (19), (20) can be written as 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇 (𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 − 𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −

𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇(𝜎̂𝜎3′(𝑉̂𝑉𝑇𝑇𝑋𝑋) )) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̃𝑊𝑇𝑇(𝜎̂𝜎2 − 𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −
𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍𝑍𝑇𝑇(𝜎̂𝜎3 − 𝜎̂𝜎3

′𝑉̂𝑉𝑇𝑇𝑋𝑋) +
𝐷̂𝐷𝑇𝑇(𝜎𝜎1̂

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎𝜎3̂

′𝑉̃𝑉𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′𝑊𝑊𝑇𝑇𝑂𝑂2(. ) +

𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̃𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝜎𝜎3 + 𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′ 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝑂𝑂3(. ) +
𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍𝑍𝑇𝑇𝜎̂𝜎3

′𝑉𝑉𝑇𝑇𝑋𝑋 + [𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊𝑊𝑇𝑇𝜎𝜎2) + 𝐷̃𝐷𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 +

    𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎𝜎2̂

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷𝐷𝑇𝑇𝑂𝑂1(. ) + 𝜖𝜖].                    (21)   

On further simplifying (21) we get                                                               

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 − 𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −
𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̃𝑊𝑇𝑇(𝜎̂𝜎2 − 𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −

𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3

′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇(𝜎̂𝜎3 − 𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) +

          𝐷̂𝐷𝑇𝑇(𝜎𝜎1̂
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̃𝑉𝑋𝑋) + 𝜖𝜖,̅                                  (22) 

with 

𝜖𝜖̅ = 𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′𝑊𝑊𝑇𝑇𝑂𝑂2(. ) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̃𝑊𝑇𝑇𝜎̂𝜎2
′𝑍𝑍𝑇𝑇𝜎𝜎3 +

𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′ 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝑂𝑂3(. ) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝜎̂𝜎3
′𝑉𝑉𝑇𝑇𝑋𝑋 +

[𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊𝑊𝑇𝑇𝜎𝜎2) + 𝐷̃𝐷𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 +

    𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎𝜎2̂

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷𝐷𝑇𝑇𝑂𝑂1(. ) + 𝜖𝜖].                  (23) 

Following the procedure from Lewis et al. (1996) (Lemma 

4.3.1), and using the fact that 𝜎𝜎𝑘𝑘(. ) and its derivatives are 

bounded, and from (13-14) we can show that 

‖𝑂𝑂3(. )‖ ≤ 𝑐𝑐𝑜𝑜 + 𝑐𝑐1‖𝑋𝑋‖ + 𝑐𝑐2‖𝑉̂𝑉‖𝐹𝐹‖𝑋𝑋‖,             (24)                                                                                               

‖𝑂𝑂2(. )‖ ≤ 𝑐𝑐3 + 𝑐𝑐4‖𝑍̂𝑍‖𝐹𝐹 ,                             (25)                                                                                                                       

‖𝑂𝑂1(. )‖ ≤ 𝑐𝑐5 + 𝑐𝑐6‖𝑊̂𝑊‖𝐹𝐹,                       (26)                                                                                                                     

where 𝑐𝑐𝑖𝑖, 𝑖𝑖 ∈ {0, . .6} are positive constants  

Using the value of 𝐷𝐷𝑇𝑇𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋))) −

𝐷̂𝐷𝑇𝑇𝜎𝜎1 (𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))) from (28) in (9) we get 

𝑀𝑀𝑟̇𝑟 = −(𝐾𝐾𝑣𝑣 + 𝑉𝑉𝑚𝑚)𝑟𝑟 + 𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 − 𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −
𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̃𝑊𝑇𝑇(𝜎̂𝜎2 − 𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −

𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3

′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇(𝜎̂𝜎3 − 𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) +

𝐷̂𝐷𝑇𝑇(𝜎𝜎1̂
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎𝜎3̂
′𝑉̃𝑉𝑋𝑋) + 𝜖𝜖̅ + 𝜏𝜏𝑑𝑑 + 𝑣𝑣.                           (27) 

This 𝑀𝑀𝑟̇𝑟 is used in the stability analysis of the system using the 

proposed update laws and control input. Next the traditional 

backpropagation for four-layer NN is explained.  

The backpropagation method shown in Baldi et al. (1995) 

provides a way to compute the gradient of the cost function. 

Let x being the NN input, and 𝑎𝑎𝑙𝑙 is the corresponding 

activation function for the input layer. For layers 2,3, … 𝑙𝑙 define 

 𝑧𝑧𝑙𝑙 = 𝑤𝑤𝑙𝑙𝑎𝑎𝑙𝑙−1 + 𝑏𝑏𝑙𝑙 and 𝑎𝑎𝑙𝑙 = 𝜎𝜎(𝑧𝑧𝑙𝑙). 

 Compute the output error as 

                                 𝛿𝛿𝑙𝑙 = ∇𝑎𝑎𝐶𝐶 ⊙ 𝜎𝜎′(𝑧𝑧𝑙𝑙) .                             (28) 

The activation 𝑎𝑎𝑗𝑗
𝑙𝑙 of the 𝑗𝑗𝑗𝑗ℎ neuron in the lth layer is related 

to activations in the(𝑙𝑙 − 1)𝑡𝑡ℎ layer through this equation 

𝑎𝑎𝑗𝑗
𝑙𝑙 = 𝜎𝜎(∑ 𝑤𝑤𝑗𝑗𝑗𝑗

𝑙𝑙
𝑘𝑘 𝑎𝑎𝑘𝑘

𝑙𝑙−1 + 𝑏𝑏𝑗𝑗
𝑙𝑙) .                    (29) 

For each layer l= 𝑙𝑙 − 1, 𝑙𝑙 − 2… ,2 define 𝛿𝛿𝑙𝑙 as 

                 𝛿𝛿𝑙𝑙 = ((𝑤𝑤𝑙𝑙+1)𝑇𝑇𝛿𝛿𝑙𝑙+1) ⊙ 𝜎𝜎′(𝑧𝑧𝐿𝐿) .                  (30) 

Now consider a four-layer NN with V, Z, W, D  the weights 

for the 1st ,2nd, 3rd, and 4th  layer, respectively and the output of 

1st ,2nd, 3rd, and 4th   layer as  𝑧𝑧𝑙𝑙 = 𝜎𝜎(𝑉𝑉𝑇𝑇𝑥𝑥),  ℎ𝑙𝑙 = 𝜎𝜎(𝑍𝑍𝑧𝑧𝑙𝑙), 𝑔𝑔𝑙𝑙 =
𝜎𝜎(𝑊𝑊𝐹𝐹𝑖𝑖),  𝑦𝑦 = 𝜎𝜎(𝐷𝐷𝐺𝐺𝑘𝑘)  where x is the input. Now errors can 

be calculated as 

𝛿𝛿4 = (𝑎𝑎𝐿𝐿 − 𝑦𝑦) ⊙ 𝜎𝜎′(𝐷𝐷𝑔𝑔𝑙𝑙),                         (31) 

𝛿𝛿3 = 𝐷𝐷𝑇𝑇𝛿𝛿4 ⊙ 𝜎𝜎′(𝑊𝑊ℎ𝑙𝑙 ),                            (32) 

𝛿𝛿2 = 𝑊𝑊𝑇𝑇𝛿𝛿3 ⊙ 𝜎𝜎′(𝑍𝑍𝑧𝑧𝑙𝑙),                            (33) 

𝛿𝛿1 = 𝑍𝑍𝑇𝑇𝛿𝛿2 ⊙ 𝜎𝜎′(𝑉𝑉𝑉𝑉).                             (34) 

Update laws can be defined as 

𝐷̇𝐷 = 𝜎𝜎(𝑊𝑊𝐹𝐹𝑖𝑖)(𝛿𝛿4)𝑇𝑇,                               (35) 

𝑊̇𝑊 = 𝜎𝜎(𝑍𝑍𝑧𝑧𝑙𝑙)(𝛿𝛿3)𝑇𝑇,                              (36) 

𝑍̇𝑍 = 𝜎𝜎(𝑉𝑉𝑇𝑇𝑥𝑥)(𝛿𝛿2)𝑇𝑇,                              (37) 

𝑉̇𝑉 = 𝑥𝑥(𝛿𝛿1)𝑇𝑇,                                    (38) 

where 𝑎𝑎𝐿𝐿 − 𝑦𝑦 is the output error which is used to tune the NN 

weights in the case of traditional SGD-based backpropagation. 

Replace 𝑎𝑎𝐿𝐿 − 𝑦𝑦 = 𝑟𝑟 as defined in (3) for filtered tracking 

error-based backpropagation since there are no targets that can 

be generated for the nonlinear dynamics.  Normally for 

traditional backpropagation method with SGD, the NN output 

will be compared with a target output and this error is utilized 

to tune the NN layered weights. In contrast in the case of 
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Add and subtract  𝐷𝐷𝑇𝑇𝜎̂𝜎1 in (9) we get 

𝑓𝑓 − 𝑓𝑓 = 𝐷𝐷𝑇𝑇𝜎̃𝜎1 − 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1 + 𝐷𝐷𝑇𝑇𝜎̂𝜎1 + 𝜖𝜖 ,          (12)                                                                                       

add and subtract 𝐷̂𝐷𝑇𝑇𝜎̃𝜎1 in (11) 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇 𝜎̂𝜎1 + 𝐷̃𝐷𝑇𝑇𝜎̃𝜎1 + 𝐷̂𝐷𝜎̃𝜎1 + 𝜖𝜖 .         (13)                                                                                              

Taylor series expansion of       

𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)))  𝑎𝑎𝑎𝑎 𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)), 
𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) 𝑎𝑎𝑎𝑎 𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎  𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋) 𝑎𝑎𝑎𝑎 𝑉̂𝑉𝑇𝑇𝑋𝑋 can 
be written as 

𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋))) = 𝜎𝜎1 (𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))) +

𝜎̂𝜎1
′ [𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) − 𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))] + 𝑂𝑂1(. ), 

𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) = 𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)) + 𝜎𝜎2̂
′[𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋) −

𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)] + 𝑂𝑂2(. )       

    𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋) = 𝜎̂𝜎3 + 𝜎̂𝜎3
′𝑉̃𝑉𝑇𝑇𝑋𝑋 + 𝑂𝑂3(. ) .                 (14) 

                                                                                             

Note that 𝑂𝑂1(. ),  𝑂𝑂2(. ),  𝑂𝑂3(. ) are short notations for 

𝑂𝑂(𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋)) − 𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))), 

𝑂𝑂 (𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋) − 𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋)) , 𝑂𝑂(𝑉̃𝑉𝑇𝑇𝑋𝑋) respectively. 

From (14) it is evident that  

𝜎̃𝜎1 = 𝜎𝜎1̂
′[𝑊𝑊𝑇𝑇𝜎𝜎2 − 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2] + 𝑂𝑂1(. )  ,               (15)                                                                                            

𝜎̃𝜎2 = 𝜎̂𝜎2
′[𝑍𝑍𝑇𝑇𝜎𝜎3 − 𝑍̂𝑍𝑇𝑇𝜎̂𝜎3] + 𝑂𝑂2(. )  ,                  (16)                                                                                                

𝜎̃𝜎3 = 𝜎̂𝜎3
′[𝑉̃𝑉𝑇𝑇𝑋𝑋] + 𝑂𝑂3(. )  ,                         (17)                                                                                                               

Substituting (15) into (12) 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇 (𝜎̂𝜎1 + 𝜎̂𝜎1
′[𝑊𝑊𝑇𝑇𝜎𝜎2 − 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2] + 𝑂𝑂1(. )) + 𝐷̂𝐷𝑇𝑇𝜎̃𝜎1 + 𝜖𝜖                                             

  (18) 

where 

𝑊𝑊𝑇𝑇𝜎𝜎2 = (𝑊̃𝑊 + 𝑊̂𝑊)(𝜎̃𝜎2  + 𝜎̂𝜎2) = 𝑊̃𝑊𝜎̃𝜎2 + 𝑊̃𝑊𝜎̂𝜎2 + 𝑊̂𝑊𝜎̃𝜎2 +
𝑊̂𝑊𝜎𝜎2̂ .                                              (19) 

Using (19) in (18) and rearranging (18) yields 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 + 𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̃𝜎2) + 𝐷̂𝐷𝑇𝑇𝜎̃𝜎1 +
            [𝐷̃𝐷𝑇𝑇 (𝜎̂𝜎1

′[𝑊̃𝑊𝑇𝑇𝜎𝜎2 + 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2] + 𝑂𝑂1(. )) + 𝜖𝜖] .               (20) 

From (19), (20) can be written as 

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇 (𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 − 𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −

𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇(𝜎̂𝜎3′(𝑉̂𝑉𝑇𝑇𝑋𝑋) )) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̃𝑊𝑇𝑇(𝜎̂𝜎2 − 𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −
𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍𝑍𝑇𝑇(𝜎̂𝜎3 − 𝜎̂𝜎3

′𝑉̂𝑉𝑇𝑇𝑋𝑋) +
𝐷̂𝐷𝑇𝑇(𝜎𝜎1̂

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎𝜎3̂

′𝑉̃𝑉𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′𝑊𝑊𝑇𝑇𝑂𝑂2(. ) +

𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̃𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝜎𝜎3 + 𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′ 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝑂𝑂3(. ) +
𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍𝑍𝑇𝑇𝜎̂𝜎3

′𝑉𝑉𝑇𝑇𝑋𝑋 + [𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊𝑊𝑇𝑇𝜎𝜎2) + 𝐷̃𝐷𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 +

    𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎𝜎2̂

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷𝐷𝑇𝑇𝑂𝑂1(. ) + 𝜖𝜖].                    (21)   

On further simplifying (21) we get                                                               

𝑓𝑓 − 𝑓𝑓 = 𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 − 𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −
𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̃𝑊𝑇𝑇(𝜎̂𝜎2 − 𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −

𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3

′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇(𝜎̂𝜎3 − 𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) +

          𝐷̂𝐷𝑇𝑇(𝜎𝜎1̂
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̃𝑉𝑋𝑋) + 𝜖𝜖,̅                                  (22) 

with 

𝜖𝜖̅ = 𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′𝑊𝑊𝑇𝑇𝑂𝑂2(. ) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̃𝑊𝑇𝑇𝜎̂𝜎2
′𝑍𝑍𝑇𝑇𝜎𝜎3 +

𝐷̂𝐷𝑇𝑇𝜎𝜎1̂
′ 𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝑂𝑂3(. ) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇𝜎̂𝜎3
′𝑉𝑉𝑇𝑇𝑋𝑋 +

[𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊𝑊𝑇𝑇𝜎𝜎2) + 𝐷̃𝐷𝜎̂𝜎1

′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 +

    𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎𝜎2̂

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷𝐷𝑇𝑇𝑂𝑂1(. ) + 𝜖𝜖].                  (23) 

Following the procedure from Lewis et al. (1996) (Lemma 

4.3.1), and using the fact that 𝜎𝜎𝑘𝑘(. ) and its derivatives are 

bounded, and from (13-14) we can show that 

‖𝑂𝑂3(. )‖ ≤ 𝑐𝑐𝑜𝑜 + 𝑐𝑐1‖𝑋𝑋‖ + 𝑐𝑐2‖𝑉̂𝑉‖𝐹𝐹‖𝑋𝑋‖,             (24)                                                                                               

‖𝑂𝑂2(. )‖ ≤ 𝑐𝑐3 + 𝑐𝑐4‖𝑍̂𝑍‖𝐹𝐹 ,                             (25)                                                                                                                       

‖𝑂𝑂1(. )‖ ≤ 𝑐𝑐5 + 𝑐𝑐6‖𝑊̂𝑊‖𝐹𝐹,                       (26)                                                                                                                     

where 𝑐𝑐𝑖𝑖, 𝑖𝑖 ∈ {0, . .6} are positive constants  

Using the value of 𝐷𝐷𝑇𝑇𝜎𝜎1 (𝑊𝑊𝑇𝑇𝜎𝜎2(𝑍𝑍𝑇𝑇𝜎𝜎3(𝑉𝑉𝑇𝑇𝑋𝑋))) −

𝐷̂𝐷𝑇𝑇𝜎𝜎1 (𝑊̂𝑊𝑇𝑇𝜎𝜎2 (𝑍̂𝑍𝑇𝑇𝜎𝜎3(𝑉̂𝑉𝑇𝑇𝑋𝑋))) from (28) in (9) we get 

𝑀𝑀𝑟̇𝑟 = −(𝐾𝐾𝑣𝑣 + 𝑉𝑉𝑚𝑚)𝑟𝑟 + 𝐷̃𝐷𝑇𝑇(𝜎̂𝜎1 − 𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2 − 𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −
𝜎̂𝜎1

′𝑊̂𝑊1
𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1

′𝑊̃𝑊𝑇𝑇(𝜎̂𝜎2 − 𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3 −

𝜎̂𝜎2
′𝑍̂𝑍𝑇𝑇𝜎̂𝜎3

′𝑉̂𝑉𝑇𝑇𝑋𝑋) + 𝐷̂𝐷𝑇𝑇𝜎̂𝜎1
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍𝑍𝑇𝑇(𝜎̂𝜎3 − 𝜎̂𝜎3
′𝑉̂𝑉𝑇𝑇𝑋𝑋) +

𝐷̂𝐷𝑇𝑇(𝜎𝜎1̂
′𝑊̂𝑊𝑇𝑇𝜎̂𝜎2

′𝑍̂𝑍𝑇𝑇𝜎𝜎3̂
′𝑉̃𝑉𝑋𝑋) + 𝜖𝜖̅ + 𝜏𝜏𝑑𝑑 + 𝑣𝑣.                           (27) 

This 𝑀𝑀𝑟̇𝑟 is used in the stability analysis of the system using the 

proposed update laws and control input. Next the traditional 

backpropagation for four-layer NN is explained.  

The backpropagation method shown in Baldi et al. (1995) 

provides a way to compute the gradient of the cost function. 

Let x being the NN input, and 𝑎𝑎𝑙𝑙 is the corresponding 

activation function for the input layer. For layers 2,3, … 𝑙𝑙 define 

 𝑧𝑧𝑙𝑙 = 𝑤𝑤𝑙𝑙𝑎𝑎𝑙𝑙−1 + 𝑏𝑏𝑙𝑙 and 𝑎𝑎𝑙𝑙 = 𝜎𝜎(𝑧𝑧𝑙𝑙). 

 Compute the output error as 

                                 𝛿𝛿𝑙𝑙 = ∇𝑎𝑎𝐶𝐶 ⊙ 𝜎𝜎′(𝑧𝑧𝑙𝑙) .                             (28) 

The activation 𝑎𝑎𝑗𝑗
𝑙𝑙 of the 𝑗𝑗𝑗𝑗ℎ neuron in the lth layer is related 

to activations in the(𝑙𝑙 − 1)𝑡𝑡ℎ layer through this equation 

𝑎𝑎𝑗𝑗
𝑙𝑙 = 𝜎𝜎(∑ 𝑤𝑤𝑗𝑗𝑗𝑗

𝑙𝑙
𝑘𝑘 𝑎𝑎𝑘𝑘

𝑙𝑙−1 + 𝑏𝑏𝑗𝑗
𝑙𝑙) .                    (29) 

For each layer l= 𝑙𝑙 − 1, 𝑙𝑙 − 2… ,2 define 𝛿𝛿𝑙𝑙 as 

                 𝛿𝛿𝑙𝑙 = ((𝑤𝑤𝑙𝑙+1)𝑇𝑇𝛿𝛿𝑙𝑙+1) ⊙ 𝜎𝜎′(𝑧𝑧𝐿𝐿) .                  (30) 

Now consider a four-layer NN with V, Z, W, D  the weights 

for the 1st ,2nd, 3rd, and 4th  layer, respectively and the output of 

1st ,2nd, 3rd, and 4th   layer as  𝑧𝑧𝑙𝑙 = 𝜎𝜎(𝑉𝑉𝑇𝑇𝑥𝑥),  ℎ𝑙𝑙 = 𝜎𝜎(𝑍𝑍𝑧𝑧𝑙𝑙), 𝑔𝑔𝑙𝑙 =
𝜎𝜎(𝑊𝑊𝐹𝐹𝑖𝑖),  𝑦𝑦 = 𝜎𝜎(𝐷𝐷𝐺𝐺𝑘𝑘)  where x is the input. Now errors can 

be calculated as 

𝛿𝛿4 = (𝑎𝑎𝐿𝐿 − 𝑦𝑦) ⊙ 𝜎𝜎′(𝐷𝐷𝑔𝑔𝑙𝑙),                         (31) 

𝛿𝛿3 = 𝐷𝐷𝑇𝑇𝛿𝛿4 ⊙ 𝜎𝜎′(𝑊𝑊ℎ𝑙𝑙 ),                            (32) 

𝛿𝛿2 = 𝑊𝑊𝑇𝑇𝛿𝛿3 ⊙ 𝜎𝜎′(𝑍𝑍𝑧𝑧𝑙𝑙),                            (33) 

𝛿𝛿1 = 𝑍𝑍𝑇𝑇𝛿𝛿2 ⊙ 𝜎𝜎′(𝑉𝑉𝑉𝑉).                             (34) 

Update laws can be defined as 

𝐷̇𝐷 = 𝜎𝜎(𝑊𝑊𝐹𝐹𝑖𝑖)(𝛿𝛿4)𝑇𝑇,                               (35) 

𝑊̇𝑊 = 𝜎𝜎(𝑍𝑍𝑧𝑧𝑙𝑙)(𝛿𝛿3)𝑇𝑇,                              (36) 

𝑍̇𝑍 = 𝜎𝜎(𝑉𝑉𝑇𝑇𝑥𝑥)(𝛿𝛿2)𝑇𝑇,                              (37) 

𝑉̇𝑉 = 𝑥𝑥(𝛿𝛿1)𝑇𝑇,                                    (38) 

where 𝑎𝑎𝐿𝐿 − 𝑦𝑦 is the output error which is used to tune the NN 

weights in the case of traditional SGD-based backpropagation. 

Replace 𝑎𝑎𝐿𝐿 − 𝑦𝑦 = 𝑟𝑟 as defined in (3) for filtered tracking 

error-based backpropagation since there are no targets that can 

be generated for the nonlinear dynamics.  Normally for 

traditional backpropagation method with SGD, the NN output 

will be compared with a target output and this error is utilized 

to tune the NN layered weights. In contrast in the case of 

tracking error-based backpropagation, the filtered tracking 

error is backpropagated back for tuning the layered weights. 

 But as the number of layers increases, the vanishing 

gradient problem still arises in the traditional and tracking 

error-based backpropagation method, which must be mitigated 

to improve the learning effectiveness.  Therefore, a SVD based 

DTED approach is introduced next. 

3.2 Weight Update Laws Using Singular Value 

Decomposition 

The weight update laws for four layers are given below    

𝐷̇̂𝐷 = 𝐶𝐶(𝜎̂𝜎1 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊 
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 −

                           𝐴𝐴𝑑̇𝑑𝑊̂𝑊 
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇,                              (39)  

𝑊̇̂𝑊 = 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 , (40)                                                                              

𝑍̇̂𝑍 = 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 ,    (41)                                                                                             

𝑉̇̂𝑉 = 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑋𝑋)𝑟𝑟𝑇𝑇  ,                   (42)                                                                                      

              𝐴𝐴𝑣𝑣 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜎𝜎(𝑉̂𝑉𝑇𝑇𝑋𝑋)),                          (43)             

𝐴𝐴𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎 (𝑍̂𝑍𝑇𝑇𝜎𝜎(𝑉̂𝑉𝑇𝑇𝑋𝑋)),                   (44) 

     𝐴𝐴𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜎𝜎 (𝑊̂𝑊𝑇𝑇(𝜎𝜎(𝑍̂𝑍𝑇𝑇𝜎𝜎(𝑉̂𝑉𝑇𝑇𝑋𝑋))) ,           (45) 

where 𝐴𝐴𝑑̇𝑑, 𝐴𝐴𝑏̇𝑏, 𝐴𝐴𝑣̇𝑣 are the matrix updates of the matrices 

𝐴𝐴𝑑𝑑, 𝐴𝐴𝑏𝑏, 𝐴𝐴𝑣𝑣 after taking SVDs respectively, X is the input 

defined in (4) and r is the tracking error defined in (3). C, F, G 

and Q are positive definite tuning rate matrix. The SVD 

updates for these matrices can be obtained as follows. 

Lemma 1: A matrix ‘A ‘which can be either square or 

rectangular can be decomposed as 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 as shown in Wang et 

al. (2021) by applying SVD. If A is a 𝑚𝑚 × 𝑛𝑛 matrix of rank k, 

then U is 𝑚𝑚 × 𝑘𝑘, S is 𝑘𝑘 × 𝑘𝑘 diagonal matrix of singular values, 

V is 𝑛𝑛 × 𝑘𝑘. When the matrix ‘A’ is varying with respect to 

time, and the matrices V and U satisfies 

𝑈𝑈𝑇𝑇𝑈𝑈 = 𝑉𝑉𝑇𝑇𝑉𝑉 = 𝐼𝐼𝑘𝑘,                                  (46) 

and the derivative of A can be written as 

𝐴̇𝐴 = 𝑈̇𝑈𝑆𝑆𝑉𝑉𝑇𝑇 + 𝑈𝑈𝑆̇𝑆𝑉𝑉𝑇𝑇 + 𝑈𝑈𝑈𝑈𝑉̇𝑉𝑇𝑇.                     (47) 

The constraints in (46) imply that 𝑈̇𝑈,  𝑉̇𝑉 are also constrained. 

Let’s focus on U first, consider the right part of the equation 

(46) to get 

𝑈̇𝑈𝑇𝑇𝑈𝑈 + 𝑈𝑈𝑇𝑇𝑈̇𝑈 = 0,                              (48) 

𝑈̇𝑈𝑇𝑇𝑈𝑈 = −𝑈𝑈𝑇𝑇𝑈̇𝑈,                               (49) 

Hence matrix 𝑑𝑑𝜔𝜔𝑈𝑈 = 𝑈𝑈𝑇𝑇𝑈̇𝑈 is skew-symmetric. Let 𝑚𝑚 × (𝑚𝑚 −
𝑘𝑘) is 𝑈𝑈𝜖𝜖 such that [U 𝑈𝑈𝜖𝜖] is an orthogonal matrix then 𝑈̇𝑈 can 

be computed as 

𝑈̇𝑈 = 𝑈𝑈𝑈𝑈𝜔𝜔𝑈𝑈 + 𝑈𝑈𝜖𝜖𝑑𝑑𝐾𝐾𝑈𝑈 ,                          (50) 

where 𝑑𝑑𝐾𝐾𝑈𝑈 is (𝑚𝑚 − 𝑘𝑘) × 𝑘𝑘 matrix, which is not constrained, 

now  𝑉̇𝑉  can be expressed in a similar way as 

𝑉̇𝑉 = 𝑉𝑉𝑉𝑉𝜔𝜔𝑉𝑉 + 𝑉𝑉𝜖𝜖𝑑𝑑𝐾𝐾𝑉𝑉,                                (51) 

𝑑𝑑𝐾𝐾𝑣𝑣 𝑖𝑖𝑖𝑖 (𝑛𝑛 − 𝑘𝑘)  × 𝑘𝑘 matrix, and 𝑑𝑑𝜔𝜔𝑉𝑉 = 𝑉𝑉𝑇𝑇𝑉̇𝑉  is 𝑘𝑘 × 𝑘𝑘  

skew-symmetric matrix. Left multiplying equation (51) by 

𝑈𝑈𝑇𝑇and right multiplying by V we get, 

𝑈𝑈𝑇𝑇𝐴̇𝐴𝑉𝑉 = 𝑑𝑑𝜔𝜔𝑈𝑈𝑆𝑆 + 𝑆̇𝑆 + 𝑆𝑆𝑆𝑆𝜔𝜔𝑉𝑉
𝑇𝑇  ,                (52) 

𝑑𝑑𝜔𝜔𝑈𝑈  and 𝑑𝑑𝜔𝜔𝑉𝑉  are skew-symmetric, so they have zero 

diagonal elements; hence 𝑑𝑑𝜔𝜔𝑈𝑈S and S𝑑𝑑𝜔𝜔𝑉𝑉
𝑇𝑇  must also have 

zero diagonal elements. This means that we can split (52) into 

two components, let's say, 𝑃̇𝑃 = 𝑈𝑈𝑇𝑇𝐴̇𝐴𝑉𝑉, and we will use ⊙ it 

as a Hadamard product. So, the diagonal product of (52) is 

𝑆̇𝑆 = 𝐼𝐼𝑘𝑘 ⊙ 𝑃̇𝑃 ,                               (53) 

and off-diagonal as 

𝐼𝐼𝑘̅𝑘 ⊙ 𝑃̇𝑃 = 𝑑𝑑𝜔𝜔𝑈𝑈𝑆𝑆 − 𝑆𝑆𝑆𝑆𝜔𝜔𝑉𝑉,                   (54) 

where 𝐼𝐼𝑘̅𝑘 is 𝑘𝑘 ∧ 𝑘𝑘 matrix with zero diagonals and ones every 

other place. Now taking the transpose of (54) 

𝐼𝐼𝑘̅𝑘 ⊙ 𝑃̇𝑃𝑇𝑇 = −𝑆𝑆𝑆𝑆𝜔𝜔𝑈𝑈 + 𝑑𝑑𝜔𝜔𝑉𝑉𝑆𝑆 .                (55) 

Now right multiply equation (51) by S and left multiply 

equation (52) by S and then add we get 

   𝐼𝐼𝑘̅𝑘 ⊙ [𝑃̇𝑃𝑆𝑆 + 𝑆𝑆𝑃̇𝑃𝑇𝑇] = 𝑑𝑑𝜔𝜔𝑈𝑈𝑆𝑆2 − 𝑆𝑆2𝑑𝑑𝜔𝜔𝑈𝑈,            (56) 

This is solved by          

𝑑𝑑𝜔𝜔𝑈𝑈 = 𝐹𝐹 ⊙ [𝑃̇𝑃𝑆𝑆 + 𝑆𝑆𝑃̇𝑃𝑇𝑇],                   (57) 

where 

𝐹𝐹𝑖𝑖𝑖𝑖 = {
1

(𝑆𝑆𝑗𝑗
2−𝑆𝑆𝑖𝑖

2)
  𝑖𝑖 ≠ 𝑗𝑗

0            𝑖𝑖 = 𝑗𝑗
   ,                                (58)  

where 𝑠𝑠𝑗𝑗, 𝑠𝑠𝑖𝑖   are the singular values of S. 

Similarly, 

𝑑𝑑𝜔𝜔𝑉𝑉 = 𝐹𝐹 ⊙ [𝑆𝑆𝑃̇𝑃 + 𝑃̇𝑃𝑇𝑇𝑆𝑆],                        (59) 

Similarly, if we have to find  𝑑𝑑𝐾𝐾𝑈𝑈  , we left multiply equation 

(47) by 𝑈𝑈𝜖𝜖
𝑇𝑇  

𝑈𝑈𝜖𝜖
𝑇𝑇𝐴̇𝐴 = 𝑑𝑑𝐾𝐾𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇,                               (60) 

𝑑𝑑𝐾𝐾𝑈𝑈 = 𝑈𝑈𝜖𝜖
𝑇𝑇𝐴̇𝐴𝑉𝑉𝑆𝑆−1,                             (61) 

similarly, 

𝑑𝑑𝐾𝐾𝑉𝑉 = 𝑉𝑉𝜖𝜖
𝑇𝑇𝐴̇𝐴𝑈𝑈𝑆𝑆−1 ,                             (62) 

where 

𝑈𝑈𝜖𝜖𝑈𝑈𝜖𝜖
𝑇𝑇 = 𝐼𝐼 − 𝑈𝑈𝑈𝑈𝑇𝑇 ,                           (63) 

𝑉𝑉𝜖𝜖𝑉𝑉𝜖𝜖
𝑇𝑇 = 𝐼𝐼 − 𝑉𝑉𝑉𝑉𝑇𝑇,                            (64) 

Now using (63), (64) in (60), (61) and replacing the values 
in (50),(51) and (53) we get 

𝑈̇𝑈 = 𝑈𝑈(𝐹𝐹 ⊙ [𝑈𝑈𝑇𝑇𝐴̇𝐴𝑉𝑉𝑉𝑉 + 𝑆𝑆𝑉𝑉𝑇𝑇𝐴̇𝐴𝑈𝑈] + (𝐼𝐼𝑚𝑚 − 𝑈𝑈𝑈𝑈𝑇𝑇)𝐴̇𝐴𝑉𝑉𝑆𝑆−1  (65)  

𝑆̇𝑆 = 𝐼𝐼𝑘𝑘 ⊙ [𝑈𝑈𝑇𝑇𝐴̇𝐴𝑉𝑉],                            (66) 

𝑉̇𝑉 = 𝑉𝑉(𝐹𝐹 ⊙ [𝑆𝑆𝑈𝑈𝑇𝑇𝐴̇𝐴𝑉𝑉 + 𝑉𝑉𝑇𝑇𝐴̇𝐴𝑇𝑇𝑈𝑈𝑈𝑈]) + (𝐼𝐼𝑛𝑛 − 𝑉𝑉𝑉𝑉𝑇𝑇)𝐴̇𝐴𝑇𝑇𝑈𝑈𝑆𝑆−1                

(67) 

Using (65-67) in (47) we get 𝐴̇𝐴 ,where ⊙ is the Hadamard 
product, 𝐼𝐼 is the identity matrix and S contains singular values 
of A, 𝐹𝐹 consists of zero diagonal and non-zero off diagonal 
elements. We shall control the off-diagonal elements of F by 
regulating the singular values of A for gradient stabilization. 
As demonstrated in (58), if the difference in singular values of 
A is small, F will be very big, resulting in an explosion 
gradient, whereas if the difference is very large, F will be near 
to zero, resulting in a vanishing gradient. The SVD-based 
technique keeps the difference of the singular values of the 
updated matrix close to one for gradient stabilization and by 
updating the gradient continuously with respect to time. 

Remark 1: This Lemma will be employed to generate NN 

weight tuning laws by using SVD of the gradients of the NN 

activation function. As a consequence, we will show that 

vanishing and explosive gradient problems can be mitigated. 

Next the definition of PE condition as shown in Narendra et 

al. (1989) is introduced. 

Definition 1. A bounded vector signal 𝜎𝜎(𝑡𝑡) is persistently 

exciting over an interval [t, t + T], T > 0 and t > t0 if 𝛾𝛾 > 0 

exists such that  
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∫ 𝜎𝜎(𝑡𝑡) 𝜎𝜎𝑇𝑇(𝑡𝑡)𝑑𝑑𝑑𝑑 ≥ 𝛾𝛾𝛾𝛾𝑡𝑡+𝑇𝑇
𝑡𝑡 .                 (68) 

  For τ to be bounded, it is important to show that r is bounded 

and the weights are bounded; we can easily show that r is 

bounded but in order for the weights to be bounded, PE 

condition as shown in Narendra et al. (1989) is required. 

The PE condition is difficult to verify or guarantee. 

Moreover, from the above equation (68), it is not suitable to 

monitor it online. So, to overcome this, a new set of adaptive 

laws based on concurrent learning are used. 

3.3 Relaxation of PE using Concurrent Learning 

The tracking error r will converge to a compact set with 

origin is the equilibrium point. However, the NN weight error 

convergence cannot be guaranteed in the presence of 

disturbances and unmodeled dynamics without the PE 

condition as given in Narendra et al. (1989). When there are 

disturbances and unmodeled dynamics, NN weights obtained 

online may be unbounded, so this unboundedness of weights 

may lead to drifting of weight estimates.  

In this paper, a concurrent learning (CL) scheme, as 

discussed in Chaudhary et al. (2010) is used. The basic idea of 

CL is to use the recorded system dynamics data. This yields a 

negative definite parameter estimation error term by which the 

convergence of parameters is obtained provided the condition 

of finite excitation (only a finite time excitation is required) is 

satisfied. Also, in online learning, this condition can be 

checked by checking the positivity of the smaller singular 

value of the regressor matrix. Let i = {1,2, 3…. p}, denotes 

the index of data points stored say  𝑖𝑖 and  Γ is positive definite 

learning matrix. The concurrent learning-based weight update 

laws can be written as 

𝐷̇̂𝐷 = 𝐶𝐶(𝐴𝐴𝑑𝑑 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊1
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 −

                  𝐴𝐴𝑑̇𝑑𝑊̂𝑊1
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁1𝐷̂𝐷 ,                         (69) 

𝑊̇̂𝑊 = 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁2𝑊̂𝑊, (70)                                                              

𝑍̇̂𝑍 = 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁3𝑍̂𝑍 ,        (71)                                                                                  

𝑉̇̂𝑉 = 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁4𝑉̂𝑉 ,          (72)                                                                                        

where  

𝜁𝜁1 = ∑ 𝐶𝐶(𝐴𝐴𝑑𝑑 (𝑖𝑖) − 𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏(𝑖𝑖) −𝑝𝑝
𝐼𝐼=1

𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊1
𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣(𝑖𝑖) − 𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊1

𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑉̂𝑉𝑇𝑇𝑋𝑋(𝑖𝑖)) , 

𝜁𝜁2 = ∑ 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝑖𝑖)(𝐴𝐴𝑏𝑏(𝑖𝑖) − 𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣(𝑖𝑖) −𝑝𝑝
𝑖𝑖=1

𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑉̂𝑉𝑇𝑇𝑋𝑋(𝑖𝑖)) ,                                                

𝜁𝜁3 = ∑ 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)(𝐴𝐴𝑣𝑣(𝑖𝑖) − 𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑉̂𝑉𝑇𝑇𝑋𝑋(𝑖𝑖))𝑝𝑝
𝑖𝑖=1  ,                                                                          

𝜁𝜁4 = ∑ 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑋𝑋(𝑖𝑖))𝑝𝑝
𝑖𝑖=1  ,                                                                                     

Define matrix of  𝜁𝜁 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑔𝑔{𝜁𝜁1 𝜁𝜁2 𝜁𝜁3 𝜁𝜁4} .            
Condition 1 

∃  𝜆𝜆′ > 0, ∃𝑇𝑇 > Δ𝑡𝑡: ∀𝑡𝑡 ≥ 𝑇𝑇,  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚{𝜁𝜁} ≥ 𝜆𝜆. ′ 
So, from the above condition, the system trajectories are 

required to be finite time exciting say the finite time is T at 

which the  𝜁𝜁 has non-zero determinants or is full rank, after this 

the data that is recorded during t ∈ [0, T] is utilized for all t 

greater than T.  Using the concurrent learning in weight update 

laws the tracking error r will converge to a compact set around 

zero and the NN weight error convergence is guaranteed when 

the condition 1 satisfies without requiring PE condition. Proof 

of stability has been omitted because of space constraints. 

Though the online learning schemes presented so far 

ensure stability of the closed-loop system, they do not help 

with lifelong learning wherein forgetting aspect is studied. 

Elastic weight consolidation (EWC) is used to overcome the 

issue of catastrophic forgetting as shown in Kirkpatrick et al. 

(2016). EWC slows the learning on certain weights on the 

basis of their importance for previous tasks. 

3.4 Lifelong Learning using Elastic Weight Consolidation 

In SGD, the NN will learn one task only forgetting all other 

ones learned before this is known as catastrophic forgetting. 

So, to overcome this issue, EWC using the Bayesian approach 

in Kirkpatrick et al. (2016) is proposed. The EWC consists of 

adding a penalty term to the update laws which constrains the 

NN weights to stay in the area of low error around the optimal 

weights of previous task, hence prevents catastrophic 

forgetting while learning the new task. In Kirkpatrick et al. 

(2016), the probability of parameter 𝜃𝜃  given two different task 

training data 𝜙𝜙𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙𝐵𝐵 using Bayes rule can be obtained 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃|𝜙𝜙𝐴𝐴, 𝜙𝜙𝐵𝐵) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜙𝜙𝐵𝐵|𝜃𝜃) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃|𝜙𝜙𝐴𝐴)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜙𝜙𝐵𝐵) 

(73)            

  The left side of the above equation contains the posterior 

distribution term which cannot be computed. So, EWC 

approximates it by a gaussian distribution having mean as 

given by parameters 𝜃𝜃𝐴𝐴
∗. Hence, loss function using EWC is 

shown below 

𝐿𝐿(𝜃𝜃) = 𝐿𝐿𝑏𝑏(𝜃𝜃) + 𝜆𝜆
2 ∑ Ωi(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝐴𝐴𝐴𝐴

∗ )2
𝑖𝑖 ,          (74) 

where 𝜃𝜃 is the parameter (weights and biases), 𝜃𝜃𝐴𝐴
∗ is the 

parameter that gives low error for task A, 𝐿𝐿𝑏𝑏(𝜃𝜃) represents the 

loss for task B,𝜆𝜆  is design parameter and Ω is the Fisher matrix. 

        Ω𝑖𝑖 = 𝐸𝐸𝑥𝑥 [( 𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜙𝜙|𝜃𝜃))
2

∣ 𝜃𝜃] ,                   (75) 

the loss function in (74) is used for two or more tasks; the 

regularizer added in the above loss function prevents the 

essential weights from deviating away from the consolidation 

values when they are learning different tasks. The EWC 

converge the weights of two tasks using the above loss function 

to a point where the error for the two tasks is very low. So, the 

update law for the four layers will be given by  

𝐷̇̂𝐷 = 𝐶𝐶(𝐴𝐴𝑑𝑑 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊 
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 −

              𝐴𝐴𝑑̇𝑑𝑊̂𝑊 
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝐷𝐷𝑖𝑖 − 𝐷𝐷𝛾𝛾

∗) ,          (76)                                                  

𝑊̇̂𝑊 = 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝑊𝑊𝑖𝑖 − 𝑊𝑊𝛾𝛾∗) ,                                                                                   

(77)                                                                              

𝑍̇̂𝑍 = 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝑍𝑍𝑖𝑖 − 𝑍𝑍𝛾𝛾
∗),     (78)      

𝑉̇̂𝑉 = 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝛾𝛾
∗),             (79)                                                                                      

where 𝜆𝜆 is the design parameter and  𝑊𝑊𝑖𝑖, 𝑍𝑍𝑖𝑖, 𝐷𝐷𝑖𝑖 are the  value of 

𝑖𝑖𝑖𝑖ℎ weight in  present task and   𝑉𝑉𝑌𝑌
∗, 𝑊𝑊𝛾𝛾

∗, 𝑍𝑍𝛾𝛾
∗, are the values of 

𝑖𝑖𝑖𝑖ℎ weight after the previous task training is completed. Proof 

of stability has been omitted because of space constraints. 

4. SIMULATION RESULTS AND DISCUSSION 

 In this section, the effectiveness of the proposed method is 

illustrated using simulation results. The two link robotic arm 

dynamics is considered from (1) for two different tasks of 

different mass of the links. The task 1 is run for 0 to 12 seconds, 

the masses are mass m1=0.8; mass m2=2.3; a1=1; a2=1; g=9.8; 
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∫ 𝜎𝜎(𝑡𝑡) 𝜎𝜎𝑇𝑇(𝑡𝑡)𝑑𝑑𝑑𝑑 ≥ 𝛾𝛾𝛾𝛾𝑡𝑡+𝑇𝑇
𝑡𝑡 .                 (68) 

  For τ to be bounded, it is important to show that r is bounded 

and the weights are bounded; we can easily show that r is 

bounded but in order for the weights to be bounded, PE 

condition as shown in Narendra et al. (1989) is required. 

The PE condition is difficult to verify or guarantee. 

Moreover, from the above equation (68), it is not suitable to 

monitor it online. So, to overcome this, a new set of adaptive 

laws based on concurrent learning are used. 

3.3 Relaxation of PE using Concurrent Learning 

The tracking error r will converge to a compact set with 

origin is the equilibrium point. However, the NN weight error 

convergence cannot be guaranteed in the presence of 

disturbances and unmodeled dynamics without the PE 

condition as given in Narendra et al. (1989). When there are 

disturbances and unmodeled dynamics, NN weights obtained 

online may be unbounded, so this unboundedness of weights 

may lead to drifting of weight estimates.  

In this paper, a concurrent learning (CL) scheme, as 

discussed in Chaudhary et al. (2010) is used. The basic idea of 

CL is to use the recorded system dynamics data. This yields a 

negative definite parameter estimation error term by which the 

convergence of parameters is obtained provided the condition 

of finite excitation (only a finite time excitation is required) is 

satisfied. Also, in online learning, this condition can be 

checked by checking the positivity of the smaller singular 

value of the regressor matrix. Let i = {1,2, 3…. p}, denotes 

the index of data points stored say  𝑖𝑖 and  Γ is positive definite 

learning matrix. The concurrent learning-based weight update 

laws can be written as 

𝐷̇̂𝐷 = 𝐶𝐶(𝐴𝐴𝑑𝑑 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊1
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 −

                  𝐴𝐴𝑑̇𝑑𝑊̂𝑊1
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁1𝐷̂𝐷 ,                         (69) 

𝑊̇̂𝑊 = 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁2𝑊̂𝑊, (70)                                                              

𝑍̇̂𝑍 = 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁3𝑍̂𝑍 ,        (71)                                                                                  

𝑉̇̂𝑉 = 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜁𝜁4𝑉̂𝑉 ,          (72)                                                                                        

where  

𝜁𝜁1 = ∑ 𝐶𝐶(𝐴𝐴𝑑𝑑 (𝑖𝑖) − 𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏(𝑖𝑖) −𝑝𝑝
𝐼𝐼=1

𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊1
𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣(𝑖𝑖) − 𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊1

𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑉̂𝑉𝑇𝑇𝑋𝑋(𝑖𝑖)) , 

𝜁𝜁2 = ∑ 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝑖𝑖)(𝐴𝐴𝑏𝑏(𝑖𝑖) − 𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣(𝑖𝑖) −𝑝𝑝
𝑖𝑖=1

𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑉̂𝑉𝑇𝑇𝑋𝑋(𝑖𝑖)) ,                                                

𝜁𝜁3 = ∑ 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)(𝐴𝐴𝑣𝑣(𝑖𝑖) − 𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑉̂𝑉𝑇𝑇𝑋𝑋(𝑖𝑖))𝑝𝑝
𝑖𝑖=1  ,                                                                          

𝜁𝜁4 = ∑ 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑(𝑖𝑖)𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝑖𝑖)𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣(𝑖𝑖)𝑋𝑋(𝑖𝑖))𝑝𝑝
𝑖𝑖=1  ,                                                                                     

Define matrix of  𝜁𝜁 = 𝑑𝑑𝑑𝑑𝑎𝑎𝑔𝑔{𝜁𝜁1 𝜁𝜁2 𝜁𝜁3 𝜁𝜁4} .            
Condition 1 

∃  𝜆𝜆′ > 0, ∃𝑇𝑇 > Δ𝑡𝑡: ∀𝑡𝑡 ≥ 𝑇𝑇,  𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚{𝜁𝜁} ≥ 𝜆𝜆. ′ 
So, from the above condition, the system trajectories are 

required to be finite time exciting say the finite time is T at 

which the  𝜁𝜁 has non-zero determinants or is full rank, after this 

the data that is recorded during t ∈ [0, T] is utilized for all t 

greater than T.  Using the concurrent learning in weight update 

laws the tracking error r will converge to a compact set around 

zero and the NN weight error convergence is guaranteed when 

the condition 1 satisfies without requiring PE condition. Proof 

of stability has been omitted because of space constraints. 

Though the online learning schemes presented so far 

ensure stability of the closed-loop system, they do not help 

with lifelong learning wherein forgetting aspect is studied. 

Elastic weight consolidation (EWC) is used to overcome the 

issue of catastrophic forgetting as shown in Kirkpatrick et al. 

(2016). EWC slows the learning on certain weights on the 

basis of their importance for previous tasks. 

3.4 Lifelong Learning using Elastic Weight Consolidation 

In SGD, the NN will learn one task only forgetting all other 

ones learned before this is known as catastrophic forgetting. 

So, to overcome this issue, EWC using the Bayesian approach 

in Kirkpatrick et al. (2016) is proposed. The EWC consists of 

adding a penalty term to the update laws which constrains the 

NN weights to stay in the area of low error around the optimal 

weights of previous task, hence prevents catastrophic 

forgetting while learning the new task. In Kirkpatrick et al. 

(2016), the probability of parameter 𝜃𝜃  given two different task 

training data 𝜙𝜙𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙𝐵𝐵 using Bayes rule can be obtained 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃|𝜙𝜙𝐴𝐴, 𝜙𝜙𝐵𝐵) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜙𝜙𝐵𝐵|𝜃𝜃) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃|𝜙𝜙𝐴𝐴)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜙𝜙𝐵𝐵) 

(73)            

  The left side of the above equation contains the posterior 

distribution term which cannot be computed. So, EWC 

approximates it by a gaussian distribution having mean as 

given by parameters 𝜃𝜃𝐴𝐴
∗. Hence, loss function using EWC is 

shown below 

𝐿𝐿(𝜃𝜃) = 𝐿𝐿𝑏𝑏(𝜃𝜃) + 𝜆𝜆
2 ∑ Ωi(𝜃𝜃𝑖𝑖 − 𝜃𝜃𝐴𝐴𝐴𝐴

∗ )2
𝑖𝑖 ,          (74) 

where 𝜃𝜃 is the parameter (weights and biases), 𝜃𝜃𝐴𝐴
∗ is the 

parameter that gives low error for task A, 𝐿𝐿𝑏𝑏(𝜃𝜃) represents the 

loss for task B,𝜆𝜆  is design parameter and Ω is the Fisher matrix. 

        Ω𝑖𝑖 = 𝐸𝐸𝑥𝑥 [( 𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜙𝜙|𝜃𝜃))
2

∣ 𝜃𝜃] ,                   (75) 

the loss function in (74) is used for two or more tasks; the 

regularizer added in the above loss function prevents the 

essential weights from deviating away from the consolidation 

values when they are learning different tasks. The EWC 

converge the weights of two tasks using the above loss function 

to a point where the error for the two tasks is very low. So, the 

update law for the four layers will be given by  

𝐷̇̂𝐷 = 𝐶𝐶(𝐴𝐴𝑑𝑑 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑑̇𝑑𝑊̂𝑊 
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 −

              𝐴𝐴𝑑̇𝑑𝑊̂𝑊 
𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝐷𝐷𝑖𝑖 − 𝐷𝐷𝛾𝛾

∗) ,          (76)                                                  

𝑊̇̂𝑊 = 𝐹𝐹𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑(𝐴𝐴𝑏𝑏 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝑊𝑊𝑖𝑖 − 𝑊𝑊𝛾𝛾∗) ,                                                                                   

(77)                                                                              

𝑍̇̂𝑍 = 𝑄𝑄𝐷̂𝐷𝑇𝑇𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏(𝐴𝐴𝑣𝑣 − 𝐴𝐴𝑣̇𝑣𝑉̂𝑉𝑇𝑇𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝑍𝑍𝑖𝑖 − 𝑍𝑍𝛾𝛾
∗),     (78)      

𝑉̇̂𝑉 = 𝐺𝐺𝐷̂𝐷𝑇𝑇(𝐴𝐴𝑑̇𝑑𝑊̂𝑊𝑇𝑇𝐴𝐴𝑏̇𝑏𝑍̂𝑍𝑇𝑇𝐴𝐴𝑣̇𝑣𝑋𝑋)𝑟𝑟𝑇𝑇 − 𝜆𝜆Ω𝑖𝑖(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝛾𝛾
∗),             (79)                                                                                      

where 𝜆𝜆 is the design parameter and  𝑊𝑊𝑖𝑖, 𝑍𝑍𝑖𝑖, 𝐷𝐷𝑖𝑖 are the  value of 

𝑖𝑖𝑖𝑖ℎ weight in  present task and   𝑉𝑉𝑌𝑌
∗, 𝑊𝑊𝛾𝛾

∗, 𝑍𝑍𝛾𝛾
∗, are the values of 

𝑖𝑖𝑖𝑖ℎ weight after the previous task training is completed. Proof 

of stability has been omitted because of space constraints. 

4. SIMULATION RESULTS AND DISCUSSION 

 In this section, the effectiveness of the proposed method is 

illustrated using simulation results. The two link robotic arm 

dynamics is considered from (1) for two different tasks of 

different mass of the links. The task 1 is run for 0 to 12 seconds, 

the masses are mass m1=0.8; mass m2=2.3; a1=1; a2=1; g=9.8; 

 𝐾𝐾𝑣𝑣 = 20𝑒𝑒𝑒𝑒𝑒𝑒(2);  Γ = 1 ;   𝜆𝜆 = 5𝑒𝑒𝑒𝑒𝑒𝑒(2); F = diag{30,30}; ∧
 = diag{4,4}; κ = 0.2;  amp=1; The task 2 is run for 13 to 25 

seconds, the link masses considered for task 2 include m1=0.1; 

mass m2=1; a1=1; a2=1; g=9.8; all other values are same, after 

25 seconds task 1 is run again using the same mass values for 

the links in order to evaluate the forgetting property. 

The activation function used is sigmoid, bias taken is one; six 

neurons are used in input layer, four neurons are used in each 

hidden layer and two neurons are used in output 

layer; 𝑝𝑝𝑑𝑑1(𝑡𝑡) = sin(𝑡𝑡) ; 𝑝𝑝𝑑𝑑2(𝑡𝑡) = cos(𝑡𝑡) ;initial conditions 

are chosen randomly from (0-0.1). The masses are changed in 

order to show that for each different task the dynamics change.  

The change in dynamics due to the manipulator performing a 

task is employed to illustrate the forgetting by a NN controller. 

 
Fig. 1. Actual and desired joint angles with EWC and CL-based 

DTED approach. 

Fig. 1 shows the tracking performance is effective when EWC 

and CL are used with the proposed method. It is seen the 

performance improvement with DTED method after EWC and 

CL are added even after the tasks are changed thus indicating 

the forgetting effects are reduced. 

Fig. 2 shows the comparison of errors between tracking error-

based backpropagation and DTED methods. It is shown that 

the DTED-based approach has less error as compared to 

backpropagation and even with a change in mass values of the 

links.  Fig. 3 shows the error plots using EWC and CL; it is 

seen that errors are significantly less when EWC and CL are 

added to the proposed method. So the proposed method with 

EWC and CL performs better.  

 
Fig. 2. Comparison of errors using DTED and filtered tracking error-

based SGD. 

 
Fig. 3. Errors when EWC and CL are included to DTED approach. 

 From Fig. 4, it is shown that the control inputs vary with 

link masses change; it can be seen that the DTED-based 

approach requires less control effort while ensuring low error 

as compared to tracking error-based backpropagation. 

 
Fig. 4. Control input using unsupervised SGD and DTED. 

5. CONCLUSION AND FUTURE WORK 

The DTED approach uses filtered tracking error to tune 

weights of all the layers and therefore can be extended to any 

number of NN layers and relaxes the need for basis function 

selection. The proposed SVD based DTED approach results in 

better performance as compared to the tracking error version 

of backpropagation method.  The addition of layers improves 

tracking accuracy at the expense of computation. Preliminary 

results show the lifelong learning functionality with the DTED 

approach due to EWC. The use of an experience replay buffer 

was able to generate the convergence of the tracking error and 

guarantee the convergence of the weights when the buffer 

could be filled with sufficiently rich data.  
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