199 research outputs found

    3D Registration of Aerial and Ground Robots for Disaster Response: An Evaluation of Features, Descriptors, and Transformation Estimation

    Full text link
    Global registration of heterogeneous ground and aerial mapping data is a challenging task. This is especially difficult in disaster response scenarios when we have no prior information on the environment and cannot assume the regular order of man-made environments or meaningful semantic cues. In this work we extensively evaluate different approaches to globally register UGV generated 3D point-cloud data from LiDAR sensors with UAV generated point-cloud maps from vision sensors. The approaches are realizations of different selections for: a) local features: key-points or segments; b) descriptors: FPFH, SHOT, or ESF; and c) transformation estimations: RANSAC or FGR. Additionally, we compare the results against standard approaches like applying ICP after a good prior transformation has been given. The evaluation criteria include the distance which a UGV needs to travel to successfully localize, the registration error, and the computational cost. In this context, we report our findings on effectively performing the task on two new Search and Rescue datasets. Our results have the potential to help the community take informed decisions when registering point-cloud maps from ground robots to those from aerial robots.Comment: Awarded Best Paper at the 15th IEEE International Symposium on Safety, Security, and Rescue Robotics 2017 (SSRR 2017

    Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR

    Get PDF
    This paper presents the use of deep Reinforcement Learning (RL) for autonomous navigation of an Unmanned Ground Vehicle (UGV) with an onboard three-dimensional (3D) Light Detection and Ranging (LiDAR) sensor in off-road environments. For training, both the robotic simulator Gazebo and the Curriculum Learning paradigm are applied. Furthermore, an Actor–Critic Neural Network (NN) scheme is chosen with a suitable state and a custom reward function. To employ the 3D LiDAR data as part of the input state of the NNs, a virtual two-dimensional (2D) traversability scanner is developed. The resulting Actor NN has been successfully tested in both real and simulated experiments and favorably compared with a previous reactive navigation approach on the same UGV.Partial funding for open access charge: Universidad de Málag

    LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks

    Full text link
    In this work, a deep learning approach has been developed to carry out road detection by fusing LIDAR point clouds and camera images. An unstructured and sparse point cloud is first projected onto the camera image plane and then upsampled to obtain a set of dense 2D images encoding spatial information. Several fully convolutional neural networks (FCNs) are then trained to carry out road detection, either by using data from a single sensor, or by using three fusion strategies: early, late, and the newly proposed cross fusion. Whereas in the former two fusion approaches, the integration of multimodal information is carried out at a predefined depth level, the cross fusion FCN is designed to directly learn from data where to integrate information; this is accomplished by using trainable cross connections between the LIDAR and the camera processing branches. To further highlight the benefits of using a multimodal system for road detection, a data set consisting of visually challenging scenes was extracted from driving sequences of the KITTI raw data set. It was then demonstrated that, as expected, a purely camera-based FCN severely underperforms on this data set. A multimodal system, on the other hand, is still able to provide high accuracy. Finally, the proposed cross fusion FCN was evaluated on the KITTI road benchmark where it achieved excellent performance, with a MaxF score of 96.03%, ranking it among the top-performing approaches

    MTG: Mapless Trajectory Generator with Traversability Coverage for Outdoor Navigation

    Full text link
    We present a novel learning-based trajectory generation algorithm for outdoor robot navigation. Our goal is to compute collision-free paths that also satisfy the environment-specific traversability constraints. Our approach is designed for global planning using limited onboard robot perception in mapless environments, while ensuring comprehensive coverage of all traversable directions. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model that is enhanced with traversability constraints and an optimization formulation used for the coverage. We highlight the benefits of our approach over state-of-the-art trajectory generation approaches and demonstrate its performance in challenging and large outdoor environments, including around buildings, across intersections, along trails, and off-road terrain, using a Clearpath Husky and a Boston Dynamics Spot robot. In practice, our approach results in a 6% improvement in coverage of traversable areas and an 89% reduction in trajectory portions residing in non-traversable regions. Our video is here: https: //youtu.be/OT0q4ccGHt

    3D multi-robot patrolling with a two-level coordination strategy

    Get PDF
    Teams of UGVs patrolling harsh and complex 3D environments can experience interference and spatial conflicts with one another. Neglecting the occurrence of these events crucially hinders both soundness and reliability of a patrolling process. This work presents a distributed multi-robot patrolling technique, which uses a two-level coordination strategy to minimize and explicitly manage the occurrence of conflicts and interference. The first level guides the agents to single out exclusive target nodes on a topological map. This target selection relies on a shared idleness representation and a coordination mechanism preventing topological conflicts. The second level hosts coordination strategies based on a metric representation of space and is supported by a 3D SLAM system. Here, each robot path planner negotiates spatial conflicts by applying a multi-robot traversability function. Continuous interactions between these two levels ensure coordination and conflicts resolution. Both simulations and real-world experiments are presented to validate the performances of the proposed patrolling strategy in 3D environments. Results show this is a promising solution for managing spatial conflicts and preventing deadlocks

    How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle Traversability

    Full text link
    Estimating terrain traversability in off-road environments requires reasoning about complex interaction dynamics between the robot and these terrains. However, it is challenging to build an accurate physics model, or create informative labels to learn a model in a supervised manner, for these interactions. We propose a method that learns to predict traversability costmaps by combining exteroceptive environmental information with proprioceptive terrain interaction feedback in a self-supervised manner. Additionally, we propose a novel way of incorporating robot velocity in the costmap prediction pipeline. We validate our method in multiple short and large-scale navigation tasks on a large, autonomous all-terrain vehicle (ATV) on challenging off-road terrains, and demonstrate ease of integration on a separate large ground robot. Our short-scale navigation results show that using our learned costmaps leads to overall smoother navigation, and provides the robot with a more fine-grained understanding of the interactions between the robot and different terrain types, such as grass and gravel. Our large-scale navigation trials show that we can reduce the number of interventions by up to 57% compared to an occupancy-based navigation baseline in challenging off-road courses ranging from 400 m to 3150 m

    Watch Your Step! Terrain Traversability for Robot Control

    Get PDF
    Watch your step! Or perhaps, watch your wheels. Whatever the robot is, if it puts its feet, tracks, or wheels in the wrong place, it might get hurt; and as robots are quickly going from structured and completely known environments towards uncertain and unknown terrain, the surface assessment becomes an essential requirement. As a result, future mobile robots cannot neglect the evaluation of terrain’s structure, according to their driving capabilities. With the objective of filling this gap, the focus of this study was laid on terrain analysis methods, which can be used for robot control with particular reference to autonomous vehicles and mobile robots. Giving an overview of theory related to this topic, the investigation not only covers hardware, such as visual sensors or laser scanners, but also space descriptions, such as digital elevation models and point descriptors, introducing new aspects and characterization of terrain assessment. During the discussion, a wide number of examples and methodologies are exposed according to different tools and sensors, including the description of a recent method of terrain assessment using normal vectors analysis. Indeed, normal vectors has demonstrated great potentialities in the field of terrain irregularity assessment in both on‐road and off‐road environments

    3D mapping and path planning from range data

    Get PDF
    This thesis reports research on mapping, terrain classification and path planning. These are classical problems in robotics, typically studied independently, and here we link such problems by framing them within a common proprioceptive modality, that of three-dimensional laser range scanning. The ultimate goal is to deliver navigation paths for challenging mobile robotics scenarios. For this reason we also deliver safe traversable regions from a previously computed globally consistent map. We first examine the problem of registering dense point clouds acquired at different instances in time. We contribute with a novel range registration mechanism for pairs of 3D range scans using point-to-point and point-to-line correspondences in a hierarchical correspondence search strategy. For the minimization we adopt a metric that takes into account not only the distance between corresponding points, but also the orientation of their relative reference frames. We also propose FaMSA, a fast technique for multi-scan point cloud alignment that takes advantage of the asserted point correspondences during sequential scan matching, using the point match history to speed up the computation of new scan matches. To properly propagate the model of the sensor noise and the scan matching, we employ first order error propagation, and to correct the error accumulation from local data alignment, we consider the probabilistic alignment of 3D point clouds using a delayed-state Extended Information Filter (EIF). In this thesis we adapt the Pose SLAM algorithm to the case of 3D range mapping, Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and where sensor data is solely used to produce relative constraints between robot poses. These dense mapping techniques are tested in several scenarios acquired with our 3D sensors, producing impressively rich 3D environment models. The computed maps are then processed to identify traversable regions and to plan navigation sequences. In this thesis we present a pair of methods to attain high-level off-line classification of traversable areas, in which training data is acquired automatically from navigation sequences. Traversable features came from the robot footprint samples during manual robot motion, allowing us to capture terrain constrains not easy to model. Using only some of the traversed areas as positive training samples, our algorithms are tested in real scenarios to find the rest of the traversable terrain, and are compared with a naive parametric and some variants of the Support Vector Machine. Later, we contribute with a path planner that guarantees reachability at a desired robot pose with significantly lower computation time than competing alternatives. To search for the best path, our planner incrementally builds a tree using the A* algorithm, it includes a hybrid cost policy to efficiently expand the search tree, combining random sampling from the continuous space of kinematically feasible motion commands with a cost to goal metric that also takes into account the vehicle nonholonomic constraints. The planer also allows for node rewiring, and to speed up node search, our method includes heuristics that penalize node expansion near obstacles, and that limit the number of explored nodes. The method book-keeps visited cells in the configuration space, and disallows node expansion at those configurations in the first full iteration of the algorithm. We validate the proposed methods with experiments in extensive real scenarios from different very complex 3D outdoors environments, and compare it with other techniques such as the A*, RRT and RRT* algorithms.Esta tesis reporta investigación sobre el mapeo, clasificación de terreno y planificación de trayectorias. Estos son problemas clásicos en robótica los cuales generalmente se estudian de forma independiente, aquí se vinculan enmarcandolos con una modalidad propioceptiva común: un láser de rango 3D. El objetivo final es ofrecer trayectorias de navegación para escenarios complejos en el marco de la robótica móvil. Por esta razón también entregamos regiones transitables en un mapa global consistente calculado previamente. Primero examinamos el problema de registro de nubes de puntos adquiridas en diferentes instancias de tiempo. Contribuimos con un novedoso mecanismo de registro de pares de imagenes de rango 3D usando correspondencias punto a punto y punto a línea, en una estrategia de búsqueda de correspondencias jerárquica. Para la minimización optamos por una metrica que considera no sólo la distancia entre puntos, sino también la orientación de los marcos de referencia relativos. También proponemos FAMSA, una técnica para el registro rápido simultaneo de multiples nubes de puntos, la cual aprovecha las correspondencias de puntos obtenidas durante el registro secuencial, usando inicialmente la historia de correspondencias para acelerar el cálculo de las correspondecias en los nuevos registros de imagenes. Para propagar adecuadamente el modelo del ruido del sensor y del registro de imagenes, empleamos la propagación de error de primer orden, y para corregir el error acumulado del registro local, consideramos la alineación probabilística de nubes de puntos 3D utilizando un Filtro Extendido de Información de estados retrasados. En esta tesis adaptamos el algóritmo Pose SLAM para el caso de mapas con imagenes de rango 3D, Pose SLAM es la variante de SLAM donde solamente se estima la trayectoria del robot, usando los datos del sensor como restricciones relativas entre las poses robot. Estas técnicas de mapeo se prueban en varios escenarios adquiridos con nuestros sensores 3D produciendo modelos 3D impresionantes. Los mapas obtenidos se procesan para identificar regiones navegables y para planificar secuencias de navegación. Presentamos un par de métodos para lograr la clasificación de zonas transitables fuera de línea. Los datos de entrenamiento se adquieren de forma automática usando secuencias de navegación obtenidas manualmente. Las características transitables se captan de las huella de la trayectoria del robot, lo cual permite capturar restricciones del terreno difíciles de modelar. Con sólo algunas de las zonas transitables como muestras de entrenamiento positivo, nuestros algoritmos se prueban en escenarios reales para encontrar el resto del terreno transitable. Los algoritmos se comparan con algunas variantes de la máquina de soporte de vectores (SVM) y una parametrizacion ingenua. También, contribuimos con un planificador de trayectorias que garantiza llegar a una posicion deseada del robot en significante menor tiempo de cálculo a otras alternativas. Para buscar el mejor camino, nuestro planificador emplea un arbol de busqueda incremental basado en el algoritmo A*. Incluimos una póliza de coste híbrido para crecer de manera eficiente el árbol, combinando el muestro aleatorio del espacio continuo de comandos cinemáticos del robot con una métrica de coste al objetivo que también concidera las cinemática del robot. El planificador además permite reconectado de nodos, y, para acelerar la búsqueda de nodos, se incluye una heurística que penaliza la expansión de nodos cerca de los obstáculos, que limita el número de nodos explorados. El método conoce las céldas que ha visitado del espacio de configuraciones, evitando la expansión de nodos en configuraciones que han sido vistadas en la primera iteración completa del algoritmo. Los métodos propuestos se validán con amplios experimentos con escenarios reales en diferentes entornos exteriores, asi como su comparación con otras técnicas como los algoritmos A*, RRT y RRT*.Postprint (published version
    corecore