242 research outputs found

    Scalable approximate inference methods for Bayesian deep learning

    Get PDF
    This thesis proposes multiple methods for approximate inference in deep Bayesian neural networks split across three parts. The first part develops a scalable Laplace approximation based on a block- diagonal Kronecker factored approximation of the Hessian. This approximation accounts for parameter correlations – overcoming the overly restrictive independence assumption of diagonal methods – while avoiding the quadratic scaling in the num- ber of parameters of the full Laplace approximation. The chapter further extends the method to online learning where datasets are observed one at a time. As the experiments demonstrate, modelling correlations between the parameters leads to improved performance over the diagonal approximation in uncertainty estimation and continual learning, in particular in the latter setting the improvements can be substantial. The second part explores two parameter-efficient approaches for variational inference in neural networks, one based on factorised binary distributions over the weights, one extending ideas from sparse Gaussian processes to neural network weight matrices. The former encounters similar underfitting issues as mean-field Gaussian approaches, which can be alleviated by a MAP-style method in a hierarchi- cal model. The latter, based on an extension of Matheron’s rule to matrix normal distributions, achieves comparable uncertainty estimation performance to ensembles with the accuracy of a deterministic network while using only 25% of the number of parameters of a single ResNet-50. The third part introduces TyXe, a probabilistic programming library built on top of Pyro to facilitate turning PyTorch neural networks into Bayesian ones. In contrast to existing frameworks, TyXe avoids introducing a layer abstraction, allowing it to support arbitrary architectures. This is demonstrated in a range of applications, from image classification with torchvision ResNets over node labelling with DGL graph neural networks to incorporating uncertainty into neural radiance fields with PyTorch3d

    A Primer on Bayesian Neural Networks: Review and Debates

    Full text link
    Neural networks have achieved remarkable performance across various problem domains, but their widespread applicability is hindered by inherent limitations such as overconfidence in predictions, lack of interpretability, and vulnerability to adversarial attacks. To address these challenges, Bayesian neural networks (BNNs) have emerged as a compelling extension of conventional neural networks, integrating uncertainty estimation into their predictive capabilities. This comprehensive primer presents a systematic introduction to the fundamental concepts of neural networks and Bayesian inference, elucidating their synergistic integration for the development of BNNs. The target audience comprises statisticians with a potential background in Bayesian methods but lacking deep learning expertise, as well as machine learners proficient in deep neural networks but with limited exposure to Bayesian statistics. We provide an overview of commonly employed priors, examining their impact on model behavior and performance. Additionally, we delve into the practical considerations associated with training and inference in BNNs. Furthermore, we explore advanced topics within the realm of BNN research, acknowledging the existence of ongoing debates and controversies. By offering insights into cutting-edge developments, this primer not only equips researchers and practitioners with a solid foundation in BNNs, but also illuminates the potential applications of this dynamic field. As a valuable resource, it fosters an understanding of BNNs and their promising prospects, facilitating further advancements in the pursuit of knowledge and innovation.Comment: 65 page

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware
    • …
    corecore