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ABSTRACT

APPROXIMATE BAYESIAN DEEP LEARNING FOR
RESOURCE-CONSTRAINED ENVIRONMENTS

SEPTEMBER 2022

MEET PRAKASH VADERA

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Benjamin M. Marlin

Deep learning models have shown promising results in areas including computer

vision, natural language processing, speech recognition, and more. However, existing

point estimation-based training methods for these models may result in predictive

uncertainties that are not well calibrated, including the occurrence of confident errors.

Approximate Bayesian inference methods can help address these issues in a principled

way by accounting for uncertainty in model parameters. However, these methods are

computationally expensive both when computing approximations to the parameter

posterior and when using an approximate parameter posterior to make predictions.

They can also require significantly more storage than point-estimated models.
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In this thesis, we address a range of questions related to trade-offs between the

quality of inference and prediction and the computational scalability of Bayesian

deep learning methods. We begin by developing a framework for comprehensive

evaluation of Bayesian neural network models and applying this framework to a range

of existing models and inference methods. Second, we address the problem of providing

flexible trade-offs between prediction quality, run time, and storage by developing and

evaluating a general framework for distilling expectations with respect to the Bayesian

posterior distribution of a deep neural network classifier. Third, we investigate the

trade-offs between model sparsity and inference performance for deep neural network

models using several approaches to deriving sparse model structures. Fourth, we

present a framework for correcting approximate posterior predictive distributions,

encouraging them to prefer high-utility decisions. Finally, we investigate the use of

approximate Bayesian deep learning in object detection and present an evaluation of

approaches for quantifying different facets of uncertainty related to object classes and

locations.
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CHAPTER 1

INTRODUCTION

The success of deep learning has been widespread across different areas including

computer vision, natural language processing, speech recognition, and more. [Graves

et al., 2013, Huang et al., 2016, Devlin et al., 2018, Suzuki, 2017, Minaee et al., 2020].

Key components driving the overall success of deep learning-based methods include

advances in learning algorithms, neural network architectures, computing hardware

including graphics processing units (GPUs) and tensor processing units (TPUs), and

the availability of large labeled data sets.

However, as deep learning models are being deployed in fielded intelligent systems,

several challenges have become increasingly prominent. These challenges include

the deployment-time occurrence of high confidence errors, the need to be robust to

out-of-distribution inputs, and the potential for in-domain adversarial inputs. High

confidence errors occur when a probabilistic machine learning model ascribes high

probability to an incorrect output (e.g., a class label in a classification setting) [Guo

et al., 2017]. Deployed deep learning models can also encounter inputs from data

distributions that differ systematically from the distribution they were trained on.

In such cases, models need to avoid making high confidence errors. [Hendrycks and

Gimpel, 2017]

One of the important factors contributing to susceptibility to these problems is

model uncertainty. Supervised deep learning models are most commonly trained by

optimizing their parameters to minimize a training loss function. This approach yields
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a single locally optimal setting of the model parameters, which are then used to make

predictions at deployment time. However, given the large number of parameters used in

current models, there typically exist multiple qualitatively different sets of parameters

yielding similar training loss function values, but making different predictions on

future inputs. Common training procedures select a single set of such parameters,

despite the fact that for a given amount of training data, there may be significant

uncertainty over what the best model parameters actually are.

Bayesian inference provides a different perspective on the problem of training deep

neural network models that attempts to represent model uncertainty and propagate it

to the point of issuing predictions and making decisions. In Bayesian inference, the

unknown model parameters are formally treated as random variables. The goal becomes

to infer the posterior probability distribution over the unknown model parameters

given the available data. When the data support multiple distinct interpretations

in terms of settings of the model parameters, the model posterior will reflect this

uncertainty. Incorporating model uncertainty into prediction and decision-making

typically decreases overconfidence in predictions via the Bayesian model averaging

effect, and can also increase robustness to out-of-distribution and adversarial inputs

[Wilson, 2020].

Although Bayesian inference techniques appear promising, there are certain key chal-

lenges that remain with implementing Bayesian neural networks. The first challenge is

scalability. Bayesian neural networks are computationally expensive, as the posterior

predictive distribution is intractable, and we have to resort to approximation. This

makes the methods prohibitive at test time. The second challenge is inference quality.

Bayesian neural network posteriors are highly multimodal, and thus it’s important

for Bayesian inference algorithms to return a diverse representation of the posterior

distribution, within a reasonable amount of training time. Furthermore, if there exists

2



a utility function used for downstream decision-making, our approximate inference

algorithms need to quickly adapt to them for effective deployment. Finally, as the area

of Bayesian neural networks sees rapid growth, it is important to establish common

benchmarks based on comprehensive evaluation principles that reflect multiple aspects

of performance, robustness and scalability.

In this dissertation, we aim to tackle these challenges by developing Bayesian deep

learning algorithms that are suited for practical deployments. For practical applications,

we need algorithms that can scale well in constrained environments and also have

lower prediction latency. Furthermore, for constantly changing utility functions, our

methods should be able to adapt to them quickly. In this dissertation, we explicitly

address each of these requirements. In the next section, we provide an outline for the

different chapters and summarize the contribution of each chapter.

1.1 Dissertation Outline

In Chapter 2, we review the literature in the area of Bayesian deep learning. We

provide an overview of different approaches and a discussion around how they trade-off

scalability-performance against each other. We provide an overview and discussion of

model pruning and distillation approaches to tackle the test-time scalability of Bayesian

neural networks. Finally, we also briefly describe Bayesian decision theory, which

is an elegant framework for decision-making under uncertainty, given a downstream

utility function. This is an important framework, as often for practical applications,

the utility of different decisions based on inputs is asymmetric, and thus we need to

optimize for maximizing utility on decisions.

In Chapter 3, we present a benchmarking framework consisting of different Bayesian

neural network models, data sets, and downstream tasks. An important piece of our

benchmark is the set of evaluation principles. These principles are aimed at evaluating

3



the characteristics of model calibration, robustness to out-of-distribution inputs, aside

from just accuracy. This helps us establish a rigorous benchmark, which is also useful

for the wider community. We call this benchmark URSABench (the Uncertainty,

Robustness, Scalability, and Accuracy Benchmark).

Next, in Chapter 4, we focus on the issue of scalability of Bayesian neural networks

at test time. We present a general framework for distilling expectations with respect

to the Bayesian posterior distribution of a deep neural network classifier, extending

prior work on the Bayesian Dark Knowledge framework. We call this framework the

Generalized Bayesian Posterior Expectation Distillation (GPED) framework. The

proposed framework takes as input “teacher” and “student” model architectures and

a general posterior expectation of interest. The distillation method performs an

online compression of the selected posterior expectation using iteratively generated

Monte Carlo samples. We focus on the posterior predictive distribution and expected

entropy as distillation targets. We investigate several aspects of this framework,

including the impact of uncertainty and the choice of student model architecture. We

study methods for student model architecture search from a speed-storage-accuracy

perspective and evaluate down-stream tasks leveraging entropy distillation including

uncertainty ranking and out-of-distribution detection.

In Chapter 5, we investigate the potential of sparse network structures to flexibly

trade-off model storage costs against predictive performance and uncertainty quantifi-

cation ability. We also investigate the impact of sparsity on mixing. We use stochastic

gradient MCMC methods as the core Bayesian inference method and consider a variety

of approaches for selecting sparse network structures, including random and iterative

pruning-based methods. Our results show that both approaches can provide useful

trade-offs between posterior predictive performance and storage costs.

4



In Chapter 6, we turn our focus to the area of Bayesian decision theory. Bayesian

decision theory provides an elegant framework for acting optimally under uncertainty

when tractable posterior distributions are available. However, for most cases, and

certainly for deep neural networks, computing the posterior distribution and the

posterior predictive distribution is not tractable. In this work, we develop methods

to correct approximate posterior predictive distributions, encouraging them to prefer

high-utility decisions. In contrast to previous work, our approach is agnostic to the

choice of the approximate inference algorithm, allows for efficient test time decision-

making through amortization, and empirically produces higher quality decisions. We

demonstrate the effectiveness of our approach through controlled experiments spanning

a diversity of tasks and datasets.

In Chapter 7, we consider the application of approximate Bayesian inference to the

task of object detection using detection transformers. Object detection is a large-scale

practical application in deep learning, making it an interesting problem to explore

from the viewpoint of uncertainty quantification. As most of the past work in this

area has looked at the “correctness” aspect of the object detectors, we outline a

set of evaluation principles to evaluate the probabilistic nature of model predictions.

These evaluation principles look at different facets of uncertainty, such as location

uncertainty, class uncertainty, and objectness uncertainty. Through our controlled

experiments, we evaluate different inference methods against the evaluation principles

outlined, examine their runtime latency breakdown, and also provide latency-aware

performance comparison.

Finally, in Chapter 8, we provide conclusions, and a set of future directions that

build upon this thesis.
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Bibliographical note: Chapter 2 is adapted from Vadera and Marlin [2021].

Chapter 3 is adapted from Vadera et al. [2022]. Chapter 4 is adapted from Vadera

et al. [2020b]. Chapter 6 is adapted from Vadera et al. [2021].
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CHAPTER 2

BACKGROUND AND RELATED WORK

Approximate Bayesian deep learning methods hold significant promise for addressing

several issues that occur when deploying deep learning components in intelligent

systems, including mitigating the occurrence of over-confident errors and providing

enhanced robustness to out of distribution examples. In this chapter, we present a

range of approximate Bayesian inference methods for supervised deep learning and

highlight the challenges and opportunities when applying these methods. We highlight

several potential solutions to decreasing model storage requirements and improving

computational scalability, including model pruning and distillation methods.

The remainder of this chapter is organized as follows. In Section 2.1 we begin by

providing a comprehensive discussion of Bayesian supervised learning, approximate

Bayesian inference, and the scalability challenges of deploying current Bayesian deep

learning model representations. Next, in sections 2.2 and 2.3 we discuss model

compression techniques that can be leveraged for compressing Bayesian posterior

distributions. These approaches either look at compressing each member of the model

ensemble, or compress the entire ensemble into a surrogate model.

Bibliographical note: This chapter is adapted from Vadera and Marlin [2021].
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2.1 Bayesian Deep Learning and the Challenge of Scalability

In this section, we introduce the fundamental concepts of Bayesian inference for

supervised deep learning along with foundational approximation methods. We discuss

the scalability challenges when deploying such methods.

2.1.1 Bayesian Supervised Learning

Supervised learning forms the core of machine learning-based prediction systems. In

a supervised learning problem, we are given a dataset D consisting of input-output

pairs {(xi, yi)|1 ≤ i ≤ N}, where xi ∈ RD is the input or feature vector and yi ∈ Y is

the output or prediction target. We let Dx be the dataset of inputs and Dy be the

dataset of outputs. The nature of Y depends on the task at hand. For classification

tasks, Y is a finite set, whereas for regression tasks, we usually have Y ∈ R. There

also exist tasks, such as object detection, that are a combination of classification and

regression tasks. In this chapter, we specifically focus on the classification setting

in supervised learning, where the goal is to learn a function f : RD → Y that can

accurately predict the outputs from the inputs.

In probabilistic supervised learning, we construct the prediction function using a

conditional probability model of the form fθ(x) = p(y|x, θ) where θ ∈ RK are the

model parameters. The conditional likelihood of the inputs given the outputs and

the parameters is denoted by p(Dy|Dx, θ). Under the assumption that the outputs

are independent and identically distributed given their corresponding inputs, we have

that p(Dy|Dx, θ) =
∏N

i=1 p(yi|xi, θ). A key ingredient in Bayesian inference, as well as

in traditional point-estimated neural networks, is the prior distribution p(θ|λ) over

model parameters. As the name suggests, the prior distribution represents our beliefs

about the distribution of the model parameters prior to analyzing the data. The prior

distribution can have its own hyperparameters, here denoted by λ [Neal, 1996].
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Bayesian inference involves the computation of the posterior distribution over the

unknown model parameters given a training dataset Dtr and the prior. The parameter

posterior is obtained using Bayes theorem, as shown in Equation equation 2.1.

p(θ|Dtr, λ) =
p(Dy

tr|Dx
tr, θ)p(θ|λ)∫

p(Dy
tr|Dx

tr, θ)p(θ|λ)dθ
(2.1)

The denominator in the parameter posterior (referred to as the “evidence” term) is

intractable to compute for most ML models, including for deep neural networks [Neal,

1996]. As a result, the computation of the exact posterior distribution is intractable.

However, in practice, the quantity of interest is often not the parameter posterior

distribution itself, but rather low-dimensional expectations under the parameter

posterior.

One key posterior expectation in the supervised learning setting is the posterior pre-

dictive distribution, which is necessary and sufficient for making maximum probability

predictions for outputs given inputs while integrating over the uncertainty in the

model parameters. The posterior predictive distribution computation is shown in

Equation equation 2.2.

p(y|x,Dtr, λ) = Ep(θ|Dtr,λ)[p(y|x, θ)] (2.2)

Another posterior expectation that is useful in uncertainty quantification is the

expected posterior predictive entropy. Posterior predictive entropy (also referred to as

the total uncertainty of the predictive distribution) can be decomposed into quantities

referred to as expected data uncertainty and knowledge uncertainty [Depeweg et al.,

2017]. These three forms of uncertainty are related by the equation shown below:
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H
[
Ep(θ|D)

[
p
(
y|x, θ

)]]
︸ ︷︷ ︸

Total Uncertainty

= I
[
y, θ|x,D

]︸ ︷︷ ︸
Knowledge Uncertainty

+ Ep(θ|D)

[
H
[
p
(
y|x, θ

)]]
︸ ︷︷ ︸
Expected Data Uncertainty

(2.3)

Knowledge uncertainty can be efficiently computed as the difference between total

uncertainty and expected data uncertainty, both of which are functions of posterior

expectations. Recent work has leveraged these uncertainty estimates to explore a range

of down-stream tasks such out-of-distribution detection, misclassification detection,

and active learning that rely on uncertainty quantification and decomposition.[Wang

et al., 2018, Malinin et al., 2020, Houlsby et al., 2011, Holtsclaw et al., 2019, Kirsch

et al., 2019]. However, all of these posterior expectations are also intractable to

compute exactly for deep learning models. We thus next turn to the problem of

approximate Bayesian inference methods.

2.1.2 Approximate Bayesian Inference for Supervised Learning

As indicated in the previous subsection, posterior expectations including the posterior

predictive distribution needed for Bayesian supervised learning is intractable in its

original form. To tackle this problem, there is a significant body of work in the

area of approximate Bayesian inference. The ultimate goal of these approximation

methods is to compute approximate posterior expectations that are close to their

theoretical counterparts. Approximate Bayesian methods can be broadly divided into

three categories: Markov Chain Monte Carlo (MCMC) methods, surrogate density

estimation methods, and other approximation methods. We describe each category of

methods below and discuss their deployment challenges.
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2.1.2.1 Markov Chain Monte Carlo Methods

MCMC methods provide an approximation to the intractable parameter posterior

p(θ|D, λ) via a set of samples drawn for this distribution. MCMC methods simulate a

Markov chain that converges to the parameter posterior as its steady state distribution.

The simulated states of the Markov chain after convergence correspond to samples

from the parameter posterior. Once we collect a set of parameter samples of the

desired size, we can approximate expectations with respect to the parameter posterior

using empirical averages over the sampled parameter values [Smith and Roberts, 1993].

For example, the posterior predictive distribution can be approximated as shown in

Equation equation 2.4. As we can see, computing the Monte Carlo approximation

to the posterior predictive distribution is very similar to computing the predictive

distribution of a model ensemble.

p(y|x,D, λ) = Ep(θ|D,λ)[p(y|x, θ)]

≈ EpMC(θ|D,λ)[p(y|x, θ)]

=
1

S

S∑
s=1

p(y|x, θs) (2.4)

Examples of classical MCMC methods include the Gibbs sampler [Casella and George,

1992] and the Metropolis-Hastings sampler [Chib and Greenberg, 1995]. The earliest

work on MCMC samplers for neural networks traces back to the application of

Hamiltonian Monte Carlo methods [Duane et al., 1987]. While a number of MCMC

methods have since been developed with improved properties including slice sampling

[Neal, 2003], elliptical slice sampling [Murray et al., 2010], and Riemann manifold

methods [Girolami and Calderhead, 2011], these methods all require using all the

available data when computing the likelihood term needed for posterior inference.

Although only linear in the number of data cases, this can be a highly expensive

operation for large data sets and models and can render MCMC methods practically
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infeasible in scenarios where stochastic gradient descent (SGD) [Bottou, 2010] can be

usefully applied to optimize model parameters.

However, recent advances in MCMC approaches have enabled the use of SGD-like

mini-batch algorithms, greatly extending the range of applicability of MCMC methods.

Prominent examples of such approaches include stochastic gradient Langevin dynam-

ics (SGLD) [Welling and Teh, 2011], stochastic gradient Hamiltonian Monte Carlo

(SGHMC) [Chen et al., 2014b] and their cyclic learning rate versions as presented in

[Zhang et al., 2020]. SGHMC algorithm involves computing the potential function

Ũ(θ) on a minibatch B as shown in the equation below, followed by running the next

two update equations:

Ũ(θ) = − log(p(B|θ))− log(p(θ|λ)) (2.5)

θk = θk−1 + vk−1 (2.6)

vk = vk−1 − αk∇Ũ − ηvk−1 +
√

2(η − γ̂)αkϵk (2.7)

In the above equations k denotes the iteration, vk denotes the momentum term, (1−η)

denotes the momentum factor, ϵk is drawn from an identity Gaussian distribution,

∇Ũ denotes the gradient approximation obtained using a minibatch, γ̂ and αk denotes

the instantaneous step size. The process highlighted in the above equations is run

iteratively to draw new samples from the posterior. For practical purposes, most

implementations set γ̂ to 0 [Zhang et al., 2020]. Interestingly, SGLD can be derived

from SGHMC by setting the momentum factor to 0.

Another important property that determines the efficacy of MCMC methods is

the degree of mixing. The degree of mixing refers to how efficiently the Markov

chain traverses the posterior distribution after convergence [Brooks et al., 2011].

Better mixing enables faster collection of a more diverse set of parameter samples.

However, the mixing properties of MCMC methods depend on the dimensionality
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of the parameter space. Modern deep neural networks can have an extremely large

number of parameters (millions or more), potentially leading to inadequate mixing.

An alternative to sampling in the original parameter space RK is to sample in a reduced

dimensional space RK′
for K ′ ≪ K and to project back to the full-dimensional space.

This process is termed subspace inference [Izmailov et al., 2019]. Subspaces can be

generated using singular value decomposition (SVD) applied to SGD iterates, or by

generating random projection matrices, among other possible options [Izmailov et al.,

2019]. It is worth noting that these methods introduce bias by restricting the sampler

to operate in a subspace of RK .

2.1.2.2 Surrogate Density Methods

An alternate approach to MCMC methods is approximating the original posterior

distribution via an analytically tractable parameterized surrogate distribution. Thus,

given the original posterior distribution p(θ|Dtr, λ), surrogate density methods aim to

approximate the true posterior using an auxiliary distribution q(θ|ϕ), where ϕ are the

auxiliary parameters [Jordan et al., 1999, Jaakkola and Jordan, 2000, Ghosh et al.,

2016, Minka, 2001]. A common approximation is the use of a multivariate Gaussian

distribution with a diagonal covariance matrix N (θ;µ,Σ), also known as mean-field

variational inference. Here, the auxiliary parameters are ϕ = [µ,Σ]. The main reason

why mean-field variational inference is popular is due to the simple “re-parameterization

trick” that makes sampling from the auxiliary distribution straightforward [Blundell

et al., 2015]. With the re-parameterization trick, we can sample θk ∼ N (µk,Σkk) by

first drawing η ∼ N (0, 1), followed by the linear transformation θk = µk + η ·
√
Σkk.

This allows us to backpropagate through the variational parameters while drawing

samples of the model parameters to approximate the objective functions used for

learning.
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Now, for estimating the auxiliary parameters, we need an objective function that can

measure the discrepancy between the surrogate distribution and the ground truth

posterior. Needless to say, this objective function must also be computationally

tractable. The most commonly used discrepancy function is the Kullback-Leibler (KL)

divergence as shown below [MacKay, 2003].

KL(p(θ)||q(θ)) = Ep(θ)

[
log

(
p(θ)

q(θ)

)]

The KL divergence is a directional divergence, and thus is not symmetric in its

arguments. This results in two different measures depending on the directionality.

When the surrogate posterior is used as the first argument, the result is the variational

inference (VI) framework [Jordan et al., 1999, Jaakkola and Jordan, 2000]. When

the surrogate posterior is used as the second argument, the result is the expectation

propagation (EP) framework [Minka, 2001]. This often leads to VI methods having

mode seeking behavior, as they are not forced to match the support of the original

posterior. EP methods on the other hand are forced to match the support, but this

can often lead to incorrect mode estimation as it must cover the support of the original

posterior. These two extremes can also be interpolated by more generalized divergence

measures, including alpha divergence [Li and Turner, 2016].

These methods also suffer from scalability issues due to the need to compute the

log likelihood and its gradient over the entire dataset. Similar to the stochastic

gradient version of MCMC methods introduced earlier, advances in the past decade

have led to more scalable methods in this family, including stochastic variational

inference [Hoffman et al., 2013], that are able to accommodate large-scale datasets

using mini-batch gradients.

In addition to mean field VI, other more advanced approximations are possible, such

as multiplicative normalizing flows (MNF) [Louizos and Welling, 2017], Bayesian
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hypernetworks [Krueger et al., 2017], and Rank-1 factorization [Dusenberry et al.,

2020]. In multiplicative normalizing flows, we choose a simple density function such

as the isotropic Gaussian distribution, and use a bijective function to transform the

samples drawn from the simple density function to form more complex distributions.

The Bayesian hypernetworks approach builds on the MNF approach and uses a neural

network model to transform the samples drawn from a simpler density function

to model a more complex posterior distribution. Finally, the rank-1 factorization

approach represents the model parameters as a product of two rank-1 factors thereby

reducing the dimensionality of the base distribution of the approximate posterior.

For example, if we have a parameter matrix W ∈ RM×N , this can be re-written as a

matrix product of W1 ∈ RM×1 and W2 ∈ R1×N . This effectively reduces the number

of parameters from O(M ·N) to O(M +N).

MC Dropout is a particularly interesting approach, that is equivalent to approximate

variational inference under specific assumptions [Gal and Ghahramani, 2016]. Dropout

itself was first introduced as a regularization technique where during every training

iteration a pre-determined proportion of activations is randomly set to zero to reduce

overfitting. At test time, dropout is switched off and all units participate in making

predictions [Srivastava et al., 2014]. In MC Dropout, by contrast, dropout is used at

prediction time. This leads to a stochastic forward pass through the point-estimated

model. Multiple forward passes through the model are used, and the predictive

distributions are averaged. This procedure is equivalent to sampling from a specific

approximate variational posterior, but has the advantage that it is very easy to

implement.

The major drawback of surrogate density methods is that they introduce bias into

the estimation of the posterior distribution unless the true posterior belongs to the

family of auxiliary distributions. The degree of bias will depend on the functional
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form of the auxiliary distribution, and the divergence measure used to estimate the

parameters of the auxiliary distribution.

In addition, under these methods, we still face hurdles in computing posterior ex-

pectations including the approximate posterior predictive distribution. In particular,

even if q(θ|ϕ) is a simple parametric distribution, the expectation Eq(θ|ϕ)[p(y|x, θ)]

still usually cannot be computed analytically due to the non-linearity of p(y|x, θ). As

a result, we have to again resort to Monte Carlo approximation, and draw samples

from the approximate variational posterior. Generally, these methods trade-off the

potential bias in the surrogate parameter posterior for the ability to draw independent

samples once the surrogate posterior parameters have been estimated.

2.1.2.3 Additional Approximate Bayesian Inference Methods

With the emergence of Generative Adversarial Networks (GANs) [Goodfellow et al.,

2014], there has been work on learning implicit generative model representations of

the parameter posterior that can be used at test time to draw an arbitrary but finite

number of samples from this posterior approximation. The existing work in this area

involves training GANs that can approximate the posterior distribution asserted by

SGLD [Wang et al., 2018, Henning et al., 2018]. To compute the approximate posterior

predictive distribution, we yet again would use Monte Carlo approximation as shown

in the previous subsections. An advantage of these methods is that in theory we do

not need to store posterior samples for use during inference, and we can also determine

the number of posterior samples to use on the fly.

Deep Ensembles [Lakshminarayanan et al., 2017] have also shown strong performance

in terms of representing predictive distributions, and can also be considered as an

approximation to Bayesian inference [Wilson and Izmailov, 2020]. However, deep

ensembles can be expensive during training, as we need to train each model in the

ensemble from scratch. To alleviate this issue, snapshot ensembles [Huang et al.,
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2017] uses a cyclical learning rate schedule to generate more ensembles in less training

time. However, these methods learn a mixture of posterior modes, which is different

from an approximation to the full posterior. Regardless, deep ensembles have been

shown to yield better performance relative to using small numbers of samples in a

traditional MCMC approach. Finally, while comparing the predictive distributions

between different approximate inference methods and deep ensembles, Izmailov et al.

[2021b] observed that while deep ensembles can achieve better performance in terms of

good generalization accuracy and calibration, the predictive distribution was different

from the predictive distribution generated using HMC.

2.2 Model Pruning Approaches to Improving the Scalability

of Bayesian Deep Learning

As described in the previous section, the storage and computational scalability prop-

erties of Bayesian inference for neural network models can be a significant barrier to

deployment, despite their potential benefits in the context of intelligent systems. In

this section, we discuss model pruning and sparsification approaches that aim to reduce

the storage and computation requirement for Bayesian ensembles. These approaches

can be broadly divided into unstructured and structured pruning approaches, as we

describe below.

2.2.1 Unstructured Pruning

Optimization-based unstructured pruning methods aim to compress neural network

models by sparsifying their weight matrices. The earliest work on unstructured neural

network pruning dates back to the Optimal Brain Damage method [LeCun et al.,

1989]. In the optimal brain damage approach, the authors presented a Taylor series

approximation of the objective function, and show that under the assumption that the

Hessian matrix is diagonal, the weights corresponding to the second order derivatives
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that go to zero can be removed with little to no loss in performance. The follow-up

Optimal Brain Surgeon method [Hassibi et al., 1993] highlights that the diagonal

Hessian assumption can be limiting, leading to the removal of connections that should

be retained. It uses second order derivatives to decide which connections to remove,

and obtains better generalization on held-out test data compared to the Optimal

Brain Damage approach.

Another line of early work in unstructured pruning removes parameters based on

their magnitudes. The earliest work in this area dates back to [Hertz et al., 1991].

Since then, magnitude-based unstructured pruning has been revisited in more detail,

and it has been found that iterative pruning with fine-tuning can help prune more

parameters of a neural network while retaining better predictive performance compared

to one-time post-hoc pruning [Han et al., 2015].

In the iterative pruning with fine-tuning approach, we define a pruning rate p (the

percentage of weights to prune) for each pruning cycle and remove all weights with

magnitudes in the bottom p percentile. We then fine tune the model by optimizing

the unpruned weights to a desired level of convergence. We repeat these pruning and

fine-tuning cycles until we achieve the desired overall sparsity level.

Experimental results on iterative pruning with fine-tuning have shown that for the

ImageNet data set [Deng et al., 2009], the authors were able to reduce the number

of active parameters in the AlexNet model [Krizhevsky et al., 2012] by 9 times, and

reduce the number of active parameters in VGG16 [Simonyan and Zisserman, 2014] by

16 times. It is important to note that regularization methods (such as the application

of an ℓ2 or ℓ1 penalty) can help to ensure that the magnitude of the weights that are not

contributing to predictive performance are driven to zero. Building upon this, there

has been work on further compressing the model parameters using quantization and

Huffman coding [Han et al., 2016a] after pruning. There has also been additional work

18



on weight magnitude threshold-based pruning that allows for restoring connections

[Guo et al., 2016, Jin et al., 2016, Han et al., 2016b].

The Lottery Ticket Hypothesis [Frankle and Carbin, 2018] proposed an iterative

pruning method that is very similar to the method of [Han et al., 2015], which we refer

to as Iterative Pruning with Rewinding. This approach differs from basic iterative

pruning in that following each pruning iteration, the weights used to initialize the

next iteration of the algorithm are formed by combining the pruned weights with

the original random weight vector (generated during initialization), instead of the

weight vector obtained at the end of the previous pruning iteration. Effectively, the

active weights are rewound to their initial values at the start of each round of iterative

pruning. Through this approach, the authors found that there are sparse substructures

within deep neural networks that, when initialized randomly, achieve very similar

performance to the original dense networks with no pruning.

While unstructured pruning methods are well-studied in the context of optimization-

based deep learning, they have not received as much attention in the Bayesian deep

learning literature despite their potential to reduce the storage complexity of posterior

model ensembles. Several applications of unstructured sparsity are possible. First,

MCMC methods can be used to generate a posterior ensemble consisting of a set

of models. A single round of pruning can then be applied to each of the models to

remove a specified percentage of the smallest weights, resulting in an ensemble of

weight-sparse models. However, optimization-based fine-tuning can not be applied in

this setting without the potential for significantly altering the distribution that the

ensemble represents. Importantly, there is potential for the sparsified models in such

an ensemble to tolerate much higher levels of sparsity than an individual model due to

the averaging that occurs over the elements of the ensemble when making predictions.
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An alternative approach is to use optimization-based iterative pruning and fine-tuning

to derive a sparse network structure and a starting set of parameter values. MCMC

methods can then be initialized to sample within this sparse structure, starting from

the parameter values found using optimization. Optimization-based iterative pruning

approaches can also potentially be combined with variational Bayesian deep learning

methods. In the case of the classical Gaussian mean field approximation, both weights

that are close to zero and weights that have high posterior variance could potentially be

pruned from the model. Since variational inference is fundamentally an optimization-

based procedure, it can also be composed with an iterative pruning and fine-tuning

process to more closely mimic the process that is used in standard optimization-based

deep learning, as described above.

We note that while unstructured pruning has been proven to preserve prediction

accuracy even at high levels of weight sparsity for large optimization-based models,

whether and how these savings convert into practical savings in deployed systems is

fairly complicated. We first consider the storage properties of weight-sparse models.

In particular, the parameter matrices for a weight-sparse model must be stored in a

compressed format to yield any storage benefit.

Sparse matrices are typically stored either in coordinate list (COO) format or com-

pressed sparse column/row (CSC/CSR) format. In these formats, at a high level,

we store the indices and values of the non-zero elements of the matrix. For the

COO format, for example, the space complexity of the resulting data structure is

O(3N), where N is the number of non-zero elements. Importantly, how we compose

weight sparsity with Bayesian deep learning can have significant impact on the storage

complexity of the resulting models.

In the first approach described above, we considered independently sparsifying each

element of the posterior ensemble. If we retain a total of N non-zero weights for each
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of the S models, the total storage required is O(3NS). In the second approach, we

considered sampling within a fixed sparse structure. If this sparse structure has N

non-zero weights, the total required storage is theoretically, O(2N +NS) since we

only need to store the indices of the non-zero elements once. For S ≫ 2, this reduces

the required storage of the sparse ensemble by 66% over standard COO format. We

note that no current sparse matrix formats exist that support this optimization.

Lastly, we note that realizing the computational savings of weight-sparse networks

with GPUs and TPUs is also currently a challenge. PyTorch, for example, has sparse

matrix support that is currently in beta testing. Existing libraries for edge GPU/TPU-

accelerated architectures such as TensorRT currently only support highly restricted

sparsity patterns. As a result, fully realizing the theoretical computational benefit

of weight-sparse Bayesian deep learning approaches on edge platforms will require

additional support for GPU/TPU-accelerated linear algebra operations over sparse

matrices.

2.2.2 Structured Pruning

Optimization-based structured pruning methods apply similar pruning principles

to those of unstructured pruning, but with the aim of pruning larger structural

elements such as entire hidden unit or entire convolutional kernels. The simplest

structured pruning methods extend the iterative pruning approaches described above

to also include removing hidden units or convolutional kernels that have no incoming

connections [Han et al., 2015]. However, the induced sparsity patterns can be such that

few units are actually pruned. These basic approaches can be improved by modifying

the pruning criteria to prune units where the norm of their incoming weights is in the

bottom p percentile across all active units [Li et al., 2016]. This approach ensures that

a desired number of units is pruned from the network on each round.
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Another set of approaches leverage group LASSO (the least absolute shrinkage and

selection operator) regularization to encourage a group of incoming weights to go to

zero simultaneously [Zhang and Ou, 2018, Alvarez and Salzmann, 2016, Wen et al.,

2016, He et al., 2017]. To apply this approach, we must first must partition the model

parameters in the parameter vector θ into K groups Gk. The form of the regularizer is

R(θ) =
∑K

k=1

(∑
j∈Gk θ

2
j

)1/2
when using the group ℓ1/ℓ2 regularizer. For a feedforward

model, we place all the incoming weights for each hidden unit into a group. Similarly,

we collect all the incoming weights for a particular channel in a convolution layer

together into a group. The regularizer will then tend to encourage all the weights in a

group to go to zero or most of the weights in a group to be non-zero. This can make

it much easier to identify structures for pruning using weight norm-based criteria and

can require less fine-tuning as most inputs to a unit will tend to already be close to

zero prior to pruning.

Structured pruning can also be composed with approximate Bayesian deep learning

methods in multiple ways. As with unstructured pruning, we can also separately apply

structured pruning to each element of a posterior ensemble. However, the chances

that all incoming weights for a unit will be close to zero is many times smaller than

the chance that a single weight will be small. In this case, the use of an explicit

sparsity inducing prior, such as a spike-and-slab prior, would very likely be necessary

to obtain meaningful pruning. The approach of using optimization-based structured

pruning methods to select a structure and an initial set of weights to run MCMC-based

methods from is also applicable and is a potentially promising approach. Again, there

are close relationships between structured sparsity methods for optimization-based

deep learning and variational Bayesian deep learning. There is also specific prior

work on sparsity inducing priors for variational Bayesian methods. Previous work in

this area includes the use of horseshoe priors [Carvalho et al., 2009] for approximate

Bayesian inference [Ghosh and Doshi-Velez, 2017, Louizos et al., 2017].

22



Finally, we note that there is a significant gap between the practical implementation of

models that result from structured sparsity methods and unstructured sparsity methods.

This is due to the fact that structured sparsity methods learn more compact dense

models that do not need sparse matrix support to realize storage and computational

savings. A key metric for evaluating the computational requirements during inference

is the number of floating-point operations (FLOPS). Structured pruning methods can

in practice lead to lower FLOPS even with lower compression ratio when compared

to unstructured pruning methods. However, structured sparsity methods have been

observed to require more non-zero weights than weight-sparse models to obtain similar

levels of predictive performance [Blalock et al., 2020]. On the other hand, the run time

of linear algebra operations for sparse matrices on real hardware can have significantly

more overhead than when operating over dense matrices. The best approach to use is

likely to be highly dependent on the hardware and software support available on a

particular deployment platform, and has not been studied sufficiently.

2.3 Model Distillation Approaches to Improving the Scalabil-

ity of Bayesian Deep Learning

In this section, we describe posterior distillation methods, which provide an alternative

to pruning methods that can also both decrease the storage cost and the computational

cost of applying Bayesian deep learning methods. A prominent method in this area

includes Bayesian Dark Knowledge (BDK) [Balan et al., 2015]. These methods aim

to compress the computation of expectations under the model posterior into neural

networks whose storage and computational complexity can be set to match deployment

constraints. As a result, distillation approaches can expose a flexible trade-off between

resource use and posterior approximation accuracy.

In the case of BDK, the selected posterior expectation is the posterior predictive

distribution. BDK approximates the posterior predictive distribution by learning an
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auxiliary neural network model to compress the Monte Carlo approximation to the

posterior predictive distribution EpMC(θ|D,λ)[p(y|x, θ)].

The major advantage of this family of approaches is that they can drastically reduce the

deployment time computational complexity of posterior predictive inference relative to

using a Monte Carlo average computed using many samples. However, a shortcoming

of this family of approaches is that they only capture the target posterior expectations.

Thus, they do not have the ability to compute other statistics without being re-trained.

Ensemble distribution distillation (EnD2) is a closely related approach that aims to

distill the collective predictive distribution outputs of the models in an ensemble into a

neural network that predicts the parameters of a Dirichlet distribution [Malinin et al.,

2020]. The goal is to preserve more information about the distribution of outputs

of the ensemble in such a way that multiple statistics of the ensemble’s outputs can

be efficiently approximated. We note that the EnD2 approach can be applied to any

ensemble of models producing categorical output distributions and can thus be applied

to distill the predictive distributions of the elements of a posterior ensemble obtained

using MCMC methods as well as those obtained from a variational approximation.

We also note that this approach can be extended to approximate the distribution of

other posterior quantities by distilling in to approximating models that output other

types of distributions.

There is an interesting trade-off between distilling the full parameter posterior dis-

tribution into models that predict specific posterior expectations, such as BDK, and

approaches that distill aspects of the posterior into distributions. As noted above,

expectation distillation is a less general approach and models must be re-trained to

extend coverage to additional expectations. On the other hand, EnD2 gains generality

by predicting parametric distributions, from which a wider range of posterior properties

can be computed. The drawback of this approach is that it introduces irreducible bias
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via the selection of a particular approximating family of distributions in a way that

is similar to variational inference. As a result, although a wider range of posterior

properties can be estimated using EnD2, their accuracy can be varied and all can be

biased if the approximating family is not a good match to the true posterior.

In terms of deployment, one of the distinct advantages of distillation-based approx-

imations over both MCMC and variational methods is that the deployment time

computational complexity of approximating posterior expectations can be completely

controlled via the selection of the model architecture that the posterior is distilled

into. Once this architecture is selected and the distillation process is carried out, the

result is a single model (or one model per posterior expectation of interest) that can

then be deployed. This can be much simpler than deploying a posterior ensemble in

the case of MCMC methods.

However, maximizing the performance of distillation-based methods for a given com-

putational and storage budget requires performing an architecture search to determine

the optimal architecture for the approximating model. Since distillation-based learning

is itself an optimization problem, one method to perform this search is to start with a

large model architecture and apply iterative pruning and fine-tuning as described in

the previous section. The use of both weight-level and the structure-level pruning is

possible, with the deployment caveats noted in the previous section. The question of

how to most efficiently search for an optimal distillation architecture remains an open

question.

2.4 Bayesian Decision Theory and Loss-Calibrated Inference

In several practical applications, there’s a cost or utility (often asymmetric) associated

with the decisions we make based on our model predictions. Bayesian decision theory

provides a framework for decision-making under uncertainty [Berger, 1985]. Under
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the framework, we elicit a utility function u(h, y), where h denotes a decision within

a set of possible actions A and y denotes model predictions. Next, given a data point

x∗, we evaluate the expected utility (also known as the conditional gain), G(h | x∗),

for all h ∈ A using the utility function u(.) and the posterior predictive distribution

p(y∗|x∗, θ,D),

G(h | x∗) =

∫
y∗

u(h, y∗)p(y∗ | x∗,D, θ0)dy∗ (2.8)

Finally, we select the optimal decision c∗, such that it maximizes the conditional gain,

c∗ = argmaxh∈A G(h | x∗). However, an important assumption in these frameworks

is that we have access to the true posterior predictive distribution. As noted earlier,

the true posterior predictive distribution is intractable for Bayesian neural networks.

Rather, in practice, we only have access to an approximation p̃(y∗ | x∗,D, θ0). Using

this approximation as a drop-in replacement to p(y∗ | x∗,D, θ0) in Eq. (2.8) no longer

guarantees optimality of decisions, c∗.

This observation has inspired research in loss-calibrated inference. Lacoste-Julien et al.

[2011] presents a variational approach for Gaussian process classification that derives

from lower-bounding the log-conditional gain. To train the variational distribution, it

presents an EM algorithm with closed form updates, which alternates between sampling

from the variational posterior and making optimal decisions under the variational

posterior. Cobb et al. [2018a] extends the work done by Lacoste-Julien et al. [2011] to

Bayesian neural networks, and derives an objective that is a cost-penalized version

of the standard evidence lower-bound (ELBO). Both Lacoste-Julien et al. [2011] and

Cobb et al. [2018a] deal with only discrete values for the decisions h, Kuśmierczyk

et al. [2019] generalizes these methods to continuous decisions. Beyond variational

approximations, Abbasnejad et al. [2015] present an importance sampling-based

approach that encourages high utility decisions.
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CHAPTER 3

URSABENCH: THE UNCERTAINTY, ROBUSTNESS,
SCALABILITY, AND ACCURACY BENCHMARK

As we noted in the previous chapter, the recent advances in Bayesian deep learning have

provided a variety of methods to generate posterior representations for supervised deep

learning problem, with different trade-offs. While highly promising, much of this prior

research has lacked a focus on comprehensive evaluation including the simultaneous

assessment of multiple aspects of performance (e.g., in-distribution accuracy, out-of-

distribution detection, adversarial robustness, uncertainty calibration, storage costs,

computational costs, etc.). There has also been a lack of systematic comparisons

across different methods, including accounting for optimizing hyperparameters of

inference methods. As a result, there is a significant information gap around which

methods hold the most promise in different regions of the multi-faceted trade-off space

for different down-stream tasks.

This chapter advances the area of approximate Bayesian inference for deep learning

models by addressing the question of how to fairly and efficiently perform comprehen-

sive evaluations of methods. To this end, we present URSABench (the Uncertainty,

Robustness, Scalability, and Accuracy Benchmark), an open-source suite of models,

inference methods, tasks and benchmarking tools. URSABench supports comprehen-

sive assessment of Bayesian deep learning models and approximate Bayesian inference

methods, with a focus on classification tasks performed both on server and edge GPUs.

The organization of the chapter is as follows. In Section 3.1 we discuss principles

for evaluating Bayesian deep learning models and algorithms including predictive
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performance, calibration, robustness, and scalability. In Section 3.2 we present

the URSABench benchmarking system components that encapsulate the evaluation

principles described in Section 3.1. In Section 3.3 we present and discuss benchmarking

results obtained using the system, including results on edge GPU hardware.

Bibliographical note: This chapter is adapted from Vadera et al. [2022].

3.1 Evaluation Principles

While advances in supervised deep learning methods have focused almost exclusively

on accuracy over the last decade [Krizhevsky et al., 2012], there are multiple additional

properties of models and inference algorithms that are of great interest, particularly for

Bayesian deep learning models and methods that aim to better represent uncertainty.

We group these properties into several categories including predictive performance, cal-

ibration, robustness, and computational efficiency. We discuss each of these categories

in this section, as well as tasks, methods, and metrics to evaluate them.

3.1.1 Predictive Performance

Predictive performance is by far the most widely considered property of supervised

machine learning models. A fundamental question when evaluating probabilistic

supervised models is how is the posterior predictive uncertainty evaluated?

In the classification setting, accuracy is the coarsest measure of the predictive perfor-

mance of a probabilistic model. It simply assesses the number of examples for which

the true class has the highest predictive probability. Measures like precision, recall,

and the F1 score are all similar to accuracy in that they are based on hard predictions.

While these measures have strong interpretability properties, they are not particularly

sensitive to posterior uncertainty. In particular, these measures are not affected by the

level of uncertainty, so long as the most likely class is the correct prediction. These

metrics thus do not differentiate between mild confidence in incorrect predictions
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and egregiously high confidence in incorrect predictions. In the regression setting,

classical evaluation metrics including mean squared error and mean absolute error

have a similar issue. While they are sensitive to the predictive mean, they also ignore

predictive uncertainty.

In the classification setting, predictive log likelihood can provide a more refined notion

of probabilistic predictive performance by assessing the log probability of the true

class. This measure is strongly influenced by confident incorrect predictions. In the

regression case, the use of predictive log likelihoods for evaluation can also provide

more information about the posterior uncertainty of the predictions. However, one

of the main drawbacks of predictive log likelihood is that absolute log likelihood

values are not as easily interpretable as absolute accuracy values. Predictive likelihood

is often better suited for use in relative comparisons between models or inference

methods as a result.

Lastly, in general, predictive performance must be assessed on a test dataset Dte. The

standard assumption is that this test set is sampled from the same distribution as the

training dataset Dte. We will refer to this setting as in-domain prediction. Recent work

in machine learning has put an increasing focus on robustness to encountering out of

domain examples at deployment time. We will return to this issue in Section 3.1.3.

3.1.2 Calibration

In the binary classification domain, interpreting probability as relative frequency leads

to the idea that the fraction of instances that should be classified as positive among

a set of instances predicted to be positive with probability p should be exactly p. A

model that satisfies this property for all values of p is said to be perfectly calibrated.

While early work on neural network models indicated they had better calibration

properties than some other types of models [Niculescu-Mizil and Caruana, 2005], more
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Figure 3.1. (Left) Individual components of, URSABench shown at the middle
level. Based on a configuration of a subset of these components, users can run an
end-to-end experiment or deploy the sampled models to an edge environment. (Right,
top) A sample workflow template for HyperOpt. Users select an inference scheme
and an evaluation task, and select the hyperparameters which perform the best for
the chosen evaluation scheme. (Right, bottom) A sample workflow template for
Inference. Users select hyperparameters (ideally through some form of hyperparameter
optimization), and an inference scheme to obtain a Bayesian ensemble. Finally, this
Bayesian ensemble is evaluated on different tasks, as shown on the right.

recent evaluations of deep learning models have shown that their calibration properties

can be quite poor [Guo et al., 2017].

In the case of approximate Bayesian supervised classification, calibration is estimated

by computing the predictive probability pi = p(Yi = 1|x,D, θ0) for each test instance

i, binning the predictive probabilities, and computing the accuracy within each bin b.

Let Nb be the number of instances in bin b, Ab be the accuracy of instances in bin

b, and Cb be the average predictive probability (or confidence) of instances in bin b.

Plotting the bin accuracies Ab as a bar chart results in a visualization referred to as a

reliability plot. We can also compute the calibration error for bin b as κb = |Ab − Cb|.

The expected calibration error (ECE) is then defined to be ECE = 1
N

∑
bNbκb. The

maximum calibration error is given by MCE = maxb κb [Guo et al., 2017].

In the case of multi-class classification, we can obtain a generalization of calibration

using a one-vs-all formulation. We let pci = p(Yi = c|x,D, θ0) and bin the pci values

separately for each class c. Let Ncb be the number of instances in bin b, Acb be
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the accuracy of instances in bin b, and Ccb be the average predictive probability (or

confidence) of instances in bin b, all when class c is considered to be the target class.

We then define κcb = |Acb − Ccb| and ECE = 1
NC

∑
c

∑
bNcbκcb.

It is important to note that calibration and accuracy are distinct concepts. A model

with low accuracy could be perfectly calibrated, while a model with high accuracy

could be poorly calibrated. Calibration and predictive performance are thus largely

orthogonal properties of a model.

The Brier score provides a measure related to the multi-class generalization of expected

calibration error [Brier, 1950]. Again, letting pci = p(Yi = c|x,D, θ0), the multi-class

Brier score is given by BS = 1
N

∑
c

∑
i(pci − [yi = c])2 where [yi = c] is 1 if yi = c

and is 0 otherwise. The Brier score can be interpreted as mixing together aspects of

calibration and predictive performance.

Like prediction performance measures, calibration is assessed on an in-domain test

dataset Dte that is assumed to be sampled from the same distribution as the training

dataset Dtr.

3.1.3 Robustness

A key aspect of robustness of methods is their ability to identify when input examples

are not drawn from the training distribution [Ovadia et al., 2019]. Such an evaluation

leverages a test set that is explicitly out-of-distribution (OOD). A variety of methods

have been proposed to leverage the output of a probabilistic model for the purpose of

detecting when examples are OOD. Examples include thresholds on the entropy of the

posterior predictive distribution (also called the total uncertainty). For approaches

that provide access to the posterior distribution over model parameters, methods

have been proposed that instead threshold the knowledge uncertainty. Performance is

typically measured via OOD prediction as a binary classification task.
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Another key property of models and inference methods is their robustness to adversarial

manipulations [Goodfellow et al., 2015] and out of distribution examples [Ovadia et al.,

2019]. In the case of adversarial examples, there are multiple possible frameworks for

generating examples and the robustness property of interest is the ability of methods to

resist adversarial perturbations as measured by the success rate of adversarial attacks as

a function of bounds on the adversarial perturbation magnitude. Adversarial example

generation methods include the Fast Gradient Sign Method (FGSM) [Goodfellow et al.,

2015], Projected Gradient Descent (PGD) [Madry et al., 2018] and the Carlini-Wagner

attack [Carlini and Wagner, 2017], and one-pixel attack [Su et al., 2019].

We note that in the Bayesian supervised learning context, these attack methods require

access to the posterior predictive distribution function and its gradients. It is possible

to efficiently attack sample-based representations of Bayesian posterior predictive

distributions by iteratively constructing the adversarial perturbations while running

an MCMC sampler.

3.1.4 Scalability

We consider two primary aspects to computational scalability: run time and storage

cost. As noted in Chapter 2, different approximate Bayesian inference methods can

have widely different properties in terms of both aspects of computational scalability.

Of primary interest in this work are how the predictive performance, calibration and

robustness properties of methods trade off against their computational scalability

properties. In particular, which approach is “best” depends on what aspects of

performance are important for a given task.

For example, the method that gives the best absolute predictive performance on a

given task may be acceptable even if it has high run time and storage requirements if

the deployment context is a server and there are no real-time constraints on making

predictions. However, if there are real-time constraints, a method that is faster may
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be needed. If the deployment context is an embedded system, methods that are both

faster and require reduced storage may be needed.

When benchmarking methods, the storage cost will be estimated via the number of

parameters. The run-time of methods can be assessed in different ways, including

actual computation time as well as a number of more portable statistics such as the

number of floating-point operations (flops) or the number of multiply-accumulate

operations (MACs). In this work we benchmark training run time on server hardware

and prediction/inference run time on both server and edge hardware.

3.2 The URSABench System

In this section, we describe the URSABench system components, which include

multiple datasets, models, inference methods, and tasks that implement the evaluation

principles described in the previous section. URSABench is implemented using the

PyTorch deep learning library [Paszke et al., 2019]. The current system includes

benchmarking components for small-scale, medium-scale, and large-scale models and

tasks, as well as evaluation of scalability on server and edge GPU-accelerated platforms.

The architecture of URSABench is illustrated in Figure 3.1. There are six main modules

including HyperOpt, Inference, Tasks, Models, Datasets and Distiller. We

describe each of them below.

3.2.1 The HyperOpt Module

For comparisons between methods to be meaningful, hyperparameters of the inference

methods and models need to be set for each combination of inference method, model,

dataset, and task. The URSABench HyperOpt module provides several hyperpa-

rameter optimization approaches including Bayesian optimization, random search,

and grid search. The results in the next section use Bayesian optimization as the

hyperparameter optimization method.
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3.2.2 The Inference Module

The Inference module includes implementations of multiple recent inference methods

for Bayesian deep learning with a standard interface. Methods in this module allow

users to either sample iteratively, or collect all parameter posterior samples at once.

This allows greater flexibility in interfacing with downstream tasks or distillation while

working under memory constraints. Implemented inference methods include HMC1,

SGLD [Welling and Teh, 2011], SGHMC [Chen et al., 2014b], cSGLD, cSGHMC

[Zhang et al., 2020], SWAG [Maddox et al., 2019] and PCA-based subspace inference +

elliptical slice sampling (PCA+ ESS (SI)) [Izmailov et al., 2019]. As baselines, we also

provide MC dropout [Gal and Ghahramani, 2016] and an SGD-based point estimation.

3.2.3 The Distiller Module

This module provides methods to distill a posterior ensemble into a student model.

Knowledge distillation is useful to reduce the deployment time storage and computation

requirements. An implementation of Bayesian Dark Knowledge (BDK) [Balan et al.,

2015] based distillation, Generalized Bayesian Posterior Expectation Distillation

(GPED) [Vadera et al., 2020b] is included.

3.2.4 The Models and Datasets Modules

The small-scale benchmark uses a basic, fully connected MLP with two hidden

layers containing 200 units each as the benchmark model, with MNIST providing

the benchmark in-domain dataset [LeCun, 1998]. At the medium-scale, we use

ResNet50 [He et al., 2016b] and WideResNet as the benchmark models [Zagoruyko

and Komodakis, 2016], with CIFAR10 and CIFAR100 as the benchmark in-domain

datasets [Krizhevsky et al., 2009]. At the large-scale, we use ResNet50 with ImageNet

[Deng et al., 2009] as the benchmark in-domain dataset.

1HMC is only implemented for tasks where the model and full dataset can fit on the GPU. We
use the hamiltorch Python package [Cobb et al., 2019].
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3.2.5 The Tasks Module

The Tasks module includes a set of inference and prediction tasks using different

datasets. The tasks are designed to support assessment of multiple proprieties of

models and algorithms, including most of those identified in the discussion of evaluation

principles. Specifically, accuracy is assessed using in-domain test sets. To assess

uncertainty quantification, we compute negative log likelihood, Brier score, and

performance on a misclassification detection task, all using the in-domain test sets.

We also consider a decision-making task that focuses on assessing the quality of the

tail of the predictive distribution using imbalanced datasets and costs that strongly

penalize errors on the rare classes [Cobb et al., 2018b].

We assess robustness using an out-of-distribution (OOD) classification task [Ovadia

et al., 2019, Vadera et al., 2020b] leveraging knowledge uncertainty (see Chapter 2,

Section 2.1 for a review of uncertainty decomposition). The small-scale benchmark

uses FashionMNIST [Xiao et al., 2017] and KMNIST [Clanuwat et al., 2018b] as OOD

test sets, while the medium-scale benchmark uses SVHN [Netzer et al., 2011b] and

STL10 [Coates et al., 2011] as OOD test sets. For the large-scale benchmark, we use

ImageNet-Sketch [Wang et al., 2019] as OOD test set. Performance on OOD tasks is

assessed using AUROC. Finally, the benchmark focuses on computation time as the

measure of computational scalability, measured in seconds/sample.

3.2.6 The Run-time Latency Module

We implement a profiling pipeline to evaluate and compare model inference latency.

The models optimized by HyperOpt are compiled using TensorRT [NVIDIA Cor-

poration] before deployment. TensorRT is an acceleration library from Nvidia that

improves the inference efficiency of already-trained models on Nvidia platforms. At

compilation, TensorRT applies several hardware-dependent optimizations to the input

model such as quantization, layer fusion, kernel auto-tuning, etc. The compiled model
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is saved as a TensorRT engine and executed by the TensorRT run-time during the

execution phase. This module supports the deployment of Bayesian ensembles and

distilled models onto edge hardware for run-time latency benchmarking.

3.2.7 Experiment Workflows and Composite Scores

Along with the above components, we also provide workflows for executing hyperparam-

eter optimization, inference and evaluation for each of the model-method-dataset-task

combination that form the core of the benchmark evaluation process. This includes

workflow components for compiling models for edge deployment using TensorRT.

We divide our benchmark into three categories: small-scale, medium-scale, and large-

scale. The small-scale benchmark consists of MNIST as its in-domain dataset using

the MLP models. The medium-scale benchmark consists of all combinations CIFAR

datasets with the WideResNet28x10 and ResNet50 models. Finally, the large-scale

benchmark consists of ImageNet dataset with the ResNet50 model.

Lastly, the simultaneous assessment of multiple aspects of performance for multiple

model, method, dataset and task combinations yields many individual results for each

inference method. An important design choice in URSABench is thus to summarize

performance in terms of key selected metrics along with composite scores that combine

related individual metrics. For accuracy, we include an average over all benchmark

models and all in-domain test sets. For robustness, we use an average over all models

and OOD datasets. For uncertainty quantification, we separately compute an average

over models and datasets in terms of negative log likelihood (NLL) and misclassification

task performance.

3.2.8 Discussion: Extensibility and Reproducibility

The URSABench system is designed to be extensible and reproducible. Researchers

who are interested in benchmarking the performance of a new model can add it to
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the Models module and update the benchmarking workflow template to evaluate

the model. Similarly, a researcher interested in benchmarking a new approximate

inference algorithm can add it to the Inference module, update the benchmarking

workflow template to include the new algorithm, and evaluate its performance. The

benchmark predictive performance, robustness and uncertainty evaluations are all

fully reproducible based on the existing experimental workflow implementations.

The one aspect of the system that is not fully reproducible is the scalability assessment,

as it relies on profiling methods on real hardware. In the prediction run-time results

reported in the next section, we use the Jetson TX2 platform. These results are

reproducible on that hardware, which is available at relatively low cost. The training

scalability results use server GPUs where there is much more variability in available

hardware. In this work, we show absolute time for training scalability, but a metric

with more potential stability across hardware platforms is the ratio of the absolute

training time score for a given method to that of the base SGD method used on the

same platform. We leave an exploration of the standardization of training scalability

across hardware platforms to future work.

3.3 URSABench Benchmark Results

In this section, we present the implementation details, and report benchmark results

obtained using the URSABench system. We divide our benchmark results into the

three categories mentioned earlier: small-scale, medium-scale and large-scale. To

get an overall assessment of different approximate inference methods, we present an

aggregated set of metrics that focus on the accuracy, negative log-likelihood (NLL),

robustness, uncertainty and training scalability. The robustness relies on averaging

both the total uncertainty AUROC and the model uncertainty AUROC over the

OOD data sets. We then further average the mean total uncertainty and mean

model uncertainty scores. The uncertainty composite score is built from the average
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misclassification AUROCs (e.g. the first three columns of Tables 3.4, 3.8, 3.11, 3.14,

3.17). For the medium-scale experiment, the uncertainty score is then averaged across

CIFAR10 and CIFAR100 as well as ResNet50 and WideResNet28x10. Finally, the

training scalability denotes the wall-clock time (in seconds) required to generate one

sample from the parameter posterior.

3.3.1 Implementation Details

In this section, we describe the implementation details for the different inference

methods used in our benchmark. It must be noted that for all inference methods

using ResNet50 and WideResNet28x10 models, we use a pretrained SGD solution

to warm-start our samplers. This is a standard pretraining procedure followed to

make the methods more competitive Maddox et al. [2019]. Further, the ensemble

size is set to 100 for MNIST dataset, 50 for CIFAR datasets, and 6 for ImageNet

dataset. When applicable, we always collect a sample at the end of an epoch. The

difference in ensemble size is due to the large amounts of computational requirements

for training ResNet50 and WideResNet28x10 on CIFAR datasets, as well training

ResNet50 on ImageNet. While tuning hyperparameters for MNIST, we apply Bayesian

optimization with a limit of 200 evaluations for each approach Balandat et al. [2019].

On the other hand, for CIFAR datasets, we refer to existing literature and use the

same hyperparameters if directly applicable, or search around the hyperparameters

obtained for similar models and datasets.

SGLD: For CIFAR datasets, we use a burn-in of 100 epochs and initial learning rates

of 0.1 for WideResNet28x10 model and 0.05 for ResNet50. The prior std. dev. is set

to 0.5 for both the cases. We decay the learning rate using cosine annealing schedule

to its half value by the end of sampling. For ImageNet datasets, we use a burn-in of 5

epochs, initial learning rates of 0.05, and set the prior std. dev. to 0.1. For MNIST,
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the optimal hyperparameter values obtained are: initial learning rate of 0.099, prior

std. dev. of 0.16 and 50 burn in epochs.

SGHMC: We use the same hyperparameters and learning rate schedule as described

for SGLD for the CIFAR and ImageNet datasets. Additionally, we set the friction

term to 0.5 Chen et al. [2014b]. This is equivalent to the α term shown in Zhang et al.

[2020]. For MNIST, the optimal hyperparameter values obtained are: initial learning

rate of 0.03, prior std. dev. of 0.14, 50 burn in epochs, and friction term set to 0.1.

cSGHMC: We use the same hyperparameters given in Zhang et al. [2020] for CIFAR

datasets. For ImageNet, we use the initial learning rate for a cycle to 0.01, prior std.

dev. of 0.1, cycle length of 7 epochs, of which 4 epochs are used for SGD-exploration

phase, 1 epoch for burn-in, and collect 2 samples from each of the last two epochs

of the cycle. For ImageNet, we run a total of 3 cycles. For MNIST, the optimal

hyperparameter values obtained are: initial learning rate of 0.06, prior std. dev. of

0.33, cycle length of 22 epochs, of which 17 epochs are used for SGD-exploration

phase, and samples are collected from the last 4 epochs, and friction term set to 0.21.

cSGLD: We use the same hyperparameters given in Zhang et al. [2020] for CIFAR

datasets. For ImageNet, we use the same hyperparameters described for cSGHMC.

For MNIST, the optimal hyperparameter values obtained are: initial learning rate of

0.06, prior std. dev. of 0.33, cycle length of 22 epochs, of which 17 epochs are used for

SGD-exploration phase, and samples are collected from the last 4 epochs, and friction

term set to 0.21.

SWAG: We use the same hyperparameters given in Izmailov et al. [2019] for CIFAR

models, except that we set the weight decay for ResNet models to 10−4 and borrow its

remaining hyperparameters from WideResNet28x10. This means that we utilize last

20 SGD iterates to find parameters for the Gaussian approximation to the mode. For

ImageNet, we set the exploration learning rate to 0.005, and start collecting samples
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for constructing the Gaussian approximation after 10 epochs. We collect 20 parameter

samples for generating the Gaussian approximation. Furthermore, the variant of

SWAG used in our benchmark is SWAG-diagonal.

PCA + ESS (SI): We use the same hyperparameters given in Izmailov et al. [2019]

for CIFAR models, except that we set the weight decay for ResNet models to 10−4

and borrow its remaining hyperparameters from WideResNet28x10. We construct a

subspace of rank 20 for all models and datasets. For ImageNet, we set the exploration

learning rate to 0.005, and start collecting samples for constructing the subspace after

10 epochs. We collect 20 parameter samples for generating the subspace of rank 20.

For MNIST, we start with an initial learning rate of 0.04 and decay it 0.002 over 50

epochs. Further, we run SGD at the same learning rate for another 50 epochs and

collect the iterates from each of the final 20 epochs to construct our PCA subspace.

The momentum for our SGD optimizer is set to 0.54 through the entire run. For all

the dataset and model combinations, we use elliptical slice sampling [Murray et al.,

2010] on the low rank PCA subspace with a prior of 2. and a temperature of 5000.

MC Dropout: For all the models on CIFAR & MNIST datasets, we use a dropout of

0.2 before the final linear layer. For ImageNet, we use a dropout rate of 0.05 just before

the final layer. We always fine-tune after warm-starting with SGD point-estimated

model.

3.3.2 Small-Scale Benchmark Results

The composite scores for the small-scale benchmark are displayed in Table 3.1. The

detailed experimental results behind each composite score can be found in Tables 3.2 -

3.4. The small-scale results show how challenging it can be to distinguish between

different approximate inference schemes using relatively simple models and datasets.

SGD and SGHMC are both marginally ahead in accuracy and NLL; HMC appears to

show the most robust performance in OOD, and SGHMC does best for the uncertainty
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metric. However, the minor relative difference between all the performance metrics

points to focusing on the compute time, which shows HMC to be significantly less

time-consuming. This is due to the ability to fit all the data and model parameters on

the GPU. Recall that the training-time scalability represents the total no. of seconds

required during training. To benchmark this, we use an Nvidia TITAN X GPU, with

a batch size of 128, and 4 PyTorch dataloader workers.

Table 3.1. URSABench small-scale benchmark performance. (Results presented as
mean ± std. dev. across 5 trials.)

Inference Accuracy ↑ NLL ↓ Robustness ↑ Uncertainty ↑ Training Time ↓

HMC 0.9819 ± 0.0010 0.0593 ± 0.0016 0.9570 ± 0.0075 0.9734 ± 0.0012 178 ± 1.5
SGLD 0.9839 ± 0.0004 0.0492 ± 0.0022 0.9065 ± 0.0377 0.9679 ± 0.0233 765 ± 4.2
SGHMC 0.9862 ± 0.0003 0.0446 ± 0.0003 0.9426 ± 0.0048 0.9807 ± 0.0003 768 ± 2.3
cSGLD 0.9857 ± 0.0003 0.0476 ± 0.0011 0.9521 ± 0.0022 0.9795 ± 0.0007 1063 ± 4.2
cSGHMC 0.9836 ± 0.0009 0.0533 ± 0.0016 0.9276 ± 0.0094 0.9759 ± 0.0015 1111 ± 3.3

PCA + ESS (SI) 0.9840 ± 0.0007 0.0520 ± 0.0016 0.9360 ± 0.0038 0.9695 ± 0.0012 1146 ± 10.2
MC dropout 0.9858 ± 0.0007 0.0501 ± 0.0031 0.9429 ± 0.0059 0.9769 ± 0.0019 377 ± 2.4

SGD 0.9860 ± 0.0002 0.0452 ± 0.0012 - - 193 ± 0.9

Table 3.2. Comparison of predictive performance and decision making cost while
using an MLP [784, 200, 200, 10] on MNIST. Results presented as mean ± std. dev.
across 5 trials.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Training Time ↓

HMC 98.19 ± 0.10% 0.0593 ± 0.0016 0.0280 ± 0.0008 0.0079 ± 0.0008 7101 ± 346 178 ± 1.5
SGLD 98.39 ± 0.04% 0.0492 ± 0.0022 0.0236 ± 0.0005 0.0041 ± 0.0024 5410 ± 778 765 ± 4.2
SGHMC 98.62 ± 0.03% 0.0446 ± 0.0003 0.0210 ± 0.0002 0.0073 ± 0.0004 5408 ± 240 768 ± 2.3
cSGLD 98.57 ± 0.03% 0.0476 ± 0.0011 0.0223 ± 0.0003 0.0056 ± 0.0003 6526 ± 2241 1063 ± 4.2
cSGHMC 98.36 ± 0.09% 0.0533 ± 0.0016 0.0256 ± 0.0010 0.0033 ± 0.0003 4824 ± 1855 1111 ± 3.3

PCA + ESS (SI) 98.40 ± 0.07% 0.0520 ± 0.0016 0.0251 ± 0.0007 0.0036 ± 0.0005 3809 ± 1150 1146 ± 10.2
MC dropout 98.58 ± 0.07% 0.0501 ± 0.0031 0.0218 ± 0.0008 0.0042 ± 0.0006 15236 ± 1184 377 ± 2.4

SGD 98.60 ± 0.02% 0.0452 ± 0.0012 0.0213 ± 0.0003 0.0032 ± 0.0005 8972 ± 720 193 ± 0.9

3.3.3 Medium-Scale Benchmark Results

The medium-scale results are displayed in Table 3.5. The detailed experimental results

behind each composite score can again be found in Tables 3.6 - 3.17.

We note that we provide two sets of results for cSGHMC and cSGLD, with different

ensemble sizes, denoted by the number in parentheses. For getting 50 parameter

samples from the posterior using either cSGLD or cSGHMC, we run many cycles,
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Table 3.3. Comparison of OOD detection performance while using an MLP
[784, 200, 200, 10] on MNIST. Results presented as mean ± std. dev. across 5 trials.

Inference
OOD

Dataset
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

HMC
Fashion MNIST 0.966 ± 0.013 0.946 ± 0.017

KMNIST 0.968 ± 0.013 0.948 ± 0.017

SGLD
Fashion MNIST 0.867 ± 0.110 0.944 ± 0.005

KMNIST 0.871 ± 0.103 0.944 ± 0.005

SGHMC
Fashion MNIST 0.933 ± 0.009 0.953 ± 0.010

KMNIST 0.932 ± 0.009 0.952 ± 0.010

cSGLD
Fashion MNIST 0.954 ± 0.004 0.950 ± 0.005

KMNIST 0.954 ± 0.004 0.950 ± 0.005

cSGHMC
Fashion MNIST 0.923 ± 0.021 0.931 ± 0.017

KMNIST 0.923 ± 0.020 0.933 ± 0.017

PCA + ESS (SI)
Fashion MNIST 0.933 ± 0.006 0.938 ± 0.009

KMNIST 0.934 ± 0.006 0.940 ± 0.009

MC dropout
Fashion MNIST 0.942 ± 0.013 0.943 ± 0.010

KMNIST 0.943 ± 0.013 0.944 ± 0.010

SGD
Fashion MNIST - 0.945 ± 0.010

KMNIST - 0.943 ± 0.010

Table 3.4. Comparison of misclassification detection while using an MLP
[784, 200, 200, 10] on MNIST.

Inference
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

HMC 0.9706 0.9734 0.9743 0.3429 0.3888 0.4145
SGLD 0.9739 0.9800 0.9800 0.3530 0.4502 0.4632
SGHMC 0.9786 0.9815 0.9823 0.3546 0.3929 0.4131
cSGLD 0.9769 0.9801 0.9798 0.3695 0.4477 0.4478
cSGHMC 0.9730 0.9786 0.9786 0.3260 0.4255 0.4404

PCA + ESS (SI) 0.9539 0.9774 0.9772 0.2059 0.4298 0.4248
MC dropout 0.9754 0.9763 0.9760 0.4085 0.4300 0.4199

SGD - 0.9795 0.9794 - 0.4273 0.4389
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which results in very high training time as compared to SGLD and SGHMC. Thus, for

a more fair comparison with SGLD and SGHMC, we limit the training time of cSGLD

and cSGHMC to be similar to their non-cyclic versions by reducing the number of

cycles and parameter samples. In the setting with the reduced number of cycles,

we extract nine parameter samples, as compared to 50 for the full number of cycles.

Overall, the medium-scale experiments indicate a slight improvement in predictive

performance and decision-making tasks from both cSGHMC (50) and cSGLD (50)

followed by PCA + ESS (SI) & cSGLD. Importantly, the cSGLD & cSGHMC results

with a lower ensemble size do better overall compared to cSGLD and cSGHMC

with 50 parameter samples. Thus, once again, a user may prefer using MC dropout,

SGLD/SGHMC or their cyclic versions with fewer parameter samples extracted, as

they provide respectable performance in significantly less time. This is due to the

large proportion of time that the cyclic schemes spend exploring without sampling.

Furthermore, if the goal is to compute uncertainty metrics and ultimately use them

for misclassification detection or OOD detection, then SGHMC/SGLD provide better

performance in most cases. Another important result that can be seen from the Tables

3.6, 3.9, 3.12 and 3.15 is the utility of the decision-making task in highlighting the

top performing approximate inference schemes for each model and dataset, via its

correlation with low NLL and high accuracy.

For benchmarking the training-time scalability, we use an Nvidia TITAN X GPU,

with a batch size of 128, and 4 PyTorch dataloader workers. Note that we provide

an estimated training time for the methods which involve stochastic gradients. More

specifically, we compute the per-epoch average training time for methods involving

stochastic gradients, and then extrapolate it by multiplying it with the total number

of epochs involving the same stochastic gradient based computation in that method.

For example, while computing training time for SGLD and cSGLD, we first compute

the average training time for SGLD for the same model-dataset combination, and then
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extrapolate it to the average training time shown in this chapter by multiplying it by

the total number of epochs run for cSGLD. We use the same approach for SGHMC

and cSGHMC, as well as for SGD, MC Dropout, SWAG and PCA+SSI (ESS).

Table 3.5. URSABench medium-scale benchmark performance.

Inference Accuracy ↑ NLL ↓ Robustness ↑ Uncertainty ↑ Training Time ↓

SGLD 0.863 0.620 0.781 0.908 51117
SGHMC 0.866 0.599 0.777 0.905 51466

cSGLD(50) 0.881 0.453 0.819 0.919 230155
cSGHMC(50) 0.880 0.446 0.812 0.917 231441
cSGLD(9) 0.876 0.484 0.802 0.911 51117

cSGHMC(9) 0.873 0.506 0.802 0.905 51466
SWAG 0.824 0.735 0.759 0.885 75544

PCA + ESS (SI) 0.869 0.482 0.804 0.901 98696
MC dropout 0.872 0.554 0.775 0.914 25733

SGD 0.861 0.625 - - 12866

Table 3.6. Comparison of predictive performance and decision making cost while
using ResNet50 on CIFAR10.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Training Time ↓

SGLD 0.943 0.275 0.094 0.041 176.000 31193
SGHMC 0.949 0.256 0.086 0.035 154.000 31538

cSGLD(50) 0.961 0.137 0.060 0.011 118.500 139336
cSGHMC(50) 0.962 0.124 0.056 0.009 125.000 141291
cSGLD(9) 0.952 0.198 0.075 0.023 147.200 31193
cSGHMC(9) 0.956 0.178 0.070 0.019 135.100 31538

SWAG 0.931 0.311 0.114 0.047 200.900 44344
PCA + ESS (SI) 0.949 0.174 0.080 0.027 166.600 55564
MC dropout 0.948 0.208 0.083 0.032 159.500 15768

SGD 0.943 0.274 0.095 0.040 171.700 7884

3.3.4 Large-Scale Benchmark Results

The results for the large-scale benchmark are presented in Table 3.18. The detailed

experimental results behind each composite score can be found in Tables 3.19 - 3.21.

Also, similar to the medium-scale benchmarks, we provide two sets of results for

cSGLD and cSGHMC, with different number of parameter samples extracted, where

the results corresponding to fewer parameter samples have very similar training time
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Table 3.7. Comparison of OOD detection performance while using ResNet50 on
CIFAR10.

Inference
OOD

Dataset
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

SGLD
STL10 0.630 0.679
SVHN 0.863 0.876

SGHMC
STL10 0.639 0.680
SVHN 0.855 0.849

cSGLD(50)
STL10 0.678 0.700
SVHN 0.952 0.953

cSGHMC(50)
STL10 0.668 0.692
SVHN 0.960 0.960

cSGLD(9)
STL10 0.666 0.687
SVHN 0.902 0.908

cSGHMC(9)
STL10 0.667 0.689
SVHN 0.936 0.939

SWAG
STL10 0.618 0.671
SVHN 0.878 0.908

PCA + ESS (SI)
STL10 0.673 0.677
SVHN 0.949 0.947

MC dropout
STL10 0.665 0.695
SVHN 0.926 0.938

SGD
STL10 N/A 0.682
SVHN N/A 0.892

Table 3.8. Comparison of Misclassification detection while using ResNet50 on
CIFAR10.

Inference
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.936 0.934 0.935 0.466 0.483 0.487
SGHMC 0.930 0.929 0.929 0.406 0.411 0.418

cSGLD(50) 0.949 0.950 0.951 0.398 0.403 0.435
cSGHMC(50) 0.948 0.952 0.954 0.394 0.422 0.459
cSGLD(9) 0.939 0.943 0.943 0.378 0.435 0.448
cSGHMC(9) 0.935 0.940 0.940 0.353 0.405 0.420

SWAG 0.890 0.927 0.927 0.418 0.479 0.472
PCA + ESS (SI) 0.932 0.934 0.941 0.391 0.419 0.472
MC dropout 0.946 0.947 0.947 0.455 0.485 0.477

SGD 0.523 0.937 0.936 0.151 0.464 0.456
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Table 3.9. Comparison of predictive performance and decision making cost while
using ResNet50 on CIFAR100.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Training Time ↓

SGLD 0.736 1.254 0.400 0.141 299.800 30153
SGHMC 0.738 1.222 0.397 0.137 295.000 30468

cSGLD(50) 0.770 0.902 0.324 0.066 250.100 136891
cSGHMC(50) 0.782 0.838 0.306 0.053 241.100 137106
cSGLD(9) 0.779 0.858 0.316 0.047 242.900 30153
cSGHMC(9) 0.794 0.794 0.295 0.048 223.700 30468

SWAG 0.735 1.221 0.400 0.135 295.200 44343
PCA + ESS (SI) 0.761 0.920 0.335 0.032 261.200 60880
MC dropout 0.786 1.006 0.330 0.115 233.100 15234

SGD 0.732 1.302 0.408 0.148 303.700 7617

Table 3.10. Comparison of OOD detection performance while using ResNet50 on
CIFAR100.

Inference
OOD

Dataset
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

SGLD
STL10 0.750 0.772
SVHN 0.746 0.784

SGHMC
STL10 0.750 0.777
SVHN 0.754 0.784

cSGLD(50)
STL10 0.786 0.800
SVHN 0.820 0.834

cSGHMC(50)
STL10 0.793 0.811
SVHN 0.808 0.827

cSGLD(9)
STL10 0.767 0.804
SVHN 0.813 0.846

cSGHMC(9)
STL10 0.783 0.814
SVHN 0.809 0.825

SWAG
STL10 0.748 0.778
SVHN 0.732 0.771

PCA + ESS (SI)
STL10 0.779 0.797
SVHN 0.816 0.807

MC dropout
STL10 0.785 0.801
SVHN 0.755 0.752

SGD
STL10 N/A 0.765
SVHN N/A 0.763

46



Table 3.11. Comparison of Misclassification detection while using ResNet50 on
CIFAR100.

Inference
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.866 0.873 0.872 0.635 0.677 0.675
SGHMC 0.864 0.872 0.871 0.622 0.668 0.666

cSGLD(50) 0.875 0.879 0.883 0.633 0.650 0.661
cSGHMC(50) 0.877 0.881 0.885 0.617 0.639 0.651
cSGLD(9) 0.851 0.871 0.876 0.530 0.617 0.636
cSGHMC(9) 0.860 0.876 0.882 0.558 0.612 0.634

SWAG 0.855 0.870 0.869 0.625 0.671 0.667
PCA + ESS (SI) 0.858 0.863 0.877 0.618 0.634 0.667
MC dropout 0.875 0.880 0.877 0.613 0.639 0.624

SGD N/A 0.873 0.870 N/A 0.687 0.680

Table 3.12. Comparison of predictive performance and decision-making cost while
using WideResNet28x10 on CIFAR10.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Training Time ↓

SGLD 0.963 0.153 0.060 0.023 121.300 72365
SGHMC 0.967 0.140 0.055 0.019 106.500 72740

cSGLD(50) 0.967 0.105 0.049 0.009 107.300 325205
cSGHMC(50) 0.962 0.122 0.057 0.008 125.100 327330
cSGLD(9) 0.961 0.128 0.060 0.008 132.500 72365
cSGHMC(9) 0.951 0.182 0.076 0.019 150.000 72740

SWAG 0.919 0.260 0.121 0.028 270.000 106747
PCA + ESS (SI) 0.951 0.177 0.082 0.054 163.100 141980
MC dropout 0.957 0.158 0.067 0.019 149.000 36370

SGD 0.963 0.138 0.060 0.018 117.100 18185
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Table 3.13. Comparison of OOD detection performance while using WideResNet28x10
on CIFAR10.

Inference
OOD

Dataset
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

SGLD
STL10 0.665 0.660
SVHN 0.936 0.951

SGHMC
STL10 0.665 0.662
SVHN 0.943 0.954

cSGLD(50)
STL10 0.678 0.679
SVHN 0.966 0.968

cSGHMC(50)
STL10 0.679 0.690
SVHN 0.963 0.960

cSGLD(9)
STL10 0.672 0.674
SVHN 0.944 0.958

cSGHMC(9)
STL10 0.667 0.682
SVHN 0.924 0.925

SWAG
STL10 0.649 0.667
SVHN 0.914 0.943

PCA + ESS (SI)
STL10 0.663 0.673
SVHN 0.897 0.970

MC dropout
STL10 0.672 0.688
SVHN 0.897 0.922

SGD
STL10 N/A 0.667
SVHN N/A 0.963

Table 3.14. Comparison of Misclassification detection while using WideResNet28x10
on CIFAR10.

Inference
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.946 0.946 0.946 0.416 0.445 0.438
SGHMC 0.941 0.940 0.940 0.370 0.401 0.398

cSGLD(50) 0.955 0.957 0.958 0.406 0.416 0.438
cSGHMC(50) 0.946 0.950 0.951 0.393 0.436 0.476
cSGLD(9) 0.941 0.948 0.949 0.343 0.415 0.430
cSGHMC(9) 0.932 0.939 0.939 0.348 0.430 0.455

SWAG 0.900 0.915 0.916 0.375 0.468 0.468
PCA + ESS (SI) 0.918 0.931 0.948 0.337 0.387 0.478
MC dropout 0.946 0.947 0.947 0.432 0.467 0.467

SGD N/A 0.941 0.942 N/A 0.390 0.387
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Table 3.15. Comparison of predictive performance and decision-making cost while
using WideResNet28x10 on CIFAR100.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Training Time ↓

SGLD 0.809 0.796 0.280 0.064 202.300 70760
SGHMC 0.810 0.779 0.277 0.061 203.100 71120

cSGLD(50) 0.827 0.666 0.248 0.030 183.100 319190
cSGHMC(50) 0.813 0.699 0.264 0.024 198.400 320040
cSGLD(9) 0.813 0.754 0.268 0.062 200.200 70760
cSGHMC(9) 0.790 0.868 0.304 0.072 222.700 71120

SWAG 0.710 1.149 0.414 0.110 316.900 106745
PCA + ESS (SI) 0.817 0.679 0.263 0.038 196.600 136360
MC dropout 0.798 0.846 0.293 0.081 214.300 35560

SGD 0.806 0.785 0.280 0.046 205.100 17780

Table 3.16. Comparison of OOD detection performance while using WideResNet28x10
on CIFAR100.

Inference
OOD

Dataset
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

SGLD
STL10 0.791 0.819
SVHN 0.790 0.786

SGHMC
STL10 0.788 0.824
SVHN 0.760 0.741

cSGLD(50)
STL10 0.818 0.839
SVHN 0.818 0.812

cSGHMC(50)
STL10 0.812 0.831
SVHN 0.773 0.772

cSGLD(9)
STL10 0.804 0.829
SVHN 0.784 0.782

cSGHMC(9)
STL10 0.792 0.817
SVHN 0.772 0.792

SWAG
STL10 0.732 0.753
SVHN 0.672 0.704

PCA + ESS (SI)
STL10 0.813 0.827
SVHN 0.760 0.814

MC dropout
STL10 0.798 0.815
SVHN 0.642 0.645

SGD
STL10 N/A 0.820
SVHN N/A 0.732

49



Table 3.17. Comparison of Misclassification detection while using WideResNet28x10
on CIFAR100.

Inference
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.875 0.885 0.889 0.543 0.620 0.634
SGHMC 0.877 0.882 0.888 0.544 0.598 0.621

cSGLD(50) 0.887 0.888 0.895 0.567 0.591 0.613
cSGHMC(50) 0.882 0.882 0.890 0.589 0.596 0.625
cSGHMC(9) 0.864 0.877 0.880 0.575 0.629 0.646
cSGLD(9) 0.880 0.892 0.897 0.564 0.630 0.647
SWAG 0.837 0.857 0.860 0.601 0.675 0.686

PCA + ESS (SI) 0.853 0.868 0.888 0.520 0.559 0.603
MC dropout 0.883 0.887 0.887 0.617 0.638 0.637

SGD N/A 0.869 0.879 N/A 0.586 0.622

to their non-cyclic versions. The relative performance trend that we observe here is

very similar to that of the medium-scale benchmark. In terms of performance across

the board, cSGHMC and cSGLD outperform the rest of the methods. Furthermore,

cSGLD and cSGHMC perform very similar to their non-cyclic counterparts, which

can be potentially attributed to the less number of samples or the number of cycles

run. However, we notice here that PCA + ESS (SI) and SWAG do not perform as

well as they did in the previous set of experiments. Finally, due to the high training

runtime requirement of the cSGHMC/cSGLD, a user might yet again prefer SGHMC

or MC Dropout as they provide reasonable performance in significantly less time.

Given the larger size of the ImageNet dataset (more than 1.2 million training images),

we use multi-GPU training with a larger batch size of 256, processed using 24 PyTorch

dataloader workers. For benchmarking the training time for large-scale benchmark, we

use 4 Nvidia Titan X GPUs. We provide an approximate training time for large-scale

benchmark results, using the same technique described in the previous subsection.

3.3.5 Edge Run Time Results

For the focus of this experiment, we look at the SGHMC ensemble, its distilled version,

MC dropout, and the standard SGD point-estimated model. For the distillation

experiment, the student model architecture matches that of the teacher model. Recall
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Table 3.18. URSABench large-scale benchmark performance. For SGD, we use a
pre-trained model available in PyTorch.

Inference Accuracy ↑ NLL ↓ Robustness ↑ Uncertainty ↑ Training Time ↓

SGLD 0.768 0.927 0.832 0.851 23925
SGHMC 0.768 0.920 0.842 0.850 24243
cSGLD(6) 0.771 0.915 0.836 0.849 45675

cSGHMC(6) 0.771 0.910 0.838 0.849 46282
cSGLD(3) 0.769 0.920 0.830 0.848 28275

cSGHMC(3) 0.769 0.919 0.830 0.847 28650
SWAG 0.733 1.056 0.820 0.845 67022

PCA + ESS (SI) 0.765 0.948 0.813 0.847 110205
MC dropout 0.760 0.951 0.804 0.848 10825

SGD 0.760 0.962 - - -

Table 3.19. Comparison of predictive performance while using ResNet50 on ImageNet.

Inference Accuracy ↑ NLL ↓ BS ↓ ECE ↓ Decision Cost ↓ Training Time

SGLD 0.768 0.927 0.326 0.034 6889 23925
SGHMC 0.768 0.920 0.325 0.028 6898 24243
cSGLD(6) 0.771 0.915 0.322 0.030 6773 45675
cSGHMC(6) 0.771 0.910 0.322 0.029 7078 46282
cSGLD(3) 0.769 0.920 0.324 0.032 7181 28275
cSGHMC(3) 0.769 0.919 0.324 0.031 7087 28650

SWAG 0.733 1.056 0.367 0.038 8089 67022
PCA + ESS (SI) 0.765 0.948 0.356 0.050 6782 110205
MC dropout 0.760 0.951 0.335 0.026 7152 10825

SGD 0.760 0.962 0.336 0.038 7431 -
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Table 3.20. Comparison of OOD detection performance while using ResNet50 on
ImageNet.

Inference
OOD

Dataset
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

SGLD ImageNet-Sketch 0.828 0.837
SGHMC ImageNet-Sketch 0.841 0.844
cSGLD(6) ImageNet-Sketch 0.832 0.841
cSGHMC(6) ImageNet-Sketch 0.833 0.843
cSGLD(3) ImageNet-Sketch 0.822 0.837
cSGHMC(3) ImageNet-Sketch 0.821 0.839

SWAG ImageNet-Sketch 0.809 0.831
PCA + ESS (SI) ImageNet-Sketch 0.800 0.827
MC dropout ImageNet-Sketch 0.772 0.837

SGD ImageNet-Sketch N/A 0.835

Table 3.21. Comparison of Misclassification detection while using ResNet50 on
ImageNet.

Inference
AUROC- Model
Uncertainty ↑

AUROC - Total
Uncertainty ↑

AUROC- Model
Confidence ↑

AUCPR- Model
Uncertainty ↑

AUCPR - Total
Uncertainty ↑

AUCPR- Model
Confidence ↑

SGLD 0.829 0.857 0.867 0.547 0.616 0.649
SGHMC 0.826 0.856 0.867 0.531 0.616 0.649
cSGLD(6) 0.825 0.856 0.866 0.529 0.612 0.644
cSGHMC(6) 0.825 0.856 0.867 0.530 0.610 0.644
cSGLD(3) 0.818 0.858 0.867 0.521 0.615 0.647
cSGHMC(3) 0.817 0.857 0.867 0.518 0.612 0.645

SWAG 0.821 0.851 0.863 0.565 0.644 0.677
PCA + ESS (SI) 0.816 0.858 0.866 0.550 0.649 0.673
MC dropout 0.826 0.853 0.864 0.533 0.617 0.650

SGD N/A 0.856 0.865 N/A 0.622 0.653
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Table 3.22. URSABench edge performance-latency comparison. Here, # models
indicate the maximum number of models runnable on the Jetson TX2 device for
SGHMC. Ensm. size indicates the size of the original ensemble.

Dataset-Model Inference Accuracy ↑ NLL ↓ Robustness ↑ Uncertainty ↑ Latency ↓ # Models/Ensm. size

MNIST - MLP200

SGHMC 0.985 0.047 0.947 0.980 0.080 100/100
MC dropout 0.984 0.048 0.945 0.980 0.017 1

SGD 0.986 0.045 0.948 0.980 0.0006 1
Distilled SGHMC 0.986 0.044 0.960 0.970 0.0006 1

CIFAR10 - ResNet50

SGHMC 0.949 0.255 0.765 0.929 0.352 49/50
MC dropout 0.948 0.208 0.817 0.947 0.051 1

SGD 0.943 0.274 0.787 0.937 0.007 1
Distilled SGHMC 0.932 0.279 0.787 0.929 0.007 1

CIFAR10 - WideResNet28x10

SGHMC 0.966 0.140 0.809 0.943 0.154 12/50
MC dropout 0.957 0.158 0.805 0.947 0.031 1

SGD 0.963 0.138 0.815 0.941 0.013 1
Distilled SGHMC 0.950 0.169 0.812 0.946 0.013 1

CIFAR100 - ResNet50

SGHMC 0.738 1.222 0.780 0.872 0.348 49/50
MC dropout 0.786 1.006 0.776 0.878 0.071 1

SGD 0.732 1.302 0.764 0.872 0.007 1
Distilled SGHMC 0.732 1.088 0.794 0.871 0.007 1

CIFAR100 - WideResNet28x10

SGHMC 0.811 0.784 0.783 0.884 0.153 12/50
MC dropout 0.798 0.846 0.730 0.887 0.053 1

SGD 0.806 0.785 0.776 0.874 0.013 1
Distilled SGHMC 0.785 0.839 0.812 0.877 0.013 1

ImageNet - ResNet50

SGHMC 0.768 0.920 0.844 0.862 0.085 6/6
MC dropout 0.760 0.951 0.804 0.848 0.076 1

SGD 0.760 0.962 0.835 0.861 0.014 1
Distilled SGHMC 0.736 1.086 0.865 0.849 0.014 1

that MC dropout requires us to store a single model, and the posterior predictive

distribution is computed using multiple forward passes. The 8GB physical memory

of Jetson TX2 is shared by both the CPU and the GPU. As a result, we can only

accommodate a certain number of models from the ensemble. We present the profiling

results for the edge deployment are presented in Table 3.22.

As we can see, the number of model samples we can fit onto the Jetson TX2 varies by

model type. Specifically, for WideResNet28x10, we can only fit 12 samples from the

ensemble of 50 models. For ImageNet, the large model size means we were only able

to deploy six samples onto the board. The results of SGHMC are computed using

only the model samples that we could fit on the Jetson TX2. Additionally, for the

point-estimated model and the distilled model, we excluded the model uncertainty from

the uncertainty and robustness scores of the composite score, as model uncertainty

requires an expectation over multiple samples of an ensemble.
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For MNIST, we can clearly see that the performance of SGD or distilled SGHMC across

all four composite scores is very similar to that of SGHMC and MC dropout, making

them an attractive choice considering the latency values. For WideResNet28x10 on

CIFAR10 dataset, we observe that SGD point-estimated models tend to perform

better than its counterparts while looking at NLL, and have similar performance on

other composite scores during comparison. It also has relatively very low latency. For

ResNet50 on CIFAR datasets, the trade-off between different performance metrics and

latency is high. MC dropout tends to perform best across all four composite scores

against the other three approximate inference methods in this case, but it comes at a

higher latency cost. Finally, for ImageNet, we observe that while SGHMC outperforms

other methods across all the scores, the trade-off between latency and performance is

not as significant when compared against SGD. In this case, a user might select the

SGD point-estimated model for practical applications, with a small degradation in

performance.

3.3.6 Discussion

We make several observations based on the benchmark results presented in this section.

First, if we are primarily interested in the accuracy, robustness or uncertainty metrics,

then cSGHMC and cSGLD (using more parameter samples) are often the best choice.

Across the different benchmarks, we consistently see them outperforming other methods

(see Table 3.1, 3.5, 3.18). Second, MC Dropout, SGHMC/SGLD and cSGHMC/cSGLD

(using fewer parameter samples) can often provide reasonable uncertainty and accuracy

performance for lower training time budgets. Third, PCA-based subspace inference

and SWAG require more training time than SGLD and SGHMHC as can be seen

in Tables 3.1, 3.5, and 3.18. This is largely due to the time needed to generate the

subspace (for subspace inference) or the Gaussian approximation to the parameter

posterior (for SWAG). Furthermore, PCA-based subspace inference and SWAG do not
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provide consistent performance improvement over the rest of the methods in terms of

accuracy, NLL, robustness, and uncertainty based on these results.

For the large-scale benchmark, we also see that the SGD based point-estimated models

are able to compete with the posterior ensemble approaches. This may be due to

the limited number of MCMC samples used or greater relative difficulty in mixing

and requires further study. For the edge deployment scenario considered, we see

that MC dropout is a good alternative to SGHMC in terms of the tradeoff between

prediction performance and prediction latency. It is also important to note that the

other approximate inference techniques discussed in this chapter, apart from the ones

in Table 3.22, have similar latency properties to SGHMC due to performing a forward

pass for each of a set of parameter samples.

Finally, while the distillation approach is interesting, for our medium to large-scale

benchmark setting, we observed that they do not perform any better than the SGD

based models.

3.4 Conclusions

This chapter describes URSABench, a system for benchmarking multiple aspects of

the performance of approximate Bayesian inference methods for deep neural networks.

We hope that the development of this benchmarking system and its components will

facilitate research in the domain of approximate Bayesian inference by better exposing

the performance trade-offs achieved by different methods in terms of uncertainty,

robustness, scalability and accuracy. We believe the simultaneous assessment of these

properties is critical to better understand which methods are most effective on different

downstream tasks and in different deployment contexts (e.g., server and edge).

A further challenge in the development of this system is ensuring a fair comparison be-

tween approaches. This can be difficult for new model/method/data set combinations
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without established hyperparameters, requiring careful hyperparameter optimization.

This highlights the more complex issue of how to fairly benchmark the end-to-end

process of hyperparameter optimization and inference in terms of computational

resource use. In this work, the training time scalability measurements are assessed

on tuned models only. The cost of hyperparameter optimization is not reflected, and

thus methods with more hyperparameters that may take longer to optimize for new

problems and tasks are not penalized in these results. This issue requires further

study.
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CHAPTER 4

GENERALIZED BAYESIAN POSTERIOR EXPECTATION
DISTILLATION FOR DEEP NEURAL NETWORKS

In this chapter, we present a general framework for distilling expectations with respect

to the Bayesian posterior distribution of a deep neural network classifier, extending

prior work on the Bayesian Dark Knowledge framework. The proposed framework

takes as input “teacher” and “student” model architectures and a general posterior

expectation of interest. The distillation method performs an online compression of

the selected posterior expectation using iteratively generated Monte Carlo samples.

We focus on the posterior predictive distribution and expected entropy as distillation

targets. We investigate several aspects of this framework, including the impact of

uncertainty and the choice of student model architecture. We study methods for student

model architecture search from a speed-storage-accuracy perspective and evaluate

down-stream tasks leveraging entropy distillation including uncertainty ranking and

out-of-distribution detection.

The remainder of the chapter is structured as follows. In Section 4.1, we present the

proposed framework of distilling Bayesian posterior expectations. In Section 4.2, we

present the experiments and results to evaluate our distillation framework. Finally, we

provide a discussion and a set of potential future directions in Section 4.3 to conclude

this chapter.

Bibliographical note: This chapter is adapted from Vadera et al. [2020b].
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4.1 Framework

In this section, we describe our proposed framework.

4.1.1 Generalized Posterior Expectations

As described in the previous section, different statistics derived from the posterior

distribution p(θ|D, λ) may be useful in different data analysis tasks. We consider the

general case of inferences that take the form of posterior expectations as shown in

Equation 4.1 where g(y,x, θ) is an arbitrary function of y, x and θ.

Ep(θ|D,λ)[g(y,x, θ)] =

∫
p(θ|D, λ)g(y,x, θ)dθ (4.1)

Important examples of functions g(y,x, θ) include g(y,x, θ) = p(y|x, θ), which re-

sults in the posterior predictive distribution p(y|x,D, λ) as used in Bayesian Dark

Knowledge. The choice g(y,x, θ) =
∑C

y′=1 p(y
′|x, θ) log p(y′|x, θ) yields the expected

data uncertainty introduced in Chapter 2, Section 2.1. The choice g(y,x, θ) =

p(y|x, θ)(1− p(y|x, θ)) results in the posterior marginal variance of the class y given

x. We use the posterior predictive distribution and expected data uncertainty as

examples throughout this work.

4.1.2 Generalized Posterior Expectation Distillation

Our goal is to learn to approximate posterior expectations Ep(θ|D,λ)[g(y,x, θ)] under

a given teacher model architecture using a given student model architecture. The

method that we propose takes as input the teacher model p(y|x, θ), the prior p(θ|λ), a

labeled data set D, an unlabeled data set D′, the function g(y,x, θ), a student model

f(y,x|ϕ), an expectation estimator, and a loss function ℓ(·, ·) that measures the error

of the approximation given by the student model f(y,x|ϕ).1 Similar to Balan et al.

1Note that f(y,x|ϕ) denotes the student’s output probability for class y given input x and
parameters ϕ.
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Algorithm 1 Generalized Posterior Expectation Distillation (GPED)

Input: D, D′, p(y|x,θ), λ, g, f , U , ℓ, R, M , M ′, H, B, λ, {ηt}Tt=1, {αs}Ss=1

1: procedure GPED
2: Initialize s = 0, ϕ0, θ0, ĝyi0 = 0, mi0 = 0,η0
3: for t = 0 to T do
4: Sample S from D with |S | = M

5: θt+1← θt +
ηt
2

(
∇θ log p(θ|λ) + N

M

∑
i∈S ∇θ log p

(
yi|xi, θt

))
+ zt

6: if mod (t,H) = 0 and t > B then
7: Sample S ′ from D′ with |S ′| = M ′

8: for i ∈ S ′ do
9: ĝyis+1 ← U(ĝyis, θt,mis)
10: mis+1 ← mis + 1
11: end for
12: ϕs+1 ← ϕs + αs

(
N ′

M ′

∑
i∈S ′

∑
y∈Y ∇ϕℓ

(
ĝyis+1, f(y,xi|ϕs)

)
+ λ∇ϕR(ϕs)

)
13: s← s+ 1
14: end if
15: end for
16: end procedure

[2015], we propose an online distillation method based on the use of the SGLD sampler.

We describe all the components of the framework in the sections below, and provide a

complete description of the resulting method in Algorithm 1.

SGLD Sampler: The prior distribution over the parameters p(θ|λ) is chosen to be

a spherical Gaussian distribution with mean µ = 0 and precision τ (we thus have

λ = [µ, τ ]). We define S to be a minibatch of size M drawn from D. θt denotes the

parameter set sampled for the teacher model at sampling iteration t, while ηt denotes

the step size for the teacher model at iteration t. The Langevin noise is denoted by

zt ∼ N (0, ηtI). The sampling update for SGLD is given b: θt+1 ← θt + ∆θt where

∆θt is defined as:

∆θt =
ηt
2

∇θ log p(θ|λ) +
N

M

∑
i∈S
∇θ log p

(
yi|xi, θt

)+ zt (4.2)

Distillation Procedure: For the distillation learning procedure, we make use of a

secondary unlabeled data set D′ = {xi|1 ≤ i ≤ N ′}. This data set could use feature
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vectors from the primary data set D, or a larger data set. We note that due to

autocorrelation in the sampled teacher model parameters θt, we may not want to run

a distillation update for every Monte Carlo sample drawn. We thus use two different

iteration indices: t for SGLD iterations and s for distillation iterations.

On every distillation step s, we sample a minibatch S ′ from D′ of size M ′. For every

data case i in S ′, we update an estimate ĝyis of the posterior expectation using the most

recent parameter sample θt, obtaining an updated estimate ĝyis+1 ≈ Ep(θ|D,λ)[g(y,xi, θ)]

(we discuss update schemes in the next section). Next, we use the minibatch of examples

S ′ to update the student model. To do so, we take a step ϕs+1 ← ϕs + αs∆ϕs in the

gradient direction of the regularized empirical risk of the student model as shown

below where αs is the student model learning rate at step s, R(ϕ) is the regularizer,

and λ is the regularization hyperparameter. We next discuss the estimation of the

expectation targets ĝyis.

∆ϕs =
N ′

M ′

∑
i∈S′

∑
y∈Y
∇ϕℓ

(
ĝyis+1, f(y,xi|ϕs)

)
+ λ∇ϕR(ϕs) (4.3)

Expectation Estimation: Given an explicit collection of posterior samples θ1, ..., θs,

the standard Monte Carlo estimate of Ep(θ|D,λ)[g(y,x, θ)] is simply ĝyis =
1
S

∑s
j=1 g(y,xi, θj).

However, this estimator requires retaining the sequence of samples θ1, ..., θs, which

may not be feasible in terms of storage cost. Instead, we consider the application of

an online update function. We define mis to be the count of the number of times data

case i has been sampled up to and including distillation iteration s. An online update

function U(ĝyis, θt,mis) takes as input the current estimate of the expectation, the

current sample of the model parameters, and the number of times data case i has

been sampled, and produces an updated estimate of the expectation ĝyis+1. Below,

we define two different versions of the function. Us(ĝyis, θt,mis), updates ĝyis using

the current sample only, while Uo(ĝyis, θt,mis) performs an online update equivalent

to a full Monte Carlo average.
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Us(ĝyis, θt,mis) = g(y,xi, θt) (4.4)

Uo(ĝyis, θt,mis) =
1

mis+1

(
mis · ĝyis + g(y,xi, θt)

)
(4.5)

We note that both update functions provide unbiased estimates of Ep(θ|D,λ)[g(y,x, θ)]

after a suitable burn-in time B. The online update Uo(.) will generally result in

lower variance in the estimated values of ĝyis, but it comes at the cost of needing to

explicitly maintain the expectation estimates ĝyis across learning iterations, increasing

the storage cost of the algorithm. It is worthwhile noting that the extra storage and

computation cost required by Uo grows linearly in the size of the training set for the

student. By contrast, the fully stochastic update is memory-less in terms of past

expectation estimates, so the estimated expectations ĝyis do not need to be retained

across iterations, resulting in a substantial space savings.

General Algorithm and Special Cases: We show a complete description of the

proposed method in Algorithm 1. The algorithm takes as input the teacher model

p(y|x, θ), the parameters of the prior p(θ|λ), a labeled data set D, an unlabeled data set

D′, the function g(y,x, θ), the student model f(y,x|ϕ), an online expectation estimator

U(ĝyis, θt,mis), a loss function ℓ(·, ·) that measures the error of the approximation

given by f(y,x|ϕ), a regularization function R(.) and regularization hyper-parameter

λ, minibatch sizes M and M ′, the thinning interval parameter H, the SGLD burn-in

time parameter B and step size schedules for the step sizes ηt and αs.

We note that the original Bayesian Dark Knowledge method is recoverable as a special

case of this framework via the the choices g(y,x, θ) = p(y|x, θ), ℓ(p, q) = −p log(q),

U = Us and p(y|x, θ) = f(y,x, ϕ) (i.e., the architecture of the student is selected to

match that of the teacher). The original approach also uses a distillation data set D′

obtained from D by adding randomly generated noise to instances from D on each

distillation iteration, taking advantage of the fact that the choice U = Us means that

no aspect of the algorithm scales with |D′|.
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Our general framework allows for other trade-offs, including reducing the variance in the

estimates of ĝyis at the cost of additional storage in proportion to |D′|. We also note that

the loss function ℓ(p, q) = −p log(q) and the choice g(y,x, θ) = p(y|x, θ) are somewhat

of a special case when used together as even when the full stochastic expectation

update Us is used, the resulting distillation parameter gradient is unbiased. To

distill posterior expected entropy (e.g., expected data uncertainty), we set g(y,x, θ) =∑
y∈Y p(y|x, θ) log p(y|x, θ), U = Uo and ℓ(h, h′) = |h− h′|.

4.1.3 Model Compression and Pruning

One of the primary motivations for the original Bayesian Dark Knowledge approach

is that it provides an approximate inference framework that results in significant

computational and storage savings at test time. However, a drawback of the original

approach is that the architecture of the student is chosen to match that of the teacher.

As we will show in Section 4.2, this will sometimes result in a student network that

has too little capacity. On the other hand, if we plan to deploy the student model

in a low resource compute environment, the teacher architecture may not meet the

specified computational constraints. In either case, we need a general approach for

selecting an architecture for the student model.

To begin to explore this problem, we consider two basic approaches to choosing student

model architectures that enable trading off test time inference speed and storage for

accuracy (or more generally, lower distillation loss). A helpful aspect of the distillation

process relative to a de novo architecture search problem is that the architecture of

the teacher model is available as a starting point. As a first approach, we consider

wrapping the proposed GPED algorithm with an explicit search over a set of student

models that are “close” to the teacher. Specifically, we consider a search space obtained

by starting from the teacher model and applying a width multiplier to the width of

every fully connected layer and a kernel multiplier to the number of kernels in every
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convolutional layer. While this search requires exponential time in the number of

layers, it provides a baseline for evaluating other methods.

As an alternative approach with better computational complexity, we leverage the

regularization function R(ϕ) included in the GPED framework to prune a large initial

network using group ℓ1/ℓ2 regularization [Zhang and Ou, 2018, Wen et al., 2016]. To

apply this approach, we first must partition the parameters in the parameter vector ϕ

across K groups Gk. The form of the regularizer is R(ϕ) =
∑K

k=1

(∑
j∈Gk ϕ

2
j

)1/2
. As is

well-established in the literature, this regularizer causes all parameters in a group to

go to zero simultaneously when they are not needed in a model. To use it for model

pruning for a unit in a fully connected layer, we collect all of that unit’s inputs into

a group. Similarly, we collect all the incoming weights for a particular channel in a

convolution layer together into a group. If all incoming weights associated with a unit

or a channel have magnitude below a small threshold ϵ, we can explicitly remove them

from the model, obtaining a more compact architecture. We also fine-tune our models

after pruning.

Finally, we note that any number of weight compressing, pruning, and architecture

search methods could be combined with the GPED framework. Our goal is not to

exhaustively compare such methods, but rather to demonstrate that GPED is sensitive

to the choice of student model to highlight the need for additional research on the

problem of selecting student model architectures.

4.2 Experiments and Results

In this section, we present experiments and results evaluating the proposed approach

using multiple data sets, posterior expectations, teacher model architectures, student

model architectures, basic architecture search methods, and multiple down-stream

tasks. We begin by providing an overview of the experimental protocols used.
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4.2.1 Experimental Protocols

4.2.1.1 Datasets

We use the MNIST [LeCun, 1998] and CIFAR10 [Krizhevsky et al., 2009] data sets as

base data sets in our experiments. The original empirical investigation of Bayesian

Dark Knowledge for classification focused on the MNIST data set [LeCun, 1998].

However, the models fit to the MNIST data set have very low posterior uncertainty,

and we argue that it is thus a poor benchmark for assessing the performance of posterior

distillation methods. In this section, we investigate two orthogonal modifications of

the standard MNIST data set to increase uncertainty: reducing the training set size

and masking regions of the input images. Our goal is to produce a range of benchmark

problems with varying posterior predictive uncertainty. We also use the CIFAR10 data

set [Krizhevsky et al., 2009] in our experiments and employ the same subsampling

technique.

MNIST: The full MNIST dataset consists of 60,000 training images and 10,000 test

images, each of size 28× 28, distributed among 10 classes LeCun [1998]. As a first

manipulation, we consider sub-sampling the labeled training data to include 10,000,

20,000, 30,000 or all 60,000 data cases in the primary data set D when performing

posterior sampling for the teacher model. Importantly, we use all 60,000 unlabeled

training cases in the distillation data set D′. This allows us decouple the impact of

reduced labeled training data on posterior predictive distributions from the effect of

the amount of unlabeled data available for distillation.

As a second manipulation, we generate images with occlusions by randomly masking

out parts of each available training and test image. For generating such images, we

randomly choose a square m×m region (mask) and set the value for pixels in that

region to 0. Thus, the masking rate for a 28× 28 MNIST image corresponding to the

mask of size m×m is given by r = m×m
28×28

. We illustrate original and masked data in
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Figure 4.1. We consider a range of square masks, resulting in masking rates between

0% and 86.2%.

(a) Original images (b) Processed images

Figure 4.1. Example MNIST data after masking with m = 14.

CIFAR10: The full CIFAR10 dataset consists of 50,000 training images and 10,000

test images, each of size 32 × 32 pixels. We sub-sample the data into a primary

training sets D containing 10,000, 20,000, and 50,000 images. As with MNIST, the

sub-sampling is limited to training the teacher model only and we utilize all the 50,000

unlabeled training images in the distillation data set D′.

4.2.1.2 Models

To demonstrate the generalizability of our methods to a range of model architectures,

we run our experiments with both fully-connected, and convolutional neural networks.

We evaluate a total of three teacher models in this work: a three-layer fully connected

network (FCNN) for MNIST matching the architecture used by Balan et al. [2015], a

four-layer convolutional network for MNIST, and a five-layer convolutional network

for CIFAR10. We note that our goal in this work is not to evaluate the GPED

framework on state-of-the-art architectures, but rather to provide illustrative results

and establish methodology for assessing the impact of several factors including the

level of uncertainty and the architecture of the student model.
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Teacher Models: We begin by defining the architectures used for the teacher model

as follows:

1. FCNN (MNIST): We use a 3-layer fully connected neural network. The

architecture used is: Input(784)-FC(400)-FC(400)-FC(output). This matches

the architecture used by Balan et al. [2015].

2. CNN (MNIST): For a CNN, we use two consecutive sets of 2D convolution

and max-pooling layers, followed by two fully-connected layers. The architec-

ture used is: Input(1, (28,28))-Conv(num kernels=10, kernel size=4, stride=1)

- MaxPool(kernel size=2) - Conv(num kernels=20, kernel size=4, stride=1) -

MaxPool(kernel size=2) - FC (80) - FC (output).

3. CNN (CIFAR10): Similar to the CNN architecture used for MNIST, we use

two consecutive sets of 2D convolution and max-pooling layers followed by fully-

connected layers. Conv(num kernels=16, kernel size=5) - MaxPool(kernel size=2)

- Conv(num kernels=32, kernel size=5) - MaxPool(kernel size=2) - FC(200) -

FC (50) - FC (output).

In the architectures mentioned above, the “output” size will change depending on

the expectation that we’re distilling. For classification, the output size will be 10 for

both datasets, while for the case of entropy, it will be 1. We use ReLU non-linearities

everywhere between the hidden layers. For the final output layer, softmax is used

for classification. In the case of entropy, we use an exponential activiation to ensure

positivity.

Student Models: The student models used in our experiments use the above

mentioned architectures as the base architecture. For explicitly searching the space

of the student models, we use a set of width multipliers starting from the teacher

architecture. The space of student architectures corresponding to each teacher model
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defined earlier is given below. The width multiplier values of K1 and K2 are determined

differently for each of the experiments, and thus will be mentioned in later sections.

1. FCNN (MNIST): Input(784)-FC(400 ·K1)-FC(400 ·K2)-FC(output).

2. CNN (MNIST): Input(1, (28,28))-Conv(num kernels=⌊10 ·K1⌋, kernel size=4,

stride=1) - MaxPool(kernel size=2) - Conv(num kernels=⌊20·K1⌋, kernel size=4,

stride=1) - MaxPool(kernel size=2) - FC (⌊80 ·K2⌋) - FC (output).

3. CNN (CIFAR10): Input(3, (32,32))-Conv(num kernels=⌊16·K1⌋, kernel size=5)

- MaxPool(kernel size=2) - Conv(num kernels=⌊16 ·K1⌋, kernel size=5) - Max-

Pool(kernel size=2) - FC (⌊200 ·K2⌋) - FC (⌊50 ·K2⌋) - FC (output).

Distillation Procedures: We consider distilling both the posterior predictive dis-

tribution and the posterior entropy, as described in the previous section. For the

posterior predictive distribution, we use the stochastic expectation estimator, Us while

for entropy we experiment with both estimators. We run the distillation procedure

using the following hyperparameters: fixed teacher learning rate ηt = 4 × 10−6 for

models on MNIST and ηt = 2× 10−6 for models on CIFAR10, teacher prior precision

τ = 10, initial student learning rate αs = 10−3, student dropout rate p = 0.5 for

fully-connected models on MNIST (and zero otherwise), burn-in iterations B = 1000

for MNIST and B = 10000 for CIFAR10, thinning interval H = 100 for distilling

predictive means and H = 10 for distilling entropy values, and total training iterations

T = 106. For training the student model, we use the Adam algorithm (instead of

plain steepest descent as indicated in Algorithm 1) and set a learning schedule for the

student such that it halves its learning rate every 200 epochs for models on MNIST,

and every 400 epochs for models on CIFAR10. Also, note that we only apply the

regularization function R(ϕs) while doing Group ℓ1/ℓ2 pruning. Otherwise, we use

dropout as indicated before.

67



Table 4.1. Results of posterior distillation when the student architecture is fixed to
match the teacher architecture and base data sets are used with no sub-sampling or
occlusion.

Model &
Dataset

Teacher
NLL

Student
NLL

MAE
(Entropy)

FCNN - MNIST 0.052 0.082 0.016
CNN - MNIST 0.022 0.053 0.016
CNN - CIFAR10 0.671 0.932 0.245

4.2.2 Experiments

4.2.2.1 Experiment 1: Distilling Posterior Expectations

For this experiment, we use the MNIST and CIFAR10 datasets without any subsam-

pling or masking. For each dataset and model, we consider separately distilling the

posterior predictive distribution and the posterior entropy. We fix the architecture of

the student to match that of the teacher. To evaluate the performance while distilling

the posterior predictive distribution, we use the negative log-likelihood (NLL) of the

model on the test set. For evaluating the performance of distilling posterior entropy,

we use the mean absolute difference between the teacher ensemble’s entropy estimate

and the student model output on the test set. The results are given in Table 4.1.

First, we note that the FCNN NLL results on MNIST closely replicate the results in

Balan et al. [2015], as expected. We also note that the error in the entropy is low for

both the FCNN and CNN architectures on MNIST. However, the student model fails

to match the NLL of the teacher on CIFAR10 and the entropy MAE is also relatively

high. In Experiment 2, we will investigate the effect of increasing uncertainty, while

in Experiment 3 we will investigate the impact of student architectures.

4.2.2.2 Experiment 2: Robustness to Uncertainty

We build on Experiment 1 by exploring methods for increasing posterior uncertainty on

MNIST (sub-sampling and masking) and CIFAR10 (sub-sampling). We consider the

cross product of four sub-sampling rates and six masking rates for MNIST and three
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Figure 4.2. Distillation performance using CNNs on MNIST while varying data
set size and masking rate. (a) Test negative log likelihood of the teacher posterior
predictive distribution. (b) Difference in test negative log likelihood between student
and teacher posterior predictive distribution estimates. (c) Difference between teacher
and student posterior entropy estimates on test data set.
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Figure 4.3. Distillation performance using Fully-Connected Networks on MNIST
while varying data set size and masking rate. (a) Test negative log likelihood of the
teacher posterior predictive distribution. (b) Difference in test negative log likelihood
between teacher and student posterior predictive distribution estimates. (c) Difference
between teacher and student posterior entropy estimates on test data set.
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Figure 4.4. Distillation performance using CNNs on CIFAR10 while varying data set
size. (d) Test negative log likelihood of the teacher posterior predictive distribution.
(e) Difference in test negative log likelihood between student and teacher posterior
predictive distribution estimates. (f) Difference between teacher and student posterior
entropy estimates on test data set. In the plots above, S denotes the student and T
denotes the teacher.
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sub-sampling rates for CIFAR10. We consider the posterior predictive distribution

and posterior entropy distillation targets. For the posterior predictive distribution we

report the negative log likelihood (NLL) of the teacher, and the NLL gap between

the teacher and student. For entropy, we report the mean absolute error between the

teacher ensemble and the student. All metrics are evaluated on held-out test data.

We also restrict the experiment to the case where the student architecture matches

the teacher architecture, mirroring the Bayesian Dark Knowledge approach. In Figure

4.2, we show the results for the convolutional models on MNIST. The FCNN results

are similar to the CNN results on MNIST and are shown in Figure 4.3 along with the

CNN results on CIFAR10 in Figure 4.4. We also provide a performance comparison

between the Uo and Us estimators while distilling posterior expectations in Table 4.2.

As expected, the NLL of the teacher decreases as the data set size increases. We

observe that changing the number of training samples has a similar effect on NLL gap

for both CIFAR10 and MNIST. More specifically, for any fixed masking rate of MNIST

(and zero masking rate for CIFAR10), we can see that the NLL difference between

the student and teacher decreases with increasing training data. However, for MNIST

we can see that the teacher NLL increases much more rapidly as a function of the

masking rate. Moreover, the gap between the teacher and student peaks for moderate

values of the masking rate. This fact is explained through the observation that when

the masking rate is low, posterior uncertainty is low, and distillation is relatively easy.

On the other hand, when the masking rate is high, the teacher essentially outputs

the uniform distribution for every example, which is very easy for the student to

represent. As a result, the moderate values of the masking rate result in the hardest

distillation problem and thus the largest performance gap. For varying masking rates,

we see exactly the same trend for the gap in posterior entropy predictions on MNIST.

However, the gap for entropy prediction increases as a function of data set size for
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CIFAR10. Finally, as we would expect, the performance of distillation using the Uo

estimator is almost always better than that of the Us estimator (see Table 4.2).

The key finding of this experiment is that the quality of the approximations provided

by the student model can significantly vary as a function of properties of the underlying

data set. In the next experiment, we address the problem of searching for improved

student model architectures.

Table 4.2. Performance comparison between Uo and Us estimators for convolutional
neural network on MNIST. The NLL results correspond to the case of distilling the
posterior predictive distribution, while the MAE on entropy results correspond to the
case of distilling the expectation of predictive entropy.

Num. training
samples

Masking
rate

NLL
(Teacher)

NLL
(Student, Uo)

NLL
(Student, Us)

MAE
(Entropy, Uo)

MAE
(Entropy, Us)

10000

0 0.048 0.214 0.218 0.025 0.030
0.03 0.069 0.274 0.274 0.033 0.038
0.13 0.161 0.509 0.509 0.058 0.069
0.29 0.394 0.902 0.907 0.115 0.129
0.51 1.099 1.615 1.630 0.194 0.170
0.8 2.298 2.301 2.301 0.016 0.019

0 0.034 0.126 0.126 0.020 0.021

20000

0.03 0.054 0.180 0.181 0.026 0.030
0.13 0.123 0.342 0.344 0.053 0.066
0.29 0.326 0.684 0.697 0.104 0.122
0.51 1.050 1.369 1.378 0.145 0.150
0.8 2.298 2.300 2.299 0.016 0.020

30000

0 0.028 0.084 0.086 0.017 0.019
0.03 0.044 0.132 0.134 0.024 0.027
0.13 0.106 0.292 0.294 0.051 0.061
0.29 0.300 0.620 0.618 0.106 0.120
0.51 1.044 1.307 1.308 0.130 0.141
0.8 2.296 2.297 2.296 0.017 0.021

60000

0 0.022 0.053 0.053 0.016 0.017
0.03 0.035 0.088 0.090 0.025 0.026
0.13 0.090 0.219 0.221 0.049 0.058
0.29 0.267 0.463 0.472 0.108 0.120
0.51 1.024 1.184 1.187 0.118 0.127
0.8 2.297 2.297 2.297 0.020 0.023

4.2.2.3 Experiment 3: Student Model Architectures

In this experiment, we compare exhaustive search to the group ℓ1/ℓ2 (group lasso)

regularizer combined with pruning. For the pruning approach, we start with the largest
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Table 4.3. Performance comparison between Uo and Us estimators for fully-connected
network on MNIST. The NLL results correspond to the case of distilling the posterior
predictive distribution while the MAE on entropy results correspond to the case of
distilling the expectation of predictive entropy.

Num. training
samples

Masking
rate

NLL
(Teacher)

NLL
(Student, Uo)

NLL
(Student, Us)

MAE
(Entropy, Uo)

MAE
(Entropy, Us)

10000

0 0.137 0.184 0.243 0.013 0.018
0.03 0.180 0.233 0.300 0.018 0.023
0.13 0.312 0.389 0.483 0.031 0.040
0.29 0.556 0.637 0.760 0.059 0.089
0.51 1.183 1.229 1.371 0.111 0.135
0.8 2.103 2.111 2.129 0.023 0.019

20000

0 0.089 0.115 0.161 0.011 0.015
0.03 0.131 0.165 0.220 0.014 0.021
0.13 0.230 0.280 0.366 0.024 0.042
0.29 0.452 0.510 0.607 0.049 0.104
0.51 1.080 1.120 1.215 0.094 0.112
0.8 2.104 2.108 2.117 0.019 0.021

30000

0 0.071 0.083 0.124 0.011 0.014
0.03 0.107 0.129 0.180 0.015 0.021
0.13 0.201 0.243 0.314 0.028 0.052
0.29 0.414 0.459 0.555 0.062 0.105
0.51 1.044 1.082 1.172 0.091 0.105
0.8 2.089 2.092 2.101 0.022 0.023

60000

0 0.052 0.054 0.082 0.016 0.020
0.03 0.081 0.094 0.133 0.023 0.034
0.13 0.155 0.186 0.240 0.043 0.068
0.29 0.360 0.398 0.471 0.086 0.109
0.51 1.010 1.033 1.107 0.106 0.099
0.8 2.088 2.089 2.094 0.021 0.022

Table 4.4. Performance comparison between Uo and Us estimators for convolutional
neural network on CIFAR10. The NLL results correspond to the case of distilling the
posterior predictive distribution while the MAE on entropy results correspond to the
case of distilling the expectation of predictive entropy.

Num. training
samples

NLL
(Teacher)

NLL
(Student, Uo)

NLL
(Student, Us)

MAE
(Entropy, Uo)

MAE
(Entropy, Us)

10000 0.912 1.372 1.391 0.144 0.192

20000 0.798 1.184 1.179 0.210 0.231

50000 0.671 0.924 0.932 0.245 0.290
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student model considered under exhaustive search, and prune back from there using

different regularization parameters λ, leading to different student model architectures.

We present results in terms of performance versus computation time (estimated in

FLOPS), as well as performance vs storage cost (estimated in number of parameters).

As performance measures for the posterior predictive distribution, we consider accuracy

and negative log likelihood. For entropy, we use mean absolute error. In all cases,

results are reported on test data. We consider both fully connected and convolutional

models.

Figure 4.5 shows results for the negative log likelihood (NLL) of the convolutional

model on MNIST with masking rate 29% and 60,000 training samples. We select this

setting as illustrative of a difficult case for posterior predictive distribution distillation.

We plot NLL vs FLOPS and NLL vs storage for all points encountered in each search.

The solid blue line indicates the Pareto frontier.
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Figure 4.5. NLL-Storage-Computation tradeoff while using CNNs on MNIST with
masking rate 29%. Test negative log likelihood of posterior predictive distribution vs
FLOPS found using (a) exhaustive search and (b) group ℓ1/ℓ2 with pruning. Test
negative log likelihood of posterior predictive distribution vs storage found using (c)
exhaustive search and (d) group ℓ1/ℓ2 with pruning. The optimal student model for
this configuration is obtained with group ℓ1/ℓ2 pruning. It has approximately 6.6×
the number of parameters and 6.4× the FLOPS of the base student model. Notation:
“S” - pareto frontier of the student models, “T” - Teacher, “IS” - Individual Student.
The black dashed line denotes the FLOPS/number of parameters of the base student
model having the same architecture as a teacher model.

First, we note that the baseline student model (with architecture matching the teacher)

from Experiment 2 on MNIST achieves an NLL of 0.469 at approximately 0.48× 106
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FLOPs and 0.03× 106 parameters on this configuration of the data set. We can see

that both methods for selecting student architectures provide a highly significant

improvement over the baseline student architectures. On MNIST, the NLL is reduced

to 0.30. Further, we can also see that the group ℓ1/ℓ2 approach is able to obtain

much better NLL at the same computation and storage cost relative to the exhaustive

search method. Lastly, the group ℓ1/ℓ2 method is able to obtain models on MNIST at

less than 50% the computational cost needed by the baseline model with only a small

loss in performance. The additional results from running Experiment 3 (Section 4.4)

on different combinations of model type, dataset, and performance metrics have been

given in Figures[4.6 - 4.13].
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Figure 4.6. Accuracy-Storage-Computation tradeoff while using CNNs on MNIST
with masking rate 29%. (a) Test accuracy using posterior predictive distribution vs
FLOPS found using exhaustive search. (b) Test accuracy using posterior predictive
distribution vs FLOPS found using group ℓ1/ℓ2 with pruning. (c) Test accuracy using
posterior predictive distribution vs storage found using exhaustive search. (d) Test
accuracy using posterior predictive distribution vs storage found using group ℓ1/ℓ2
with pruning. The optimal student model for this configuration is obtained with group
ℓ1/ℓ2 pruning. It has approximately 6.6× the number of parameters and 6.4× the
FLOPS of the base student model. Notation: “S” - pareto frontier of the student
models, “T” - Teacher, “IS” - Individual Student. The black dashed line denotes the
FLOPS/no. of parameters of the base student model having the same architecture as
a teacher model.

In summary, the key finding of this experiment is that the capacity of the student

model significantly impacts distillation performance, and student model architecture

optimization methods are needed to achieve a desired speed-storage-accuracy trade-off.
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Figure 4.7. Entropy Error-Storage-Computation tradeoff while using CNNs on
MNIST with masking rate 29%. (a) Test mean absolute error for posterior entropy
vs FLOPS found using exhaustive search. (b) Test mean absolute error for posterior
entropy vs FLOPS found using group ℓ1/ℓ2 with pruning. (c) Test mean absolute
error for posterior entropy vs storage found using exhaustive search. (d) Test mean
absolute error for posterior entropy vs storage found using group ℓ1/ℓ2 with pruning.
The optimal student model for this configuration is obtained with group ℓ1/ℓ2 pruning.
It has approximately 1.8× the number of parameters and 4.3× the FLOPS of the base
student model. Notation: “MAE (Test)” - pareto frontier of the MAEs obtained using
different student models, “IS” - Individual Student. The black dashed line denotes the
FLOPS/no. of parameters of the base student model having the same architecture as
a teacher model.

0.0 2.5 5.0 7.5 10.0
FLOPS (×106)

0.80

0.85

0.90

Ac
cu

ra
cy

 (T
es

t)

S T IS

(a)

0.0 2.5 5.0 7.5 10.0
FLOPS (×106)

0.80

0.85

0.90

Ac
cu

ra
cy

 (T
es

t)

S T IS

(b)

0 2 4 6
Num. Parameters (×106)

0.80

0.85

0.90

Ac
cu

ra
cy

 (T
es

t)

S T IS

(c)

0 2 4 6
Num. Parameters (×106)

0.80

0.85

0.90
Ac

cu
ra

cy
 (T

es
t)

S T IS

(d)

Figure 4.8. Accuracy-Storage-Computation tradeoff while using Fully-connected
networks on MNIST with masking rate 29%. (a) Test accuracy using posterior predic-
tive distribution vs FLOPS found using exhaustive search. (b) Test accuracy using
posterior predictive distribution vs FLOPS found using group ℓ1/ℓ2 with pruning. (c)
Test accuracy using posterior predictive distribution vs storage found using exhaustive
search. (d) Test accuracy using posterior predictive distribution vs storage found using
group ℓ1/ℓ2 with pruning. The optimal student model for this configuration is obtained
with group ℓ1/ℓ2 pruning. It has approximately 9.9× the number of parameters and
10× the FLOPS of the base student model. Notation: “S” - pareto frontier of the
student models, “T” - Teacher, “IS” - Individual Student. The black dashed line
denotes the FLOPS/no. of parameters of the base student model having the same
architecture as a teacher model.
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Figure 4.9. NLL-Storage-Computation tradeoff while using Fully-connected networks
on MNIST with masking rate 29%. (a) Test negative log likelihood of posterior
predictive distribution vs FLOPS found using exhaustive search. (b) Test negative
log likelihood of posterior predictive distribution vs FLOPS found using group ℓ1/ℓ2
with pruning. (c) Test negative log likelihood of posterior predictive distribution vs
storage found using exhaustive search. (d) Test negative log likelihood of posterior
predictive distribution vs storage found using group ℓ1/ℓ2 with pruning. The optimal
student model for this configuration is obtained with group ℓ1/ℓ2 pruning. It has
approximately 9.9× the number of parameters and 10× the FLOPS of the base student
model. Notation: “S” - pareto frontier of the student models, “T” - Teacher, “IS” -
Individual Student. The black dashed line denotes the FLOPS/no. of parameters of
the base student model having the same architecture as a teacher model.
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Figure 4.10. Entropy Error-Storage-Computation tradeoff while using Fully-
connected networks on MNIST with masking rate 29%. (a) Test mean absolute
error for posterior entropy vs FLOPS found using exhaustive search. (b) Test mean
absolute error for posterior entropy vs FLOPS found using group ℓ1/ℓ2 with pruning.
(c) Test mean absolute error for posterior entropy vs storage found using exhaustive
search. (d) Test mean absolute error for posterior entropy vs storage found using group
ℓ1/ℓ2 with pruning. The optimal student model for this configuration is obtained with
group ℓ1/ℓ2 pruning. It has approximately 4.2× the number of parameters and 4.2×
the FLOPS of the base student model. Notation: “MAE (Test)” - pareto frontier of
the MAEs obtained using different student models, “IS” - Individual Student. The
black dashed line denotes the FLOPS/no. of parameters of the base student model
having the same architecture as a teacher model.
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Figure 4.11. NLL-Storage-Computation tradeoff while using CNNs on CIFAR10
with training set size of 20,000 samples. (a) Test negative log likelihood of posterior
predictive distribution vs FLOPS found using exhaustive search. (b) Test negative
log likelihood of posterior predictive distribution vs FLOPS found using group ℓ1/ℓ2
with pruning. (c) Test negative log likelihood of posterior predictive distribution vs
storage found using exhaustive search. (d) Test negative log likelihood of posterior
predictive distribution vs storage found using group ℓ1/ℓ2 with pruning. The optimal
student model for this configuration is obtained with group ℓ1/ℓ2 pruning. It has
approximately 4.7× the number of parameters and 5.2× the FLOPS of the base
student model. Notation: “S” - pareto frontier of the student models, “T” - Teacher,
“IS” - Individual Student. The black dashed line denotes the FLOPS/no. of parameters
of the base student model having the same architecture as a teacher model.
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Figure 4.12. Accuracy-Storage-Computation tradeoff while using CNNs on CIFAR10
with sub-sampling training data to 20,000 samples. (a) Test accuracy using posterior
predictive distribution vs FLOPS found using exhaustive search. (b) Test accuracy
using posterior predictive distribution vs FLOPS found using group ℓ1/ℓ2 with pruning.
(c) Test accuracy using posterior predictive distribution vs storage found using exhaus-
tive search. (d) Test accuracy using posterior predictive distribution vs storage found
using group ℓ1/ℓ2 with pruning. The optimal student model for this configuration
is obtained with group ℓ1/ℓ2 pruning. It has approximately 5.4× the number of
parameters and 5.6× the FLOPS of the base student model. Notation: “S” - pareto
frontier of the student models, “T” - Teacher, “IS” - Individual Student. The black
dashed line denotes the FLOPS/no. of parameters of the base student model having
the same architecture as a teacher model.
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Figure 4.13. Entropy Error-Storage-Computation tradeoff while using CNNs on
CIFAR10 with sub-sampling training data to 20,000 samples. (a) Test mean absolute
error for posterior entropy vs FLOPS found using exhaustive search. (b) Test mean
absolute error for posterior entropy vs FLOPS found using group ℓ1/ℓ2 with pruning.
(c) Test mean absolute error for posterior entropy vs storage found using exhaustive
search. (d) Test mean absolute error for posterior entropy vs storage found using group
ℓ1/ℓ2 with pruning. The optimal student model for this configuration is obtained with
group ℓ1/ℓ2 pruning. It has approximately 1.6× the number of parameters and 2.8×
the FLOPS of the base student model. Notation: “MAE (Test)” - pareto frontier of
the MAEs obtained using different student models, “IS” - Individual Student. The
black dashed line denotes the FLOPS/no. of parameters of the base student model
having the same architecture as a teacher model.

78



4.2.2.4 Experiment 4: Uncertainty Quantification for Downstream Tasks

As noted earlier, uncertainty quantification and decomposition is an important ap-

plication of Bayesian posterior predictive inference. In this set of experiments, we

evaluate our method on two downstream applications: out-of-distribution detection

and uncertainty-based ranking. We compare the GPED framework to the full Monte

Carlo ensemble as well as to an adaptation of Ensemble Distribution Distillation

(EnD2) [Malinin et al., 2020]. In particular, Malinin et al. [2020] materialize a com-

plete ensemble, which is not feasible in our case due to the large number of samples

in the Bayesian ensemble (∼ 105 samples). We instead use Algorithm 1 with the

Dirichlet log likelihood distillation loss used by Malinin et al. [2020]. Additionally, we

modify our student models to distill both the predictive distribution and expected

data uncertainty in a single model.

Before assessing the performance of these methods on downstream tasks, we first

compare their performance in terms of negative log likelihood and MAE on the

posterior predictive distribution and expected data uncertainty distillation tasks. We

use the same dataset augmentation as in the previous experiment. We compare the

GPED and EnD2 methods using Uo and Us as well as for small and large model sizes.

Note that for distilling entropy under our method in this section, we always use the Uo

estimator. Wherever the Us estimator is mentioned for our method in this section of

experiments, it is only applied to distilling predictive means. In Table 4.5 we compare

different distillation methods for different model-dataset combinations. These results

correspond to the Us estimator and the largest student model. As an illustration, we

present joint and marginal expected data uncertainty distribution plots in Figure 4.15

that correspond to the results in Table 4.5. These figures show how GPED and EnD2

compare against the Bayesian ensemble on a data case-by-data case basis. Additional

results are presented in Tables [4.6- 4.8] and Figure 4.14. The key result of these
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experiments is that the GPED framework consistently performs better than EnD2

across all metrics on the test datasets.

Table 4.5. In-distribution Test set metrics comparison using Us and largest student
model obtained using width multiplier.

Model/
Dataset

NLL
(Ensemble)

NLL
(GPED)

NLL
(EnD2)

MAE
Entropy
(GPED)

MAE
Entropy
(EnD2)

FCNN/
MNIST

0.362 0.408 0.415 0.069 0.105

CNN/
MNIST

0.269 0.296 0.321 0.086 0.106

CNN/
CIFAR10

0.799 0.859 0.907 0.146 0.328

Table 4.6. In-distribution Test set metrics comparison using Us and base student
model matching the teacher architecture.

Model/
Dataset

NLL
(Ensemble)

NLL
(GPED)

NLL
(EnD2)

MAE
Entropy
(GPED)

MAE
Entropy
(EnD2)

FCNN/
MNIST

0.362 0.412 0.452 0.063 0.113

CNN/
MNIST

0.269 0.396 0.460 0.121 0.175

CNN/
CIFAR10

0.799 1.032 1.104 0.181 0.424
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Table 4.7. In-distribution Test set metrics comparison using Uo and base student
model matching the teacher architecture.

Model/
Dataset

NLL
(Ensemble)

NLL
(GPED)

NLL
(EnD2)

MAE
Entropy
(GPED)

MAE
Entropy
(EnD2)

FCNN/
MNIST

0.362 0.409 0.447 0.063 0.110

CNN/
MNIST

0.269 0.447 0.460 0.121 0.183

CNN/
CIFAR10

0.799 1.015 1.056 0.181 0.494

Table 4.8. In-distribution Test set metrics comparison using Uo and student model
obtained using the largest width multiplier.

Model/
Dataset

NLL
(Ensemble)

NLL
(GPED)

NLL
(EnD2)

MAE
Entropy
(GPED)

MAE
Entropy
(EnD2)

FCNN/
MNIST

0.362 0.401 0.408 0.069 0.099

CNN/
MNIST

0.269 0.305 0.314 0.086 0.103

CNN/
CIFAR10

0.799 0.881 0.885 0.146 0.338
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Figure 4.14. Test accuracy and negative log likelihood comparison between GPED
and EnD2 for different dataset-model-estimator combinations.
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Figure 4.15. Joint and marginal distributions for expected data uncertainty (also
known as the expected entropy) by using Us estimator for EnD2 and using the
largest model obtained using width multiplier. The expected data entropy is over
in-distribution test dataset. An ideal distillation approach would match the marginal
distribution of the teacher ensemble given on the top of each plot, as well as have the
joint density concentrated on the diagonal. Based on this properties, it is evident that
GPED does a better job at tracking the expected data uncertainty.
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Out-of-distribution detection: OOD detection has garnered a lot of interest

in the deep learning community as it is as a practical challenge during deployment

of deep models. In this experiment, we use the measures of total uncertainty and

knowledge uncertainty for detecting OOD inputs.

Table 4.9. AUROC for OOD Detection using Us and largest student model obtained
using width multiplier.

Model & Train Data/
OOD Data

Uncertainty Ensemble
GPED
(ours)

EnD2

FCNN-MNIST/
KMNIST

Total 0.929 0.867 0.816
Knowledge 0.976 0.928 0.899

FCNN-MNIST/
notMNIST

Total 0.944 0.670 0.652
Knowledge 0.990 0.762 0.681

CNN-MNIST/
KMNIST

Total 0.894 0.882 0.881
Knowledge 0.956 0.932 0.952

CNN-MNIST/
notMNIST

Total 0.888 0.882 0.860
Knowledge 0.946 0.934 0.939

CNN-CIFAR10/
TIM

Total 0.729 0.762 0.721
Knowledge 0.796 0.808 0.792

CNN-CIFAR10/
LSUN

Total 0.790 0.779 0.747
Knowledge 0.752 0.767 0.713

OOD detection is a binary classification problem where we utilize a measure of

uncertainty to classify an input as in-distribution or out-of-distribution based on a

threshold. For our experiments, we use four OOD datasets: KMNIST [Clanuwat

et al., 2018a], notMNIST [Bulatov, 2011], TinyImageNet (TIM) (CS231N, 2017), and

SVHN [Netzer et al., 2011a]. We run our experiments for different combinations of

models, in-distribution datasets, out-of-distribution datasets, model architectures, and

estimators used for distilling the predictive distribution under the proposed framework

as well as for the EnD2 framework.

We use the same dataset augmentations as used in Experiment 3. For assessing the

performance on downstream tasks with respect to the student model architecture, we
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use a base student model with the same architecture as the teacher and the largest

width multiplier explored in Experiment 3. As noted earlier, we augment the student

models under our proposed framework to distill both the predictive distribution and

the expected entropy (thus making our network’s output dimensionality C + 1, where

C denotes the number of classes). The output dimensionality of the prior network

used in the EnD2 framework is C (for C different concentration parameters) [Malinin

et al., 2020]. We use exponential activation at the expected entropy output as well

as the prior network output to enforce the positivity constraint. We additionally use

a temperature value of τs = 2.5 while training all the prior network based models.

Malinin et al. [2020] suggest training the prior networks with a temperature annealing

schedule, however we find that in our experiments prior networks achieve better

performance in terms of log likelihood when using a fixed temperature. The dropout

rate for CNN models is set at p = 0.3, while FCNN models have a dropout rate of

p = 0.5. The rest of the experimental details remain the same as stated in Experiment

3.

We report example OOD detection results using the Us estimator and the largest

student model in Table 4.9. Our overall results show that GPED outperforms EnD2 in

75% of cases across all experimental settings considered (additional results are given

in Tables [4.10-4.12]).
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Table 4.10. AUROC for OOD Detection using Us and student model of the same
architecture as the teacher.

Model & Train Data/
OOD Data

Uncertainty Ensemble
GPED
(ours)

EnD2

FCNN-MNIST/
KMNIST

Total 0.929 0.875 0.761
Knowledge 0.948 0.926 0.861

FCNN-MNIST/
notMNIST

Total 0.944 0.736 0.659
Knowledge 0.990 0.803 0.720

CNN-MNIST/
KMNIST

Total 0.894 0.829 0.887
Knowledge 0.956 0.887 0.933

CNN-MNIST/
notMNIST

Total 0.888 0.841 0.828
Knowledge 0.946 0.902 0.889

CNN-CIFAR10/
TIM

Total 0.729 0.737 0.726
Knowledge 0.796 0.773 0.773

CNN-CIFAR10/
LSUN

Total 0.790 0.760 0.733
Knowledge 0.752 0.718 0.653

Table 4.11. AUROC for OOD Detection using Uo and student model of the same
architecture as the teacher.

Model & Train Data/
OOD Data

Uncertainty Ensemble
GPED
(ours)

EnD2

FCNN-MNIST/
KMNIST

Total 0.929 0.847 0.802
Knowledge 0.948 0.907 0.912

FCNN-MNIST/
notMNIST

Total 0.944 0.782 0.762
Knowledge 0.990 0.847 0.890

CNN-MNIST/
KMNIST

Total 0.894 0.829 0.884
Knowledge 0.956 0.890 0.937

CNN-MNIST/
notMNIST

Total 0.888 0.848 0.859
Knowledge 0.946 0.907 0.918

CNN-CIFAR10/
TIM

Total 0.729 0.747 0.703
Knowledge 0.796 0.763 0.747

CNN-CIFAR10/
LSUN

Total 0.790 0.759 0.728
Knowledge 0.752 0.736 0.650
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Table 4.12. AUROC for OOD Detection using Uo and student model obtained by
largest width multiplier.

Model & Train Data/
OOD Data

Uncertainty Ensemble
GPED
(ours)

EnD2

FCNN-MNIST/
KMNIST

Total 0.929 0.895 0.833
Knowledge 0.948 0.944 0.938

FCNN-MNIST/
notMNIST

Total 0.944 0.751 0.714
Knowledge 0.990 0.826 0.835

CNN-MNIST/
KMNIST

Total 0.894 0.892 0.867
Knowledge 0.956 0.940 0.956

CNN-MNIST/
notMNIST

Total 0.888 0.887 0.856
Knowledge 0.946 0.941 0.935

CNN-CIFAR10/
TIM

Total 0.729 0.750 0.705
Knowledge 0.796 0.798 0.783

CNN-CIFAR10/
LSUN

Total 0.790 0.779 0.745
Knowledge 0.752 0.753 0.716
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Uncertainty-Based Ranking: Another important application of Bayesian neural

networks is ranking instances based on uncertainty. Such rankings are used in active

learning and other human-in-the-loop decision systems to prioritize uncertain instances

for labeling or analysis by human decision makers. This task is sensitive to the correct

rank order of in-distribution instances by uncertainty level, whereas the OOD task is

only sensitive to the existence of a threshold that separates in and out of distribution

instances. To assess how well our distillation framework preserves the relative ranking

between the inputs when compared to the full Bayesian ensemble, we compute the

Normalized Discounted Cumulative Gain (nDCG) score [Järvelin and Kekäläinen,

2002] for total uncertainty and knowledge uncertainty. A higher nDCG score implies

that the correct ranking of inputs is better preserved under the distillation framework.

For our experiments, we asses nDCG@20. In Table 4.13, we report the nDCG scores

using the Us estimator and largest student model as example results. Overall, GPED

outperforms EnD2 in 91% of settings considered (additional ranking results are given

in Tables [4.14-4.16]).

Table 4.13. nDCG@20 out of 100 randomly selected test inputs using Us estimator
and largest student model . Results reported as mean ± std. dev. over 500 trials.

Model & Data Uncertainty
GPED
(ours)

EnD2

FCNN-MNIST
Total 0.954 ± 0.02 0.946 ± 0.021

Knowledge 0.924 ± 0.03 0.941 ± 0.028

CNN-MNIST
Total 0.929 ± 0.034 0.916 ± 0.032

Knowledge 0.888 ± 0.032 0.876 ± 0.045

CIFAR10
Total 0.935 ± 0.022 0.919 ± 0.027

Knowledge 0.885 ± 0.033 0.889 ± 0.034
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Table 4.14. nDCG@20 out of 100 randomly selected test inputs using Us estimator
and student model matching the architecture of teacher. Results reported as mean ±
std. dev. over 500 trials.

Data Uncertainty
GPED
(ours)

EnD2

FCNN-MNIST
Total 0.947 ± 0.022 0.911 ± 0.031

Knowledge 0.919 ± 0.030 0.895 ± 0.042

CNN-MNIST
Total 0.852 ± 0.023 0.780 ± 0.040

Knowledge 0.823 ± 0.038 0.768 ± 0.044

CIFAR10
Total 0.895 ± 0.035 0.853 ± 0.041

Knowledge 0.825 ± 0.045 0.809 ± 0.051

Table 4.15. nDCG@20 out of 100 randomly selected test inputs using U0 estimator
and student model matching the architecture of teacher. Results reported as mean ±
std. dev. over 500 trials.

Data Uncertainty
GPED
(ours)

EnD2

FCNN-MNIST
Total 0.942 ± 0.023 0.907 ± 0.034

Knowledge 0.922 ± 0.024 0.907± 0.037

CNN-MNIST
Total 0.871 ± 0.050 0.818 ± 0.048

Knowledge 0.815 ± 0.050 0.747 ± 0.066

CIFAR10
Total 0.903 ± 0.029 0.840 ± 0.047

Knowledge 0.854 ± 0.041 0.785 ± 0.082

Table 4.16. nDCG@20 out of 100 randomly selected test inputs using U0 estimator
and student model obtained using the largest width multiplier. Results reported as
mean ± std. dev. over 500 trials.

Data Uncertainty
GPED
(ours)

EnD2

FCNN-MNIST
Total 0.962 ± 0.017 0.940 ± 0.024

Knowledge 0.953 ± 0.023 0.922 ± 0.020

CNN-MNIST
Total 0.951 ± 0.017 0.908 ± 0.034

Knowledge 0.920 ± 0.028 0.870 ± 0.036

CIFAR10
Total 0.940 ± 0.021 0.901 ± 0.019

Knowledge 0.883 ± 0.035 0.883 ± 0.036
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4.3 Conclusions

We have presented a framework for distilling expectations with respect to the Bayesian

posterior distribution of a deep neural network that significantly generalizes the

Bayesian Dark Knowledge approach. Our results show that posterior distillation

performance can be highly sensitive to the architecture of the student model, but that

architecture search methods can identify student model architectures with improved

speed-storage-accuracy trade-offs. We have also demonstrated that the proposed

approach performs well on downstream tasks that leverage entropy distillation for

uncertainty decomposition.

There are many directions for future work, including considering the distillation of a

broader class of posterior statistics, and developing more advanced architecture search

methods. It is also worth exploring the fidelity of the student models to the teacher

models, as it can give us insights into where the student model significantly differs

from the teacher ensemble [Stanton et al., 2021].
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CHAPTER 5

IMPACT OF PARAMETER SPARSITY ON STOCHASTIC
GRADIENT MCMC METHODS FOR BAYESIAN DEEP

LEARNING

Bayesian methods hold significant promise for improving the uncertainty quantification

ability and robustness of deep neural network models. Recent research has seen

the investigation of a number of approximate Bayesian inference methods for deep

neural networks, building on both the variational Bayesian and Markov chain Monte

Carlo (MCMC) frameworks. A fundamental issue with MCMC methods is that the

improvements they enable are obtained at the expense of increased computation time

and model storage costs. In this chapter, we investigate the potential of sparse network

structures to flexibly trade-off model storage costs and inference run time against

predictive performance and uncertainty quantification ability. We use stochastic

gradient MCMC methods as the core Bayesian inference method and consider a

variety of approaches for selecting sparse network structures. Surprisingly, our results

show that certain classes of randomly selected substructures can perform as well as

substructures derived from state-of-the-art iterative pruning methods while drastically

reducing model training times.

The rest of the chapter is structured as follows. In Section 5.1, we describe the different

pruning strategies that we use along with the SGHMC algorithm. Next, in Section 5.2

we describe our experiments and present the results. Finally, in Section 5.3 we present

the conclusion of our findings and highlight some potential future directions.
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5.1 Methods

In this section, we describe the methods that we apply to study the properties of

stochastic gradient MCMC applied to substructures of sparse deep neural networks.

We consider a two-step process. Given an initial model architecture, we first apply a

method to select a sparse substructure from the initial dense model. We select sparse

substructures at the connection level using weight-level sparsity masks. We then study

the properties of Bayesian inference applied within the selected substructures. In this

section, we first describe methods for selecting sparse network structures. We then

provide details for the stochastic gradient MCMC method that we apply.

5.1.1 Selecting Sparse Substructures

We let θl ∈ RKl be the parameter vector for layer l and Kl be the number of parameters

in layer l. We define m ∈ {0, 1}K to be a weight-level sparsity mask and ml ∈ {0, 1}Kl

be the sparsity mask for layer l. For defining parameters and weight-level sparsity

masks at iteration i, we use the notation θi and mi respectively. Given a sparsity

mask m and a parameter vector θ, the masked parameters are given by the Hadamard

product θ̃ = m⊙ θ. Below we briefly describe several approaches to selecting sparse

sub-network structures. We emphasize that the contribution of this work is not

to propose new methods for deriving sparse sub-networks, but rather to evaluate

the impact of sparse sub-network structures on MCMC-based inference methods, a

question that has not been addressed in prior research.

5.1.1.1 Iterative Pruning (IP)

The first approach that we consider for selecting a sparsity mask is based on the

iterative pruning method of Han et al. [2015]. The iterative pruning approach can use

any standard gradient-based optimization method as the base learning method. The

algorithm begins with a randomly selected parameter vector θ0 ∈ RK with all weights

active (m0 = 1). The algorithm proceeds over T pruning iterations. In each iteration
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i, a specified number of epochs ϵ of the base learning method are applied yielding a

final parameter vector θi for that iteration. At the end of the iteration, a fixed fraction

π of the active weights are pruned resulting in a new sparsity mask mi+1. The active

weights with the smallest magnitudes are selected for pruning on each iteration. The

initial weight vector for iteration i+1 is then given by θi⊙mi+1. This method greedily

produces a nested sequence of increasingly sparser network substructures encoded by

the sparsity masks mi along with corresponding locally optimal parameters θi.

5.1.1.2 Iterative Pruning with Rewinding (IPR)

Frankle and Carbin [2018] proposed an iterative pruning method that is very similar

to the method of Han et al. [2015], which we will refer to as Iterative Pruning with

Rewinding. This approach differs from basic iterative pruning in that following each

pruning iteration, the weights used to initialize the next iteration of the algorithm

are formed by combining the updated mask mi+1 with the original random weight

vector θ0 instead of the weight vector obtained at the end of iteration i. Effectively,

the active weights are rewound to their initial values at the start of each round of

iterative pruning. We will again define θi to be the value of the weights at the end

of iteration i. This method also greedily produces a nested sequence of increasingly

sparse network structures encoded by the sparsity masks mi along with corresponding

locally optimal point-estimated parameters θi. However, as Frankle and Carbin [2018]

show, the pairs (θ0,mi) appear to have somewhat special properties with respect to

optimization-based learnability. We investigate whether the properties of the sub-

structures and initial parameters identified by iterative pruning with rewinding differ

from those identified by iterative pruning when sparse sub-structures are used in the

context of MCMC-based Bayesian deep learning.
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5.1.1.3 Random Layer-wise Masking (RLM)

A question that is unexplored in the both Han et al. [2015] and Frankle and Carbin

[2018] from the optimization perspective is the importance of the exact sparse structure

obtained by iterative pruning relative to the sparsity level per network layer. We

study a Layer-wise Random Masking approach to answer this question in the case of

Bayesian deep learning. This approach requires the specification of a desired sparsity

rate πl for each layer l of the network. Given the desired sparsity rate πl, we uniformly

sample a random sparsity mask ml for layer l from the space of all binary vectors with

this sparsity rate. These layer-wise random masks are then assembled into a sparsity

mask m for the complete network. We explore three approaches to select the desired

sparsity levels πl. The first approach runs iterative pruning for T iterations, obtains

the final sparsity mask, and computes the corresponding sparsity rate πl for each layer.

We denote this approach by RLM(IP). Iterative pruning with rewinding can be used in

the same way, obtaining an approach we denote by RLM(IPR). These two approaches

allow us to compare the optimized sparse network structures obtained using iterative

pruning to networks where the sparsity rates per layer have been optimized while the

specific sparsity structures are randomly selected. The final variant of the random

layer-wise approach simply sets the same fixed sparsity rate per level πl = π. This

approach allows us to investigate how critical preserving the per-layer sparsity rates

are. We refer to this approach as RLM(F).

5.1.1.4 Random Global Masking (RGM)

Random global making is the most basic mask generation approach that we consider.

We specify a fixed sparsity rate π and select a random mask m ∈ {0, 1}K from the

space of all binary vectors yielding this sparsity level. This approach allows us to study

how critical the distribution of sparsity over network levels is compared to the overall

level of sparsity. As we conclude this subsection, we emphasize that RLM(F) and
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RGM do not require us to run any form of iterative pruning, resulting in significant

training time and resource savings when compared to the other described methods.

5.1.2 SGHMC in Sparse Structures

Given a sparse neural network structure represented by a weight-level sparsity mask

m, we perform stochastic gradient Hamiltonian Monte Carlo (SGHMC) within the

specified substructure. SGHMC only requires the computability of an unnormalized

version of the log parameter posterior density: U(θ) = − log p(θ|λ)−
∑N

i=1 p(yi|xi, θ).

Like all HMC methods, SGHMC is based on sampling in an extended space that

includes the model parameters θ ∈ RK as position variables as well as an auxiliary

set of momentum variables r ∈ RK . This sampling process simulates discretized

Hamiltonian dynamics. SGHMC methods compute a stochastic approximation of the

gradient ∇U(θ) of the unnormalized energy function U(θ) using a mini-batch of data

D′
tr ⊂ Dtr of size B. When performing Bayesian inference over sparse substructures,

the stochastic gradient∇Ũ(θ) only needs to be computed over the selected substructure,

and doing so has the potential to significantly accelerate inference time. For simplicity

of implementation, we use a less computationally efficient masking approach during

training that allows existing neural network model implementations to be used.

The complete SGHMC algorithm that we use for sampling within substructures is

defined in Algorithm 2. In this algorithm, θ(0) is an initial parameter vector with

sparsity structure matching that specified by the sparsity mask m. αs is the step

size used on sampling iteration s. η is a friction term introduced to counteract the

additional noise introduced by using stochastic gradients. S is the number of desired

sampled. Algorithm 2 adds a masking step to the basic SGHMC algorithm used by

Zhang et al. [2020]. The masking step projects sampled parameters back into the

required substructure on each sampling iteration. This algorithm correctly samples

from the posterior distribution of the weights in the selected substructure due to
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the fact that the updates for both r and θ(s) do not mix information across their

dimensions. For large models, running SGHMC from a randomly chosen θ(0) can

result in the need for very long burn-in times. To help mitigate this issue, we always

initialize θ(0) using the output of an SGD-based optimization algorithm applied within

the substructure corresponding to m. This optimization step itself requires an initial

setting of the model parameters. We initialize at random for random masks. For

iterative pruning-based methods, we use the final parameter vector returned along

with the sparsity mask.

Algorithm 2 Sparse Sub-Structure SGHMC

Inputs: θ(0), m, Dtr, B, α0:S, η, S
r← 0
for (0 ≤ s ≤ S) do

Select mini-batch D′
tr ⊂ Dtr of size B

∇Û ← −∇p(θ(s)|λ)− N
B

∑
(x,y)∈D′ ∇p(y|x, θ(s))

r← (1− η)r− αk∇Û + ϵ ·
√
2ηαk, ϵ ∼ N (0, I)

θ(s+1) ←m⊙ (θ(s) + r)
end for
Return: [θ(1), ..., θ(S)]

5.2 Experiments and Results

In this section, we present experiments and results. Each of the experiments involves

the composition of several components including a base neural network architecture,

a data set, a method for selecting a sparse substructure (see Section 5.1.1), and

an optimization or Bayesian inference approach (see Section 5.1.2). We focus on

classification as a task and use three model/data set combinations. We describe these

combinations below.

5.2.1 Experimental Protocols

To evaluate the effect of sparsity on Bayesian inference in fully connected architectures,

we use the Fashion MNIST data set (FMNIST) [Xiao et al., 2017] with a two-hidden
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layer MLP with 200 hidden units per hidden layer (MLP200). The FMNIST data

set has 10 classes, 60K training instances and 10K test instances. For a larger-scale

model, we pair the 20-layer residual network model (ResNet20) used in Frankle and

Carbin [2018] with the CIFAR10 data set [Krizhevsky et al., 2009]. CIFAR10 has

10 classes, 50K training instances and 10K test instances. For a more challenging

data set, we pair the ResNet20 model with the CIFAR100 data set [Krizhevsky et al.,

2009]. CIFAR100 has 100 classes, 50K training instances and 10K test instances. All

data sets are freely available. Additionally, we use an isotropic Gaussian prior for all

models.

For evaluating performance on the classification task, we use the metrics of accuracy

(↑), negative log likelihood (NLL, ↓), and expected calibration error (ECE, ↓). For

assessing the efficiency of MCMC samplers, we use the metrics of effective sample size

(ESS, ↑), and auto-correlation coefficient (ACF ↓). We note the definitions of ESS

and ASF below.

Autocorrelation Function (ACF): Autocorrelation functions are used to assess how

correlated a univariate sequence with itself. The ACF is a useful tool for analyzing

the correlation between functions of samples collected via a Markov chain. We

select the instantaneous negative log likelihood function on the test set iNLL(s) =

−(1/Nte)
∑

(x,y)∈Dte
log p(y|x, θ(s)) as the summary statistic as it is a convenient way

to summarize high dimensional sampled parameters. If nearby samples are very similar

at a given lag, then the instantaneous log likelihood values will also be similar and the

ACF will be high. Samples that are approximately IID would have ACF near zero at

all lags.

Effective Sample Size (ESS): The effective sample size is used to assess the effective

number of independently drawn samples materialized from a collection of Markov

chains [Robert and Casella, 2013, Page 499]. The ESS takes into account both the
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variance within and between chains, and therefore summarizes the correlation between

samples. High values indicate a more efficient Markov chain, where the samples are

closer to being independent. As an example, completely independent samples would

correspond to an ESS equal to the total number of samples collected. We use the

implementation provided in Pyro to compute the ESS [Bingham et al., 2019].

For hyperparameter optimization, we start with the hyperparameters from Frankle

and Carbin [2018] and further tuned the learning rate and scheduler to improve on

their performance. We found the following hyperparameters to perform better.

• MLP200/FMNIST:

– SGD: For all use-cases, whether for pre-training or for IP/IPR, we use

standard SGD with a learning rate of 0.01, a weight decay of 1× 10−3, a

momentum of 0.9, and 60 epochs. For the learning rate scheduler, we use a

multistep scheduler, which reduces the learning rate by a factor of 0.1 at

epochs 20 and 40.

– SGHMC: For all implementations of SGHMC, we initialize the weights

using SGD (as described above). We allow for a burn in of 50 epochs and

then collect the number of pre-specified samples (e.g. for one chain we

collect 50 samples). The learning rate is set to a constant value of αs = 0.01,

the friction term η = 0.1 (i.e. momentum is 0.9), the prior precision is set

to 60 (1× 10−3 × |Dtr|)

• ResNet20/CIFAR10:

– SGD: We use SGD with a learning rate of 0.01, a weight decay of 1× 10−4,

a momentum of 0.9, and 160 epochs. For the learning rate scheduler, we

use a multistep scheduler, which reduces the learning rate by a factor of

0.1 at epochs 80 and 120.
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– SGHMC: As for the MLP200, we initialize the weights using SGD (as

described above). We allow for a burn in of 50 epochs and then collect

the number of pre-specified samples. The learning rate follows the cosine

annealing scheduler, with an initial learning rate of 0.2 and a final value of

0.0. The friction term η = 0.5 (i.e. momentum is 0.5), the prior precision

is set to 60 (1× 10−4 × |Dtr|)

• ResNet20/CIFAR100:

– SGD: We use the same settings as for ResNet20/CIFAR10.

– SGHMC: We use the same settings as for ResNet20/CIFAR10.

For this chapter, we use the SGHMC implementation provided by Vadera et al. [2020a].

We also utilize parts of the PyTorch implementation provided by Frankle and Carbin

[2018] for our experiments.

5.2.2 Experiment 1: How does SGHMC perform when applied to opti-

mized sparse substructures?

In this experiment, we evaluate the performance of SGHMC applied to substructures

selected using the iterative pruning (IP-SGHMC) and iterative pruning with re-winding

(IPR-SGHMC) methods. We compare to the baseline of SGHMC applied to the full,

dense model (Full-SGHMC). The results are presented in Figure 5.1. As we can see,

the drop in accuracy at 83% sparsity is less than 3% on FMNIST and CIFAR10

for both IP-SGHMC an IPR-SGHMC. On CIFAR100, IP-SGHMC performs well at

83% sparsity while IPR-SGHMC shows a larger drop. As expected, both methods

show decreased accuracy as sparsity increases on all data sets. However, the drop

in accuracy is minimal (less than 4%) on both FMNIST and CIFAR10 even at 95%

sparsity. The degradation in accuracy is more pronounced on the more challenging

CIFAR100 data set. We can also see that the negative log likelihood increases for
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both methods on both data sets as a function of sparsity. However, there is no clear

advantage for either method. Finally, we can see that the expected calibration errors

are very low on both FMNIST and CIFAR10 for both methods in terms of absolute

level, while on CIFAR100 IP-SGHMC appears to exhibit poor calibration at lower

sparsity levels.
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Figure 5.1. Performance of SGHMC applied to optimized sparse substructures
compared to SGHMC applied to full models.

To provide context for the trade-off between storage and performance, in Table 5.1

we show the total number of parameters that require storage under Full-SGHMC

and IP-SGHMC on FMNIST and CIFAR10. The parameter counts for IPR-SGHMC

are identical to those of IP-SGHMC and the parameters required for CIFAR100 are

nearly identical to those required for CIFAR10 for all methods. We also include the

parameter count for the base models (Full-OPT) for reference. Importantly, for the

SGHMC methods, we report the total number of parameters in the complete sparse
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Table 5.1. Total no. of parameters by sparsity rate (↓) and wall-clock time per image
during testing (↓).

Dataset Method Sparsity # Params

FMNIST Full-SGHMC 0% 9960500
FMNIST IP-SGHMC 83% 1695300
FMNIST IP-SGHMC 89% 1085700
FMNIST IP-SGHMC 95% 468150
FMNIST Full-OPT 0% 199210

CIFAR10 Full-SGHMC 0% 13623700
CIFAR10 IP-SGHMC 83% 2318800
CIFAR10 IP-SGHMC 89% 1485000
CIFAR10 IP-SGHMC 95% 640350
CIFAR10 Full-OPT 0% 272474

ensemble. As we can see, even at the lowest level of sparsity tested (83%), the savings

in storage for the sparse posterior ensembles is highly significant compared to the dense

posterior ensembles. At 95% sparsity, the sparse posterior ensembles have roughly

twice the storage cost of the base model (Full-OPT). The trade-off between storage

and performance appears to be quite favorable for both FMNIST and CIFAR10 at

the lower sparsity levels relative to the full posterior ensemble.

Table 5.2. Time comparison of inference on a CPU.

Dataset Method Sparsity
Inference Time/
data point (s)

Inference
speedup

Hardware

FMNIST Full-SGHMC 0% 0.0104 1×
Apple Macbook Pro
(8 GB memory, M1)

FMNIST IP-SGHMC 83% 0.0097 1.03×
FMNIST IP-SGHMC 89% 0.0067 1.55×
FMNIST IP-SGHMC 95% 0.0032 3.25×
FMNIST IP-SGHMC 99.5% 0.0006 17.33×
FMNIST Full-OPT 0% 0.0002 50×

FMNIST Full-SGHMC 0% 0.0139 1×

Google Colab
(13 GB memory, Intel Xeon@2.20GHz)

FMNIST IP-SGHMC 83% 0.0104 1.33×
FMNIST IP-SGHMC 89% 0.0069 2×
FMNIST IP-SGHMC 95% 0.0031 4.48×
FMNIST IP-SGHMC 99.5% 0.0007 19.86×
FMNIST Full-OPT 0% 0.0003 50×

We also provide a prediction inference time speedup comparison relative to the dense

ensemble (Full-SGHMC) for the MLP200/FMNIST model in Table 5.2. For computing
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the speedups, we implemented the MLP200 model using the GNU Scientific Library’s

(GSL) sparse matrix multiplication functions [Kernighan and Ritchie, 2006, Galassi

et al., 2003] and ran experiments on an Apple MacBook Pro (8 GB Memory, M1

processor). As we can see, at 89% sparsity we achieve an ≈ 1.6× speedup, while at

95% sparsity we achieve ≈ 16× speedup. These are highly significant improvements

in prediction inference time relative to the modest drop in prediction performance on

FMNIST.1

5.2.3 Experiment 2: How does SGHMC within random sparse substruc-

tures compare to SGHMC within optimized sparse substructures?

While prior work on optimization-based learning indicates that directly learning high-

quality models in compact or sparse models works less well than iterative pruning

methods, iterative pruning methods are extremely slow to execute due to the large

number of epochs needed to achieve high rates of sparsity. In this experiment we

investigate the performance of different approaches to random generation of sparse

substructures including random layer-wise masking with fixed sparsity rates per level

(RLM(F)), as well as random global masking (RGM). We compare these against Full-

SGHMC and IPR-SGHMC. We also compare to a random layer-wise masking variant

that uses the per-layer sparsity levels obtained from iterative pruning with rewinding

(RLM(IPR)). This approaches matches the per-layer sparsity level of the substructure

identified by iterative pruning while randomizing the actual substructure. Since

producing random substructures requires drastically reduced computation compared

to iterative pruning, we sample several random substructures and run separate chains

within each.

1We note that we do not include speedup results for convolutional models, but prior research
shows these speedups to be in the range of 3− 7× as noted previously Park et al. [2017], Li et al.
[2017].
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Figure 5.2. Performance of SGHMC applied in random sparse substructures compared
to SGHMC applied to full models.

Table 5.3. Total training time (↓) for CIFAR10.

Method Chains Sparsity Time (s)

IPR-SGHMC 1 83% 19,244
IPR-SGHMC 1 89% 22,866
IPR-SGHMC 1 95% 30,111
RLM(F)/RGM-SGHMC 1 - 2,943
RLM(F)/RGM-SGHMC 5 - 12,452
RLM(F)/RGM-SGHMC 10 - 24,338

In Figure 5.2 we show the negative log likelihood results based on randomly sampling

10 substructures and running 10 separate chains. We divide the total sample budget

evenly among the 10 chains. Surprisingly, the use of random substructures and parallel

chains performs as well as or better than the use of a single SGHMC chain with a

sparse sub-structure using iterative pruning at lower levels of sparsity. At higher

levels of sparsity, iterative pruning outperforms random substructures with parallel

chains. We also see that matching the per-layer sparsity levels of iterative pruning

does produce improvements over uniform per-layer sampling.

In Table 5.3, we show the total training time for several of the methods investigated

in this experiment. As we can see, the time required by the IPR-SGHMC method

is very high due to the need to run iterative pruning to derive the sparsity mask

before sampling can run. The training time also increases with the desired level of

sparsity. Due to the fact that our masking implementation of SGHMC does not
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realize a speedup due to sparsity when sampling, the time required to run the random

layer-wise masking approach with fixed sparsity per level (RLM(F)-SGHMC) and

the random global masking approach (RGM-SGHMC) are the same and independent

of the sparsity level (including sampling in the fully dense model). As we can see,

running 10 SGHMC chains at any level of sparsity requires total time approximately

equal to running iterative pruning followed by one chain at the 89% sparsity level.

However, the 10 RLM(F)-SGHMC chains can be run completely in parallel within

an actual wall-clock period equal to the total time to run one chain. Overall, these

results indicate that the use of iterative pruning appears to be unnecessary at lower

sparsity levels so long as multiple chains are used to offset the selection of random

substructures. It also suggests a number of other interesting possibilities such as

running iterative pruning to further sparsify a randomly selected sparse structure,

which we leave to future work. Additional results from this experiment are presented

in Figures 5.3-5.5.
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Figure 5.3. Performance comparison of SGHMC applied in random sparse sub-
structure compared to SGHMC applied to full models on the FMNIST, CIFAR10 and
CIFAR100 datasets. In this figure, we sample 1 random sparse sub-structure using
each for the random sparse sub-structure selection methods denoted in the legend,
and apply SGHMC to it. We collect total 50 samples from the chain.
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Figure 5.4. Performance comparison of SGHMC applied in random sparse sub-
structure compared to SGHMC applied to full models on the FMNIST, CIFAR10 and
CIFAR100 datasets. In this figure, we sample 5 random sparse sub-structures each
using the random sparse sub-structure selection methods denoted in the legend, and
run 5 parallel SGHMC chains. We collect 10 samples from each chain to obtain a
total of 50 samples across 5 chains.
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Figure 5.5. Performance comparison of SGHMC applied in random sparse sub-
structure compared to SGHMC applied to full models on the FMNIST, CIFAR10 and
CIFAR100 datasets. In this figure, we sample 10 random sparse sub-structures each
using the random sparse sub-structure selection methods denoted in the legend, and
run 10 parallel SGHMC chains. We collect 5 samples from each chain to obtain a
total of 50 samples across 10 chains.
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Table 5.4. Mean ESS (↑) on CIFAR10.

Sparsity 0 % 89% 95%

IPR-SGHMC 39.8224 41.5218 42.0768
RLM(IPR)-SGHMC - 38.5486 38.6837
RGM-SGHMC - 37.7584 37.9131

5.2.4 Experiment 3: How does sampling within different types of sparse

structures affect the underlying SGHMC Markov chain?

In this experiment, we examine the structure of the SGHMC Markov chains that

result from the use of different types of sparse structures. Prior observations regarding

the difficulty of optimizing compact and sparse models suggests that mixing in a

gradient-based sampler such as SGHMC might degrade in sparse models. However, the

size of the space that the sampler operates in is also drastically reduced at high sparsity

rates, which we might expect to improve mixing. The overall effect of parameter

sparsity on MCMC methods has not been previously investigated.
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Figure 5.6. Plots of iNLL for FMNIST and CIFAR10 corresponding to sparsity level
89%. We also include the full model as a baseline.

Figure 5.6 shows the instantaneous negative log likelihood (iNLL) on the test set for

several methods applied to the FMNIST and CIFAR10 data sets. Based on the iNLL
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plot, the burn-in time does appear to vary by the method on CIFAR10 with random

sub-substructures requiring longer to burn in than optimized substructures and the full

model. This observation may be due to the use of an optimization method to select the

starting state of each chain, with the iterative pruning optimization process resulting

in better initial states than the application of standard optimization methods to

random sparse structures. However, all chains appear to be approximately stationary

by 50 sampling epochs. On FMNIST, there appears to be much less sensitivity with

respect to substructures and all chains burn in quickly. To assess mixing of the MCMC

chain, we compute the ESS for each of the posterior ensembles. The mean ESS values

are presented in Table 5.4. The results presented in Table 5.4 suggest no significant

difference in ESS values as we increase the sparsity. Furthermore, as we move away

from IPR based methods to random methods, we again observe no significant change

in ESS values. Thus, while there is no significant improvement in ESS values when

moving from dense ensembles to sparse ensembles, there’s also no decrease in the ESS

values. This is promising as it shows that mixing in sparse subspaces is no worse than

the original space. Additionally, we also provide ACF plots for the iNLL from the

51st epoch to the 100th epoch (i.e. post burn-in) for each chain. These plots, along

with the full set of iNLL plots are presented in Figures 5.7 - 5.9).

5.2.5 Experiment 4: How does SGHMC compare to optimization-based

learning of sparse substructures?

In this experiment, we compare full models using both optimization-based learning

and SGHMC to sparse models learned using both optimization and SGHMC. We also

compare to randomly-selected substructures. The results are presented in Figure 5.10.

We again focus on iterative pruning with rewinding as the optimization-based method

for deriving sparse structures. We focus on negative log likelihood as the performance

measure. First, as we would expect, SGHMC out-performs optimization-based learning
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Figure 5.7. ACF plots for FMNIST and CIFAR10. The plots correspond to the case
when sparsity level is set to 89%. We also include the full model as a baseline.

in the full models on all three data sets. Second, we note that SGHMC with the IPR-

derived sparse structures also consistently out-performs the final optimized parameter

values found for those same structures for all data sets and at all sparsity levels.

However, the relationship between the performance of the optimized models and

SGHMC in sparse substructures is more complex. As we can see, at these sparsity

levels, SGHMC under-performs Full-OPT on both FMNIST and CIFAR100. Note

that the random layer-wise sparsity method shown uses 10 chains and, as observed

previously, this leads to improvements in performance over the IPR-based SGHMC

approach at lower sparsity levels. This approach does at least slightly out-perform

optimization applied to the full model on all data sets. Finally, we observe that the

IPR-based SGHMC method is able to out-perform the optimization-based full model

on the CIFAR10 data set even at the highest level of sparsity. The key takeaway here

is that we can obtain useful trade-offs by choosing parallel chain SGHMC on sparse

substructures against SGHMC/SGD on full models, leading to train and test time

savings as well as storage savings.

110



0 5 10 15 20

0.5

0.0

0.5

1.0 FMNIST: ACF at 95 % Sparsity
Full-SGHMC
IPR-SGHMC
RGM-SGHMC
RLM(IPR)-SGHMC

0 10 20 30 40

0.325

0.375

0.425

0.475

FMNIST: iNLL at 95 % Sparsity
Full-SGHMC
IPR-SGHMC
RGM-SGHMC
RLM(IPR)-SGHMC

0 5 10 15 20

0.5

0.0

0.5

1.0 CIFAR10: ACF at 95 % Sparsity

Full-SGHMC
IPR-SGHMC
RGM-SGHMC
RLM(IPR)-SGHMC

0 10 20 30 400.325

0.425

0.525

0.625

0.725

CIFAR10: iNLL at 95 % Sparsity
Full-SGHMC
IPR-SGHMC
RGM-SGHMC
RLM(IPR)-SGHMC

Figure 5.8. The top two figures show ACF and iNLL for FMNIST while the bottom
two figures show ACF and iNLL for CIFAR10. The plots correspond to the case when
sparsity level is set to 95%. We also include the full model as a baseline.
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Figure 5.9. The top two figures show ACF and iNLL for CIFAR100 for a sparsity
level of 89% while the bottom two figures show ACF and iNLL for CIFAR100 for a
sparsity level of 95%. We also include a baseline with sparsity rate of 0%
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Figure 5.10. Performance of SGHMC and optimization-based learning on the
FMNIST, CIFAR10 and CIFAR100 datasets.
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5.3 Conclusions

In this chapter, we have explored the open question of how stochastic gradient MCMC

methods perform when restricted to performing inference within different types of

sparse sub-structures. We derive multiple conclusions from our experimental results.

First, from the standpoint of classification performance, our results show that both

single chains run within single substructures derived using iterative pruning methods

and multiple chains run on multiple randomly selected sparse substructures can lead

to effective trade-offs between posterior storage requirements, prediction time, and

predictive performance compared to a full posterior ensemble for some model/data

set combinations.

Perhaps the most surprising result is that at lower levels of sparsity, running multiple

MCMC chains on randomly selected sub-structures performs very similarly to iterative

pruning approaches that can not be parallelized, and thus require drastically higher

training times. However, iterative pruning-based structures do appear to have an edge

on randomly selected sparse structures in terms of predictive performance at higher

sparsity rates. They also appear to exhibit better mean expected sample size and

require less burn-in time. A key direction for future research is the development and

evaluation of optimization methods for selecting sparse structures with more modest

run times than iterative pruning strategies. Additional future directions include

investigating the compression of sparse posterior ensembles using distillation methods

and considering the composition of sparse substructures with subspace inference to

further improve sampling efficiency.
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CHAPTER 6

POST-HOC LOSS-CALIBRATION FOR BAYESIAN
NEURAL NETWORKS

Bayesian decision theory provides an elegant framework for acting optimally under

uncertainty when tractable posterior distributions are available. Modern Bayesian

models, however, typically involve intractable posteriors that are approximated with

surrogates. This difficulty has engendered loss-calibrated techniques that aim to learn

posterior approximations that favor high-utility decisions. In this chapter, focusing on

Bayesian neural networks, we develop methods for correcting approximate posterior

predictive distributions, encouraging them to prefer high-utility decisions. In contrast

to previous work, our approach is agnostic to the choice of the approximate inference

algorithm, allows for efficient test time decision-making through amortization, and

empirically produces higher quality decisions. We demonstrate the effectiveness of our

approach through controlled experiments spanning a diversity of tasks and datasets.

The rest of the chapter is structured as follows. In Section 6.1 we introduce our

post-hoc loss correction framework. Next, in Section 6.2 we present a comprehensive

set of experiments and results demonstrating the utility of our framework and compare

it against various baselines. Finally, we provide a discussion and a set of potential

future directions in Section 6.3 to conclude this chapter.

Bibliographical note: This chapter is adapted from Vadera et al. [2021].
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6.1 Framework

We begin with the assumption that we have access to a calibration dataset D′ :=

{xn}Nn=1 and that we can evaluate the posterior predictive distribution, under some

approximation to the posterior, at all xn ∈ D′. The log conditional gain on D′ is,

log G(h = c | D′) =

N∑
n=1

log

∫
y

u(h = cn, yn = y)p(yn = y | xn,D, θ0)dy,
(6.1)

where c = {cn}Nn=1, and cn = argmaxh∈A G(h | xn). Recall that

If we had access to the true posterior predictive distribution, guarantees from Bayesian

decision theory ensure that the decisions cn are optimal. However, for BNNs we only

have access to potentially crude approximations to the posterior and cn are no longer

guaranteed to be optimal. To address this, we introduce an utility aware correction,

q(yn | xn, λ) to the (approximate) posterior predictive distribution p(yn | xn,D, θ0)

evaluated at xn ∈ D′. The correction is parameterized by a set of learnable parameters,

λ. In our experiments, we use a neural network to parameterize q and λ corresponds

to the weights of that network. We observe that the log conditional gain can be

expressed as a function of λ,

log G(h = c | D′;λ) =

N∑
n=1

logEq(yn=y|xn,λ)

[
p(yn = y|xn,D, θ0)u(h = cn, yn = y)

q(yn = y|xn, λ)

]
,

(6.2)

and is lower bounded by,

U (λ, c,D′) =
N∑

n=1

Eq(yn|xn,λ)

[
log u(cn, yn)

]
−KL

[
q(yn|xn, λ)||p(yn|xn,D, θ0)

]
,

(6.3)
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where the bound log G(h = c | D′;λ) ≥ U(λ, c;D′) follows from Jensen’s inequality.

In the following subsection, we provide a detailed derivation of our post-hoc correction

objective.

6.1.1 Derivation of the post-hoc correction objective

We begin our derivation with the definition of log conditional gain as follows:

log G(h = c | D′;λ)

=
N∑

n=1

log

∫
y

(
u(h = cn, yn = y)q(yn = y|xn, λ)

× p(yn = y|xn,D, θ0)
q(yn = y|xn, λ)

dy

)

=
N∑

n=1

log

∫
y

(
q(yn = y|xn, λ)

×

(
p(yn = y|xn,D, θ0)u(h = cn, yn = y)

q(yn = y|xn, λ)

) dy

=
N∑

n=1

logEq(yn=y|xn,λ)

[
p(yn = y|xn,D, θ0)u(h = cn, yn = y)

q(yn = y|xn, λ)

]

Now, using Jensen’s inequality, we obtain,

log G(h = c|X) ≥
N∑

n=1

Eq(yn|xn,λ)

log(p(yn|xn,D, θ0)u(cn, yn)
q(yn|xn, λ)

)
=

N∑
n=1

Eq(yn|xn,λ)

[
log u(cn, yn)

]
−KL(q(yn|xn, λ)||p(yn|xn,D, θ0))

:= U (λ, c;D′) (6.4)

We learn q(· | ·, λ) by maximizing U (λ, c;D′) with respect to λ and c. Our algorithm

proceeds in a coordinate ascent fashion by alternating between fixing c and taking
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a gradient step in the direction maximizing U(λ, c;D′) with respect to λ and then

fixing λ and maximizing c. We limit our attention to finite discrete-valued decision

problems prevalent in classification settings. For these problems, we are able to

trivially maximize c given λ by enumerating the expected utility of all decisions and

selecting the highest utility decision. In the next subsection, we derive the variational

gap between the log conditional gain and the lower bound.

6.1.2 The variational gap

Consider a single data instance xn ∈ D′. The gap between the log conditional gain

and the lower bound then is,

log G(h = cn | D′;λ)− U (λ, cn,D′) = log

∫
u(h = cn, yn = y)p(yn|xn,D, θ0)dy − U (λ, cn,D′)

= log

∫
u(h = cn, yn = y)p(yn|xn,D, θ0)dy −

∫
q(yn = y|xn, λ) log u(h = cn, yn = y)dy

+

∫
q(yn = y|xn, λ) log q(yn = y|xn, λ)dy −

∫
q(yn = y|xn, λ) log p(yn|xn,D, θ0)

= log

∫
u(h = cn, yn = y)p(yn|xn,D, θ0)dy

+

∫
q(yn = y|xn, λ) log

q(yn = y|xn, λ)

p(yn|xn,D, θ0)u(h = cn, yn = y)
dy

= logZn +

∫
q(yn = y|xn, λ) log

q(yn = y|xn, λ)

p(yn|xn,D, θ0)u(h = cn, yn = y)
dy

=

∫
q(yn = y|xn, λ) logZndy +

∫
q(yn = y|xn, λ) log

q(yn = y|xn, λ)

p(yn|xn,D, θ0)u(h = cn, yn = y)
dy

=

∫
q(yn = y|xn, λ) log

q(yn = y|xn, λ)Zn

p(yn|xn,D, θ0)u(h = cn, yn = y)
dy

= KL

[
q(yn|xn, λ)||

p(yn|xn,D, θ0)u(h = cn, yn)

Zn

]
.

(6.5)

Thus, the variational gap between the log conditional gain and the lower bound over

the entire dataset can be computed by summing over all datapoints, and is given by
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logG(h = c | D′;λ)− U (λ, c,D′)

=
∑

xn∈D′

KL

[
q(yn|xn, λ)||

p(yn|xn,D, θ0)u(cn, yn)
Zn

]
,

(6.6)

where Zn = Ep(yn|xn,D,θ0)[u(cn, yn)]. Importantly, this lends us further insights into the

optimization problem. For a fixed c, maximizing Eq. (6.3) is equivalent to minimizing

the KL divergence between q and the original posterior predictive distribution scaled

by the utility function, pointwise over the calibration dataset. This further highlights

a key aspect of the proposed approach, it corrects the (typically) low-dimensional

posterior predictive distribution rather than the unwieldy, high-dimensional BNN

posterior. The lower bound Eq. (6.3) also lends itself to an intuitive interpretation.

The first term guides q(· | ·, λ) to higher utility decisions, while the second Kullback-

Leibler divergence term encourages q(· | ·, λ) to be close to the approximate posterior

predictive distribution in the KL sense.

Although nearly operational, two key challenges remain in applying the developed

framework. The first stems from computational considerations necessary when working

with large Bayesian models like BNNs. Posterior predictive distributions for BNNs

need to be approximated via Monte Carlo simulations. Computation and storage cost

of Monte Carlo approximations grow linearly with the number of samples and can

be prohibitive for large networks. The other challenge stems from user preferences

typically being expressed as cost functions [Berger, 1985, Kuśmierczyk et al., 2019]

rather than utility functions, and yet our development thus far has dealt exclusively

with utility functions. We next describe strategies effective at alleviating both these

concerns.
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6.1.3 Practical considerations

6.1.3.1 Amortized posterior predictive distribution

We tackle the computational concerns associated with Monte Carlo approximations to

the posterior predictive distribution by learning an amortized approximation [Balan

et al., 2015, Vadera et al., 2020b]. We use the online distillation algorithm proposed

by Balan et al. [2015], a special case of the general framework of Vadera et al. [2020b],

and distill the posterior predictive distribution into a single “student” neural network

model. This algorithm aims to minimize the Kullback-Leibler (KL) divergence between

p(yn | xn,D, θ0) and a student network S(yn | xn, ω), parameterized by ω for xn ∈ D′.

The online nature of this algorithm allows us to amortize the computation of posterior

predictive distribution, without having to instantiate numerous posterior samples.

Once we have trained the student model, we can use it as a drop-in replacement for

the posterior predictive distribution in Eq. (6.3),

U s(λ, c,D′) =
N∑

n=1

Eq(yn|xn,λ)

[
log u(cn, yn)

]
−KL(q(yn | xn, λ)||S(yn | xn, ω)).

(6.7)

6.1.3.2 Decision cost v/s utilities

In practical applications it is common to have user preferences encoded as decision

costs rather than utilities. We follow Kuśmierczyk et al. [2019], to translate between

costs and utilities. Let us denote the decision cost function as ℓ(h, y), where h again

denotes the decision and y denotes the predicted class. W can re-write the utility

function as u(h, y) = M − ℓ(h, y), where M ≥ suph,y ℓ(h, y). By substituting this in

Eq. (6.3) we obtain,

L(λ, c;D′) =
N∑

n=1

Eq(yn|xn,λ)

[
log
(
M − ℓ(cn, y)

)]
−KL(q(yn|xn, λ)||p(yn|xn,D, θ0)),

(6.8)
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and the analogous amortized variant is given by,

Ls(λ, c;D′) =
N∑

n=1

Eq(yn|xn,λ)

[
log
(
M − ℓ(cn, y)

)]
−KL(q(yn|xn, λ)||S(yn|xn, ω)).

(6.9)

Further performing a first order Taylor series expansion about M [Kuśmierczyk et al.,

2019, Lacoste-Julien et al., 2011] we obtain,

Ls(λ, c;D′) ≈
N∑

n=1

Eq(yn|xn,λ)

[
logM − ℓ(cn, y)

M

]
−KL(q(yn|xn, λ)||S(yn|xn, ω)),

(6.10)

Noting that Eq(yn|xn,λ)[logM ] is constant with respect to λ and c, we arrive at,

L̃s(λ, c;D′) = −
N∑

n=1

Eq(yn|xn,λ)

[
ℓ(cn, y)

M

]
−KL(q(yn|xn, λ)||S(yn|xn, ω)).

(6.11)

If we have access to the original posterior predictive distribution p(yn|xn,D, θ0)), the

analogous objective is,

L̃(λ, c;D′) = −
N∑

n=1

Eq(yn|xn,λ)

[
ℓ(cn, y)

M

]
−KL(q(yn|xn, λ)||p(yn|xn,D, θ0))).

(6.12)

Our experiments maximize either L̃s(λ, c;D′) or L̃(λ, c;D′) depending on the ex-

perimental setup. An algorithm giving an overview of our approach is presented in

Algorithm 3.

With the description of our method complete, we reemphasize the distinct advantages

provided by it. Observe that we only require that we are either able to evaluate

the posterior predictive distribution or an amortized approximation to it on D′. We
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Algorithm 3 Post-hoc loss correction algorithm

Require: Amortized posterior approximation S(.|., ω), Calibration dataset D′, mini-
batch size B, loss-calibrated model q(.|., λ), number of training iterations T ,
initialization λ0, supremum of the loss function ℓ, M .

1: Initialize the loss calibrated model by setting its parameters to λ0.
2: for t ∈ [1, . . . , T ] do
3: Draw a mini-batch B ⊂ D′ of size B.
4: for each data point xb ∈ B do
5: Compute cb = argminc

∫
yb
ℓ(c, yb)q(yb | xb, λt)dyb

6: end for

7: Define L̃(λ, c;B) = −
B∑
b=1

Eq(yb|xb,λ)

[
ℓ(cb, yb)

M

]
−KL(q(yb|xb, λ)||S(yb|xb, ω)))

8: Update λt+1 ← SGDUpdate(λt,∇λL̃(λ, c,B))
9: end for
10: return Optimized parameters of the loss calibrated model, λT .

remain agnostic and make no assumptions about how the posterior or the posterior

predictive distributions were computed. Moreover, learning the corrections, q(· | ·, λ),

involves optimizing Eq. (6.11) or Eq. (6.12) and is no more expensive than training

standard deep neural networks. Finally, at a test point, x∗ the expected cost associated

with a decision h is
∑C

k=1 ℓ(h, y = k)q(y = k | x∗, λ). Computing this expected cost

involves a single forward pass through q. Our framework, thus, amortizes test time

decision-making. This leads to significant speed-ups over existing loss-calibrated

inference approaches, which must first compute the posterior predictive distribution by

performing an expensive Monte Carlo integration over the corrected posterior before

making decisions. Test time amortization allows our method to be used in applications

that demand real-time decision-making. We summarize our approach’s similarities

and differences to relevant work in Table 6.1.

6.2 Experiments

In this section, we compare our proposed method against relevant baselines across a

diverse range of applications. Broadly, we divide our experiments into three major

categories to target three practical scenarios — 1) Decision-making in poor data
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Table 6.1. Overview of related loss-calibrated methods. Inference Agnostic:
Method does not modify or make assumptions about the posterior inference algorithm.
Scalable: Method scales to modern Bayesian neural networks learned from large data.
Amortized Decisions : Method does not require multiple forward passes for test time
decision-making.

Inference
Agnostic

Scalable
Amortized
Decisions

Lacoste-Julien et al. [2011] ✗ ✗ ✗

Cobb et al. [2018a] ✗ ✓ ✗

Kuśmierczyk et al. [2019] ✗ ✓ ✗

Kuśmierczyk et al. [2020] ✓ ✗ ✓

Ours ✓ ✓ ✓

quality regimes, 2) Decision-making with a reject option (also known as selective

classification), 3) Decision-making under real-time constraints.

Throughout this section, we experiment with fully-connected and ResNet18 [Krizhevsky

et al., 2012] architectures. We test our methods on data from MNIST [LeCun, 1998],

CIFAR10 [Krizhevsky et al., 2009], and the challenging CamVid [Brostow et al., 2008b]

dataset. We demonstrate that our posterior correction consistently improves the

quality of decisions when used in conjunction with popular BNN inference algorithms

— black-box variational inference (BBVI) [Blundell et al., 2015], stochastic gradient

Hamiltonian Monte-Carlo (SGHMC) [Chen et al., 2014a], and Kronecker-factored

Laplace approximation (KFAC-Laplace) [Ritter et al., 2018]. Noting that SGHMC [Yao

et al., 2019] typically provides a more faithful approximation to the BNN posterior,

we restrict ourselves to SGHMC for real data experiments. To compare against a

loss-calibrated inference procedure, we develop a loss-calibrated variant of SGHMC.

Following Lacoste-Julien et al. [2011] we define the following utility scaled posterior,

p̃(θ|D, u) ∝ p(θ|D)G(h∗|D). (6.13)
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The loss-calibrated stochastic gradient HMC (LC-SGHMC) algorithm then proceeds

by sampling from this scaled posterior using SGHMC. Given that SGHMC is typically

more accurate than competing variational methods, we view LC-SGHMC as a strong

loss-calibrated inference baseline.

6.2.1 Synthetic Data Experiments

We begin with experiments on synthetic data, employing fully connected architectures

and three popular inference techniques, BBVI with local reparameterizations [Kingma

et al., 2015], SGHMC, and KFAC-Laplace.

6.2.1.1 Experimental setup

We construct a two-dimensional, two class data set with class imbalance. We generate

data from the two classes by sampling isotropic Gaussian distributions with means

[−1,−1] and [+1,+1]. For training, we use 90 data instances from the negative class

and 10 data instances from the positive class. We resample the Gaussian distributions

to create a test set, which again contains 90 negative examples and 10 positive ones.

For calibration data, we uniformly sample the two dimensional space to generate

500 unlabeled data instances. We repeat this procedure ten times and generate ten

training and calibration datasets. Fig. 6.1 visualizes one of these ten datasets. For

each dataset, we learn a 50 unit, single hidden layer, multi-layer perceptron with ReLU

activations using BBVI, SGHMC, and KFAC-Laplace and use a 100 sample Monte

Carlo approximation to compute the corresponding posterior predictive distributions.

We employ the following decision-cost function,

ℓ(c, y) =


0, for y = c

1, for y ̸= c, y = positive

0.1, for y ̸= c, y = negative

,
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Figure 6.1. Synthetic Data (Top). Labeled training data (D) is shown in the
left plot and unlabeled calibration data (D′) is shown in the right plot. Blue markers
represent the negative class and red markers represent the positive class. Decision
Visualization (Bottom). A visual comparison of decision-making using BBVI
without correction, and with our correctional approach for a single trial, on test data
drawn from the same distribution as the training data D. The edge colors indicate
ground truth classes, while the face colors indicate the predicted classes. Consistency
between edge and face colors indicate correct predictions.

which encourages decisions that minimize false negative errors for the minority class —

often a desirable property in practice. In this experiment, we learn the corrections by

maximizing Eq. (6.12).

For the SGHMC implementation in this experiment, we use a fixed learning rate

of 0.1, a momentum of 0.5 and prior precision of 1.0. We run a burn-in phase of

300 iterations, and collect total 100 parameter samples with a thinning interval of

50 iterations. After this, we obtain the monte carlo approximation to the posterior

predictive distribution p(y|x,D) on the additional training data points (D′). For doing

our post hoc correction, we use an MLP with 50 hidden units (as with the original

model) and optimize the objective shown in Eq. (6.11) using Adam optimizer with a

learning rate of 0.1 for 500 training iterations.

For BBVI implementation in this experiment, we set an identity gaussian distribution

as our prior and maximize the evidence lower bound (ELBO) of our MLP-BNN

using Adam optimizer with a learning rate of 0.01 over 5000 iterations. We use the

local-reparameterization trick Kingma et al. [2015] to produce low variance stochastic
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gradients. Next, we again collect a total of 100 parameter samples and compute the

Monte Carlo approximation of the posterior predictive distribution p(y|x,D) on the

additional training data points (D′). For doing our post hoc correction, we use an

MLP with 50 hidden units (as with the original model) as our q(.) model, and optimize

the objective shown in Eq. (6.11) using Adam optimizer with a learning rate of 0.1 for

500 training iterations.

For KFAC-Laplace we perform a Laplace approximation about the maximum-a-

posteriori (MAP) solution. As in standard Laplace approximation, the approximate

posterior is represented by a Gaussian centered at the MAP solution with its covariance

set to the inverse of the Hessian. We find the MAP solution by using Adam with a

learning rate of 0.01 to maximize the negative log posterior. Following Ritter et al.

[2018] we use a block-diagonal, Kronecker-factored Hessian.

Finally, note that there are 100 training points in the original training set (D), 500

additional unlabeled data points for our posterior correction (D′), and 100 held out

data points for testing from the same data distribution as D.

6.2.1.2 Results

We compute the average decision cost under our cost-function for each of the three

inference algorithms with and without our post-hoc correction on the test set. Table

6.2 summarizes our results, where the error bars stem from having repeated the

experiment on the ten randomly generated training and calibration datasets. Our

post-hoc correction results in test decisions with lower decision costs compared to the

decisions produced by the uncorrected variants. The costs are only marginally lower

in this synthetic example, where the approximations to the posterior are likely already

good. In the following, we will see that the decision costs can be substantially lower

in more challenging scenarios. In subsequent experiments, we solely rely on stochastic

gradient HMC algorithms for approximating the Bayesian neural network posterior.
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Table 6.2. Results on synthetic data. Test decision costs with and without
post-hoc correction over 10 replicates. Post-hoc correction consistently provides lower
cost decisions. Results presented as mean ± std. dev.

W/O post-hoc
correction

W/ post-hoc
correction (ours)

VI 0.019 ± 0.011 0.016 ± 0.010

SGHMC 0.018 ± 0.008 0.017 ± 0.009

KFAC-Laplace 0.021 ± 0.007 0.018 ± 0.008

6.2.2 Selective Classification

Next, we consider the problem of selective classification, wherein the goal is to classify

a data instance into one of C classes or choose not to classify and instead refer

it to an oracle. The corresponding decision problem thus involves selecting one of

C + 1 decisions for each data instance. By adjusting the cost of a referral, the

decision-making system can trade erroneous decisions for potentially expensive oracle

feedback. Different users of such a system will likely prefer different trade-offs and

as a result choose different referral costs. We however have no reason to believe that

the different users would have different posterior beliefs. Since our method does not

involve relearning the posterior beliefs when faced with changing cost functions, it is

well suited for such selective classification problems.

6.2.2.1 Experimental setup

We use the CIFAR10 [Krizhevsky et al., 2009] dataset along with SGHMC trained

Bayesian ResNet18 [He et al., 2016a] networks. To make the problem more challenging

and encourage referrals, we contaminate the data via an additional data transformation.

Under this contamination, we rotate each image in the dataset by an angle sampled

uniformly at random from [−30°, 30°]. Next, following Murphy [2012] (section 5.7.1.2),

we define our selective classification decision cost function as,
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ℓ(c, y) =


0, for y = c

1, for y ̸= c

r, for c = referral.

Here, r denotes the cost of a referral. With this setup we examine a) the effectiveness

of our method as a function of r, b) whether using the amortized posterior predictive

distribution S (maximizing Eq. (6.11)) adversely affects performance when compared

to the non-amortized version (maximizing Eq. (6.12)), and c) the computational cost

of learning post-hoc corrections under multiple decision-cost functions.

In this experiment, we employ two methods for approximating the posterior predictive

distribution p(y|x,D, θ0): using a student model and pre-computing the posterior

predictive distribution using the samples from SGHMC. For both cases, we generate the

additional unlabeled training data D′ by applying the same random transformation on

the original CIFAR10 data set, and generate 10 copies for every example by randomly

rotating the image as described earlier. In the case where we use the student model,

we distill the posterior predictive distribution using the approach of Balan et al. [2015]

and use the same D′ for the distillation. Note that the approach by Balan et al. [2015]

allows us to interleave the sampling from p(θ|D, θ′) and distilling to a student model

using an online approach.

Finally, once we obtain some form of approximation for the posterior predictive

distribution, we optimize either Eq. (6.11) or, Eq. (6.12) depending on whether we

have used the student or not. We use the same ResNet18 architecture for the q(.)

model. For the SGHMC chains, we use a momentum of 0.7, a fixed learning rate of

10−3, and a prior precision of 5, and 1000 burn-in iterations (each iteration is a gradient

step after a mini-batch). We run the SGMCMC sampling-distillation algorithm from

Balan et al. [2015] for a total of 100 epochs, and collect a total of 30 samples at the end

of each of the last 30 epochs. The student model has the same ResNet18 architecture,
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and is trained using SGD with a one-cycle learning rate schedule [Smith, 2017]. The

peak learning rate is 0.1 and the weight decay factor is 5× 10−4. We warm start our

q(.) model with the student and train it for 100 epochs using an SGD optimizer with

a learning rate of 10−3.

For the case where we don’t use a student model, we train our q(.) model using

SGD with a cyclic learning rate schedule, as it helps accelerate the training. The

peak learning rate is 0.1. We use the equivalent number of training iterations as

100 epochs on the original data set D. For sampling a mini-batch from D′, we use

sampling without replacement at every iteration. The mini-batch size for the entire

experiment is set to 64. Also note that the SGHMC chain begins with a pretrained

maximum-a-posteriori (MAP) solution. This pre-trained solution is obtained using an

SGD optimizer with a one-cycle learning rate scheduler, with a peak learning rate of

0.05, with the same prior precision, and is trained for 100 epochs using D.

6.2.2.2 Results

The results for the experiment are presented in Fig. 6.2. As we would expect, lower

values of the referral cost r lead to more referrals and as a result, the models tend

to make a decision only when they are very confident, leading to higher values of

accuracy. Lower values of r also result in lower average decision cost, as the models

tend to refer to the oracle more, and due to the lower value of referral cost, the average

decision cost reduces. As we can see from the comparison, the decision cost as well

as accuracy of our post-hoc corrections outperforms those obtained using SGHMC

and LC-SGHMC across all values of referral cost r. Furthermore, we observe that the

accuracy and decision cost values are not adversely affected by using S in place of the

non-amortized posterior predictive distribution.

We also compare the training time of LC-SGHMC and our post-hoc corrections as a

function of the number of decision-cost functions. The wall-clock times required by the
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Figure 6.2. Selective classification. (Top Row) Average test decision costs and
test accuracy as a function of referral cost on CIFAR10 using a Bayesian ResNet18
model. The two left plots show results without using an amortized posterior predictive
distribution, S, and the two plots on the right display results when using S. Accuracy
is determined on those test data points that are not referred to the oracle. We note
that introducing the amortized approximation S does not adversely affect performance.
(Bottom Row) NLL comparison of unreferred data points for different levels of referral
cost for CIFAR10 data set using the same Bayesian ResNet18 model. The left plot
represent results from the experiment not using the student S to approximate the
posterior predictive distribution, while the right plot represents results from the
experiment using the student S to approximate the posterior predictive distribution.
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two approaches are shown in Fig. 6.3. All the experiments were run using the same

GPU hardware (Nvidia Tesla V100) and under identical conditions for consistency in

wall-clock time comparisons. We observe that our approach is significantly faster to

train, and its computational cost grows at a slower rate with increasing number of

cost functions.
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Figure 6.3. Training cost comparison. Wall-clock training time of our method
and LC-SGHMC as a function of the number of decision cost functions.

Finally, the fact that the amortized posterior predictive distribution S does not

adversely affect performance, is significant, in that it suggests that our approach

would likely continue to scale with increasing network size, when storing and averaging

over multiple Monte Carlo samples to compute the posterior predictive distribution is

the bottleneck. Moving forward, we only consider experiments with the amortized

posterior predictive S.

6.2.3 Decision-making under poor data quality

In the current era of big-data, it is not uncommon to have data sets of poor quality. In

many settings, the data sets are labeled by crowdsourcing, as well as other automated

techniques. These labeling techniques can often lead to noisy labels, and affecting

downstream performance. Thus, it is important to understand how our method
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performs in this practical scenario. In practical scenarios, it is common to have

asymmetric decision cost functions. This means that for making certain incorrect

decisions, the cost can be higher or lower than the rest to encourage or discourage

making those decisions. In this experiment, we also incorporate an asymmetric cost

function similar to the one introduced earlier in the synthetic data experiments.

6.2.3.1 Experimental setup

We simulate label corruption on MNIST [LeCun, 1998] and CIFAR10 [Krizhevsky

et al., 2009]. For each dataset, we switch the true labels of a proportion of the training

set to labels sampled uniformly at random. For MNIST, we use a simple multi-layer

perceptron architecture with one hidden layer of 200 units, while for CIFAR10, we

use the ResNet18 architecture [He et al., 2016a]. Recall that SGLD can be derived

from SGHMC as shown in Chapter 2, Section 2.1. For each data set, we pick two

classes to which we assign higher importance, and thus assigning a lower cost to the

mistakes which involve choosing these classes as decisions. In MNIST, we assign a

higher importance to classes 3 and 8, while in CIFAR10, we assign a higher importance

to classes automobile and trucks. We use SGLD [Welling and Teh, 2011] for sampling

from the posterior as well as the utility scaled posterior distribution. For a point-

estimated model baseline, we introduce the class-weighted SGD (CW-SGD) baseline.

In CW-SGD, we use our standard log loss on the neural network model, but assign

a higher weight to the classes of interest. This encourages the model to make fewer

mistakes on classes of higher importance.

In this experiment, we use a ResNet18 model with the CIFAR10 data set and an MLP

with a single hidden layer of 200 units (MLP200) for MNIST. We generate D′ online,

by adding random pixel noise from a N (0, 0.05) distribution. Since we use student

model, we follow the same algorithm and subsequent post-hoc correction as described
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earlier in. Student model S and our q(.) model follow the same architecture as of the

original model.

For the ResNet18-CIFAR10 combination, we use SGLD with a fixed learning rate of

2× 10−5 and a prior precision of 50. The burn-in iterations is set to 10,000. We run

the distillation algorithm to train the student model for 50 epochs, and collect 30

samples from the original model (also the teacher model here) from the end of the

last 30 epochs. To train the student model, we use SGD with a cyclic learning rate

schedule. The maximum learning rate in the schedule is 0.05, with a momentum of

0.9 and a weight decay factor of 10−4. Once we obtain the student, we train our q(.)

model using the objective in Eq. (6.11). For training the q(.) model, we use SGD

with a cyclic learning rate schedule. The maximum learning rate in the schedule is

0.05, with a momentum of 0.9. Note that for running SGHMC on ResNet18-CIFAR10

combination, we start with a pre-trained solution. This pre-trained MAP solution is

obtained by running our original teacher model using the same data set D. For the

pre-training step, we use SGD with a cosine annealing learning rate schedule with

warm restarts. The initial learning rate in the schedule is 0.05, with a momentum of

0.9 and a weight decay factor of 5× 10−4. Each annealing phase is of 20 epochs, and

we perform a total of 5 such phases.

For the MNIST-MLP200 combination, we use SGLD (obtained by setting α = 1 in

SGHMC, see Chapter 2, Section 2.1) with a fixed learning rate of 10−4 and a prior

precision of 6. The burn-in iterations is set to 10,000. We run the distillation algorithm

to train the student model for 100 epochs, and collect 30 samples from the original

model (also the teacher model here) from the end of the last 30 epochs. To train the

student model, we use SGD with a fixed learning rate of 10−3, with a momentum of

0.9 and a weight decay factor of 10−4. Once we obtain the student, we train our q(.)

model using the objective in Eq. (6.11). For training the q(.) model, we use SGD with
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a fixed learning rate of 10−3, with a momentum of 0.9. Note that for running SGLD

on MNIST-MLP200 combination, we start with a pre-trained MAP solution as well.

For the pre-training step, we use SGD with a cosine annealing learning with warm

restarts. The initial learning rate in the schedule is 0.01, with a momentum of 0.9

and a weight decay factor of 1× 10−4. Each annealing phase is of 20 epochs, and we

perform total 5 such phases.

The decision cost function for CIFAR10 is defined as shown below:

ℓ(c, y) =


0, for y = c,

0.7, for y ̸= c, and c ∈ {automobile, truck}

1.0, otherwise

(6.14)

The decision cost function for MNIST is defined as shown below:

ℓ(c, y) =


0, for y = c,

0.7, for y ̸= c, and c ∈ {3, 8}

1.0, otherwise

(6.15)

For the CW-SGD baseline, we assign a loss weight of 1.4 to the instance if the ground

truth is either automobile or truck for CIFAR10 and if the ground truth either 3 or

8 for MNIST. The reason for this is that we want to our system to assign higher

importance to these classes, and thus a mistake of making an incorrect decision with

these ground truth classes should incur higher loss. Similarly, the decision cost function

highlights the same fact, as it places a lesser penalty if our decision system predicts

these important classes.
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Figure 6.4. Decision-making under label corruption. The top row illustrates
performance comparison for different levels of label corruption on CIFAR10 using a
Bayesian ResNet18 model. The bottom row illustrates performance comparison for
different levels of label corruption on MNIST using an MLP with a single hidden layer
of 200 hidden units. The results are shown as mean ± std. dev. over 5 trials.
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6.2.3.2 Results

We present the results of this experiment in Figure 6.4. For a comprehensive evaluation

of performance, we vary the label corruption proportion between 0.3 and 0.7. For

performance assessment, we look at the decision cost (↓), and accuracy (↑) on the

standard test sets for each data set. While looking across the set of performance

metrics, similar trends emerge. For lower levels of corruption, we notice that our

post-hoc correction method performs similarly to LC-SGHMC and LC-SGLD, and

marginally better than the uncorrected posterior predictive distribution and CW-

SGD. However, as we increase the label corruption proportion to moderate levels, we

observe that our method outperforms the baselines. Finally, with increasing corruption

proportion, all methods are overwhelmed by the label noise, and we see a sharp dip

in performance across all methods. We note that beyond achieving similar or lower

decision costs, our approach also achieves higher accuracy and negative log-likelihoods

than the competing methods. With these encouraging results in mind, we move

towards our final experiment, which looks at a real-world data set and demonstrates

the benefits of amortized decision-making.

6.2.4 Semantic scene segmentation

In this experiment, we consider the problem of semantic scene segmentation. Here,

our goal is to segment an image into its components. This is achieved by labeling

each pixel of an image with one of C known categories. Semantic segmentation can

be useful for a variety of applications, including aiding autonomous vehicles navigate

the world. In such an application, it is crucial that the underlying decision problem

of labeling pixels be solvable in near real-time. Existing loss-calibrated approaches

struggle with such real-time requirements. through this experiment, we demonstrate

both real time performance and improved decisions provided by our post-hoc loss

correction framework.
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6.2.4.1 Experimental setup

For this experiment, we use the Camvid data set [Brostow et al., 2008a,b] which

contains per-pixel labeled images captured using a camera on the dashboard of a car.

An illustration of the data is provided in Figure Fig. 6.5. The version of the data

set that we use contains a total of 12 class labels. Of these class labels, we assign

a lower cost to false decisions that involve picking either of the pedestrian, cyclist

or car class. This decision cost structure is inspired from the experiments of Cobb

et al. [2018a], as the goal of an autonomous car is to avoid these obstacles for safety

reasons. By assigning a lower penalty to an incorrect decision of classifying a pixel to

one of these three classes, we encourage our model to be more risk averse. For our

model, we use the SegNet model architecture [Badrinarayanan et al., 2017]. SegNet

is an auto-encoder style model which has previously been used for semantic scene

segmentation. For additional comparison, we add the loss calibrated MC dropout

baseline based on the algorithm presented in Cobb et al. [2018a].

For the SGHMC implementation in this experiment, we use an initial learning rate

of 0.01, a momentum of 0.5 and effective weight decay of 5 × 10−4. We also use a

cosine annealing learning rate scheduler, which decays the learning rate to 0. We

run a burn-in phase of 1000 iterations, and collect total 30 parameter samples with a

thinning interval of 500 iterations.

We run the distillation algorithm alongside the sampling to train the student model

for a total of 15000 iterations after the burn-in. To train the student model, we use

SGD with a cyclic learning rate schedule. The maximum learning rate in the schedule

is 0.15, with a momentum of 0.9 and a weight decay factor of 10−4. Once we obtain

the student, we train our q(.) model using the objective in Eq. (6.11). For training the

q(.) model,we use SGD with a cyclic learning rate schedule. The maximum learning

rate in the schedule is 0.05, with a momentum of 0.9. Note that for running SGHMC
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we start with a pre-trained solution. The pre-trained solution used in this experiment

is the CW-SGD solution. More details on CW-SGD solution is given later in this

section. Once we obtain the student model S, we train the q(.) model, using SGD

with a cyclic learning rate schedule. The maximum learning rate in the schedule is

0.05, with a momentum of 0.9 for a total of 15000 iterations.

For the CW-SGD baseline, we use a cyclic learning rate schedule and train the SegNet

model for 15000 iterations with a maximum learning rate of 0.05, weight decay of

10−4 and momentum of 0.9. The classes of importance here are the car, cyclist and

pedestrian, and hence the loss weights for these classes are set to 1.4 while the rest of

the loss weights are set to 1.

For the loss calibrated MC dropout baseline, we use the pretrained SGD solution,

and fine-tune it with Adam optimizer using a learning rate of 10−4 for 1000 training

iterations. The dropout strength is 0.3 and is added in the decoding phase of the

model. For computing the posterior predictive distribution at train, we use 5 forward

passes, and during testing, we use 30 forward passes. Additional details about this

algorithm can be found in Cobb et al. [2018a].

The decision cost matrix for this experiment is shown in Table 6.3. This decision cost

matrix puts less penalty on decisions involving the classes of high importance.

6.2.4.2 Results

The aim of this experiment is two-fold. First, we want to evaluate the performance of

our approach for the task, and compare it with relevant baselines. Secondly, we want

to assess the test-time efficiency of our approach against alternates.

For assessing performance, we use the intersection over union (IoU) (↑) metric that is

commonly used to assess semantic segmentation performance. This metric evaluates

the ratio of the area of overlap and the area of union while comparing the ground truth
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Table 6.3. Semantic scene segmentation. Decision cost matrix for the semantic
scene segmentation experiment.

Decision
Cost Sk. Bu. Po. Ro. Pa. Tr. Si. Fe. Ca. Pe. Cy. Un.

G
ro

u
n
d

T
ru

th
/
P
re
d
ic
ti
o
n Sky 0. 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6

Building 0.8 0. 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6
Pole 0.8 0.8 0. 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6
Road 0.8 0.8 0.6 0. 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6

Pavement 0.8 0.8 0.6 0.6 0. 0.6 0.6 0.6 0.4 0.4 0.4 0.6
Tree 0.8 0.8 0.6 0.6 0.6 0. 0.6 0.6 0.4 0.4 0.4 0.6
Sign 0.8 0.8 0.6 0.6 0.6 0.6 0. 0.6 0.4 0.4 0.4 0.6
Fence 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0. 0.4 0.4 0.4 0.6
Car 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0. 0.4 0.4 0.6

Pedestrian 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0. 0.2 0.6
Cyclist 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.2 0. 0.6

Unlabelled 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.

Figure 6.5. Semantic Segmentation (Left) Sample input images (top) and
ground truth segmentations (bottom) from the CamVid dataset. (Middle) IoU scores
achieved by different methods for classes deemed important by the cost function, as
well as overall mean IoU across all classes and all images. (Right) We compare the
number of frames processed per second by our method and LC-SGHMC. Owing to
amortization, our approach is independent of the number of samples used to compute
the Monte Carlo approximation to the posterior predictive distribution. In contrast,
the number of frames processed per second by LC-SGHMC decreases dramatically
(note the log scaling of the axes) with increasing number of samples.
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segmentation and model output segmentation for each class. In Fig. 6.5, we present a

performance comparison between our method and the baselines using the IoU metrics

on test set. For the comparison, we look at each of the high utility classes separately,

as well as we evaluate the overall mean IoU over all classes combined. We observe that

our method performs consistently better on all the high utility classes, and thus doing

a better job at capturing the preferences embedded in our cost function. Moreover,

the mean IoU across all the classes indicates that our method does a better job overall

for this task.

Next, we look at assessing test-time efficiency for our current task. The metric

used for quantifying the test time efficiency is the number of frames that can be

processed per second (FPS, ↑). For application such as autonomous driving, a

slower processing pipeline can create a bottleneck when it comes to the efficacy for

deployments. However, since we use a point-estimated model for our approach, it gives

us inherent time savings when looking at test-time processing capabilities. In Figure

6.5, we present a comparison of no. of frames/sec that can be processed between

our approach and LC-SGHMC. Each frame (image) in the data set has a resolution

of 360 × 480. We compute the time to process an image after loading both the

image and model (or model ensemble for LC-SGHMC) on a Nvidia Tesla V100 GPU.

While we expect Monte Carlo based approximations to perform much slower than our

point-estimated model, it is increasingly evident looking at Figure 6.5 (middle) that

the number of frames/s can be prohibitively low for practical applications, for even a

smaller number of MCMC samples. While the performance for MCMC methods in

Figure 6.5 is computed using 30 samples, we compute the frames/s metric over larger

ensemble sizes to give a sense of why Monte Carlo integration at test time can be

impractical.

140



To summarize, there are two key findings of this experiment. First, our approach leads

to improved decision-making by capturing class preferences better, and improves on

the overall performance averaging across all twelve classes. Second, our method is

better positioned for deployments requiring real-time performance, as at decision time

it requires a single forward pass and no Monte Carlo approximations.

6.3 Conclusions

In this chapter, we introduced a novel framework for post-hoc loss calibration of

Bayesian neural networks for decision-making. Through comprehensive empirical

evaluations ranging from synthetic data sets to practical applications involving real

world data, we have demonstrated that our approach consistently produces lower

cost, higher utility decisions than competing approaches. We also demonstrated

that by decoupling posterior inference from decision-making, the framework provides

computational advantages at training time, and through amortization provides fast

test-time decisions. Future directions include extensions to continuous decisions, more

carefully exploring the effect of the choice of an inference algorithm on the quality of

the correction, exploring post-hoc corrections under distribution shift, and studying

the connections to generalized Bayesian inference [Bissiri et al., 2016, Knoblauch et al.,

2019].
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CHAPTER 7

UNCERTAINTY-AWARE OBJECT DETECTION

Bayesian deep learning methods improve the reliability of model confidence by ac-

counting for uncertainty in parameter estimation. This is advantageous in situations

where we look to deploy our models for high-stakes applications. In this chapter,

we explore a large-scale practical application of these methods: object detection.

Recently, a new paradigm of query-based object detection has gained popularity, such

as Detection Transformer (DETR), an encoder-decoder-based object detection model,

and AdaMixer. In this chapter, we focus on quantifying multiple aspects of detection

uncertainty based on a deep ensembles representation for the aforementioned models

[Carion et al., 2020, Lakshminarayanan et al., 2017, Gao et al., 2022].

The remainder of the chapter is structured as follows. In Section 7.1, we introduce the

object detection task and briefly present related work in this area. In Section 7.2, we

describe the architecture of the DETR model and the training process, in more detail.

In Section 7.3, we present our evaluation principles for the task. We present our

experimental analysis based on these principles in Section 7.4. We provide conclusions

in Section 7.5 along with potential future directions.

7.1 Background and Related Work

In the task of object detection, the goal is to identify the set of objects present in

a given scene, along with their locations and classes. The location of the object is

specified using a bounding box. An illustration of the object detection task is presented

in Figure 7.1.
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Figure 7.1. A sample image from the COCO dataset [Lin et al., 2014].

There has been much prior work that builds on convolutional neural networks for the

purpose of object detection. An important distinction between the image classification

task and the object detection task is that in the former only one object of interest in

the scene has a specified label, while in the latter case there could be many objects of

interest in the scene. As a result, in addition to identifying the classes of objects, we

also need to specify the locations of the objects.

One of the earliest methods in this area uses a sliding-window approach where we

generate different crops of an image using sliding windows, and for each of the windows

we classify if the cropped area is part of the background or if it contains an object of

interest. If it contains an object of interest, we also predict the class of the object.

This approach can be problematic as it requires generating a very large number of

candidate bounding boxes.

There have been approaches that aim to tackle this issue by generating a smaller set

of candidate bounding boxes based on classical computer vision techniques [Alexe

et al., 2012, Uijlings et al., 2013, Cheng et al., 2014, Zitnick and Dollár, 2014]. R-CNN

[Girshick et al., 2014] (Region-CNN) is the earliest work in this area that combines
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region proposal with CNNs for object detection. R-CNN contains a classification loss

to learn the object class correctly, as well as a regression loss that aims to improve

bounding box prediction, in addition to the region proposal network. However, an

important shortcoming of this method is that it requires multiple forward passes for

the regions of interest through a deep CNN to make predictions, which increases the

prediction latency.

To tackle this, Fast R-CNNs were proposed [Girshick, 2015], which generate the feature

maps for the image once, as well as project the regions of interest onto the feature

maps. As a result, we can reuse the feature maps, which reduces the computational

complexity at inference by a large factor. The main bottleneck in Fast R-CNNs has

been the region proposal methods, which, as we noted earlier, work based on classical

computer vision techniques. To solve this further, Faster R-CNNs were proposed,

which includes a region proposal network (RPN). The RPN sits on top of the feature

maps generated by the deep convolutional neural networks and generates its own set

of region proposals. Aside from this, the entire framework is the same as Fast R-CNNs

[Ren et al., 2016]. This leads to a significant reduction in prediction runtime, making

it an attractive method for practical applications.

A common aspect of the approaches discussed above is that they all require a proposal

of initial regions to identify objects and make predictions. Another family of approaches

involve object detection without region proposals [Redmon et al., 2016, Liu et al.,

2016]. These approaches involve dividing the input image into a dense grid, and for

each cell in the grid, predict for multiple bounding boxes (the number of which is

predetermined) the relative location and size of the bounding bbox. Given that these

models do not require generating multiple regions and computing output for each

of them, these methods are much faster than region proposal-based methods. Note
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that all these methods also involving post-processing steps to clean up the multiple

bounding boxes from the prediction phase.

With the advent of vision transformers, there has also been prior work in this area

which looks at adapting vision transformers for end-to-end object detection. DETR

(Detection Transformer) by Carion et al. [2020] is the most prominent piece of work

in this area. This model consists of a standard transformer-based encoder-decoder

framework where the entire image is passed through the encoder, and the hidden

representation from the encoder is then fed to the decoder. Next, we predetermine

the maximum number of bounding boxes to generate for our image, and then pass a

sequence of learned position embeddings (also known as object queries) to the decoder,

and get the output for the bounding box corresponding to each of these position

embeddings. Finally, there is also additional work that looks at using transformer-

style models for end-to-end object detection. For example, Zhu et al. [2021] proposes

Deformable DETR, which includes a new component termed deformable attention

in the encoder module. This helps speed up the training process of DETR and also

does a better job at identifying smaller objects. Song et al. [2021] introduces a novel

integration of vision transformers (ViT) and the DETR framework to achieve a much

better performance-latency trade-off than the original DETR framework.

There has been some prior work on approximate Bayesian inference for deep CNN-

based object detection models. Much of this work looks at estimating uncertainty in

the prediction of bounding-box properties such as location and size. Kendall and Gal

[2017] was one of the earliest works in this space that proposed using log-likelihood

loss to estimate heteroscedastic aleatoric uncertainty for the bounding-box regression.

Le et al. [2018] build upon this to have the neural network model explicitly produce

an estimated output variance like in heteroscedastic regression. This requires a single

forward pass through the neural network to estimate the output variance. Miller et al.
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[2018] use MC Dropout and then compute the mean and variance in the context of

bounding-box regression by computing statistics over spatially correlated outputs.

The BayesOD approach [Harakeh et al., 2020] builds upon Le et al. [2018] to get rid

of the non-maximal suppression with Bayesian inference and provides a multivariate

extension instead of the diagonal covariance of the standard log-likelihood for bounding

box regression.

The widely used metric for evaluating object detection models is the mean average

precision (mAP) score, computed by averaging the precision scores over a range of

matching IoU thresholds. However, the mAP score only evaluates the accuracy of the

hard predictions but doesn’t account for the uncertainty in model predictions. Previ-

ous work by Hall et al. [2020] proposed Probability-based Detection Quality (PDQ),

a metric to evaluate the probabilistic aspect of the outputs. PDQ consists of two

components: spatial quality, and label quality. However, there are certain issues with

the PDQ evaluation framework. First, the label quality is measured as the probability

of the correct class, with the unmatched ground truth and predicted bounding boxes

contributing a score of 0. This is problematic because, as we highlight later in Sec-

tion 7.3, a more reasonable way to assess the class uncertainty on unmatched predicted

bounding boxes is to consider the NLL of the background class prediction. Second,

while looking at spatial quality, the metric looks at two components: foreground

loss and background loss. Foreground loss is the negative log-likelihood of the pixels

in the ground truth bounding box under the predicted distribution that assigns a

probability value on whether a given pixel in the scene is a part of the detection.

Background loss penalizes pixels by using the complement of the predicted distribution,

by computing the NLL of the pixels present in the predicted bounding box, but not

in the ground-truth bounding box. This is again problematic, as it composes location

uncertainty with evaluating bounding box coverage and precision (see Section 7.3.3

for the definition of bounding box coverage and precision) in a way that makes it
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harder to decompose them. Finally, while matching ground truth bounding boxes to

the predicted bounding boxes, the authors propose computing PDQ scores for every

combination of the predicted bounding boxes and ground truth bounding boxes. This

can lead to leakage of label information at the time of matching, which is not desirable.

In this chapter, we focus on the original DETR framework. To the best of our

knowledge, the DETR framework has not been explored in the context of uncertainty

estimation in the literature.

7.2 Uncertainty Estimation in Query-Based Detectors

In this section, we first describe the specific query-based detectors we use in more

detail. We then explain our proposed approach to merge the output of an ensemble of

these detectors. Finally, we describe how we quantify different kinds of uncertainty

derived from the ensemble.

7.2.1 Detection Transformer and AdaMixer

At the most abstract level, query-based detectors can be thought of as learning a set

of query embeddings in a latent embedding space that are decoded into bounding

box predictions. A decoder function is then learned, which takes as input the image

features from a CNN backbone (or encoder, for e.g. in the case of DETR) and the

query embeddings. The output of the decoder is a new set of transformed query

embeddings of the same shape. These can then be transformed into class and bounding

box predictions using MLP output heads. As we described in the previous section, the

DETR model is an attention-based encoder-decoder architecture with a pre-trained

convolutional neural network-based backbone.

In the case of DETR and AdaMixer, a set of 100 256-dimensional query embedding

vectors is used. Furthermore, both models use ResNet50 as the backbone [He et al.,

2016b]. In the case of DETR, the decoder is a transformer that computes cross-
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attention between image features and query embeddings. AdaMixer replaces the

transformer with an MLP mixer model. This decoder uses position-aware adaptive

mixing between the query embeddings and image features. This has been shown to

result in faster convergence and better performance than DETR.

For each bounding box at index i in the train dataset, the ground truth can be denoted

as yi = (ci, bi), where ci denotes the class, and bi ∈ [0, 1]4 denotes the x, y coordinates

of the center of the box, as well as the height and width relative to the image. Finally,

the framework uses the Hungarian loss function, which combines the classification

loss and box loss, as shown below.

LHungarian(y, ŷ) = − log p̂σ̂(i)(ci) + 1{ci ̸=“background”}Lbox(bi, b̂σ̂(i)) (7.1)

Here, σ̂(i) denotes the permutation of the predictions that minimizes the matching

loss between predictions and the ground truth. Furthermore, p̂σ̂(i)(ci) denotes the

predicted probability for class ci under the σ̂(i) permutation, and b̂σ̂(i) denotes the

predicted bounding box coordinates under the σ̂(i). It’s important to note that this

matching computation is only required during training. Lbox is constructed using two

components: the IoU loss (Liou) and the L1 regression loss. The IoU loss ensures there

is high overlap between the ground truth bounding box and the predicted bounding

box, while the L1 regression loss ensures that the location specifications predicted for

the bounding box are closer to the ground truth.

Lbox(bi, b̂σ̂(i)) = λiouLiou(bi, b̂σ̂(i)) + λL1

∥∥∥bi − b̂σ(i)

∥∥∥
1

(7.2)

Here, λiou and λL1 denote the hyperparameters for weighing the two components of

the loss function.

148



7.2.2 Merging Bounding Boxes

Unfreezing the decoder parameters leads to the reinitialization and retraining of the

object queries. This results in a shuffling of the order of the bounding-box predictions

between different members of the ensemble. To merge the bounding box predictions

emerging from different members of the ensemble, we resort to the technique of

clustering. We use the Basic Sequential Algorithmic Scheme (BSAS) [Theodoridis and

Koutroumbas, 2006, Miller et al., 2019] method to group the bounding boxes. For a

given input, consider the set of outputs of each of the members of the ensemble as

Dk = ∪{(bik, sik)}Ni=1, where i denotes the index of the output bounding box, k denotes

the index of the model in the ensemble, b denotes the predicted output corresponding

to the location of the bounding box, and s denotes the predicted class distribution for

the bounding box. Furthermore, let Om denote the mth cluster. Under the algorithm,

we sequentially merge detections into clusters if the maximum IoU between detection

Di and any existing Om is greater than or equal to a set threshold ω. Otherwise,

the detection is assigned as a cluster of its own. Once the clusters are formed, for

computing the posterior predictive distribution, we use the standard Monte Carlo

approximation as shown below.

ŝi =
1

K

K∑
k=1

sk, where K = |Oi| (7.3)

For clustering, we use the implementation provided by Miller et al. [2021], and its

worst-case runtime complexity is O((KND)
2), where K denotes the ensemble size,

and ND denotes the maximum number of detections for a model in the ensemble.

Next, for merging the bounding box location predictions, there are several options.

First, we could simply compute the “average” bounding box, formed by taking the

average of the top-left and bottom-right coordinates. In fact, the average merging

strategy has been used in the past to merge bounding boxes [Miller et al., 2021]. In
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addition to the average bounding box, we could also generate a “maximal” bounding

box or a “minimal” bounding box. A maximal bounding box, by definition, is the

tightest bounding box that encapsulates all the bounding boxes within a cluster. On

the other hand, a minimal bounding box is the intersection of all the bounding boxes

within a cluster. Consider the bounding box bj = (x1j, y1j, x2j, y2j) in a cluster Oi,

where (x1j, y1j) indicate the coordinates of the top-left corner, and (x2j, y2j) indicate

the coordinates of the bottom-right corner, then the merged bounding is obtained by :

b̂avgi =
1

J

J∑
j=1

bj, where J = |Oi| (average bounding box) (7.4)

b̂max
i = (min(x1),min(y1),max(x2),max(y2)) (maximal bounding box) (7.5)

b̂min
i = (max(x1),max(y1),min(x2),min(y2)) (minimal bounding box) (7.6)

In the above set of equations, x1 = [x11, x12, ..., x1J ], y1 = [y11, y12, ..., y1J ], x2 =

[x21, x22, ..., x2J ], and y2 = [y21, y22, ..., y2J ]. An illustration depicting individual bound-

ing box predictions of different members of the ensemble and merging strategy has

been given in Figure 7.2. Note that the clustering method involves representing the

bounding box by its top-left and bottom-right coordinates, instead of the represen-

tation using center coordinates and bounding box dimensions that DETR typically

outputs.

7.3 Evaluation Principles and Methods

In this section, we describe the evaluation principles of interest for our work. To

evaluate our uncertainty-aware object detection models, we focus on four distinct

aspects of our predictions: 1) location uncertainty, 2) classification performance

(for class uncertainty), 3) coverage and precision of predicted bounding boxes, and
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Ground Truth Sample Cluster Merged Bounding Box

(a) (Left) Image with ground truth bounding boxes. (Middle) Clustered bounding boxes from the
full ensemble for one object. (Right) Average bounding box post merging for one object.

Model 1 Model 2 Model 3

Model 4 Model 5 Model 6

Model 7 Model 8 Model 9

(b) Bounding box predictions for individual models in the full ensemble

Figure 7.2. An illustration of the predictions of the individual members of the full
ensemble, the clustered bounding boxes for a sample object, and the final average
bounding box. For more context, we also present the ground truth bounding boxes.
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4) objectness detection. In the following subsections, we describe each of these

performance aspects in more detail.

7.3.1 Location Uncertainty

The first aspect of predictive uncertainty that we evaluate is the uncertainty in the

location of the object. Specifically, we look at the uncertainty in the center location

of the output bounding box. To evaluate the location uncertainty, we compute

the negative log likelihood of the true location of the center (xcenter, ycenter) under a

Gaussian distribution N (µ̂, σ̂2), where µ̂ is the predicted center location, that is,

µ̂ = (x̂center, ŷcenter) (7.7)

σ̂2 =

 1

N

N∑
n=1

(x̂n,center − xn,center)
2,

1

N

N∑
n=1

(ŷn,center − yn,center)
2

 (7.8)

In the above set of equations, (xn,center, yn,center) ∈ Dboxes,train, where Dboxes,train denotes

the collection of the bounding boxes from the entire training set. The variance

computation is equivalent to computing the average of the squared residuals of the

model predictions. A prerequisite to computing the variance is that we first need

to match the ground-truth bounding boxes with the predicted bounding boxes on

the training data. Predicted bounding boxes are assigned to ground truth bounding

boxes by solving the minimum weight matching problem, where each matching has a

weight of (1 - IoU). Furthermore, we set a threshold on minimum IoU for the matching

between the predicted bounding box and the ground truth bounding box to be valid

during evaluation. An important point to note here is that we can only compute the

variance using the matched bounding boxes on the train data. Although the equations

mentioned earlier look at the predictions from a single model, this can be extended in

a straightforward way for ensembles by using a Gaussian mixture model likelihood,

where the mixture indicates the cluster forming the detections, and thus each member
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of the mixture is an individual detection. For every member of the mixture, the

mean parameter is the center of the detection, and the variance is the average of the

variances across all members of the ensemble (each computed using the earlier given

above).

7.3.2 Classification performance

Along with each bounding box, the DETR model outputs a (K + 1) dimensional

probability distribution, whereK denotes the number of classes and the final dimension

is reserved for the “background” class. If the bounding box has maximum probability

on the background class, it is filtered out during evaluation. Before we can compute

any metrics for the classification performance, we need to specify the assignment

procedure that assigns predicted bounding boxes to the ground truth bounding boxes.

We use the assignment described in the previous subsection for assigning the predicted

bounding boxes to ground truth bounding boxes. For the predicted bounding boxes

that do not get assigned to any ground truth bounding box, we set their respective

ground truth class to background. On the other hand, if after assignment there exist

ground-truth bounding boxes that do not have any assigned predicted bounding boxes,

we assert a uniform distribution over classes as the predicted distribution. This serves

as a penalty for bounding box targets that are missed.

Once this assignment is complete, we evaluate the negative log-likelihood (NLL),

expected calibration error (ECE), and accuracy for this multi-class classification task.

NLL and ECE are especially useful as they account for the probabilistic nature of the

output. For detailed definitions of these metrics, refer to Chapter 3.

7.3.3 Bounding box coverage and precision

Aside from location uncertainty and class uncertainty, it is also important to understand

how well the predicted bounding boxes capture the area occupied by the underlying
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objects in the scene. To quantify the detector’s ability to correctly localize objects

in the scene, we look at bounding box coverage and precision. Specifically, coverage

measures the proportion of the ground truth bounding box area that is covered by

the predicted bounding box, and precision refers to the proportion of the predicted

bounding box area that belongs to the ground truth bounding box. It is desirable to

have our bounding box predictions cover as much area of the ground-truth bounding

box as possible, resulting in a high coverage value. However, it is possible to achieve

this by simply predicting larger bounding boxes, which unnecessarily widens the

area of focus required for the downstream applications that utilize these bounding

box predictions. As a result, it is equally important to look at the precision of our

predictions to understand how much excess area is predicted. An illustration of the

coverage and precision metrics is given in Figure 7.3.

Predicted
Bounding Box

Ground truth
Bounding Box

Figure 7.3. An illustration of the coverage and precision metrics. An analogy can be
drawn to the recall and precision metrics in the classification setting by considering
the green area as the “true positive” area, the blue area as the “false positive” area,
and the red area as the “false negative” area. As evident from the illustration, the
denominator of the coverage metric is the area of the ground truth bounding box, and
the denominator in the area of precision metric is the area of the predicted bounding
box.

For matching ground truth and predicted bounding boxes, we follow the same method-

ology as described in the previous subsection. For each matching combination of

bounding boxes, we compute the coverage and precision score and add it to our set
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of scores. Every unmatched ground truth bounding box, or an unmatched predicted

bounding box, adds a score of 0 to our score array. This penalizes the cases where the

predicted bounding boxes do not match with the ground truth bounding boxes, or the

case where we predict additional bounding boxes that aren’t required. It is important

to note here that coverage and precision metrics are not explicitly evaluating any

specific aspect of uncertainty, as it only focuses on the final bounding box outputs.

Nonetheless, it is still an important aspect to evaluate the models due to the reasons

described earlier in this subsection.

7.3.4 Objectness Uncertainty

In safety-critical applications of object detection models, it is often important to

understand how well the detector performs when it comes to identifying the presence

of “any” object in an area of interest in the scene. For example, in the case of

autonomous driving, it is often sufficient to identify that there’s an object in a given

area in the scene for the car to avoid it, without identifying the correct class for it.

As we described earlier, among other object categories, DETR also outputs the

probability that the bounding box belongs to the background class. This information

can be used to predict whether the bounding box belongs to any actual object

or to the background. This is a binary classification problem setup, where the

probability of a bounding box belonging to an actual object is p(“Objectness”|·) =

1 − p(“Background”|·). Next, we assign this objectness probability to every pixel

belonging to the predicted bounding box. In the case where a pixel belongs to multiple

bounding boxes, we take the maximum of the objectness probabilities across the

multiple bounding boxes, to reflect the model’s highest objectness confidence value.

Generating the ground truth objectness map is very straightforward. For every pixel

in the image, if it belongs to even a single ground truth bounding box, it gets labeled

as belonging to an object and background otherwise.
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Next, we downsample the prediction and ground-truth grids using max pooling, as

processing numerous images with a high number of pixels in each of them becomes

computationally prohibitive. For each image, we obtain the objectness probability

and ground-truth vectors by flattening the grids, which are then finally concatenated

to compute performance metrics on the objectness classification problem. The final

concatenation step is important because different images in the dataset can have

different sizes, and thus it is important not to bias the performance computation by

assigning the same weight to metrics from different image sizes.

7.4 Experiments

In this section, we present our experimental framework and our experimental results.

First, we begin by describing the experimental protocols involved, followed by different

experiments and results, each looking at a specific aspect of uncertainty estimation,

as described in the previous section.

7.4.1 Experimental Protocols

For our empirical evaluations, we focus on the Detection Transformer Model (DETR)

and the AdaMixer model with the COCO 2017 dataset [Lin et al., 2014]. COCO 2017

is a widely used large-scale dataset for evaluating object detection models, containing

80 object categories. The COCO training dataset contains 118,287 images and a total

of 860,001 bounding boxes. The COCO validation dataset contains 5,000 images,

and a total of 36,781 bounding boxes. For uncertainty estimation in the models, we

generate two variants of deep ensembles: a) the full ensemble and b) the decoder

ensemble. In full ensemble, we train the entire model from scratch on the training

data after random initialization, while in decoder ensemble, we freeze the backbone or

backbone and encoder to the pre-trained model parameters, and only unfreeze and

retrain the parameters corresponding to the decoder and output heads after random
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initialization. Each of these ensembles has 9 models, unless otherwise specified. During

merging, we remove clusters that have fewer than 3 detections [Miller et al., 2021]. To

train our models, we use the PyTorch-based MMDetection library [Chen et al., 2019,

Paszke et al., 2019].

7.4.2 Experiment 1: Evaluating Location Uncertainty

In the first experiment, we evaluate the location uncertainty aspect of the different

methods. We use the evaluation procedure reported in Section 7.3.1, and set the

matching IoU threshold to 0.5. We also note that the location uncertainty is only

computed for the matched bounding boxes, as setting penalties for unmatched bounding

boxes is not straightforward. Furthermore, given that the dataset consists of images

of different sizes, we transform the coordinates to normalized coordinates ranging

between 0 and 1. We present the negative log-likelihood results for the center location

prediction in Table 7.1.

Table 7.1. Location uncertainty results.

NLL (↓)

Base DETR -5.68
Base AdaMixer -5.59

DETR Decoder Ensemble -5.88
DETR Full Ensemble -6.03

AdaMixer Full Ensemble -5.91
AdaMixer Decoder Ensemble -5.87

While aggregating the bounding boxes for ensemble-based methods, we use the average

merging strategy. From the results presented in Table 7.1, we observe that while

the full ensemble has the lowest negative log-likelihood of the methods presented

for each model architecture, the performance improvement is not very significant.

While comparing against models and methods, DETR full ensemble shows the best

performance. Next, we turn our focus towards evaluating the class uncertainty in the
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model predictions. Next, we turn our focus towards evaluating the class uncertainty

in the model predictions.

7.4.3 Experiment 2: Evaluating Classification Performance

In this experiment, we evaluate and compare the classification performance across

different methods and merging strategies. First, we begin by analyzing the classification

performance of different merging strategies highlighted in the previous section. We

present the results for different merging strategies in Figures 7.4 - 7.9.

A key difference between the results shown in Figures [7.4,7.6] and [7.5,7.7] is that the

latter involves computing the metrics on only the matched bounding boxes, while the

former involves computing the metrics on all the data, thus including the penalty for

unmatched bounding boxes. As we set stricter matching IoU thresholds, the number

of matched bounding boxes is reduced, resulting in a larger number of unmatched

ground-truth and predicted bounding boxes. In this situation, we can expect the

penalty terms for unmatched bounding boxes to dominate performance, and this is

responsible for reducing the performance gap between methods. We also present the

fraction of ground-truth bounding boxes that match in Figures 7.8 and 7.9.

Looking at the results for the entire validation set, we observe that averaging the

bounding boxes in a cluster for the ensemble-based methods results in better per-

formance across all performance metrics. However, when we look at computing the

classification performance metrics on matched bounding boxes, the minimal merging

strategy seems to outperform the rest in majority of instances. A potential reason for

this could be that the minimal bounding boxes produced are more conservative and

thus result in fewer, but more confident matches related to the bounding box area. In

fact, we see in Figure 7.8 and 7.9 that the minimal strategy leads to a lower fraction

of ground truth bounding boxes being matched. From a practical standpoint, this can

be undesirable, as it can amount to a significant number of objects being undetected.
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Figure 7.4. A comparison of different merging strategies for decoder ensemble and
full ensemble on the entire validation set for DETR model. We present negative
log-likelihood (NLL, ↓), expected calibration error (ECE, ↓), and accuracy (↑) for
different matching IoU thresholds.
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Figure 7.5. A comparison of different merging strategies for decoder ensemble and
full ensemble on only the matched bounding boxes for DETR model. We present
negative log-likelihood (NLL, ↓), expected calibration error (ECE, ↓), and accuracy
(↑) for different matching IoU thresholds.
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Figure 7.6. A comparison of different merging strategies for decoder ensemble and
full ensemble on the entire validation set for AdaMixer model. We present negative
log-likelihood (NLL, ↓), expected calibration error (ECE, ↓), and accuracy (↑) for
different matching IoU thresholds.
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Figure 7.7. A comparison of different merging strategies for decoder ensemble and
full ensemble on only the matched bounding boxes for AdaMixer model. We present
negative log-likelihood (NLL, ↓), expected calibration error (ECE, ↓), and accuracy
(↑) for different matching IoU thresholds.
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Figure 7.8. Fraction of ground truth bounding boxes matched for different merging
strategies across different matching IoU thresholds for DETR model.
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Figure 7.9. Fraction of ground truth bounding boxes matched for different merging
strategies across different matching IoU thresholds for AdaMixer model.
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Figure 7.10. A comparison of classification performance metrics across different
methods for DETR model. We present negative log-likelihood (NLL, ↓), expected
calibration error (ECE, ↓), and accuracy (↑) for different matching IoU thresholds.
For deep ensembles, we use the average bounding box merging strategy.

164



0.5 0.6 0.7 0.8 0.9
IoU

1.4

1.6

1.8

2.0

2.2

2.4

2.6

NL
L

0.5 0.6 0.7 0.8 0.9
IoU

0.35

0.40

0.45

0.50

EC
E

0.5 0.6 0.7 0.8 0.9
IoU

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

Base AdaMixer Decoder Ensemble Full Ensemble

(a) All data

0.5 0.6 0.7 0.8 0.9
IoU

0.200

0.225

0.250

0.275

0.300

0.325

0.350

NL
L

0.5 0.6 0.7 0.8 0.9
IoU

0.02

0.04

0.06

0.08

EC
E

0.5 0.6 0.7 0.8 0.9
IoU

0.945

0.950

0.955

0.960

Ac
cu

ra
cy

Base AdaMixer Decoder Ensemble Full Ensemble

(b) Matched boxes only

Figure 7.11. A comparison of classification performance metrics across different
methods for AdaMixer model. We present negative log-likelihood (NLL, ↓), expected
calibration error (ECE, ↓), and accuracy (↑) for different matching IoU thresholds.
For deep ensembles, we use the average bounding box merging strategy.
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Figure 7.12. A comparison of classification performance metrics across different
methods for different models on the entire validation set. We present negative log-
likelihood (NLL, ↓), expected calibration error (ECE, ↓), and accuracy (↑) for different
matching IoU thresholds. For deep ensembles, we use the average bounding box
merging strategy.
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Figure 7.13. Fraction of ground truth bounding boxes matched for different methods
across different matching IoU thresholds.
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Next, in Figures 7.10 & 7.11, we present the results comparing classification per-

formance across different methods. We focus on the average merging strategy for

aggregating bounding boxes for deep ensembles as it results in better overall perfor-

mance when we consider the entire validation dataset, as well as leads to a higher

fraction of the ground truth bounding boxes matched. We observe that deep ensembles

help us improve over the performance of a single model across all three performance

metrics we measure for both models. However, especially for NLL, the performance

gap closes between a single model and the ensemble as we set a stricter matching

IoU threshold. This is again due to the dominance of penalty terms from unmatched

bounding boxes. For a comparison across different

Lastly, we present the average precision and recall results using the COCO evaluation

API [Lin et al., 2014] in Table 7.2. The COCO evaluation API has been widely used

in existing literate to evaluate the performance of object detectors. However, we must

note that the average precision and recall results do not evaluate the probabilistic

aspect of the classification performance, unlike the NLL and ECE metrics shown earlier

in this section. From the results in Table 7.2, we observe that the full ensemble with

average merging performs the best in terms of average precision and recall, however,

the gains are still somewhat modest as compared to the respective base models. When

comparing across models and methods, we find that AdaMixer full ensemble with

average merging technique performs the best.

7.4.4 Experiment 3: Evaluating bounding box coverage and precision

In this experiment, we focus on evaluating the coverage and precision metrics for

different methods and merging strategies. Similarly to the previous experiment, we

begin by evaluating the effect of the merging strategy. We present the results analyzing

coverage and precision for different merging strategies in Figures 7.14 - 7.17.
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Table 7.2. Comparison of average precision and recall results using COCO evaluation
API.

Average Precision Average Recall

Base DETR 0.386 0.480
Base AdaMixer 0.400 0.503

DETR Decoder Ensemble - Average 0.375 0.464
DETR Decoder Ensemble - Maximal 0.355 0.440
DETR Decoder Ensemble - Minimal 0.336 0.416

AdaMixer Decoder Ensemble - Average 0.399 0.503
AdaMixer Decoder Ensemble - Maximal 0.375 0.475
AdaMixer Decoder Ensemble - Minimal 0.367 0.465

DETR Full Ensemble - Average 0.399 0.494
DETR Full Ensemble - Maximal 0.349 0.439
DETR Full Ensemble - Minimal 0.332 0.419

AdaMixer Full Ensemble - Average 0.408 0.518
AdaMixer Full Ensemble - Maximal 0.373 0.473
AdaMixer Full Ensemble - Minimal 0.364 0.463

Figures 7.14,7.16 show the performance comparison for the entire validation data set,

including penalties for unmatched bounding boxes, while Figures 7.15,7.17 show the

performance metrics for the matched bounding boxes. Similar to the classification

metrics, we find that while evaluating the performance on the entire validation dataset,

the average merging strategy performs better than the other two merging strategies.

As we observed in the previous experiment, this is potentially due to the larger number

of unmatched ground truth bounding boxes, which lead to a higher penalty on the

performance metrics.

Among the results presented for only matched bounding boxes in Figures 7.15 &

7.17 we observe that the maximal merging strategy achieves higher coverage than

the rest, while the minimal merging strategy achieves higher precision than the rest.

This is anticipated, as the maximal merging strategy inherently generates larger

bounding boxes, and is thus bound to have a higher coverage. On the other hand, the

minimal merging strategy is more conservative, producing smaller bounding boxes
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and therefore leads to higher precision. It is also important to note that the maximal

and minimal merging strategy also leads to the lowest performance in precision and

coverage metrics, respectively. The average merging strategy has a performance level

between the maximal and the minimal merging strategy, as it produces bounding

boxes that are smaller than the maximal strategy, but not as conservative as the

minimal merging strategy.

Finally, we present the results that compare the precision and coverage metrics between

different approximate inference methods in Figures 7.18 & 7.19. From the results in

Figure 7.18, we note that the deep ensembles achieve better coverage and precision

over the base models. This is a promising result, as it shows that the average bounding

box generated after merging does a better job of capturing the ground-truth bounding

boxes than an individual model. As we increase the matching IoU threshold, we

observe that the performance gap closes between the base model and the ensemble.

Similar to the previous experiment, this is largely due to the fact that the number of

matched bounding boxes decreases and the penalty terms generated from unmatched

bounding boxes begin to dominate the metric computation. Finally, we also note

that all the methods perform very similar when it comes to the precision metric on

matched bounding boxes.

7.4.5 Experiment 4: Evaluating Objectness Uncertainty

In this experiment, we evaluate the objectness uncertainty across different approximate

inference methods and merging strategies. As we describe in Section 7.3.4, our goal is

to evaluate how the models perform on the binary classification task of identifying

whether a local region belongs to any object or not. We introduce additional methods

for this task that look at composing the objectness information from deep ensembles

without clustering. To do this, we simply generate an objectness map for each

member of the ensemble, and while composing the maps, for every pixel, we average
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Figure 7.14. Performance comparison of different merging strategies for decoder
ensemble and full ensemble on the entire validation set for DETR model. We present
the bounding box coverage (↑), and precision (↑) for different matching IoU thresholds.
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Figure 7.15. Performance comparison of different merging strategies for decoder
ensemble and full ensemble on matched bounding boxes only for DETR model. We
present the bounding box coverage (↑), and precision (↑) for different matching IoU
thresholds.
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Figure 7.16. Performance comparison of different merging strategies for decoder
ensemble and full ensemble on the entire validation set for AdaMixer model. We
present the bounding box coverage (↑), and precision (↑) for different matching IoU
thresholds.
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Figure 7.17. Performance comparison of different merging strategies for decoder
ensemble and full ensemble on matched bounding boxes only for AdaMixer model.
We present the bounding box coverage (↑), and precision (↑) for different matching
IoU thresholds.
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Figure 7.18. A comparison of bounding box coverage and precision across different
methods for DETR model. We present coverage (↑), and precision (↑) for different
matching IoU thresholds. For deep ensembles, we use the average bounding box
merging strategy.
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Figure 7.19. A comparison of bounding box coverage and precision across different
methods for AdaMixer model. We present coverage (↑), and precision (↑) for different
matching IoU thresholds. For deep ensembles, we use the average bounding box
merging strategy.
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the objectness score across all the members of the ensemble. The results of this

experiment are presented in Table 7.3. Note that for the final downsampling step of

the image grids using max-pooling, we use a kernel of size (4, 4).

Table 7.3. Objectness Uncertainty Results.

Method
Merging
Strategy

NLL Accuracy AUROC Precision Recall F1

Base DETR - 0.313 0.916 0.959 0.865 0.958 0.909
Base AdaMixer - 0.369 0.913 0.955 0.864 0.952 0.906

DETR Decoder
Ensemble

Average 0.317 0.914 0.954 0.866 0.953 0.907
Maximal 0.304 0.909 0.956 0.848 0.969 0.904
Minimal 0.383 0.910 0.942 0.878 0.923 0.900

AdaMixer Decoder
Ensemble

Average 0.319 0.911 0.951 0.861 0.951 0.904
Maximal 0.298 0.904 0.954 0.839 0.969 0.899
Minimal 0.411 0.904 0.935 0.875 0.912 0.893

DETR Full
Ensemble

Average 0.289 0.917 0.958 0.865 0.961 0.911
Maximal 0.287 0.907 0.959 0.837 0.980 0.903
Minimal 0.390 0.909 0.940 0.881 0.917 0.899

AdaMixer Full
Ensemble

Average 0.305 0.913 0.954 0.863 0.954 0.906
Maximal 0.286 0.904 0.956 0.834 0.976 0.899
Minimal 0.418 0.904 0.934 0.878 0.907 0.893

DETR Decoder
Ensemble

No merging 0.261 0.921 0.968 0.878 0.953 0.914

DETR Full
Ensemble

No merging 0.205 0.928 0.977 0.888 0.956 0.921

AdaMixer Decoder
Ensemble

No merging 0.238 0.921 0.969 0.884 0.945 0.913

AdaMixer Full
Ensemble

No merging 0.214 0.926 0.974 0.884 0.951 0.919

There are a few key takeaways from this experiment. First, when evaluating the

probabilistic aspect of the methods using NLL and AUROC, we observe that the full

ensemble without merging predicted bounding boxes performs much better than the

rest of the methods. Specifically, we see that both decoder ensemble and full ensemble

without merging perform better than their counterparts which include merging. This

is intuitive, as the merging step can lead to filtering information if a cluster does not
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satisfy the minimum number of detections threshold. Averaging the most confident

objectness probability scores across multiple members of the ensemble can lead to

small objectness probability mass assigned to areas of the image where an individual

model does not assign. Furthermore, the reverse is also true. In cases where an

individual model has an overconfident prediction, averaging the objectness scores can

also help reduce the prediction probability to a more moderate level. An example

demonstrating this is shown in Figure 7.20.

Next, when comparing between merging strategies, we find that the minimal merging

strategy achieves the lowest performance among other merging techniques. Again, this

is intuitive, as the minimal bounding-box-generating strategy would assign objectness

probability to fewer pixels in the image. Comparing the full ensemble and the decoder

ensemble, except for the minimal merging strategy, the full ensemble tends to perform

better for a given merging strategy.

7.4.6 Experiment 5: Runtime-aware Performance Comparison

For practical applications, it is vital to understand the prediction latency. In this

experiment, we evaluate the prediction latency of the methods introduced in this

chapter on the classification task. In the previous experiments, we used a consistent

ensemble size of 9 models for both the decoder ensemble and the full ensemble.

However, for the decoder ensemble, since the backbone is fixed, we can cache the

outputs from the encoder/backbone, and run them through all 9 decoders. This helps

us to reduce the overall prediction latency. We give a detailed breakdown of the latency

numbers in Table 7.4. We note that the results presented in Table 7.4 are approximate

runtime numbers and that they do not account for additional overheads such as the

time required to load models in the memory. Furthermore, the runtime numbers for

ensembles are obtained using linear extrapolation over the results presented for a
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Figure 7.20. (Top, Left) Objectness score map using full ensemble (without merging).
(Top, Right) Objectness score map using Base DETR. (Bottom, Left) Original image
with ground truth bounding boxes. (Bottom, Right) Ground truth objectness map.
The blue area corresponds to objects, and the white area corresponds to the background.
Note that the base DETR model assigns a strong objectness probability to the shopping
cart in the middle of the image, which does not have a ground truth bounding box
assigned to it. However, the full ensemble helps moderate the confidence due to the
averaging of the scores.

178



single model. We also provide frames/sec (FPS) results based on the total runtime

latency.

Table 7.4. Runtime latency results. Median runtime latency numbers are
presented as average milliseconds per image on the validation dataset. The number of
models in the ensemble is indicated in parentheses. We use an NVIDIA 3080Ti GPU
to evaluate the runtime latency for all models.

Backbone Encoder Decoder Clustering Total FPS

Base DETR 15.5 4.28 5.25 - 25.0 40.0
Base AdaMixer 17.7 - 16.4 - 34.1 29.7

DETR Decoder Ensemble (9) 15.5 4.28 47.3 7.1 74.1 13.5
DETR Decoder Ensemble (18) 15.5 4.3 94.5 28.3 142.6 7.0

DETR Full Ensemble (5) 77.4 21.4 26.3 2.9 127.9 7.8
DETR Full Ensemble (9) 139.3 38.5 47.3 6.3 231.4 4.3

AdaMixer Decoder Ensemble (9) 17.7 - 147.6 7.2 172.5 5.8
AdaMixer Full Ensemble (9) 159.3 - 147.6 7.2 314.1 3.2

For this experimental section, we compare results from a full ensemble consisting of

5 DETR models and a decoder ensemble that consists 18 DETR models. As noted

in Table 7.4, the runtime of these are very similar, and thus they make for a more

fair runtime-aware comparison. For this experiment, we focus on the classification

performance and the coverage and precision of the predicted bounding boxes. Ad-

ditionally, we focus specifically on the average bounding box merging strategy. For

merging, we use the same IoU threshold of 0.75 for grouping and ensure the same

fraction of the total ensemble as the threshold of the minimum number of detections

by setting the minimum number of detections for a cluster to 2 for the 5-member full

ensemble and 7 for the 18-member decoder ensemble [Miller et al., 2021]. The results

of the classification performance are presented in Figure 7.21, and the results for the

coverage and precision of the predicted bounding boxes are presented in Figure 7.22.

We observe that the DETR full ensemble still performs better than the DETR decoder

ensemble on the NLL metric. Looking at ECE and accuracy on the entire validation

dataset, we observe that the DETR decoder ensemble has better performance, while
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Figure 7.21. A comparison of classification performance metrics across different
methods. We present negative log-likelihood (NLL, ↓), expected calibration error
(ECE, ↓), and accuracy (↑) for different matching IoU thresholds. For deep ensembles,
we use the average bounding box merging strategy.
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Figure 7.22. A comparison of bounding box coverage and precision across different
methods. We present coverage (↑), and precision (↑) for different matching IoU
thresholds. For deep ensembles, we use the average bounding box merging strategy.
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on the matched bounding boxes, the full ensemble tends to yield better accuracy and

ECE when compared with the decoder ensemble. This is especially an interesting

observation, as the accuracy and ECE improvements on the larger decoder ensemble

on the full validation set do not necessarily translate to an improvement in NLL.

On the coverage and precision of the predicted bounding boxes, we observe that the

decoder ensemble performs similarly (in fact slightly better on lower IoU thresholds)

to the full ensemble when we look at all the validation data. Similarly, on the matched

bounding boxes, we observe that all the different methods perform similarly.

7.5 Conclusions

In this chapter, we have explored the large-scale application of uncertainty quantifi-

cation methods to object detection using object-query based object detectors. We

presented a range of evaluation principles of interest and an empirical analysis evalu-

ating different combinations of the methods presented on said evaluation principles.

Through this empirical analysis, we show how parameter uncertainty estimation using

deep ensembles can help us improve on class uncertainty, location uncertainty, and

objectness uncertainty. Furthermore, we also present runtime latency results and show

how a larger decoder ensemble with similar latency to a smaller full ensemble can lead

to interesting tradeoffs among different performance metrics.

Several important directions for future work emerge from this chapter. First, while

looking at location uncertainty we have focused on uncertainty for the center location,

however, this can be expanded to include uncertainty around the height and width of

the object as discussed in the related work section. Second, deep ensembles based object

detectors are expensive from computation and storage perspective. An interesting

technique that allows us to explore the variability of model predictions is using test time

augmentation for images [Ayhan and Berens, 2018]. Using test-time augmentation,
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we can generate an ensemble of images, and get model predictions using a single

model. Note that this still requires us to perform multiple forward passes through the

model, but we only have to store one copy of model parameters. Additional future

directions include expanding the set of approximate inference techniques, exploring

other merging techniques and the underlying affinity scores used in merging, as well

as looking at other similar model architectures.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The central theme of the problems explored in this thesis is how different approximate

Bayesian deep learning methods trade off performance against computational scalability.

We first provided a review of some prominent methods in Bayesian deep learning

while commenting on the scalability challenges they face. To tackle the challenge of

computational scalability, we also provided a primer on existing methods of model

pruning and knowledge distillation, which can be coupled with existing methods in

Bayesian deep learning.

Next, we introduced URSABench, a Bayesian deep learning benchmarking framework

operationalizing a set of important evaluation principles for evaluating the probabilistic

nature of models, such as negative log likelihood, calibration performance, OOD

detection performance, decision-making performance, and misclassification detection

performance in addition to accuracy. URSABench has been built with the goal of

extensibility and ease of use in mind so that practitioners working with point-estimated

neural network models can smoothly extend them to Bayesian neural networks. We

provide additional tools for practitioners to deploy models on edge devices and evaluate

their latency performance. We also provided a set of initial benchmark results that

evaluate a set of existing approximate inference techniques across a range of models

and datasets.
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We then turned our focus towards compressing the parameter posterior using knowledge

distillation. We introduced a general framework for distilling the posterior expectations

of a teacher model to a student model. Through an extensive empirical evaluation, we

demonstrated that distillation is highly dependent on the level of posterior uncertainty,

as well as student model architecture. We also showed that our framework performs

better overall than the ensemble distribution distillation baseline [Malinin et al., 2020]

on two uncertainty quantification applications: out-of-distribution detection, and

uncertainty-based ranking.

On the topic of posterior compression, we also explored sparse model substructures

in approximate Bayesian inference. We leveraged existing approaches for generat-

ing sparse substructures using iterative pruning and evaluated the performance of

stochastic gradient MCMC methods on the sparse substructures. We also looked at

randomly generated substructures as an alternate to the computationally expensive

procedure of iterative pruning and observed that while substructures generated using

iterative pruning tend to give better performance at higher sparsity rates, the randomly

generated spare substructures can perform as well on a spectrum of sparsity rates.

We net explored additional applications aside from classification. Among the additional

applications, we first looked at the application of decision-making using Bayesian

decision theory. Under Bayesian decision theory, we utilize the posterior predictive

distribution to compute the expected utility/cost of all the decisions possible and pick

a decision that maximizes the utility (or minimizes the decision cost). To this end,

we introduced a post-hoc posterior predictive correction framework, with the goal of

encouraging the corrected predictive distribution to produce high utility decisions. Our

framework is agnostic to the choice of underlying approximate inference technique and

produces decisions in constant time. Through extensive experimental evaluations, we
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showed that our approach leads to better decision-making on a range of downstream

tasks compared to baseline methods.

Finally, we also looked at the application of approximate Bayesian inference to

the task of computer vision-based object detection. Object detectors have a more

complex output space than the models used in earlier chapters of this thesis, as they

produce multiple bounding boxes, each containing the location information and class

distribution. As a result, the parameter uncertainty can be transformed into different

forms of output uncertainty, such as classification uncertainty, location uncertainty,

and objectness uncertainty. We introduced a set of evaluation principles for the

task looking at these aspects of uncertainty and demonstrated the utility of deep

ensembles-based uncertainty estimation on the detection transformer model. We also

provided estimated runtime latency results with a detailed breakdown across different

model and method components, along with a latency-aware comparison between full

ensembles and decoder ensembles.

8.2 Future Directions

There are several future directions motivated by the contributions of this thesis. At

the core of all methods and applications presented in this thesis lie approximate

Bayesian inference techniques. Better approximate inference techniques can lead us to

a better exploration of the parameter posterior, which can further lead us to improve

downstream application performance. A critical challenge in Bayesian deep learning is

the high dimensionality of the parameter space. As a part of URSABench, we evaluated

subspace inference using PCA-based subspace and ESS as the sampling algorithm.

There has been recent work that examines approximate variational inference in a

low dimensional space, using rank-1 factors [Dusenberry et al., 2020]. This can be

easily extended to stochastic gradient MCMC algorithms and is a promising direction

to pursue. A limitation of this thesis is that we solely focus on isotropic Gaussian
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priors. Indeed, there has been some work that looks at the impact of various priors

for Bayesian neural networks [Novak et al., 2019, Fortuin et al., 2021, Izmailov et al.,

2021a]. A useful future direction would be to examine these different priors in the

context of the applications presented in this thesis, such as decision-making, and

object detection. To make URSABench more exhaustive in the future, a useful future

thread to pursue would be to incorporate all the aforementioned methods within

URSABench.

As noted earlier in this thesis, an important use case of Bayesian neural networks

is the decomposition of total uncertainty into epistemic and aleatoric components.

The experiments evaluating the epistemic uncertainty for applications such as out-of-

distribution detection and misclassification detection are based on the regimes where

we have thousands of labelled instances during training. Thus, it is important to

investigate the quality of the epistemic and total uncertainty estimates in the regime

of a low number of labelled training instances.

In this thesis, except for the task of object detection, the bulk of the focus has been

on modeling categorical output spaces, either in decision-making or classification.

However, it is equally common to encounter applications that require modeling

continuous outputs (i.e. Y ⊂ RDorA ⊂ RD, D ∈ N). A useful set of future directions

would include extending the methods and empirical evaluations proposed in this

thesis to the case of modeling continuous output variables. For example, a practical

application that builds on object detection is estimating the number of objects present

in a given scene. While this can be formulated as count regression, a more Bayesian

treatment would involve building a mixture model, where each member of the mixture

would be a sample from the parameter posterior.

Understanding the computational challenges faced in deploying Bayesian neural net-

works is also an important focus area of this thesis. While working with object
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detection models, we have not explored the idea of compressing the posterior represen-

tation, which can hinder their practical deployment due to the large model size. Given

the unique nature of the outputs of object detection models such as DETR, it would

be an interesting future direction to look at distilling the posterior representation from

these models into a student model to improve prediction latency.
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Yingzhen Li and Richard E Turner. Rényi divergence variational inference. In Advances
in Neural Information Processing Systems 29, pages 1073–1081. 2016.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740–755. Springer,
2014.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational
bayesian neural networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2218–2227. JMLR. org, 2017.

196



Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep
learning. ArXiv, abs/1705.08665, 2017.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge
university press, 2003.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gor-
don Wilson. A simple baseline for bayesian uncertainty in deep learning. In Advances
in Neural information processing systems, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
ICLR, 2018.

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble distribution dis-
tillation. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=BygSP6Vtvr.

Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko Sünderhauf. Dropout sam-
pling for robust object detection in open-set conditions. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 3243–3249. IEEE, 2018.

Dimity Miller, Feras Dayoub, Michael Milford, and Niko Sünderhauf. Evaluating
merging strategies for sampling-based uncertainty techniques in object detection.
In 2019 International Conference on Robotics and Automation (ICRA), pages
2348–2354. IEEE, 2019.

Dimity Miller, Niko Sünderhauf, Michael Milford, and Feras Dayoub. Uncertainty for
identifying open-set errors in visual object detection. IEEE Robotics and Automation
Letters, pages 1–1, 2021. doi: 10.1109/LRA.2021.3123374.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and
Demetri Terzopoulos. Image segmentation using deep learning: A survey. CoRR,
abs/2001.05566, 2020. URL https://arxiv.org/abs/2001.05566.

Thomas P Minka. Expectation propagation for approximate bayesian inference. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pages 362–369. Morgan Kaufmann Publishers Inc., 2001.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Iain Murray, Ryan P. Adams, and David J. C. MacKay. Elliptical slice sampling. In
AISTATS, 2010.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin,
Heidelberg, 1996. ISBN 0387947248.

Radford M Neal. Slice sampling. Annals of statistics, pages 705–741, 2003.

197

https://openreview.net/forum?id=BygSP6Vtvr
https://arxiv.org/abs/2001.05566


Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. 2011a.

Yuval Netzer, Tiejie Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, and
Andrew Y. Ng. Reading digits in natural images with unsupervised feature learning.
2011b.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with
supervised learning. In International Conference on Machine Learning, pages
625–632, 2005.

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron,
Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep
convolutional networks with many channels are gaussian processes. In ICLR, 2019.

NVIDIA Corporation. TensorRT Developer Guide. URL https://docs.nvidia.com/

deeplearning/tensorrt/developer-guide/index.html.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Joshua Nowozin,
Sebastian Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In
Advances in Neural information processing systems, pages 13969–13980, 2019.

Jongsoo Park, Sheng R. Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and
Pradeep Dubey. Faster cnns with direct sparse convolutions and guided pruning.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.
URL https://openreview.net/forum?id=rJPcZ3txx.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
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