1,232 research outputs found

    Probabilistic and fuzzy reasoning in simple learning classifier systems

    Get PDF
    This paper is concerned with the general stimulus-response problem as addressed by a variety of simple learning c1assifier systems (CSs). We suggest a theoretical model from which the assessment of uncertainty emerges as primary concern. A number of representation schemes borrowing from fuzzy logic theory are reviewed, and sorne connections with a well-known neural architecture revisited. In pursuit of the uncertainty measuring goal, usage of explicit probability distributions in the action part of c1assifiers is advocated. Sorne ideas supporting the design of a hybrid system incorpo'rating bayesian learning on top of the CS basic algorithm are sketched

    Symbiogenesis in learning classifier systems

    Get PDF
    Abstract Symbiosis is the phenomenon in which organisms of different species live together in close association, resulting in a raised level of fitness for one or more of the organisms. Symbiogenesis is the name given to the process by which symbiotic partners combine and unify, that is, become genetically linked, giving rise to new morphologies and physiologies evolutionarily more advanced than their constituents. The importance of this process in the evolution of complexity is now well established. Learning classifier systems are a machine learning technique that uses both evolutionary computing techniques and reinforcement learning to develop a population of cooperative rules to solve a given task. In this article we examine the use of symbiogenesis within the classifier system rule base to improve their performance. Results show that incorporating simple rule linkage does not give any benefits. The concept of (temporal) encapsulation is then added to the symbiotic rules and shown to improve performance in ambiguous/non-Markov environments

    Lexicase selection in Learning Classifier Systems

    Full text link
    The lexicase parent selection method selects parents by considering performance on individual data points in random order instead of using a fitness function based on an aggregated data accuracy. While the method has demonstrated promise in genetic programming and more recently in genetic algorithms, its applications in other forms of evolutionary machine learning have not been explored. In this paper, we investigate the use of lexicase parent selection in Learning Classifier Systems (LCS) and study its effect on classification problems in a supervised setting. We further introduce a new variant of lexicase selection, called batch-lexicase selection, which allows for the tuning of selection pressure. We compare the two lexicase selection methods with tournament and fitness proportionate selection methods on binary classification problems. We show that batch-lexicase selection results in the creation of more generic rules which is favorable for generalization on future data. We further show that batch-lexicase selection results in better generalization in situations of partial or missing data.Comment: Genetic and Evolutionary Computation Conference, 201

    Robot Learning Using Learning Classifier Systems Approach

    Get PDF

    Controlled self-organisation using learning classifier systems

    Get PDF
    The complexity of technical systems increases, breakdowns occur quite often. The mission of organic computing is to tame these challenges by providing degrees of freedom for self-organised behaviour. To achieve these goals, new methods have to be developed. The proposed observer/controller architecture constitutes one way to achieve controlled self-organisation. To improve its design, multi-agent scenarios are investigated. Especially, learning using learning classifier systems is addressed

    A brief history of learning classifier systems: from CS-1 to XCS and its variants

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. The direction set by Wilson’s XCS is that modern Learning Classifier Systems can be characterized by their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such searching typically takes place within the restricted space of co-active rules for efficiency. This paper gives an overview of the evolution of Learning Classifier Systems up to XCS, and then of some of the subsequent developments of Wilson’s algorithm to different types of learning
    • …
    corecore