2,590 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    G\mathcal{G}-softmax: Improving Intra-class Compactness and Inter-class Separability of Features

    Full text link
    Intra-class compactness and inter-class separability are crucial indicators to measure the effectiveness of a model to produce discriminative features, where intra-class compactness indicates how close the features with the same label are to each other and inter-class separability indicates how far away the features with different labels are. In this work, we investigate intra-class compactness and inter-class separability of features learned by convolutional networks and propose a Gaussian-based softmax (G\mathcal{G}-softmax) function that can effectively improve intra-class compactness and inter-class separability. The proposed function is simple to implement and can easily replace the softmax function. We evaluate the proposed G\mathcal{G}-softmax function on classification datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) and on multi-label classification datasets (i.e., MS COCO and NUS-WIDE). The experimental results show that the proposed G\mathcal{G}-softmax function improves the state-of-the-art models across all evaluated datasets. In addition, analysis of the intra-class compactness and inter-class separability demonstrates the advantages of the proposed function over the softmax function, which is consistent with the performance improvement. More importantly, we observe that high intra-class compactness and inter-class separability are linearly correlated to average precision on MS COCO and NUS-WIDE. This implies that improvement of intra-class compactness and inter-class separability would lead to improvement of average precision.Comment: 15 pages, published in TNNL

    Markov process-based retrieval for encrypted JPEG images

    Get PDF

    3D Medical Image Lossless Compressor Using Deep Learning Approaches

    Get PDF
    The ever-increasing importance of accelerated information processing, communica-tion, and storing are major requirements within the big-data era revolution. With the extensive rise in data availability, handy information acquisition, and growing data rate, a critical challenge emerges in efficient handling. Even with advanced technical hardware developments and multiple Graphics Processing Units (GPUs) availability, this demand is still highly promoted to utilise these technologies effectively. Health-care systems are one of the domains yielding explosive data growth. Especially when considering their modern scanners abilities, which annually produce higher-resolution and more densely sampled medical images, with increasing requirements for massive storage capacity. The bottleneck in data transmission and storage would essentially be handled with an effective compression method. Since medical information is critical and imposes an influential role in diagnosis accuracy, it is strongly encouraged to guarantee exact reconstruction with no loss in quality, which is the main objective of any lossless compression algorithm. Given the revolutionary impact of Deep Learning (DL) methods in solving many tasks while achieving the state of the art results, includ-ing data compression, this opens tremendous opportunities for contributions. While considerable efforts have been made to address lossy performance using learning-based approaches, less attention was paid to address lossless compression. This PhD thesis investigates and proposes novel learning-based approaches for compressing 3D medical images losslessly.Firstly, we formulate the lossless compression task as a supervised sequential prediction problem, whereby a model learns a projection function to predict a target voxel given sequence of samples from its spatially surrounding voxels. Using such 3D local sampling information efficiently exploits spatial similarities and redundancies in a volumetric medical context by utilising such a prediction paradigm. The proposed NN-based data predictor is trained to minimise the differences with the original data values while the residual errors are encoded using arithmetic coding to allow lossless reconstruction.Following this, we explore the effectiveness of Recurrent Neural Networks (RNNs) as a 3D predictor for learning the mapping function from the spatial medical domain (16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood while utilising samples taken from various scanning settings. We evaluate our proposed MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art lossless compression standards.This work investigates input configurations and sampling schemes for a many-to-one sequence prediction model, specifically for compressing 3D medical images (16 bit-depths) losslessly. The main objective is to determine the optimal practice for enabling the proposed LSTM model to achieve a high compression ratio and fast encoding-decoding performance. A solution for a non-deterministic environments problem was also proposed, allowing models to run in parallel form without much compression performance drop. Compared to well-known lossless codecs, experimental evaluations were carried out on datasets acquired by different hospitals, representing different body segments, and have distinct scanning modalities (i.e. CT and MRI).To conclude, we present a novel data-driven sampling scheme utilising weighted gradient scores for training LSTM prediction-based models. The objective is to determine whether some training samples are significantly more informative than others, specifically in medical domains where samples are available on a scale of billions. The effectiveness of models trained on the presented importance sampling scheme was evaluated compared to alternative strategies such as uniform, Gaussian, and sliced-based sampling

    SMAN : Stacked Multi-Modal Attention Network for cross-modal image-text retrieval

    Get PDF
    This article focuses on tackling the task of the cross-modal image-text retrieval which has been an interdisciplinary topic in both computer vision and natural language processing communities. Existing global representation alignment-based methods fail to pinpoint the semantically meaningful portion of images and texts, while the local representation alignment schemes suffer from the huge computational burden for aggregating the similarity of visual fragments and textual words exhaustively. In this article, we propose a stacked multimodal attention network (SMAN) that makes use of the stacked multimodal attention mechanism to exploit the fine-grained interdependencies between image and text, thereby mapping the aggregation of attentive fragments into a common space for measuring cross-modal similarity. Specifically, we sequentially employ intramodal information and multimodal information as guidance to perform multiple-step attention reasoning so that the fine-grained correlation between image and text can be modeled. As a consequence, we are capable of discovering the semantically meaningful visual regions or words in a sentence which contributes to measuring the cross-modal similarity in a more precise manner. Moreover, we present a novel bidirectional ranking loss that enforces the distance among pairwise multimodal instances to be closer. Doing so allows us to make full use of pairwise supervised information to preserve the manifold structure of heterogeneous pairwise data. Extensive experiments on two benchmark datasets demonstrate that our SMAN consistently yields competitive performance compared to state-of-the-art methods

    Superpixel-based conditional random fields (SuperCRF) : incorporating global and local context for enhanced deep learning in melanoma histopathology

    Get PDF
    Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications. We develop SuperCRF by training a state-of-art deep learning spatially constrained- convolution neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×) H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently, a conditional random field (CRF) by combining cellular neighborhood with tumor regional classification from lower resolution images (5, 1.25×) given by a superpixel-based machine learning framework. SuperCRF led to an 11.85% overall improvement in the accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that (i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma. SuperCRF improves cell classification by introducing global and local context-based information and can be implemented in combination with any single-cell classifier. SuperCRF provides valuable tools to study the tumor microenvironment and identify predictors of survival and response to therapy

    Identifying Graphs from Noisy Observational Data

    Get PDF
    There is a growing amount of data describing networks -- examples include social networks, communication networks, and biological networks. As the amount of available data increases, so does our interest in analyzing the properties and characteristics of these networks. However, in most cases the data is noisy, incomplete, and the result of passively acquired observational data; naively analyzing these networks without taking these errors into account can result in inaccurate and misleading conclusions. In my dissertation, I study the tasks of entity resolution, link prediction, and collective classification to address these deficiencies. I describe these tasks in detail and discuss my own work on each of these tasks. For entity resolution, I develop a method for resolving the identities of name mentions in email communications. For link prediction, I develop a method for inferring subordinate-manager relationships between individuals in an email communication network. For collective classification, I propose an adaptive active surveying method to address node labeling in a query-driven setting on network data. In many real-world settings, however, these deficiencies are not found in isolation and all need to be addressed to infer the desired complete and accurate network. Furthermore, because of the dependencies typically found in these tasks, the tasks are inherently inter-related and must be performed jointly. I define the general problem of graph identification which simultaneously performs these tasks; removing the noise and missing values in the observed input network and inferring the complete and accurate output network. I present a novel approach to graph identification using a collection of Coupled Collective Classifiers, C3, which, in addition to capturing the variety of features typically used for each task, can capture the intra- and inter-dependencies required to correctly infer nodes, edges, and labels in the output network. I discuss variants of C3 using different learning and inference paradigms and show the superior performance of C3, in terms of both prediction quality and runtime performance, over various previous approaches. I then conclude by presenting the Graph Alignment, Identification, and Analysis (GAIA) open-source software library which not only provides an implementation of C3 but also algorithms for various tasks in network data such as entity resolution, link prediction, collective classification, clustering, active learning, data generation, and analysis

    3D high definition video coding on a GPU-based heterogeneous system

    Get PDF
    H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the encoding time for different stereo high definition sequences. Speed-up values of up to 90× were obtained when compared with the reference encoder on the same platform. Moreover, the proposed algorithm also provides a more energy-efficient approach and hence requires less energy than the sequential reference algorith
    corecore