16,834 research outputs found

    Learning Symbolic Models of Stochastic Domains

    Full text link
    In this article, we work towards the goal of developing agents that can learn to act in complex worlds. We develop a probabilistic, relational planning rule representation that compactly models noisy, nondeterministic action effects, and show how such rules can be effectively learned. Through experiments in simple planning domains and a 3D simulated blocks world with realistic physics, we demonstrate that this learning algorithm allows agents to effectively model world dynamics

    The 2014 International Planning Competition: Progress and Trends

    Get PDF
    We review the 2014 International Planning Competition (IPC-2014), the eighth in a series of competitions starting in 1998. IPC-2014 was held in three separate parts to assess state-of-the-art in three prominent areas of planning research: the deterministic (classical) part (IPCD), the learning part (IPCL), and the probabilistic part (IPPC). Each part evaluated planning systems in ways that pushed the edge of existing planner performance by introducing new challenges, novel tasks, or both. The competition surpassed again the number of competitors than its predecessor, highlighting the competition’s central role in shaping the landscape of ongoing developments in evaluating planning systems

    Reductionism and the Universal Calculus

    Get PDF
    In the seminal essay, "On the unreasonable effectiveness of mathematics in the physical sciences," physicist Eugene Wigner poses a fundamental philosophical question concerning the relationship between a physical system and our capacity to model its behavior with the symbolic language of mathematics. In this essay, I examine an ambitious 16th and 17th-century intellectual agenda from the perspective of Wigner's question, namely, what historian Paolo Rossi calls "the quest to create a universal language." While many elite thinkers pursued related ideas, the most inspiring and forceful was Gottfried Leibniz's effort to create a "universal calculus," a pictorial language which would transparently represent the entirety of human knowledge, as well as an associated symbolic calculus with which to model the behavior of physical systems and derive new truths. I suggest that a deeper understanding of why the efforts of Leibniz and others failed could shed light on Wigner's original question. I argue that the notion of reductionism is crucial to characterizing the failure of Leibniz's agenda, but that a decisive argument for the why the promises of this effort did not materialize is still lacking.Comment: 11 pages, 1 figur
    • …
    corecore