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Abstract

The pattern languages are languages that are generated from patterns, and were first proposed by Angluin as a non-trivial class
that is inferable from positive data [D. Angluin, Finding patterns common to a set of strings, Journal of Computer and System
Sciences 21 (1980) 46-62; D. Angluin, Inductive inference of formal languages from positive data, Information and Control 45
(1980) 117-135]. In this paper we chronologize some results that developed from the investigations on the inferability of the pattern
languages from positive data.
© 2008 Elsevier B.V. All rights reserved.
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1. In the beginning

The formal study of the so-called inductive inference started with Gold’s paper in 1967 [18], from which we quote,

A class of possible languages is specified, together with a method of presenting information to the learner
about an unknown language, which is to be chosen from the class. The question is now asked, “Is the
information sufficient to determine which of the possible languages is the unknown language?”” Many definitions
of learnability are possible, but only the following is considered here. Time is quantized and has a finite starting
time. At each time the learner receives a unit of information and is to make a guess as to the identity of the
unknown language on the basis of the information received so far. This process continues forever. The class of
languages will be considered learnable with respect to the specified method of information presentation if there
is an algorithm having the following property: Given any language of the class, there is some finite time after
which the guesses will all be the same and they will be correct.

In the paper Gold introduced two information presentation models. In the first (called inductive inference from text
or positive data), the learner is given, one by one, with or without repetition, ad infinitum, all the sentences in the
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target language; and in the second (called inductive inference from informant), the learner is additionally informed of
the sentences that are absent from the language. In both cases, the learner is said to identify the target language in the
limit if and only if regardless of the order and frequency these sentences are presented, at some unspecified time the
learner outputs a grammar for that language and then never changes its mind. The learner is said to identify a class of
languages if and only if it identifies every language in that class. Finally, a class is said to be learnable, or inferable,
if and only if there exists a learner that identifies the class. We are concerned only with learnability with respect to the
former, inductive inference from positive data, in this paper.

Gold observed that in the case of inductive inference from positive data, even the class of languages that contains
all of the finite languages and just one infinite language, is not learnable. Since the superclass of an unlearnable class
is unlearnable, this result was misunderstood to mean that not many interesting classes are learnable from positive
data alone. This was to remain so until Angluin’s introduction of the pattern languages [1,2]. We quote an excerpt
from linguist and computer scientist Costa Floréncio’s doctorate thesis [16]:

In the seventies (sometimes referred to as the Dark Age of formal learning theory) people like Barzdins,
Freivalds, Wiehagen and Jantke worked mostly on characterizing learnable classes under different learning
criteria, most of this work was published in German or Russian. Work by Angluin in the early eighties rekindled
interest in the paradigm. She presented non-trivial learnable classes that cross-cut the Chomsky Hierarchy,
demonstrating that the pessimism following Gold’s earlier results was due to misinterpretation.

The pattern languages are languages that are generated from patterns. A pattern is a string over a finite set
XY’ of alphabet and an infinite set V of variables. The language generated by a pattern p, written L(p), are the
strings obtainable by substituting variables in p with non-empty strings over X'. As an example let X' = {a, b},
V = {x1, x2, ...} and let pattern p be ax;x1b. L(p) would then be all the strings that begin with a, followed by a
string over X repeated twice, and then ending in b, for instance, ababab. Angluin showed that the class of pattern
languages is incomparable with the class of regular languages and the class of context-free languages [1]. We note in
particular these other results by Angluin (Theorem 3—11):

Definition 1 (Indexed Families [2]). A class of non-empty languages £ = (L;);cN 1S an indexed family if and only
if there exists a computable function f such that for each i € N and for each string w over X, f(i, w) = 1if w € L;
and f (i, w) = 0 otherwise.

Note that the pattern languages form an indexed family. Any indexed family is inferable from informant — a result
implied in Gold’s paper [18] (see Section 3 in [70] for a more detailed discussion). Learnability of the indexed families
from positive data, on the other hand, can be characterized using the following notion.

Definition 2 (Finite Tell-tale [2]). A finite tell-tale for a language L within a class L is a finite set S C L such that
there exists no language L’ € £ where S C L' C L.

When a finite tell-tale for L is in the examples, then the examples cannot be for a proper subset of L.

Theorem 3 (Theorem 1 in Angluin [2]). An indexed family (L;);eN is learnable from positive data if and only if
there exists a procedure, effective in each i, that enumerates a finite tell-tale for L; within the class.

To see how a finite tell-tale helps in learning an indexed family, observe that given an indexed family £ = (L;);eN,
for any L € L, when presented with subsequently more and more examples from L one can find, in the limit, a
language of the least index L ; € L that is a superset of L — by simply finding the least j such that L ; contains all the
examples presented so far. (This is because, for every k < j, if L — Ly # ¥, then some x € L — Lj will eventually
be in the examples.) Hence to correctly identify L, it suffices for one to further be able to dismiss L that are proper
supersets of L, and this can be done by accepting L ; only if its finite tell-tale is in the examples.

By applying Theorem 3, we can show classes with the following property of finite thickness to be learnable from
positive data.

Definition 4 (Finite Thickness [2,66]). A class L of languages is said to have finite thickness if and only if for each
string w over X, the set {L € £ | w € L} is finite.

Theorem 5 (Corollary 2 in [2]). Any indexed family with finite thickness is learnable from positive data.
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Since a string of length n cannot be generated by patterns longer than n:
Theorem 6 (Example 1 in [2]). The class of pattern languages has finite thickness.
By Theorems 5 and 6, we get:
Theorem 7. The class of pattern languages is learnable from positive data.

Hence Theorem 7 demonstrated that the pattern languages are learnable from positive data. We next look at methods
for learning the class. Angluin suggested finding descriptive languages [2] (or descriptive patterns [1] in the case of
the pattern languages) as a strategy for learning the indexed families from positive data [2].

Definition 8 (Descriptive Pattern [1], Descriptive (or minimal) Language [2,50]). (1) We say that a pattern p is
descriptive of a set S of strings over X' if and only if:

(i) § € L(p), and
(ii) no other pattern p” where S C L(p’) has L(p’) C L(p).

Or more generally,
(2) Given an indexed family £, we say that a language L € L is a minl (minimal language) for a set S if and only if:

i) S C L,and
(ii) no other language L” € £ where S € L' has L’ C L.

One of the reasons for using such languages as hypotheses being simply, as Angluin puts it [1]: “Intuitively, no
pattern g gives a strictly “closer fit” to the sample S than p does.” Furthermore,

Theorem 9 (Modified from Theorem 5 in [2]). Given an indexed family L with finite thickness, then a learner that,
on any non-empty finite input set S, outputs a language L € L that is a minl for S, learns L from positive data.

Note that the learner in Theorem 9 always output a language that contains all of the examples presented. Such a
learner is said to be consistent. Furthermore, when given more examples, the learner will not change a language it
hypothesized as long as the language continues to contain all of the examples presented. Such a learner is said to be
conservative, since it does not change its mind as long as its hypothesis remains consistent. It is not difficult to see that
any indexed family is learnable by a consistent learner (a consequence of Theorem 3), however, not every learnable
indexed family is learnable by a conservative learner (see Theorem 4 of [2]).

Nevertheless, it may not be easy to compute minls, as the following results suggest.

Theorem 10 (Theorem 3.6 in [1]). Given any string s over X and pattern p, it is NP-complete to decide if s € L(p).

Theorem 11 (Theorem 4.2 in [1]). For any finite set S of strings over X, if P # NP, then there is no polynomial-time
algorithm to find a pattern p of maximum possible length that is descriptive of S.

Hence while Theorem 7 shows that the pattern languages are learnable from positive data, Theorems 10 and 11
suggest that it may be difficult to devise efficient learning algorithms for the class. (It is also worth noting that Jiang
et al. showed that given two arbitrary patterns, it is in general undecidable whether the language of one is included
in that of the other [21].) Here, a learning algorithm is said to be efficient if and only if it takes time polynomial to
the input sample size in updating its hypothesis. Note that others have made the distinction between this and the total
time required for a learning algorithm to converge (called fotal learning time) (cf. [15,46,69]).

For subclasses of the pattern languages, Angluin first showed that for the class of the languages generated by
patterns with at most one variable (called one-variable patterns), there is an efficient algorithm for finding minls [1].
Later, Shinohara found an efficient min/ computation for the languages of the patterns where each variable appears
at most once (called regular patterns) [50]. For these regular patterns, minls can be efficiently computed even when
substitutions for empty strings are allowed (the resultant languages are called extended or erasing) [50]. The languages
generated by a superclass of the one-variable patterns and the regular patterns, called non-cross patterns, were also
shown to have efficiently computable minls [51].

Shinohara also found that the class which consists of all the unions of any two pattern languages, is learnable
from positive data [52]. These results were subsequently presented at the conference “Mathematical Methods of
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Specification and Synthesis of Software Systems” which took place in Wendisch Rietz, Germany, in the year 1985
[53]. A few problems interested researchers at that time, including:

(1) Are there efficient algorithms for learning the pattern languages?
(2) Can the unions of more than 2 pattern languages be learned from positive data?

The first question was answered in the positive by Lange and Wiehagen [28] with an interesting algorithm that
occasionally output hypotheses that are inconsistent with the input. This algorithm aided many other enquiries, which
we discuss in Section 3.

The second question was answered in 1989 by Keith Wright (a student of Robert Daley, who was present at the
1985 conference), using the following notion of finite elasticity.

Definition 12 (Finite Elasticity [66,32]). A class L of languages has infinite elasticity if and only if there exists an
infinite sequence of pairwise distinct elements wg, wy, wa, ... and an infinite sequence of pairwise distinct languages
Ay, Ag, ... such that for each k € N, {w; | i < k} C Ay, but wy & Ag. L is said to have finite elasticity if and only
if £ does not have infinite elasticity.

Note that a class of languages with finite thickness has finite elasticity: if it has infinite elasticity then for each
k € N, wy will be included in the languages Ax+1, Ak+2, ..., wWhich contradicts its finite thickness. The following
are Wright’s results on finite elasticity.

Theorem 13 (Corollary 11 in [66]). If an indexed family L has finite elasticity, then for any k € N7, the class
consisting of the unions of up to k languages from L has finite elasticity.

Theorem 14 (Theorem 8 in [66]). An indexed family with finite elasticity is learnable from positive data.

In fact, an indexed family with finite elasticity can be learned consistently and conservatively, via the learner in
Theorem 9 (see Lemma 9 in [9]). Finally, by Theorems 6, 13 and 14, we get:

Theorem 15 (Corollary 12 in [66]). Foranyk € N, the class of the unions of up to k pattern languages is learnable
from positive data.

At that time, others had also started to consider a superclass of the pattern languages, that is, the class of languages
definable by the elementary formal systems (EFS) introduced by Smullyan [59]. An EFS is a logic program, like a
Prolog program, but with patterns as terms. Shinohara showed the languages definable by a subclass of the EFSs
called primitive formal systems [4] to be learnable from positive data [54]. (A primitive formal system consists of
exactly two clauses defined over a same unary predicate: one without body, and one with terms in the body only as
distinct variables appearing in the head.) At the time Wright was presenting the results on finite elasticity, Shinohara
was presenting a paper with Arikawa and Yamamoto, showing a class of EFS definable languages in each level
of the Chomsky hierarchy, and how the EFSs can be learned from informant [5] using Shapiro’s model inference
system [49]. Wright’s result then enabled Shinohara to show a richer subclass of the EFSs, called length-bounded
EFSs, to be learnable from positive data. Eventually, many others have shown through similar techniques that the
classes definable by many interesting programming systems are learnable from positive data. We discuss these rather
involving results only briefly in Section 2.

Learning by minl, as described in Theorem 9, continued to interest researchers, because there are properties, such
as conservativeness and consistency, that we can expect from such a learner [2]. For this reason, in the early 90s,
Arimura et al. worked on an efficient algorithm for finding such minls for the class of the bounded unions of the tree
pattern languages [9,10,12]. Their algorithm looks for minimality of a less demanding ordering, called subsumption,
of the hypothesis space, than the ordering by the inclusion relation of minl. This finally resulted in a general algorithm
for finding min! for any general hypothesis space where the subsumption relation can be well related to the inclusion
relation. We discuss this in Section 5, and in Section 6 we discuss attempts on using the algorithm on biological
samples.

The learnability of the pattern languages continued to interest researchers. While the class of the pattern languages
was then known to be learnable from positive data, it was completely open on whether the erasing pattern languages
are learnable from positive data or not. Learnabilities of unions, bounded or unbounded, of the pattern languages
are also interesting since they are related to the inferability of the EFSs [54-56]. More precisely, unions of the
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Pattern language Logic programming
‘79 | Pattern languages introduced, efficient minl
for one-variable pattern languages [1]
‘80 | Learnability of many indexed families (in-
cluding pattern languages) [2]
‘82 | Efficient minl for the extended (or eras-
ing) and non-erasing regular pattern lan-
guages [50]; and for the non-cross pattern
languages [51]
‘83 | Learnability of the unions of two pattern lan-
guages [52]
‘85 | Invited talk on open problems by Shino-
hara [53]
‘86 Learnability of primitive formal systems [54]
‘89 | Finite elasticity shows learnability for | Subclasses of EFSs correspond to every class
bounded unions [66,32] in Chomsky hierarchy [5]
‘90 | Polynomial-time learning through Lange | Bounded finite thickness as sufficient con-
and Wiehagen algorithm (LWA) (28] dition for learning [55,56] (classes include
length-bounded EFSs, linear Prolog, CSGs
of bounded productions)

Fig. 1. Chronological view of developments before 1991.

pattern languages form subclasses of the EFSs, and hence their learnability could provide insights on how to learn
the EFSs (e.g. Wright’s results mentioned earlier), while their unlearnability would imply unlearnability for their EFS
superclasses. Likewise, the inferability of the unions of the tree pattern languages is also interesting because it is
related to the inferability of Prolog programs. In Section 4 we discuss efforts in showing the learnability of these
classes. A timeline of the results surveyed in this paper is given in Figs. 1 and 3.

2. Programs that are learnable from positive data

The first result on the learnability of logic programs is due to [54], where it is shown that the primitive formal
systems are learnable from positive data. After Wright’s work on finite elasticity, these results were extended to any
EFS of (1) at most a bounded number of clauses, where (2) the left-hand side (head) of each clause is of length longer
than its right-hand side (body) under every substitution [55,56]. Such an EFS is called length-bounded. We give a
brief description of how learnability is shown for this class, without formally defining the EFSs:

It can be shown that for the length-bounded EFSs, for any given set of ground atoms S, there are only finitely
many such EFSs with all non-redundant clauses, that generate S (such a property is called bounded finite thickness).
This property allows one to show finite elasticity of the class. The length-bounded EFSs of a single clause has finite
thickness and hence finite elasticity. By way of contradiction suppose that the length-bounded EFSs of up to n clauses
has infinite elasticity (say witnessed by the sequences wg, wi, ..., and A, A», ...), then one can show that its subset
of up to only n — 1 clauses has infinite elasticity also, by using the fact that there are only finitely many EFSs in
A1, Az, ..., that are not redundant with respect to any finite set from wy, wi, .... That is, there must be infinitely
many EFSsin Ay, A», ..., that are redundant, and hence by removing a clause from each of these EFSs we can form
another infinite sequence A’, A’2, ..., of EFSs of at most n — 1 clauses.

Using similar techniques, it was shown at the same time that the class of Prolog programs with similar length
bounds (called linear Prolog [49]), as well as the class of languages defined from context-sensitive grammars of up
to at most a bounded number of productions, are all learnable from positive data. Furthermore, based on their work
on the tree pattern languages (see Section 5), Ishizaka et al. considered single predicate Prolog programs with similar
constraint as the primitive formal systems, called primitive Prolog programs, and showed the class of such programs to
be efficiently inferable from positive data [19]. Finally, in [7], Arimura and Shinohara extended the class of learnable
Prolog programs to a class called linear covering Prolog programs.



Y K. Ng, T. Shinohara / Theoretical Computer Science 397 (2008) 150-165 155

In 1995, Krishna Rao extended tremendously on these results and defined richer classes of Prolog programs
(hereditary, reductive and linearly-moded programs) that are inferable from positive data [39]. The linearly-moded
Prolog programs form a class that properly includes the linear Prolog programs and the linearly covering Prolog
programs (which are incomparable), studied earlier by Shinohara and Arimura.

Extending on the EFS, Lange et al. [26] considered EFSs with the addition of a certain non-monotonic form of
negation, resulting in programs called advanced elementary formal systems (AEFS). However, they found that for the
AEFSs, the resultant class with the same constraints (length-bounded and bounded number of clauses) as the learnable
EFS definable class reported in [55,56], turns out to be learnable from positive data if and only if the programs consist
of only a single clause.

The next breakthrough in the learning of logic programs came from Martin and Sharma, who generalized earlier
approaches using the notions of strongly admissible and safe programs [29], hence showing many less restrictive
classes of Prolog programs to be learnable from positive data. Most recently, Krishna Rao provided yet another
contribution with the notion of recursion-bounded programs [41], which includes many practical Prolog programs.

Programs other than EFSs and Prolog programs have also been actively researched. Mukouchi and Sato [34]
showed some subclasses of the simple formal systems [4], the regular formal systems [54], and the Simple H
languages [30], to be learnable from positive data. Meanwhile, Krishna Rao worked on the term rewriting systems
(TRS) [14] and has demonstrated the learnability of several non-trivial subclasses of TRS definable languages [40,42].

3. Lange and Wiehagen algorithm

The Lange and Wiehagen algorithm (LWA) was proposed in 1990 as an algorithm that learns the pattern languages
efficiently [28]. The algorithm has been studied extensively, and the discussion here should be taken to be only a
brief reference to those studies. The algorithm works upon the observation that for any pattern language L(p), p can
be inferred using only the elements in L(p) of the same length as p, that is, the elements of the shortest length in
L(p). In fact, on each given example, the algorithm uses only this example and its previous hypothesis to compute a
new hypothesis. That is, in a sense, all the necessary information from the earlier examples had been “coded” in its
hypothesis. The following lists the LWA algorithm, where 7 is the previous pattern hypothesized and s is the latest
example. In the following, the length of a pattern p is denoted |p|, and p(i) (where 1 < i < |p|) denotes the ith letter
in p.

LWA(s)
(1) If there is no previous hypothesis (i.e. s is first example), hypothesize L(s).
(2) If |s| > ||, continue to hypothesize L (7).
(3) If |s| < |m|, hypothesize L(s). (All information in 7 is abandoned.)
(At this point |s| = |7].)
(4) Let o be a pattern of length ||, where for 1 <i < |m]|,
() =n () if w(i) =s(@)
o) =x; ifm@) #s@) and 3k <i)lok) =xj,sk) =50), (k) =m(@)]
(Use an existing variable to account for s (i) if possible.)
o(i) = x;;, otherwise, where m is the number of
different variables in o(1)...0( — 1).
(Otherwise use a new variable to account for s(7).)
Hypothesize L(p).

The LWA is interesting in several aspects, most of all being, perhaps, the fact that it occasionally outputs
inconsistent hypotheses, that is, hypotheses that do not account for all the examples presented. The question of
consistency and learnability has been investigated since Barzdin$’s results [13] that show that there are classes of
recursive functions that can be learned only by inconsistent learners — mainly due to the undecidability of consistency
in a general setting. Consistency is however decidable for the indexed families, and we have seen through Theorem 3
that any indexed family that is learnable from positive data can be learned by a consistent learner. The question then
becomes: can a given class of indexed family be learned from positive data, efficiently and consistently? Ko and Hua
made the conjecture that for the pattern languages, this is not possible even in the case of patterns that consist only of
at most two variables [22]. In this context, LWA provided an excellent example of an inconsistent efficient learner for
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an indexed family where there is no known efficient and consistent learner. Further investigation of the LWA in this
respect is pursued in [64,65]. Note that in contrast to learning from positive data, it has been shown that no efficient
learner can infer the pattern languages consistently from an informant (Theorem 7(2) in [65]).

Another interesting aspect of the LWA is that its computation is based only on its previous hypothesis and the latest
example given. Such a learner is called an iterative learner [63], and is of practical importance since it takes into
account the limitation of space in a realistic computation.

The LWA also gives us the opportunity of a learning algorithm where its convergence can be determined via the
input it has received, and this allows us to estimate the probability that a learner has converged [68,69].

Besides these, the LWA also provided good arguments to many other investigations, e.g. the study of good
examples [17,27].

4. Learnability of the pattern languages

In this Section we discuss the learnability of subclasses of the pattern languages and their unions from positive
data. We do not delve into the issues of efficiency since these are discussed via the two algorithms, LWA and MMG,
respectively in Sections 3 and 5.

As mentioned in Section 1, the class of the pattern languages was first shown to be learnable by Angluin [2].
Shinohara extended this result to the class of the unions of two pattern languages [52], and initiated the investigations
on languages that allow variables to be replaced with the empty string (that is, the extended or erasing pattern
languages), as well as the languages that are generated by the patterns where each variable appears at most once
(that is, the regular patterns) [50]. Wright extended the result on unions, showing that the class of unions of any
bounded number of pattern languages is learnable [66]. This, however, does not include the unbounded unions, for
which a negative result was obtained by Shinohara and Arimura [57]. To show the learnability of unbounded unions,
the following sufficient condition was suggested in [57].

Definition 16 (Infinite Anti-chain [24,57]). A class of languages L has no infinite anti-chain with respect to set
inclusion if and only if there does not exist an infinite collection of distinct languages {A; € £ | i € N}, such
that foralli, j €e N,i # j, A; £ Aj andAj Z A;.

Theorem 17 (Lemma 22 in [57]). Let L be an indexed family with finite thickness. If L has no infinite anti-chain with
respect to set inclusion, then the class of the unbounded unions of languages drawn from L is learnable from positive
data.

Using Theorem 17, it can be shown through Higmann’s Theorem [24] that the following class is learnable from
positive data.

Definition 18 (Regular Patterns with Bounded Constant Segments [57]). For I € N, let RP; be the set of regular
patterns of the form woxjwy - - - wy—1x,w, where n > 0, xp, ..., x, are mutually distinct variables, and wy, . .., wy,
are strings of up to length [ over Y.

Theorem 19 (Theorem 27 and 28 in [57]). For any | € N7, the class of unbounded unions of the languages (or
erasing languages) generated by the patterns in RP; is learnable from positive data.

We note another property which is sufficient to show learnability. Wright noted in [66] that an indexed family with
finite elasticity is learnable from positive data. Sato [47], Kobayashi and Yokomori [23] independently related finite
elasticity to the following notion of characteristic sets introduced by Angluin.

Definition 20 (Characteristic Set [3]). A characteristic set for a language L within a class L is a finite set Sy, such
that foreach L' € £,S;, CL'=L C L'.

Hence a characteristic set S of a language L within a class L is a finite set of elements in L such that if any language
in £ includes S, then it must also include L.

Theorem 21 (Theorem 2.24 in Sato [47], Proposition 7 in Kobayashi and Yokomori [23]). A class L of languages
has finite elasticity if and only if every set of strings over X has a characteristic set within L.
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Language class learnable  fin. thick. fin. elas. char. set
bounded unions of the pattern languages Yes No Yes Yes
unbounded unions of languages generated from | Yes No Yes Yes

RP; for any | € NT (erasing or non-erasing)

unbounded unions of the substring pattern lan- | Yes No No Yes
guages (erasing or non-erasing)

unbounded unions of the proper one-variable pat- | No No No No
tern languages (erasing or non-erasing)

unbounded unions of the proper regular pattern | No No No No
languages (erasing or non-erasing)

Fig. 2. Learnability of unions of the pattern languages.

It is easy to see how the existence of a characteristic set for each language in a family £ within £ implies that the
condition in Theorem 3 can be fulfilled, and this shows, via Theorem 21, that a class with finite elasticity is learnable
from positive data. In fact, this also shows elegantly why a class with finite elasticity can be learned by the learner in
Theorem 9. (More results on finite elasticity can be found in [47,61].)

Note that the requirement for each language in £ to have a characteristic set within £ is less strict than the
requirement of finite elasticity, as witnessed by the class of unbounded unions of languages generated from patterns
of the following form.

Definition 22 (Substring Patterns). A pattern is a substring pattern if and only if it is of the form p = x;wx, where
x1 and x7 are distinct variables, and w is a string over /.

Theorem 23 (Theorem 16 and 17 in [57]). The class of unbounded unions of the erasing or non-erasing languages
generated from the substring patterns (1) has infinite elasticity, but (2) is nonetheless, learnable from positive data.

However, the unbounded unions of the languages generated from the following patterns turned out to be unlearnable
from positive data.

Definition 24 (Proper Patterns [57]). A pattern is said to be proper if and only if it contains at least one variable.

Theorem 25 (Theorem 19 and 20 in [57]). (1) The class of unbounded unions of (erasing or non-erasing) languages
generated from proper regular patterns is not learnable from positive data.

(2) The class of unbounded unions of (erasing or non-erasing) languages generated from proper one-variable patterns
is not learnable from positive data.

Part 2 of Theorem 25 is due to Frank Stephan. By these results, even the unbounded unions of the one-variable
pattern languages, or the regular pattern languages, are not learnable from positive data. Fig. 2 summarizes the known
results regarding learnability of classes obtained from unions of the pattern languages. An affirmation in the column
of: (1) “fin. thick.” implies that the class has finite thickness, (2) “fin. elas.” implies that the class has finite elasticity,
(3) “char. set.” implies that each language in the class has a characteristic set within the class.

Learnability of the full class of the erasing pattern languages remained elusive. It was noted in [57] that the erasing
pattern languages is learnable, if the set of variables is of finite cardinality (see Corollary 14 in [57]).

Denote the erasing pattern language of a pattern p by L¢(p). Mitchell first obtained results in 1998 for a non-trivial
subclass of the erasing pattern languages called QRP.

Definition 26 (Erasing Languages of Quasi-regular Patterns [31]). (1) A pattern p is m-quasi-regular if and only if
each variable that occurs in p occurs exactly m times.

(2) QRP,, = {L:(p) | p is an m-quasi-regular pattern}.

(3) QRP = J,,cny QRP,,,.
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Given a class of patterns P, a pattern p € P is succinct if and only if for all p’ € P, L¢(p') = Le(p) = |p'| = |pl.
For a pattern p, let residual(p) denote the string obtained by substituting each variable in p with the empty string.

Theorem 27 (Lemma 9 in [31]). For m € N, given p, p' € QRP,, where residual(p) = residual(p’), if Le(p) €
Lc(p) and 2|p’| < |p|, then p is not succinct.

Intuitively this is how Theorem 27 shows the learnability of QRP,, from positive data. We first note that in the
limit, the shortest example received must be the residual of the target pattern, p say. Now one can find, in the limit,
a pattern p’ that is (1) m-quasi-regular, where (2) residual(p’) = residual(p), and (3) L¢(p’) is a superset of L¢(p).
The problem that remains is then to find, among subsets of L.(p’), for the language L.(p). Theorem 27 shows that
one need to look at only finitely many patterns for such subsets of L(p’), and hence L¢(p) can be identified in the
limit.

By further noting that m can be inferred from the shortest and the second shortest length of the examples, we have
the following.

Theorem 28 (Theorem 30 in [31]). QRP is learnable from positive data.

Note that the erasing regular pattern languages are properly included in QRP. In [31], Mitchell also showed that
the class of the erasing pattern languages is learnable from positive data in the case of an infinite or singular alphabet.

More results on the learnability of the erasing pattern languages from positive data did not emerge until 2002,
when Reidenbach showed the following result for the erasing languages generated by the patterns which consist only
of variables (called terminal-free patterns). It was noted that the class has infinite elasticity in [57], but its learnability
remained open at that time.

Definition 29 (Passe-partouts [43]). Given an indexed family £, L € £ and S C L. We say that L’ € L is a passe-
partout (for L and S) if and only if S C L’ and L’ C L.

Hence a passe-partout for L and S witnesses that S is not a finite tell-tale for L within L.

Theorem 30 (Lemma I in [43]). Let p = x1x1x2X2X3X3, Where x1, X and x3 are distinct variables, if X consists of
exactly 2 letters, then for each finite S C L¢(p), there exists a terminal-free pattern where its erasing language is a
passe-partout for L¢(p) and S.

Hence no finite tell-tale exists for L.(p) within the class of the erasing languages generated by the terminal-free
patterns. By Theorem 3,

Theorem 31 (Theorem 1 in [43]). If X consists of exactly 2 letters, then the class of the erasing languages generated
by the terminal-free patterns is not learnable from positive data.

Corollary 32. If X consists of exactly 2 letters, then the class of the erasing pattern languages is not learnable from
positive data.

However, when there are at least three letters in Y, it turns out that for each terminal-free pattern p, there is a set
of substitutions that transforms p into a set of strings, from which each variable in p can be inferred.

Theorem 33 (Theorem 2 in [44]). If X' consists of at least 3 letters, then the class of erasing languages generated by
the terminal-free patterns is learnable from positive data.

Hence the erasing languages of the terminal-free patterns are not learnable if and only if the alphabet consists of
exactly 2 letters. Regrettably, the learnability in Theorem 33 did not follow with a learnability result for the full class
of the erasing pattern languages. By showing that for some patterns, there are passe-partouts for every finite subset of
the erasing languages they generate, Reidenbach showed the following.

Theorem 34 (Theorem 1 in [45]). If X consists of exactly 3 or 4 letters, then the class of the erasing pattern
languages is not learnable from positive data.

Hence by these results of Reidenbach, the class of the erasing pattern languages is now known to be not learnable
for the alphabet sizes of 2, 3 and 4.
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5. The MMG Algorithm

Learning by minl, as in the fashion of Theorem 9, is desirable because this results in a learner that is consistent
and conservative. As mentioned, a consistent learner never outputs a hypothesis that fails to account for some of
the examples presented, while a conservative learner never changes its hypothesis as long as the current hypothesis
continues to account for all of the examples presented.

In order to compute minl efficiently, Arimura et al. considered the classes of languages where inclusions can
be computed efficiently via a form of subsumption relation [38] between languages in the class. They furthermore
generalized Plotkin’s idea of a least general generalization under the subsumption relation to the case of unions,
called minimal multiple generalizations (mmg). We now define the subsumption relation and the minimal multiple
generalizations, for the case of the pattern languages.

We say that a pattern g refines to a pattern p (written p < g) if and only if p can be obtained from g by substituting
variables in ¢ with some non-empty patterns. We write p <. ¢ if and only if p can be obtained from g by substituting
variables in ¢ with some possibly empty patterns. We write p < ¢ if and only if p < g but not ¢ < p. Given two sets
of patterns P and Q, we write P & Q if and only if for each p € P, p < g forsome g € Q. P C Q if and only
if P C Q butnot Q T P. Similarly one can define the relations <., =, [ from <. Recall that the language of a
pattern p is written L(p), while its erasing language is written L. (p). For a set of patterns P, L(P) = | peP L(p)

and L.(P) = UPGP L¢(p). An mmg is as follows.

Definition 35 (Minimal Multiple Generalization [9]). Given a class of pattern P, a finite non-empty set S of strings
over X and k € INT, an mmg(S, k) is a set of up to k patterns P C P such that S € L(P) and there are no other set
of up to k patterns P* C P where S C L(P’) such that P’ C P.

For comparison with the mmg we extend the definition of minl to unions, as follows.

Definition 36 (Minl For Unions [9]). Given a class of pattern P, a finite non-empty set S of strings over X and
k € NT, a minl(S, k) is a set of up to k patterns P C P such that S € L(P) and there are no other set of up to k
patterns P’ C P where S € L(P’) such that L(P") C L(P).

Similarly one can define mmgs and minls for the erasing case. The following result, which holds equivalently for
the erasing case, gives a condition for which an mmg would be a minl.

Theorem 37 ([9], Also See Proposition 10 in [36]). For a class of patterns P, if for every collection of up to k
patterns P, Q C P we have L(P) C L(Q) = P T Q, then for any non-empty finite set S of strings over X
and k € N, a set of patterns is an mmg (S, k) if and only if it is a minl(S, k).

Note that the condition L(P) € L(Q) = P C (Q is fulfilled if for any set of k 4 1 patterns py, ..., px from the
class, we have L(pg) U1<i<k L(pi) = L(po) € L(p;) forsome 1 < i < k, in which case we say that the class
has compactness with respect to containment.

Mukouchi [33] first formally studied the condition with respect to the pattern languages. At the same time, Arimura
et al. gave an efficient algorithm for finding mmgs for the bounded unions of the tree pattern languages and showed
that when the number of languages allowed in a union is less than the alphabet size, compactness with respect to
containment can be achieved. This resulted in an efficient algorithm for finding minl/s for the tree pattern languages
[9,10,12].

The next breakthrough came when Arimura et al. [11] gave an efficient algorithm (MMG) for finding mmgs for
any class P of pattern languages where an efficient complete refinement operator exists for the class. A complete
refinement operator p is a subrelation of < where for any patterns p, g € P, p < g <= p € p+(g). A complete
refinement operator is efficient if for any p € P, p(p) is polynomial-time computable. Such an operator exists for the
regular patterns, both for their non-erasing languages [11], as well as their erasing languages [6].

Given a class P of patterns, a finite non-empty set S € X* and k € N, the following lists the MMG algorithm.
All patterns in the following are implicitly elements of P. The algorithm assumes that there is a pattern L in the
class P such that every pattern p € P can be obtained from L (i.e. p <L1). (One can adapt the following algorithm
straightforwardly to use a complete refinement operator defined on erasing substitutions.)
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MMG(P, S, k)
(1) Let P < {L}.
(2) Let Ak < k.
(3) While Ak > 2 and there exists p € P, and a set
QO C {p} of more than one and up to Ak patterns where
® S —L(P—{ph S L(Q), but
(i)no Q' C Qhas § — L(P — {p}) € L(Q’) (i.e. no pattern in Q
is redundant),
(3.1) Replace each ¢ € Q with a more specific ¢’ < ¢ until any further
such replacement will resultin S  L(P) — L({p}) U L(Q).
(B2)Let P <~ P —{p}U Q.
(3.3) Let Ak < Ak — |Q] + 1.
(4) Output P.

Arimura et al. showed that the condition of compactness with respect to containment holds for the regular pattern
languages when the set of variables is of a finite size m, and the alphabet is of size larger than 2km, where k is the
number of languages allowed in a union. Hence by Theorem 37, in such cases, the output of MMG would be a minl.

A more complete result was later given by Arimura and Shinohara, showing that for the class of regular pattern
languages, compactness with respect to containment holds if the alphabet size is at least 2k + 1, but fails to hold if the
alphabet size is less than or equal to k + 1 [8]. Whether compactness with respect to containment holds for alphabet
sizes within k + 2 to 2k remained open until Sato et al. [48] showed the following results.

Theorem 38 (Theorem 20 in [48]). If k > 3, then the class of the regular pattern languages has compactness with
respect to containment if and only if the alphabet contains at least 2k — 1 letters.

Theorem 39 (Corollary 23 in [48]). If k = 2, then the class of the regular pattern languages has compactness with
respect to containment if the alphabet consists of at least 4 letters.

For the erasing regular pattern languages, Uemura and Sato [62] completely characterized the condition of
compactness with respect to containment with the following.

Theorem 40 (Theorem 4 in [62]). If k > 1, then the class of the erasing regular pattern languages has compactness
with respect to containment if and only if the alphabet contains at least k + 2 letters.

Besides the MMG algorithm, minl computation has also been pursued by Jantke [20] (for the k-variable pattern
languages), and Erlebach et al. [15] (for one-variable pattern languages). The results by Erlebach et al. is particularly
interesting in the sense that they investigated the fotal expected learning time of their algorithm and showed it to be
polynomial with respect to the expected string length.

6. Using the MMG algorithm

Arimura et al. first examined practical uses of the MMG algorithm [6]. The tests were performed on the two
samples of biological sequences: transmembrane domains and signal peptide sequences. These samples are short
strings of lengths 30 to 50, over an alphabet of 20 amino acids. In their experiments, they used a small portion of these
biosequences as input to the MMG algorithm, and then tested the obtained mmgs for their accuracies in (1) matching
all the biosequences, and (2) excluding randomly selected biosequences. There are places in the MMG algorithm
where choices are arbitrary over all suitable patterns (at line 3 and 3.1 of the MMG algorithm listed), and in their
study, they investigated how additional preferences placed on these choices of patterns affect the accuracies of the
obtained mmgs. The accuracies obtained in their tests compared favorably to results from another system which uses
both positive and negative data.

Furthermore, by arranging the amino acids into 3 hydropathy groups (according to the schema by Kyte and
Doolittle [25]), they processed the biosequences into strings over an alphabet of only three letters (i.e. each for one
of the hydropathy groups). This reduction in alphabet size greatly reduced the pattern search space, but nonetheless
produced mmgs with similar accuracies as the mmgs obtained from unprocessed sequences [6]. Yamaguchi et al. [67]
continued with this line of enquiry. In their tests they did without the assumption of the schema by Kyte and Doolittle,
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guages [l1]; Experimental
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‘95 | Studies on various structures
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pected total learning time
analysis of LWA [68]
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languages [30]

‘05 | Learning by fittest covers [36] Sufficient condition for learn- | Success of [60] explained [35]
ability: recursion bounded pro-
grams [41]

‘06 Length-bounded TRSs [42] More experimental results [37]

Fig. 3. Chronological view of developments from 1991.

and searched for a grouping that, in a sense, minimizes the overlap between the resultant strings of the positive and
negative samples. This resulted in a grouping that resembled that of Kyte and Doolittle, which subsequently gave
results similar to that obtained in the previous work.
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Fig. 4. accuracies vs size of sample used as MMG input.

The next breakthrough in the use of the MMG algorithm came from Takae et al. [60], where they found that the
mmgs of regular patterns which contain sort symbols (called sort regular patterns), achieved higher accuracies than
plain regular patterns. A sort symbol is a letter associated with a non-empty set S € X, and is written [S], where in a
substitution for a sort regular pattern, a sort symbol [S] may be replaced with another sort symbol [S’] where S” C S,
or with any letter in S. This allowed more ambiguous expression of patterns and also made somewhat redundant to
preprocess the patterns, as in the two earlier studies. Such symbols have previously been used by others, for example
in the PROSITE database [58], under other names.

In Fig. 4 we show essentially the same results reported in [60], replotted using updated data in 2005. The plots are
of the averaged accuracies of mmgs (obtained from samples of sizes N = 50, 100, 150, ..., 800) in:

1. matching the (remaining) positive biosequences (p, legend x)
2. excluding the negative biosequences (n, legend %), and

3. /p -n (acc, dashed line)

against the sizes N. Each of these plots is for the signal peptide sequences for one of the following three types of
samples: bacteria, plant and rodent. About 1800 positive sequences were available for each of these samples, and
samples of about 10 times those sizes were carefully generated and used as negative sequences in the accuracy tests.

Ng et al. [35] attempted at an explanation for these high accuracies obtained by [60]. They noted that the language
of any sort regular pattern can be expressed as the union of a few languages of the regular patterns. For example, let
Y = {a, b} and let a sort regular pattern p = x1[{a, b}1[{a, b}]x, be where x1, x, are variables. The language of p
is then equivalent to the union of the languages of the following regular patterns: xjaaxy, xjabxs, x1baxz, x1bbx;.
By a notion of coverage, defined to be the number of strings of up to a suitable length generated by a language, they
showed that regardless of the types of patterns used, the mmgs of similar coverages always scored about the same
accuracies. Intuitive, such coverages correspond to the amount of over-generalization committed by the mmgs. Ng
et al. hence argues that the higher accuracies obtained by the mmgs of the sort regular patterns were due to the more
specific languages that these patterns are able to express, and the same effects can be as well achieved by the regular
patterns, by allowing more languages to be included in a union. However, they also noted that the runtime of the
MMG algorithm increases more on the number of unions allowed than on the use of additional symbols, and hence
for the MMG algorithm the use of sort symbols seems desirable.

Some work on the inductive inference from positive data using hypotheses which minimize such coverages can be
found in [36], and further experimental studies of the use of such coverages can be found in [37].

7. Concluding remarks

The inductive inference of the pattern languages from positive data has come a long way from the original
propositions by Angluin.
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Theoretically, the class has provided a very fertile ground for the testing and development of many ideas in
inductive inference, such as those witnessed by the Lange and Wiehagen algorithm. Investigating the learnability
of this seemingly very simple class and its variants has turned out to be a most testing, but also rewarding task. The
subsequent extensions to the more expressive logic programs also yielded many interesting results. Experimentally,
this class of languages has provided a very simple and natural framework for the study of strings. The little assumptions
made of the underlying hypothesis space allows for very flexible adaptations, as is witnessed by the MMG algorithm,
which accepts many hypothesis spaces as input.

For all these reasons and more, studies that involve the pattern languages have become too numerous for one to
keep account of, and the omissions of important works we failed to mention here — if any — are not intentional.
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