2,449 research outputs found

    Regular Boardgames

    Full text link
    We propose a new General Game Playing (GGP) language called Regular Boardgames (RBG), which is based on the theory of regular languages. The objective of RBG is to join key properties as expressiveness, efficiency, and naturalness of the description in one GGP formalism, compensating certain drawbacks of the existing languages. This often makes RBG more suitable for various research and practical developments in GGP. While dedicated mostly for describing board games, RBG is universal for the class of all finite deterministic turn-based games with perfect information. We establish foundations of RBG, and analyze it theoretically and experimentally, focusing on the efficiency of reasoning. Regular Boardgames is the first GGP language that allows efficient encoding and playing games with complex rules and with large branching factor (e.g.\ amazons, arimaa, large chess variants, go, international checkers, paper soccer).Comment: AAAI 201

    Developments from enquiries into the learnability of the pattern languages from positive data

    Get PDF
    AbstractThe pattern languages are languages that are generated from patterns, and were first proposed by Angluin as a non-trivial class that is inferable from positive data [D. Angluin, Finding patterns common to a set of strings, Journal of Computer and System Sciences 21 (1980) 46–62; D. Angluin, Inductive inference of formal languages from positive data, Information and Control 45 (1980) 117–135]. In this paper we chronologize some results that developed from the investigations on the inferability of the pattern languages from positive data

    A non-learnable class of E-pattern languages

    Get PDF
    We investigate the inferrability of E-pattern languages (also known as extended or erasing pattern languages) from positive data in Gold’s learning model. As the main result, our analysis yields a negative outcome for the full class of E-pattern languages – and even for the subclass of terminal-free E-pattern languages – if the corresponding terminal alphabet consists of exactly two distinct letters. Furthermore, we present a positive result for a manifest subclass of terminal-free E-pattern languages. We point out that the considered problems are closely related to fundamental questions concerning the nondeterminism of E-pattern languages

    Calibrating Generative Models: The Probabilistic Chomsky-Schützenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Inference of Shape Graphs for Graph Databases

    Get PDF
    We investigate the problem of constructing a shape graph that describes the structure of a given graph database. We employ the framework of grammatical inference, where the objective is to find an inference algorithm that is both sound, i.e., always producing a schema that validates the input graph, and complete, i.e., able to produce any schema, within a given class of schemas, provided that a sufficiently informative input graph is presented. We identify a number of fundamental limitations that preclude feasible inference. We present inference algorithms based on natural approaches that allow to infer schemas that we argue to be of practical importance
    • …
    corecore