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P RO BA B I L I S T I C R E A S O N I N G F O R U N C E RTA I N T Y A N D
C O M P R E S S I O N I N D E E P L E A R N I N G : S U M M A RY

There is a wide range of tasks where the predictive capabilities of neural networks and
deep learning currently excel. As a result, this technology is being employed in various
applications that play an important role in our everyday lives. Therefore, potential im-
provements of this technology have become an even more important topic. In this thesis,
we work towards improving two important aspects of deep learning models; the ability to
represent the uncertainty of their predictions and the inherent need for large amounts of
compute and resources.

We begin this work by providing an introduction and state the two main research ques-
tions that this thesis answers. We further provide the necessary background knowledge for
the main techniques that will be used throughout this thesis. We describe neural networks
and Bayesian neural networks, i.e. neural networks where their parameters (aka weights
and biases) are random and governed by a probability distribution instead of being fixed,
along with (variational) Bayesian inference, a way to update the probability distribution
over the parameters in light of observed data. Finally, we also provide a brief introduc-
tion to neural network compression via pruning, which removes irrelevant parameters and
parts of the network by explicitly setting them to zero, and quantization, which represents
the numerical values of the weights and intermediate representations of the network in
hardware friendly formats (e.g. fixed point).

The first part of this thesis describes three contributions which improve the uncertainty
estimation capabilities of neural networks. The first two revolve around improving the un-
certainty quality of variational Bayesian neural networks through better approximations
to the probability distribution over their parameters when we observe the data. Under this
view, we propose a simple way to introduce linear dependencies between the neural net-
work weights through matrix variate Gaussian distributions; they are distributions over
random matrices and can readily allow for modelling the correlations among the input
and output neurons in each layer, an ability which leads to improved performance as we
experimentally show. We then propose multiplicative normalizing flows, a general frame-
work that induces non-linear dependencies among the parameters of the network. This is
realized by combining auxiliary random variables and parametrized bijections in a way
that allows for flexible correlations among the weights of each layer while still being com-
putationally tractable. Experimentally, we show that the uncertainty quality is improved
when we compare against the simpler Gaussian variational approximations of prior work.
The last contribution of this part corresponds to the functional neural process, a model
which employs a different viewpoint; instead of positing probability distributions and per-
forming (variational) inference over the neural network weights, it adopts the modelling
framework of stochastic processes and thus posits probability distributions and performs
inference over the function space of the neural network. This has the extra benefit of an
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easier inference and a more intuitive modelling task, as it allows us to reason about the
relations among points in the dataset, realized through the introduction of a “reference”
set of points, instead of the non-interpretable neural network parameters. Experimentally,
we show that such a model provides better uncertainty quality while simultaneously main-
taining comparable predictive performance.

The second part describes three novel compression techniques that can allow us to learn
neural networks that are both smaller and faster, thus reducing the amount of compute and
resources that are required. The first contribution corresponds to Bayesian compression,
a variational Bayesian inference procedure that through well chosen probability distribu-
tions over the parameters of the network can uncover performant and computationally
efficient architectures via joint pruning and quantization. While such an approach can lead
to highly compressed architectures, it lacks the fine-grained adaptation of either pruning
or quantization to a specific task or problem. For this reason the other two contributions
aim at tackling pruning and quantization separately. The second contribution corresponds
to a novel optimization method for the L0 norm, the golden standard for sparsity, of neural
networks. To this end, we propose a general purpose technique that through appropriate
amounts of noise can allow for gradient based optimization of the non-differentiable L0
norm. Empirically, we show that such an approach leads to accurate and highly sparse
models while it can allow for sparse training through conditional computation and proper
software, a fact that can facilitate faster training as well. Finally, for the last contribution
we employ similar ideas and introduce relaxed quantization; a gradient based optimization
procedure that allows for learning neural networks where their parameters and activations
lie on an (adaptive) quantization grid. We empirically show that this allows us to train ac-
curate neural networks on large scale tasks, while spending as few as 4 bits per weight and
activation.

We conclude this thesis by providing the answers to the research questions while also
discussing the pitfalls and drawbacks of the proposed methods and stating promising re-
search directions.
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1
I N T RO D U C T I O N & BAC K G RO U N D

Deep learning is becoming an increasingly relevant and important part for our day to day
lives. It lies at the core of multiple applications; it is used in Facebook as a way to identify
faces in pictures with close to human-level performance 1, it provides automatic transla-
tions at Google translate 2, it aides in breast cancer diagnoses 3 and can allow for person-
alization on mobile devices without compromising privacy 4. These are only a handful of
mentions and the volume of such applications is likely to increase in the future, as tools
such as Tensorflow 5 and PyTorch 6 allow one to easily apply the deep learning machinery
to novel tasks 7.

As a result, we need to be serious about this technology and the implications it can have
in our society. It has the potential to significantly improve our lives, by allowing for more
automation and by complementing the set of skills that we humans have. Nevertheless, we
also need to be honest and aware about its limitations, while collectively working towards
improving them. In this way we can avoid wide range negative effects that can arise from
an improper use or undesirable behaviour of deep learning models. Improving upon such
limitations is the main focus of this thesis.

In the following, we provide an introduction of the main concepts that are used through-
out this work as well as describe its main research objectives. The details about the notation
are provided at appendix 10. Section 1.1, provides details about neural networks, the cor-
nerstone of deep learning, whereas section 1.1.1 illustrates two core limitations of current
deep learning models that constitute the research questions of this work. The rest of the
sections include appropriate background knowledge, sections 1.2,1.3,1.4, while section 1.5
provides a summary of the contributions of this thesis.

1.1 D E E P L E A R N I N G

Deep learning [54] is the resurgence of the concept of neural networks. In their simplest
form, they are comprised from a sequence of layers, each of which performs a linear

1 DeepFace
2 Deep Learning & Google Translate
3 Deep Learning & breast cancer diagnosis
4 Apple core ML-3
5 https://www.tensorflow.org
6 https://pytorch.org
7 AI powered catflap

1

https://research.fb.com/publications/deepface-closing-the-gap-to-human-level-performance-in-face-verification/
https://www.nature.com/news/deep-learning-boosts-google-translate-tool-1.20696
https://blogs.nvidia.com/blog/2016/09/19/deep-learning-breast-cancer-diagnosis/
https://venturebeat.com/2019/06/03/apple-debuts-core-ml-3-with-on-device-machine-learning/
https://www.tensorflow.org
https://pytorch.org
https://www.theverge.com/tldr/2019/6/30/19102430/amazon-engineer-ai-powered-catflap-prey-ben-hamm


2 I N T RO D U C T I O N & B AC K G RO U N D

transformation of its input followed by an element-wise nonlinearity. They are flexible
functions that can effectively model many complex input - output relationships; mappings
from natural images to fine-grained categories, text to speech and translation from a source
to a target language, just to name a few. The parameters of each linear transformation can
be optimized for the given task, and the flexibility of the function can be increased by
either adding more layers or by adding more parameters at each layer.

More formally, given a D-dimensional input vector x a neural network can provide an
output h via the following procedure

h = (fL ◦ · · · ◦ f1)(x) (1)

where L denotes the number of layers in the network and each fi(·) is defined as

fi(x) = ψ(WT
i x + bi) (2)

with Wi ∈ RD×H, bi ∈ RH being the weights and biases, i.e. the parameters of the layer,
and ψ(·) being an element-wise nonlinearity such as the ReLU [131], ψ(x) = max(0, x).
Each fi(·) can be considered as an intermediate “activation” or “feature” representation of
the input x.

Let θ = {W1:L, b1:L} be the collection of parameters and D = {(x1,y1) . . . , (xN,yN)},
be a dataset of independent and identically distributed (i.i.d.) datapoints, with xi being the
inputs, e.g. natural images, and yi being the desired outputs, e.g. a real value for regression
or a category for classification. We can view the neural network as a probabilistic model
for the given dataset, where the network output provides the parameters of the assumed
distribution over the outputs yi. For example, when we are faced with supervised learning
on an i.i.d. dataset we have that

p(D) =
∏
i∈D

p(y = yi|xi,θ), (3)

with p(y|x,θ) being the probability distribution given by the neural network. In case of
classification p(y|x,θ) is assumed to be a categorical distribution with the output of the
network being the probabilities πj of each category obtained via a softmax transformation,

πj =
exp(hj)∑
k exp(hk)

, with h = (fL ◦ · · · ◦ f1)(x). For a regression task, p(y|x,θ) is usually
assumed to be a unit variance Gaussian distribution with a mean given by the network, i.e.
p(y|x,θ) = N(y|(h, 1).

Having defined the neural network, we are then interested in optimizing its parameters,
θ, for a given task, e.g. correctly predicting the category of a given image. In this way, the
network can “learn” the underlying mechanism for prediction and thus provide us answers
for novel inputs. Given the aforementioned probabilistic view, we can optimize θ in a way
that maximizes the probability of the observed dataset D. This corresponds to the well-
known maximum likelihood (ML) criterion [21]. For example, in the case of classification
we can maximize

logp(D|θ) =
∑
i∈D

logp(y = yi|xi,θ)

=
∑
i∈D

∑
j

I[j = yi]

(
hj − log

∑
k

exp(hk)

)
, (4)
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which is equivalent to minimizing the cross-entropy loss, the de-facto loss for classification
problems with neural networks [54]. For regression we can similarly derive that

logp(D|θ) =
∑
i∈D

−
1

2

(
(yi − hi)

2 + log 2π
)

∝
∑
i∈D

−
(yi − hi)

2

2
(5)

which is equivalent to the well know mean square loss for regression problems [54]. Scal-
able optimization for such objectives is usually performed with backpropagation [54]; it
corresponds to propagating the errors made in the output “backward” to the parameters of
the network. This is achieved by computing the gradient of the objective on (a subset of)
the data with respect to the parameters via the chain-rule and then performing updates in a
way that maximizes the objective or, equivalently, minimizes the loss. Essentially, this is a
form of stochastic gradient descent (SGD) [54].

After obtaining the optimized parametersθ∗ from our optimizer of choice, we often seek
to make predictions for novel inputs x∗. Such predictions are usually made by picking the
most probable category / value (mode) of the output distribution of the network

y∗ = arg max
y

p(y|x,θ∗) = arg max
y

logp(y|x,θ∗) (6)

which corresponds to the most probable class in the case of classification or the mean of
the Gaussian likelihood in the case of regression.

1.1.1 Limitations of Deep Learning & Research Questions

While being straightforward, deep learning has, as almost every technology, its limitations.
Consider the breast cancer diagnosis example from the introduction; while the high predic-
tive accuracy that deep learning can achieve due to its flexible form is definitely desirable,
for a real world application we also require an accurate estimation of the uncertainty of
the given prediction. How likely is it that the model is correct in the prediction of cancer?
Or else, how good is the predictive distribution p(y|x,θ∗)? This will subsequently help
in deciding whether some form of, usually expensive, treatment is necessary. Consider
the alternative example of a self-driving car entering in a previously unseen situation or
environment; an accurate form of uncertainty could help in identifying such cases and en-
courage the autonomous system to ask for expert advice (i.e. pass the steering wheel to
the human driver). Unfortunately, vanilla neural networks do not currently possess a way
to obtain reliable and robust uncertainty estimates. For this reason, we would like to work
towards principled methods, as they have theoretically grounded guarantees about their
behaviour thus can provide us with robust uncertainties, i.e. good behaviour on a broad
range of tasks. This brings us to the first research question of this thesis:

Research question 1: Can we enhance neural networks with the ability to represent their
uncertainty in a principled and robust way?
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In order to address this question we will employ Bayesian modelling, an elegant frame-
work that naturally accommodates for uncertainty. We provide the necessary background
at section 1.2 and its application to deep learning at section 1.3.

Another main limitation is that the success of deep learning comes at a significant com-
putational cost. Modern deep learning architectures can easily scale to millions of param-
eters and can require large amounts of compute 8. As a result, practical applications in
resource constrained devices, such as mobile phones and IoT devices, cannot employ the
large architectures devised currently; the amount of parameters θ is too large, the interme-
diate activations fi(x) can consume a large amount of memory and necessary matrix multi-
plications require a large amount of floating point operations (FLOPs). Furthermore, deep
learning systems that are employed at large scale tasks can make billions of predictions
per day, a fact that not only comes with substantial energy costs and power consumption
but can negatively impact the environment as well 9. This leads to the second research
question of this thesis:

Research question 2: Can we make neural networks smaller and faster while maintaining
good performance?

To answer this question we will explore neural network compression; making neural net-
works smaller and faster while preserving their predictive capabilities. We provide the
appropriate background knowledge at section 1.4.

1.2 B AY E S I A N & A P P ROX I M AT E B AY E S I A N I N F E R E N C E

Let D = {(x1,y1), . . . , (xN,yN)} be the observed dataset that is comprised from inputs x
and outcomes y, and let θ be the set of the latent (i.e. unobserved) variables of the model.
Bayesian inference is at its core the application of Bayes rule over the unknowns of a given
model. It involves the likelihood, the probability of the observed dataset p(D|θ) given an
instantiation of the latent parameters, and the prior p(θ), our a-priori defined beliefs about
the latent variables. Bayesian inference corresponds to updating our prior beliefs in light
of the observed dataset D to the posterior distribution over those beliefs

p(θ|D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(D|θ)

prior︷︸︸︷
p(θ)∫

p(D|θ)p(θ)dθ︸ ︷︷ ︸
evidence

=
p(D|θ)p(θ)

p(D)
, (7)

where the normalizing constant p(D) =
∫
p(D|θ)p(θ)dθ is denoted as the marginal

likelihood or else evidence. It is the probability of the observed dataset under our assumed
model. We provide an example illustration of this concept at Figure 1.

Bayesian inference is attractive as it can allow us to encode prior knowledge about the
data in the prior and likelihood. Furthermore, it naturally handles the uncertainty we have

8 AI & compute
9 Deep learning & carbon emissions

https://openai.com/blog/ai-and-compute/
https://towardsdatascience.com/deep-learning-and-carbon-emissions-79723d5bc86e
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Figure 1: Illustrative example of Bayesian inference. Given a standard normal prior distribution
over a scalar parameter θ, p(θ) = N(0, 1), and a simple Gaussian likelihood with variance σ2 =

0.6, i.e. p(x|θ) = N(θ, 0.6), we visualize the posterior distribution over θ given a dataset D = {3},
which for this specific case is p(θ|D) = N

(
x

σ2+1
,
(
1
σ2

+ 1
)−1)

. We can see that, intuitively, the
mean of the posterior distribution is a weighted average of the prior mean and the given datapoint,
while the uncertainty about this value is based on the uncertainty of the prior, i.e. the prior variance,
and the uncertainty of the data, i.e. the likelihood variance.

about the model, as it provides a formal mechanism to update the uncertainty about our
beliefs over the latent variables θ. We provide an illustrative example at Figure 1. It also
provides a principled way to make predictions about the “future”, conditioned on what we
have seen in “the past” (e.g. the dataset D). Such predictions are made with the posterior
predictive distribution:

p(y∗|x∗,D) =

∫
p(y∗|x∗,θ)p(θ|D)dθ, (8)

where x∗ corresponds to “future” observations and y∗ to their possible outcomes.
Unfortunately, analytically obtaining the evidence that is necessary for exact Bayesian

inference is usually very hard. For the complex non-linear models that we are interested in
this thesis, i.e. neural networks, it is intractable to compute, as exact marginalization over
all possible states for the latent variables may not be easily available or can be expensive
to obtain. For this reason we are usually interested in performing approximate Bayesian
inference, where we aim to compute an approximation to the true posterior distribution
over said latent variables. For the purpose of this thesis we adopt variational inference [21],
a tool to deterministically obtain such approximations. It involves positing an approximate
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distribution qφ(θ) that has parameters φ which are optimized in a way that maximizes
the Evidence Lower Bound (ELBO)

L(φ) : =

∫
qφ(θ)

(
logp(D|θ) + logp(θ) − logqφ(θ)

)
dθ

= Eqφ(θ) [logp(D|θ)] −KL(qφ(θ)||p(θ)). (9)

As the name implies, the ELBO is a lower bound of the marginal likelihood p(D), which
can be shown via the following

logp(D) =

∫
qφ(θ) logp(D)dθ (10)

=

∫
qφ(θ) log

p(D,θ)qφ(θ)
p(θ|D)qφ(θ)

dθ (11)

= L(φ) +

∫
qφ(θ) log

qφ(θ)

p(θ|D)
dθ︸ ︷︷ ︸

KL(qφ(θ)||p(θ|D))

(12)

> L(φ), (13)

where the last step is due to the positivity of the KL-divergence, a measure of discrepancy
between two distributions. After a simple re-arrangement of the terms we can also arrive
at the following expression

KL
(
qφ(θ)||p(θ|D)

)
= logp(D) −L(φ), (14)

where we can see that maximizing the ELBO corresponds to minimizing the KL-divergence
of the approximate distribution to the posterior distribution p(θ|D) as logp(D) is a con-
stant w.r.t. the optimization ofφ.

1.2.1 Gradient Based Variational Inference

We have seen how variational inference can provide us a tool to deterministically obtain
an approximation to the posterior distribution over the latent variables. Nevertheless, by
observing the expression at Eq. 9, we see that we are still faced with integrals that can be
intractable to compute, e.g. in the case that we use a complex non-linear model, such as a
neural network, for the likelihood p(D|θ). However, advances in variational inference [91,
151] have shown that for continuous latent variables θ we can effectively bypass this
problem by optimizing Eq. 9 with backpropagation through unbiased stochastic gradients
that are cheap to compute. More specifically, we can perform a Monte Carlo approximation
of Eq. 9 by drawing i.i.d. random samples from qφ(θ)

L(φ) ≈ 1
L

L∑
l=1

logp(D|θ(l)) + logp(θ(l)) − logqφ(θ(l)) (15)

θ(1), . . . ,θ(L) ∼
i.i.d.

qφ(θ).
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(a) (b)

Figure 2: Illustrative example of a variational inference problem. We are interested in approximat-
ing a simple mixture of two Gaussians p(θ) (grayscale background), with a single Gaussian qφ(θ)

(purple contours), that has variational parameters φ. As the variational distribution has limited flex-
ibility it only picks up one of the two modes, depending on the initialization of the variational
parameters. This illustrates that qφ(θ) usually underestimates the variance of the original distribu-
tion p(θ) as it can completely ignore regions of (sometimes significant) probability mass.

For most continuous distributions qφ(θ) the random sampling can be expressed in terms
of auxiliary noise variables ε drawn from a parameter free distribution p(ε) and a deter-
ministic transformation f(φ,ε) with φ being the parameters of the distribution. In this
case we can rewrite Eq. 15 as

L(φ) ≈ 1
L

L∑
l=1

logp(D|θ(l)) + logp(θ(l)) − logqφ(θ(l)) (16)

ε(1), . . . ,ε(L) ∼
i.i.d.

p(ε), θ(l) = f(φ,ε(l)).

An example of the transformation f(φ,ε) would be the case for the location-scale family
of distributions (such as the Gaussian). We can sample the “standard” distribution and then
apply a simple linear transformation that involves the location, µ, and scale, σ

f(φ,ε) = µ+σ� ε, φ = (µ,σ), (17)

where� corresponds to an elementwise product. Therefore, when f(φ,ε) is differentiable
w.r.t.φ, we can obtain the following unbiased stochastic gradient of the bound L(φ)

∇φL(φ) ≈ 1
L

L∑
l=1

∇φ
(

logp
(
D|f(φ,ε(l))

)
+

logp(f(φ,ε(l))) − logqφ(f(φ,ε(l)))
)

, (18)

and use it in any off-the-self gradient based optimizer such as Adam [88]. This technique is
known as the “reparametrization trick” [91, 151]. Notice that its applicability is not limited
to only the variational inference setting; provided that qφ(θ) admits such a reparametriza-
tion, we can optimize any arbitrary function f(θ) as long as it is differentiable w.r.t. θ.
This is something that we will exploit in Chapters 7, 8.
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1.3 VA R I AT I O N A L B AY E S I A N N E U R A L N E T W O R K S

How can we incorporate the aforementioned elements of Bayesian reasoning to neural net-
works and deep learning? Bayesian neural networks (BNNs) correspond to an instance of
this framework; we posit a prior distribution over (some of) the weights of the network,
denoted as θ, and then given this prior, we do inference in order to obtain a distribution
over possible values of those weights given the observed dataset D. This is in contrast
to the standard practice in neural networks, where the optimization procedure leads to a
single set of weights, those at the (local) minimum of the loss. Essentially, we can view
Bayesian neural networks as being an ensemble of models, since each possible value of
the parameters corresponds to a different neural network. Armed with this posterior distri-
bution, we can then make predictions according to the posterior predictive distribution, i.e.
Eq. 8, which properly accounts for the uncertainty we have about the parameters and data.

Inference in BNNs is a hard task as the marginal likelihood is intractable to compute.
For this reason approximate inference techniques are usually employed, with variational
inference (VI) being a popular choice. The application of VI to this setting is straightfor-
ward, as we can directly apply the methodology described at the previous section [23]. Let
p(θ) be the prior over the neural network parameters and let qφ(θ) be the variational
posterior. The variational lower bound can be expressed as

L(φ) = Eqφ(θ)

[∑
i∈D

logp(y = yi|xi,θ) + logp(θ) − logqφ(θ)

]
, (19)

which, for most distributions over continuous random variables θ, can subsequently be
maximized using the reparametrization trick [91, 151]. It is interesting to see that for spe-
cific choices of qφ(θ), p(θ) and p(y = yi|xi, θ) we can obtain a “vanilla” neural network.
More specifically, in the case of a deterministic qφ(θ) = δ(θ−φ), and p(θ) ∝ c we
have that

L(φ) ∝
∑
i∈D

logp(y = yi|xi,θ) + log c, (20)

which will have the same maxima as the objectives provided at Eq. 4, 5 (depending on the
task).

After fitting the parameters φ of the approximate posterior we can then perform pre-
dictions for novel inputs x∗ by similarly selecting the most probable class / value of the
(approximate) posterior predictive distribution

y∗ = arg max
y

∫
p(y|x∗,θ)p(θ|D)dθ ≈ arg max

y

∫
p(y|x∗,θ)qφ(θ)dθ, (21)

where we substituted the true posterior over θ with its approximation qφ(θ). As usually
the necessary integral cannot be computed in closed form, we approximate it with Monte
Carlo samples from qφ(θ)

y∗ ≈ arg max
y

1

L

L∑
l=1

p(y|x,θ(l)), θ(1), . . . ,θ(L) ∼
i.i.d.

qφ(θ). (22)
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As previously mentioned, it is interesting to see that we are essentially making predictions
according to an infinite ensemble of models, since each sample from qφ(θ) provides a
different value for the weights. This is in contrast to standard neural networks which make
predictions according to a single model.

Two of the main modelling points in variational BNNs is the choice of the prior distribu-
tion over the parameters, p(θ), as well as the approximate posterior distribution, qφ(θ).
In the first, we can encode a-priori assumptions about the behaviour of the parameters of
the network. For example, we can posit sparsity inducing priors in order to obtain neural
networks that utilize a subset of their parameters [112], which is the topic of chapter 6. In
the second, we have to posit a variational approximation that is flexible enough to recover
the true posterior distribution. This will be the topic of chapters 3,4. In this way, we can
make progress towards approximations that do not underestimate the uncertainty in the
predictions, a behaviour that is inherent in variational methods [22]. We provide a visual
example of the aforementioned in Figure 2.

1.4 N E U R A L N E T W O R K C O M P R E S S I O N

How can we compress neural networks, such that we can make them smaller and faster,
while retaining their predictive capabilities? In this section we will explain the two most
prominent techniques for neural network compression; pruning and quantization.

1.4.1 Pruning

Modern neural network architectures can scale to millions of parameters while requiring
large amounts of compute 10. This has serious implications for real world applications
and resource constrained devices; not everyone has access to the appropriate hardware and
energy to run such models. Neural network pruning is a framework that can facilitate in
improving such costs. Its objective is to “remove” as many parameters as possible from
a given network architecture, a fact that can make it both computationally and energy
efficient.

Let’s consider the example network from the previous section where we have that its
output is computed via (fL ◦ · · · ◦ f1)(x), which each individual function being expressed
as fi(x) = ψ(WT

i x + bi). Given a set of input-output pairs, the set of parameters θ =

{(Wi, bi)1:L} will be subsequently optimized according to the following loss function

L(θ) = − logp(y|X,θ) = −
∑
i

logp(y = yi|xi,θ). (23)

How can we encourage the optimization process to “remove” parameters? The traditional
way is to include an additional term in the loss function that induces sparsity in the param-
eters, i.e. it pushes them towards 0. In this way, they will not have an effect on the actual

10 AI & Compute.

https://openai.com/blog/ai-and-compute/
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(a) Original network (b) Unstructured pruning (c) Group pruning

Figure 3: The difference between (b) unstructured, i.e. weight, pruning, and (c) structured, i.e.
group, pruning. In the first case we remove individual edges from the original network of (a),
whereas in the second case we remove entire neurons, which corresponds to removing all of their
incoming and outgoing connections. Notice that in (b) we still have to compute and store all of
the intermediate activations f1, f2, f3, whereas in (c) this is not the case as we can easily omit the
activations that were pruned, e.g. the f1.

computation of the prediction and, as a result, they can be successfully omitted. One such
sparsity inducing regularizer is the L1 norm popularized by the Lasso [181]

‖W‖1 =
∑
i,j

|wij|, (24)

with the regularized objective defined as

Lreg(θ) = −
∑
i

logp(y = yi|xi,θ) + λ‖θ‖1, (25)

with λ being a hyper-parameter that denotes the regularization strength. Such “unstruc-
tured” sparsity regularizers aid in reducing the size and memory footprint of a given model.
Nevertheless, they do not, practically, reduce the actual computational requirements, as
software such as Tensorflow and Pytorch cannot easily ignore multiplications with zero
valued weights, thus we still have to compute all of the output neurons fi(x). Evaluating
such neurons is the main bottleneck for computation, especially in the case of convolu-
tional networks [54].

For the latter objective, group sparsity is more appropriate. Instead of pushing individual
parameters towards zero, group sparsity aims at pushing entire groups of parameters jointly
towards zero. In the case of our previous neural network example, we can think of group
sparsity as encouraging entire columns of each Wi to become zero, thus entirely avoiding
the computation of the output neuron corresponding to those particular weight vectors.
We can view group sparsity as a way to extract an appropriate “sub-architecture” from the
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original model that will be more efficient. The extension of the popular Lasso regularizer
to the group setting can be written as follows [201]

‖W‖g =
∑
i

√∑
j

w2ij, (26)

where we assumed that each column of the weight matrix constitutes a group. Optimization
with such a regularizer can be performed in a similar manner using the following objective
function

Lreg(θ) = −
∑
i

logp(y = yi|xi,θ) + λ‖θ‖g. (27)

The minimization of the L1 norm is a well understood convex problem, but it does come
with its drawbacks. While pushing insignificant (groups of) parameters towards exactly
zero (something which is not possible with e.g. the L2 norm) it also imposes “shrinkage”,
i.e. reduces the magnitude, of parameters that could also be important. For this reason,
at the chapters 6, 7 of this thesis we will explore alternatives to the Lasso that prevent
shrinkage while still encouraging the parameters to be zero.

1.4.2 Quantization

Quantization is a procedure in which a collection of values, be it finite or infinite, are
mapped to a countable set of values, which is smaller than the original set, by a quantizer
function q(·). One of the simplest quantizers is rounding; given a number x, q(x) provides
the quantized value via

q(x) = α

⌊
x

α
+
1

2

⌋
(28)

with α being the step size of the quantizer. When α = 1 the quantizer q(x) simply pushes
the input x towards its nearest integer. The benefits of quantization are two-fold as 1) we
can employ it as a tool in order to reduce the size footprint of a given model and 2) we can
perform number manipulations according to the image of the quantizer, which is generally
faster and more efficient albeit at an accuracy loss.

In this way, quantization can serve as a tool that can aid in speeding up neural network
models. Traditional neural networks are implemented using 32-bit floating point arithmetic
(FP32). Neural network quantization is usually targeted towards low bit (e.g. 8) fixed-point
formats as they can offer practical speedups, memory reduction and energy savings11. For
maximum efficiency and improvements, quantization is applied to both the weights of the
network as well as its activations. This can then allow the deployment of large models to
resource constrained devices such as mobile phones and drones.

The two most frequent ways to quantize neural networks is post training quantization
and quantization aware training. Post training quantization amounts to estimating an ap-
propriate step-size α for a rounding quantizer q(·) that will be applied to the elements of

11 High-Performance Hardware for Machine Learning.

https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf
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Figure 4: Illustration of a typical quantization function. As we can see, it reminisces a “staircase”,
a function which has zero gradient almost everywhere besides the change-points where the gradi-
ent is infinite. As a result, direct optimization of such functions with the popular gradient based
optimizers used for neural networks is infeasible.

the network. Usually a separate α is estimated for each weight tensor Wi, and for each
activation tensor fi(·). It is a conceptually simple approach that for conservative choices
of bits (e.g. 8) can lead to significant gains in efficiency without large losses of accuracy.

Quantization aware training is usually employed when we want a more aggressive re-
duction in the bit-width for the network, e.g. 4 bit or lower. In this case, we “mimic” the
quantization procedure on the weights and/or activations, so as to encourage the neural
network to be robust to it. More formally, let q̂(·) and q̄(·) be the “fake” quantizers that
will be employed during training for the activations and weights respectively. The forward
pass of the neural network in this case will be as follows:

ĥ = (q̂L ◦ fL ◦ · · · ◦ q̂1 ◦ f1)(x), fi(x) = ψ(q̄i(Wi)
Tx + bi), (29)

where we assumed that the biases were not quantized for simplicity. Maximum likelihood
training can then be performed in a similar manner as before, by maximizing

logp(D|θ) =
∑
i∈D

∑
j

I[j = yi]

(
ĥj − log

∑
k

exp(ĥk)

)
(30)

for classification or

logp(D|θ) =
∑
i∈D

−
(ĥi − yi)

2

2
(31)

for regression. While conceptually a simple approach, the main bottleneck for this setting
is that the quantizers q(·) are not smooth functions, hence gradient based optimization
with SGD becomes difficult. At chapter 8 we will describe an approach that can bypass
this difficulty by instead optimizing a smooth surrogate objective, essentially ironing the
“kinks” of the staircase function illustrated at Figure 4.
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1.5 C O N T R I B U T I O N S

In this section we provide the main contributions of this work, most of which revolve
around the two research questions that were stated in section 1.1.1. For the first research
question we are interested in an accurate estimate of the uncertainty of a neural network
model; for this reason our work will involve the application of Bayesian reasoning. The
research findings that we obtain are presented at part i, which is composed from chap-
ters 3, 4 and 5. In the first two we explore variational Bayesian Neural Networks (BNNs)
and we describe how we can improve the flexibility of the approximate posterior distribu-
tion over the weights of a variational BNN, in an attempt to avoid the pitfall of the under-
estimated variance in the variational inference setting. More specifically, in chapter 3 we
demonstrate how we can posit a matrix Gaussian, i.e. a distribution over random matrices,
for the weights of each layer of the network. It readily allows for modelling the correla-
tions among the input and output neurons in the network, a fact that leads to improved
performance as we experimentally show. In chapter 4 we show how we can improve the
posterior approximation even further by employing multiplicative normalizing flows over
the parameters of the network. They combine auxiliary random variables and normalizing
flows [150] in a way that allows for flexible correlations among the weights of each layer
while still being computationally tractable.

While variational BNNs are attractive for their flexibility, their uncertainty quality and
performance hinges on an appropriate prior over their parameters. Furthermore, inference
over the entire parameter space of a neural network is a daunting and challenging task,
as it can easily scale to millions of dimensions. For this reason, we conclude part i with
chapter 5 where we introduce the functional neural process (FNP), a Bayesian model over
functions. FNPs can effectively combine the flexibility of neural networks with the mod-
elling properties of a Gaussian Process (GP) [148], a fact that can simplify the inference
task and allow us to easily encode inductive biases about the task at hand.

For the second research question we were interested in making neural networks smaller
and faster while maintaining their good predictive capabilities. For this reason we focused
on the tasks of neural network compression and more specifically, neural network pruning
and quantization. The research findings that we obtain are provided at part ii, which is
composed from chapters 6, 7 and 8. In chapter 6 we introduce Bayesian compression (BC)
where we apply the Bayesian machinery that were used in part i in a way that compresses
neural networks. More specifically, we show that through the adoption of sparsity inducing
priors over the weights of the network, we can prune a large amount of its parameters
without hampering performance. Furthermore, we can also use the weight uncertainty in
the variational posterior distribution as a proxy for their effective bit-width, which allows
for weight quantization and leads to even further compression.

Despite the ability for joint pruning and quantization offered by BC, someone might
still require techniques that decouple one from the other in order to allow for more fine
grained control. In chapter 7, we propose a technique that allows for L0 norm regulariza-
tion in neural networks, the golden standard for sparsity inducing regularizers. Despite its
conceptual attractiveness, the L0 norm is non-differentiable thus not amenable to gradi-
ent based optimization, the workhorse of deep neural networks. To this end, we propose
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a general purpose smoothing technique through the hard concrete distribution, that can
bypass this difficulty and readily allows for L0 norm regularization through backpropaga-
tion. Similarly to pruning, quantization is also a non-differentiable operation. In a similar
manner, we propose relaxed quantization (RQ) in chapter 8, a general purpose smoothing
procedure that can allow for the weights and activations of the network to lie on an a-priori
defined quantization grid while allowing for optimization via backpropagation.

Finally, it should be mentioned that these are not the only ways to improve deep learn-
ing; deep learning models usually requires large amounts of data 12 in order to be effective,
which can have both positive and negative aspects. Given enough data the model can iden-
tify the appropriate factors of variation and thus generalize well to novel inputs. Neverthe-
less, the model might also adopt a-priori biases that are an inherent part of the data. One
example where this phenomenon can go wrong was when a deep learning model identified
two people of colour as gorillas 13. While this is not a problem of deep learning itself, it
does highlight that one should take extra care in order avoid such outcomes. The practi-
tioner should encode the proper inductive biases to the model, such that it identifies the
causal factors and their effects.

We have done work during this PhD programme in both of these aspects that is not
present in this PhD thesis, so as to preserve a unified theme. In order to tackle unwanted
biases that are present in the data, we showed at [111] how we can encode inductive biases
in a way that allows the model to successfully find latent representations of the data that are
devoid of a given variable. In this way, we can obtain predictive models that are explicitly
invariant to said variable, and, in the special case where it is a sensitive variable, we can
obtain a model that provides “fair” predictions. Furthermore, we also proposed at [109]
the causal effect variational autoencoder (CEVAE), a model that incorporates the causal
structure of the problem as an inductive bias and thus can successfully estimate causal
effects even in the presence of hidden confounders. Such a model can be highly desirable
in e.g. personalized medicine applications as, given some assumptions, can successfully
predict the outcomes of treatments to given individuals.

12 Effectiveness of data
13 Deep learning & bias in the data

https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://mashable.com/2015/07/01/google-photos-black-people-gorillas/?europe=true
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cal grid construction and helped in the experiments and evaluation of the method, whereas
the third author provided code for some of the baselines used in the experiments. Finally,
for the “Functional Neural Process paper” the second author contributed to the experiments
and provided helpful discussions.



Part I

BAY E S I A N I N F E R E N C E F O R N E U R A L N E T W O R K S

In this section of the thesis we explore Bayesian inference in the context of
neural networks. In the first two chapters we aim to improve the posterior
approximation for variational Bayesian neural networks, by either considering
linear or non-linear dependencies between the elements of the weight matrices.
In the final chapter we adopt a different view and consider Bayesian models
in the function space, i.e. stochastic processes, that employ the flexibility of
deep neural networks in their construction.





3
S T RU C T U R E D A N D E F F I C I E N T VA R I AT I O NA L D E E P
L E A R N I N G W I T H M AT R I X G AU S S I A N P O S T E R I O R S

In this chapter we introduce a variational Bayesian neural network where the parameters
are governed via a probability distribution on random matrices. Specifically, we employ a
matrix variate Gaussian [60] parameter posterior distribution where we explicitly model
the covariance among the input and output dimensions of each layer. Furthermore, with
approximate covariance matrices we can achieve a more efficient way to represent those
correlations that is also cheaper than fully factorized parameter posteriors. We further show
that with the “local reprarametrization trick" [89] on this posterior distribution we arrive at
a Gaussian Process [148] interpretation of the hidden units in each layer and we, similarly
with [50], provide connections with deep Gaussian processes. The validity of the proposed
approach is verified through extensive experiments. 1

3.1 I N T RO D U C T I O N

While deep learning methods are beating every record in terms of predictive accuracy, they
do not yet provide the user with reliable confidence intervals. Yet, for most applications
where decisions are made based on these predictions, confidence intervals are key. Take
the example of an autonomous driving vehicle that enters a new unknown traffic situation:
recognizing that predictions become unreliable and handing the steering wheel back to the
driver is essential. Similarly, when a physician diagnoses a patient with some ailment and
prescribes a drug with potentially severe side effects, it is essential that she/he knows when
predictions are unreliable and additional investigation is necessary. These considerations
have motivated us to develop a fully Bayesian deep learning framework that is accurate,
efficient and delivers reliable confidence intervals.

Furthermore, by being Bayesian we can also harvest another property as a byproduct;
natural protection against overfitting. Instead of making point estimates for the parameters
of the network, which can overfit and provide erroneously certain predictions, we estimate
a full posterior distribution over these parameters. Armed with these posterior distributions
we can now perform predictions using the posterior predictive distribution, i.e. we can
now marginalize over the network parameters and make predictions on the basis of the
datapoints alone. As a result we can both obtain the aforementioned confidence intervals

1 This chapter has been adapted from our publication [113].
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and better regularize our networks, which is very important in problems where we do not
have enough data relative to the amount of features.

Obtaining the parameter posterior distributions for large neural networks is however
intractable. To this end, many methods for approximate posterior inference have been de-
vised. Markov Chain Monte Carlo (MCMC) methods are one class of methods that have
been explored in this context via Hamiltonian Monte Carlo [134] and stochastic gradient
methods [4, 191].

Another family of methods that provide deterministic approximations to the posterior
are based on variational inference. These cast inference as an optimization problem and
minimize the KL-divergence between the approximate and true posterior. There have been
many recent attempts that have adopted this paradigm [23, 56, 72, 89]. However, most of
these approaches assume a fully factorized posterior distribution over the neural network
weights. We conjecture that this assumption is very restricting as the “true" posterior dis-
tribution does have some correlations among the network weights. Therefore by using a
fully factorized posterior distribution the learning task becomes “harder" as there is not
enough information sharing among the weights.

We therefore introduce a variational Bayesian neural network that instead of treating
each element of the weight matrix independently, it treats the weight matrix as a whole
via a matrix variate Gaussian distribution [60], i.e. a distribution over random matrices.
This parametrization can significantly reduce the amount of variance-related parameters
that we have to estimate: instead of estimating a separate variance for each weight we
can now estimate separate covariances for each row and column of the weight matrix, i.e
input and output feature specific covariances. This immediately introduces correlations,
and consequently information sharing, among the weights. As a result, it will allow for
an easier estimation of the weight posterior uncertainty. In addition, we will also provide
a distinct relation between our model and deep (multi-output) Gaussian Processes [40];
this relation arises through the application of the “local reparametrization trick" [89] on
the matrix variate Gaussian distribution. We provide an implementation of the proposed
approach at https://github.com/AMLab-Amsterdam/SEVDL_MGP.

3.2 B E Y O N D F U L LY F AC T O R I Z E D PA R A M E T E R P O S T E R I O R S

3.2.1 Matrix variate Gaussian distribution

The matrix variate Gaussian [60] is a three parameter distribution that governs a random
matrix, e.g. W:

p(W) = MN(M, U, V) =
exp

(
− 1
2 tr
[
V−1(W − M)TU−1(W − M)

])
(2π)np/2|V|n/2|U|n/2

(32)

where M is a r× c matrix that is the mean of the distribution, U is a r× r matrix that
provides the covariance of the rows and V is a c× c matrix that governs the covariance of

https://github.com/AMLab-Amsterdam/SEVDL_MGP
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the columns of the matrix. According to [60] this distribution is essentially a multivariate
Gaussian distribution where:

p(vec(W)) = N(vec(M), V⊗U)

where vec(·) is the vectorization operator (i.e. stacking the columns into a single vector)
and ⊗ is the Kronecker product. Despite the fact that the matrix variate Gaussian is a sim-
ple generalization of the multivariate case it provides us a straightforward way to separate
the correlations among the rows and columns of the matrix, which implicitly affects the
correlations among the input and output hidden units.

3.2.2 Variational inference with matrix variate Gaussian posteriors

For the following we will assume that each input to a layer is augmented with an extra
dimension containing 1’s so as to account for the biases and thus we are only dealing with
weights W on this expanded input. In order to obtain a matrix variate Gaussian posterior
distribution for these weights we can work in a pretty straightforward way: the derivation
is similar to [23, 56, 89, 91]. Let pθ(W),qφ(W) be a matrix variate Gaussian prior and
posterior distribution with parameters θ,φ respectively and (xi, yi)Ni=1 be the training data.
Then the following lower bound on the marginal log-likelihood can be derived:

logp(Y|X) >
∫
qφ(W) log

pθ(W)p(Y|X, W)

qφ(W)
dW

= Eqφ(W)

[
logp(Y|X, W)

]
−KL(qφ(W)||pθ(W))

= L(φ; θ) (33)

Following [23, 56, 89] we will refer to L(X,Y) = Eqφ(W)

[
logp(Y|X, W)

]
as the ex-

pected log-likelihood and to Lc = −KL(qφ(W)||pθ(W)) as the complexity loss. To esti-
mate L(X,Y) we will use simple Monte Carlo integration along with the “reparametrization
trick" [91, 151]:

Eqφ(W)

[
logp(Y|X, W)

]
=
1

L

L∑
i=1

logp(Y|X, W(l)) (34)

W(l) = M + U
1
2E(l)V

1
2 , E(l) ∼ MN(0, I, I)

(
i.e. Eij ∼ N(0, 1)

)
As for the complexity loss Lc; due to the relation with the multivariate Gaussian we can
still calculate the KL-divergence between the matrix variate Gaussian prior and posterior
efficiently in closed form.

However, maintaining a full covariance over the rows and columns of the weight matrix
is both memory and computationally intensive. In order to still have a tractable model we
approximate each of the covariances with a diagonal matrix (i.e. independent rows and
columns) for simplicity2. This approximation provides a per-layer parametrization that re-

2 Note that we could also easily use rank-1 matrices with diagonal corrections [151] and increase the flexibility
of our posterior. For example we could apply the rank-1 approximation to the square root of the covariance
matrix (as we directly use it for sampling), i.e. C

1
2 = Dc+uuT where Dc is a diagonal matrix with positive

elements.
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quires significantly less parameters than a simple fully factorized Gaussian posterior: we
have a total of (nin × nout) + nin + nout parameters, whereas a fully factorized Gaus-
sian posterior has 2(nin × nout) per layer. This in turn makes the posterior uncertainty
estimation easier as there are fewer parameters to learn.

With this diagonal approximation to the covariance matrices the KL-divergence between
the matrix variate Gaussian posterior q(W|M,σ2rI,σ2cI) and a standard isotropic matrix
variate Gaussian prior p(W|0, I, I) for a matrix of size r× c corresponds to the following
simple expression:

KL(q(W|M,σ2rI,σ2cI)||p(W|0, I, I)) =

1

2

(( r∑
i=1

σ2ri

)( c∑
j=1

σ2cj

)
+ ‖M‖2F − rc

− c

( r∑
i=1

logσ2ri

)
− r

( c∑
j=1

logσ2cj

))
(35)

The derivation for arbitrary covariance matrices is given in the appendix.

3.2.3 Deep matrix variate Bayesian nets as deep multi-output Gaussian Processes

Directly using the expected log-likelihood estimator 34 yields increased variance and
higher memory requirements, as it was pointed in [89]. Fortunately, similarly to a standard
multivariate Gaussian, the inner product between a matrix and a matrix variate Gaussian is
again a matrix variate Gaussian [60] and as a result we can use the “local reparametrization
trick” [89]. Let AM×r, with M 6 r, be a minibatch of M inputs with dimension r that is
the input to a network layer; the inner product BM×c = AW, where W is a matrix variate
variable with size r× c, has the following distribution:

p(B|A) = MN(AM, AUAT , V) (36)

As we can see, after the inner product the inputs A become dependent due to the non-
diagonal row covariance AUAT . Furthermore, the resulting matrix variate Gaussian main-
tains the same marginalization properties as a multivariate Gaussian. More specifically, if
we marginalize out a row from the B matrix, then the resulting distribution depends only
on the remaining inputs, i.e. it corresponds to simply removing that particular input from
the minibatch. This fact exposes a Gaussian Process [148] nature for the output B of each
layer.

To make the connection even clearer we can consider an example similar to the one
presented in [50]. Let’s assume that we have a neural network with one hidden layer and
one output layer. Furthermore, let X, with dimensionsN×Dx, be the input to the network
and Y, with dimensions N×Dy, be the target variable. Finally, let’s also assume that for
the first weight matrix pθ1(W1) = MN(0, U0

1, V0
1) and that for the second weight matrix

pθ2(W2) = MN(0, U0
2, V0

2). Now we can define the following generative model:

W1 ∼ MN(0, U0
1, V0

1); W2 ∼ MN(0, U0
2, V0

2)

B = XW1, F = ψ(B)W2, Y ∼ MN(F, τ−1IN, IDy)
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where ψ(·) is a nonlinearity and MN(F, τ−1IN, IDy) corresponds to an independent mul-
tivariate Gaussian over each column of Y. More specifically, let fi be a column of F then
p(Y|F) =

∏Dy
i=1N(yi|fi, τ−1IN)3. Now if we make use of the matrix variate Gaussian

property 36 we have that the generative model becomes:

B|X ∼ MN(0, XU0
1X
T , V0

1), F|B ∼ MN(0,ψ(B)U0
2ψ(B)

T , V0
2),

Y|F ∼ MN(F, τ−1IN, IDy)

or else equivalently:

vec (B)|X ∼ N(0,K̂θ1(X, X)), vec (F)|B ∼ N(0, K̂θ2(B, B)),

vec (Y)|F ∼ N(vec(F), τ−1(IN ⊗ IDy))

where K̂θ(z1, z2) = Kout ⊗ Kin(z1, z2; U) = V ⊗
(
ψ(z1)Uψ(z2)T

)
4. In other words,

we have a composition of GPs where the covariance of each GP is governed by a kernel
function of a specific form; it is the kroneker product of a global output and an input
dependent kernel function, where the latter is composed of fixed dimension nonlinear basis
functions (the inputs to each layer) weighted by their covariance. Essentially this kernel
provides a distribution for each layer that is similar to a (correlated) multi-output GP, which
was previously explored in the context of shallow GPs [24, 25, 200]. Therefore, in order
to obtain the marginal likelihood of the targets Y we have to marginalize over the function
values B and F, which results into a deep GP [40] with the aforementioned kernel function
for each GP:

logp(Y|X) = log Epθ1(B|X)pθ2(F|B)
[
N(vec(F), τ−1(IN ⊗ IDy))

]
A similar scenario was also considered theoretically in [45]. Now in order to obtain the
posterior distribution of the parameters W we will perform variational inference. We place
a matrix variate Gaussian posterior distribution over the weights of the neural network,
i.e. qφ1(W1), qφ2(W2), as MN(M1, U1, V1), MN(M2, U2, V2) respectively, and the
marginal likelihood lower bound in eq. 33 becomes:

L(φ1,2, θ1,2) = Eqφ1(W1)qφ2(W2)

[
logp(Y|X, W1, W2)

]
−

2∑
i=1

KL(qφi(Wi)||pθi(Wi))

= L(X,Y)(φ1,φ2) +
2∑
i=1

Lc(φi, θi) (37)

3 Note that this is just a simplifying assumption and not a limitation for our method. We could instead also
model the correlations among the output variables Y if we used a full covariance CDy instead of IDy .

4 ψ(·) is the identity function for the input layer.
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Noting that Y only depends on X, W1, W2 through F = ψ(B)W2 where B = XW1 and
applying the reparametrization trick, i.e.∫

qφ1(W1)qφ2(W2) logp(Y|F(X, W1, W2))dW1,2 =∫
q̃φ1(B|X)q̃φ2(F|B) logp(Y|F)dBdF

where (using 36),

q̃φ1(B|X) = N(vec(µφ1(X)), K̂φ1(X, X)),

q̃φ2(F|B) = N(vec(µφ2(B)), K̂φ2(B, B))

whereφ1 = (M1, U1, V1),φ2 = (M2, U2, V2) are the variational parameters andµφ(z) =
ψ(z)M is the mean function. As we can see, q̃φ1(B|X), q̃φ2(F|B) can be considered as
approximate posterior GP functions while the local reparametrization trick provides the
connection between the primal and dual GP view of the model. The variational objective
thus becomes:

L(φ1,2, θ1,2) = Eq̃φ1(B|X)q̃φ2(F|B)
[

logp(Y|F)
]
+

2∑
i=1

Lc(φi, θi) (38)

3.2.4 Efficient sampling and pseudo-data

Sampling distribution 36 for every layer is however computationally intensive as we have
to calculate the square root of the row covariance Kin(A, A; U) = AUAT (which has a
cubic cost w.r.t. the amount of datapoints in A) every time. A simple solution is to only
use its diagonal for sampling. This corresponds to samples from the marginal distribution
of each pre-activation latent variable bi in the minibatch A. More specifically, we have
that bi follows a multivariate Gaussian distribution where the covariance is controlled by
two sources: the local scalar row variance (i.e. per datapoint feature correlations) and the
global column, i.e. pre-activation latent variable (or target variable in the case of the output
layer), covariance: p(bi|ai) = N(aiM,

(
aiUaTi

)
�V).

Despite its simplicity however this approach foregoes the correlations among the ele-
ments in the given minibatch. In order to fully utilize this property we adopt an idea from
the GP literature: the concept of pseudo-data [169]. More specifically, we introduce pseudo
inputs Ã and pseudo outputs B̃ for each layer in the network and sample the distribution
of each pre-activation latent variable bi conditioned on the pseudo-data:

p(bi|ai, Ã, B̃) = N

(
aiM +σT12Σ

−1
11

(
B̃ − ÃM

)
,

(
σ22 −σ

T
12Σ

−1
11 σ12

)
�V

)
(39)

where each of the covariance terms can be estimated as:

Σ11 = ÃUÃT ; σ12 = ÃUaTi ; σ22 = aiUaTi (40)
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As can be seen, the pseudo-data directly affect the distribution of each pre-activation latent
variable: if the inputs are similar to the pseudo-inputs then the variance of the latent vari-
able bi decreases and the mean is shifted towards the pseudo-data. This allows each layer
in the network to be more certain in particular regions of the input space. However, if the
inputs are not similar to the pseudo-inputs then the distribution of bi depends mostly on
the parameters of the underlying matrix variate Gaussian posterior.

It should be noted that the amount of pseudo-data for each layerNp should beNp < D,
where D is the dimensionality of the input, as we are using a linear kernel for the row
covariance (that becomes non-linear via the neural network nonlinearities) that has finite
rankD. This enforces that the pseudo-data combined with a real input ai provide a positive
definite kernel K̂ for the joint Gaussian output distribution p(B̃, bi|Ã, ai). Furthermore, we
also "dampen" Σ11 by adding to it a small diagonal matrix σ2I where σ2 = 1e−8. This
corresponds to assuming "noisy" pseudo-observations B̃ [148] (where the noise is i.i.d.
from N(0,σ2)) which helps avoiding numerical instabilities during optimization (this is
particularly helpful with limited precision floating-point).

At first glance it might seem that we now overparametrize each neural network layer,
however in practice this does not seem to be the case. From our experience relatively few
pseudo-data per layer (compared to the input dimensionality) are necessary for increased
performance. This still yields less parameters than fully factorized Gaussian posteriors. In
addition, note that with the pseudo data formulation we could also assume that the weight
posterior has zero mean M = 0 (in GP parlance this corresponds to removing the mean
function); this would reduce the number of parameters even further and still provide a
useful model. This assumption leads to sampling the following distribution:

p(bi|ai, Ã, B̃) = N

(
σT12Σ

−1
11 B̃,

(
σ22 −σ

T
12Σ

−1
11 σ12

)
�V

)
(41)

Finally, since we want a fully Bayesian model, we also place fully factorized multi-
plicative Gaussian posteriors on both Ã and B̃ along with log-uniform priors, as it was
described in [89]. The final form of the bound 38 with the inclusion of the pseudo-data is:

L(φ1,2, θ1,2) = Eqφ1(B,Ã1,B̃1|X)qφ2(F,Ã2,B̃2|B)
[

logp(Y|F)
]

+

2∑
i=1

Lc(φi, θi) (42)

where:

qφi(B, Ã, B̃|X) = q̃φi(B|X, Ã, B̃)qφi(Ã)qφi(B̃)
Lc(φi, θi) = −KL(q(Wi)||p(Wi)) −KL(q(Ãi)||p(Ãi))

−KL(q(B̃i)||p(B̃i))

where now φi, θi also include the parameters of the distributions of the pseudo-data. The
KL-divergence for these can be found at [89]. We can thus readily optimize the marginal
likelihood lower bound of eq. 42 w.r.t. the parameters of the posterior and the pseudo data
with stochastic gradient ascent.
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3.2.5 Computational complexity

A typical variational Bayesian neural network with a fully factorized Gaussian posterior
sampled “locally” [89] has asymptotic per-datapoint time complexity O(D2) for the mean
and variance in each layer, where D is the input/output dimensionality. Our model adds
the extra cost of inverting Σ−1

11 , that has cubic complexity with respect to the amount of
pseudo-data M for each layer. Therefore the asymptotic time complexity is O(D2 +M3)

and since usuallyM << D, this does not incur a significantly extra computational cost.

3.2.6 Bias in the objective

It should be noted that the objective function that we arrived at eq. 42, is in fact biased.
This bias can be better understood by re-writing the distribution of the pre-activations at
eq. 41 as

p(bi|ai, Ã, B̃) = N(aiUÃTΣ−1
11 B̃, ai(U − UÃTΣ−1

11 ÃU)aTi �V). (43)

We can then observe that eq. 43 corresponds to the local re-parametrization trick, according
to a “modified” matrix Gaussian distribution, i.e.

q(Ŵ|Ã, B̃) = MN(UÃTΣ−1
11 B̃, U − UÃTΣ−1

11 ÃU, V), (44)

bi = aiŴ, Ŵ ∼ q(Ŵ|Ã, B̃), (45)

where now we have a distribution over the weight matrix that is conditioned on the pseudo
inputs and outputs, Ã, B̃. As a result, we should consider q(Ŵ|Ã, B̃) as our approxi-
mate posterior and thus employ the KL-divergence KL(q(Ŵ|Ã, B̃)||p(Wi)), instead of
KL(q(Wi)||p(Wi)). This constitutes the bias in the objective, as now the pseudo input-
outputs are not properly regularized by the KL divergence of the weight matrix. Having
said that, we empirically observed in the experimental section that despite the aforemen-
tioned bias, the overall model can work and produce meaningful results. The extra flexibil-
ity from not needing to conform q(Ŵ|Ã, B̃) to p(Wi), allows the pseudo data to better fit
the actual data and hence improve predictive performance.

3.3 R E L AT E D W O R K

[56] firstly introduced a practical way of variational inference for neural networks. De-
spite the fact that the proposed (biased) estimator had good performance on a recurrent
neural network task, it was not as effective on the regression task of [72]. [23] proposed to
use an alternative unbiased estimator that samples on the relatively high variance weight
space [89] but nonetheless provided good performance on a reinforcement learning task.
The authors of [89] subsequently presented the “local reparametrization trick", which
makes use of Gaussian properties so as to sample in the function space, i.e. the hidden
units. This provides both reduced memory requirements as well as reduced variance for
the expected log-likelihood estimator. However, for their model they still use a fully fac-
torized posterior distribution that doubles the amount of parameters in each layer.



3.4 E X P E R I M E N T S 27

[50] also provides connections between Bayesian neural networks and deep Gaussian
processes, but they only consider independent Gaussians for each column of the weight
matrix (which in our case correspond to p(W) = MN(M,σ2I, I)) and do not model the
variances of the hidden units. Furthermore the approximating variational distribution is
quite limited as it corresponds to simple Bernoulli noise and delta approximating distribu-
tions for the weight matrix: it is a mixture of two delta peaks for each column of the weight
matrix, one at zero and the other at the mean of the Gaussian. This is in contrast to our
model where we can explicitly learn the (possibly non-diagonal) covariance for both the
input and output dimensions of each layer through the matrix variate Gaussian posterior.

Finally, [72] also assume fully factorized posterior distributions and uses Expectation
Propagation [124] instead of variational inference. Closed form approximations bypass
the need for sampling in the model, which in turn makes it easier to converge. However
their derivation is limited to rectified linear nonlinearities and regression problems, thus
limiting the applicability of their model. Furthermore, since each datapoint is treated as
new during the update of the parameters, special care has to be given so as to not perform
a lot of passes through the dataset since this will in general shrink the variances of the
weights of the network.

3.4 E X P E R I M E N T S

All of the models were coded in Theano [20] and optimization was done with Adam [88],
using the default hyper-parameters and temporal averaging. We parametrized the prior for
each weight matrix as p(W) = MN(0, I, I) unless stated otherwise. Following [72] we
also divide the input to each layer (both real and pseudo) by the square root of its dimen-
sionality so as to keep the scale of the output (before the nonlinearity) independent of the
incoming connections. We used rectified linear units [131] (ReLU) and we initialized the
mean of each matrix variate Gaussian via the scheme proposed in [68]. For the initializa-
tion of the pseudo-data we sampled the entries of Ã, B̃ from U[−0.01, 0.01]. We used one
posterior sample to estimate the expected log-likelihood before we update the parameters.

We test under two different scenarios: regression and classification. For the regression
task we experimented with the UCI [9] datasets that were used in “Probabilistic Backprop-
agation" (PBP) [72] and in “Dropout as a Bayesian Approximation" [50]. For the clas-
sification task we evaluated our model on the permutation invariant MNIST benchmark
dataset, so as to compare against other popular neural network models.

Finally we also performed a toy regression experiment on the same artificially generated
data as [72], so that we can similarly visualize the predictive distribution that our model
provides.

3.4.1 Regression experiments

For the regression experiments we followed a similar experimental protocol with [72]:
we randomly keep 90% of the dataset for training and use the remaining to test the perfor-
mance. This process is repeated 20 times (except from the “Protein" dataset where it is per-
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formed 5 times and the “Year" dataset where it is performed once) and the average values
along with their standard errors are reported at Table 1. Following [72] we also introduce
a Gamma prior, p(τ) = Gam(a0 = 6,b0 = 6) and posterior q(τ) = Gam(a1,b1) for
the precision of the Gaussian likelihood and we parametrized the matrix variate Gaussian
prior for each layer as p(W) = MN(0, τ−1r I, τ−1c I), where p(τr),p(τc) = Gam(a0 =

1,b0 = 0.5) and q(τr)q(τc) = Gam(ar,br)Gam(ac,bc)5. We optimized a1, b1, ar,
br, ac, bc along with the remaining variational parameters. We do not use a validation set
and instead train the networks up until convergence in the training set. We use one hidden
layer of 50 units for all of the datasets, except for the larger “Protein” and “Year” datasets
where we use 100 units. We normalized the inputs x of the network to zero mean and
unit variance but we did not normalize the targets y. Instead we parametrized the network
output as y = f(x)� σy + µy where f(·) represents the neural network and µy,σy are
the, per-dimension, mean and standard deviation of the target variable, estimated from the
training set. Similarly to [50] we set the upper bound of the variational dropout rate to
0.005, 0.05 and we used 10 pseudo-data pairs for each layer for all of the datasets, except
for the smaller “Yacht" dataset where we used 5 and the bigger “Protein" and “Year" where
we used 20.

Table 1: Average test set RMSE, predictive log-likelihood and standard errors for the regression
datasets. VI, PBP and Dropout correspond to the variational inference method of [56], probabilis-
tic backpropagation [72] and dropout uncertainty [50]. VMG (Variational Matrix Gaussian) corre-
sponds to the proposed model.

Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Dataset VI PBP Dropout VMG VI PBP Dropout VMG
Boston 4.32±0.29 3.01±0.18 2.97±0.85 2.70±0.13 -2.90±0.07 -2.57± 0.09 -2.46±0.25 -2.46±0.09
Concrete 7.19±0.12 5.67±0.09 5.23± 0.53 4.89±0.12 -3.39±0.02 -3.16±0.02 -3.04±0.09 -3.01±0.03
Energy 2.65±0.08 1.80±0.05 1.66±0.19 0.54±0.02 -2.39±0.03 -2.04±0.02 -1.99±0.09 -1.06±0.03
Kin8nm 0.10±0.00 0.10±0.00 0.10±0.00 0.08±0.00 0.90±0.01 0.90±0.01 0.95±0.03 1.10±0.01
Naval 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 3.73±0.12 3.73±0.01 3.80±0.05 2.46±0.00

Pow. Plant 4.33±0.04 4.12±0.03 4.02±0.18 4.04±0.04 -2.89±0.01 -2.84±0.01 -2.80±0.05 -2.82±0.01

Protein 4.84±0.03 4.73±0.01 4.36±0.04 4.13±0.02 -2.99±0.01 -2.97±0.00 -2.89±0.01 -2.84±0.00
Wine 0.65±0.01 0.64±0.01 0.62±0.04 0.63±0.01 -0.98±0.01 -0.97±0.01 -0.93±0.06 -0.95±0.01

Yacht 6.89±0.67 1.02±0.05 1.11±0.38 0.71±0.05 -3.43±0.16 -1.63±0.02 -1.55±0.12 -1.30±0.02
Year 9.034±NA 8.879±NA 8.849±NA 8.780±NA -3.622±NA -3.603±NA -3.588±NA -3.589±NA

As we can see from the results at Table 1 our model overall provides lower root mean
square errors, compared to VI [56], PBP [72] and Dropout [50] on most datasets. In addi-
tion, we also observe better performance according to the predictive log-likelihoods; our
model outperforms VI and PBP on most datasets and is better than Dropout on 6 out of
10. These results empirically verify the effectiveness of our model: with the matrix variate
Gaussian posteriors we have a model that is flexible and consequently can both better fit
the data, and, in the case of the predictive log-likelihoods, make an accurate estimation of
the predictive uncertainty.

5 For this choice of distribution both Eq(τr)q(τc)[KL(q(W|M, U, V)||p(W|0, τ−1r I, τ−1c I))] and the KL-
divergence between q(τr)q(τc) and p(τr)p(τc) can be computed in closed form.
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3.4.2 Classification experiments

For the classification experiments we trained networks with a varying number of layers and
hidden units per layer. We used the last 10000 samples of the training set as a validation
set for model selection, minibatches of 100 datapoints and set the upper bound for the
variational dropout rate to 0.25. We used the same amount of pseudo-data pairs for each
layer, but tuned those according to the validation set performance (we set an upper bound
of 150 pseudo-data pairs per layer). We did not use any kind of data augmentation or
preprocessing. The results can be seen at Table 2.

Table 2: Test errors for the permutation invariant MNIST dataset. Bayes B. SM correspond to
Bayes by Backprop with the scale mixture prior and the variational dropout results are from the
Variational (A) model that doesn’t downscale the KL-divergence (so as to keep the comparison
fair).

Method # layers Test err.
Max. Likel. [165] 2×800 1.60

Dropout [173] - 1.25

DropConnect [189] 2×800 1.20

Bayes B. SM [23] 2×400 1.36

2×800 1.34

2×1200 1.32

Var. Dropout [89] 3×150 ≈ 1.42

3×250 ≈ 1.28

3×500 ≈ 1.18

3×750 ≈ 1.09

VMG 2×400 1.15
3×150 1.18

3×250 1.11

3×500 1.08

3×750 1.05

As we can observe our Bayesian neural network performs better than other popular neu-
ral networks models for small network sizes. For example, with only three hidden layers
of 150 units it achieves 1.18% test error on MNIST, a result that is better than maximum
likelihood [165], Dropout [173], DropConnect [189] and Bayes by Backprop [23], where
all of the aforementioned methods have bigger architectures than our model. Furthermore,
it is also better than a neural network of the same size trained with variational dropout [89].
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3.4.3 Toy experiment

In order to visually access the quality of the uncertainty that our model provides, we also
performed an experiment on the simple toy dataset that was used in [72]. We sampled 20
inputs x from U[−4, 4] and parametrized the target variable as yn = x3n + εn where εn ∼

N(0, 9). We then fitted a neural network with matrix Gaussian posteriors (with diagonal
covariance matrices), a neural network that had a fully factorized Gaussian distribution
for the weights and a dropout network. All of the networks had a single hidden layer of
100 units. For our model we used two pseudo-data pairs for the input layer, four for the
output layer and set the upper bound of the variational dropout rate to 0.2. The dropout
rate for the dropout network was zero for the input layer and 0.2 for the hidden layer. The
resulting predictive distributions (after 200 samples) can be seen in figure 5 (with three
standard deviations around the mean).

(a) Factorized Gaussian (b) PBP (c) Dropout (d) Matrix Gaussian

Figure 5: Predictive distributions for the toy dataset. Grey areas correspond to ±3 standard devia-
tions around the mean function.

As we can see the network with matrix Gaussian posteriors provides a realistic predic-
tive distribution that seems slightly better compared to the one obtained from PBP [72].
Interestingly, the simple fully factorized Gaussian (sampled with the “local reparametriza-
tion trick") neural network failed to obtain a good fit for the data as it was severely un-
derfitting due to the limited amount of datapoints. This resulted into a very uncertain and
noisy predictive distribution that vaguely captured the mean function. This effect is not
observed with our model; with the increased flexibility we are able to avoid severe loss in
performance. Furthermore, we only have a handful of variance parameters to learn, which
consequently provides easier and more robust posterior uncertainty estimation. Finally, it
seems that the dropout network provides a predictive distribution that is slightly “over-
fitted” as the confidence intervals do not diverge as heavily in areas where there are no
data.

3.5 C O N C L U S I O N S

We introduce a scalable variational Bayesian neural network where the parameters are
governed by a probability distribution over random matrices: the matrix variate Gaussian.
By utilizing properties of this distribution we can see that our model can be considered as
a composition of Gaussian Processes with nonlinear kernels of a specific form. This kernel
is formed from the kroneker product of two separate kernels; a global output kernel and an
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input specific kernel, where the latter is composed from fixed dimension nonlinear basis
functions (the inputs to each layer) weighted by their covariance.

We tested our model in two scenarios: the same regression task as PBP [72] and Dropout
uncertainty [50] and the benchmark permutation invariant MNIST classification task. For
the regression task we found that our model overall achieves better RMSE and predictive
log-likelihoods than VI [56], PBP and Dropout uncertainty. For the classification task we
found that our model provides better errors than state of the art methods for small archi-
tectures. Finally, we also empirically verified the quality of the predictive distribution that
our model provides on the same toy experiment as PBP [72].





4
M U LT I P L I C AT I V E N O R M A L I Z I N G F L OW S F O R VA R I AT I O NA L
BAY E S I A N N E U R A L N E T W O R K S

In the previous chapter we showed how to obtain flexible distributions over the neural net-
work weights by considering linear dependencies between the elements of each weight ma-
trix. In this chapter we show how to obtain a more powerful approximation by reinterpret-
ing multiplicative noise in neural networks as auxiliary random variables that augment the
approximate posterior. Through this interpretation it is both efficient and straightforward
to improve the approximation by employing normalizing flows [150] while still allowing
for local reparametrizations [89] and a tractable lower bound [117, 147]. In experiments
we show that with this new approximation we can significantly improve upon classical
mean field for Bayesian neural networks on both predictive accuracy as well as predictive
uncertainty.1

4.1 I N T RO D U C T I O N

(a) LeNet with weight decay (b) LeNet with multiplicative formalizing flows

Figure 6: Predictive distribution for a continuously rotated version of a 3 from MNIST. Each colour
corresponds to a different class and the height of the bar denotes the probability assigned to that
particular class by the network. Visualization inspired by [50].

Neural networks have been the driving force behind the success of deep learning applica-
tions. Given enough training data they are able to robustly model input-output relationships

1 This chapter is adapted from our publication [114].

33
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and as a result provide high predictive accuracy. However, they do have some drawbacks.
In the absence of enough data they tend to overfit considerably; this restricts them from be-
ing applied in scenarios were labeled data are scarce, e.g. in medical applications such as
MRI classification. Even more importantly, deep neural networks trained with maximum
likelihood or MAP procedures tend to be overconfident and as a result do not provide
accurate confidence intervals, particularly for inputs that are far from the training data dis-
tribution. A simple example can be seen at Figure 6a; the predictive distribution becomes
overly overconfident, i.e. assigns a high softmax probability, towards the wrong class for
things it hasn’t seen before (e.g. an MNIST 3 rotated by 90 degrees). This in effect makes
them unsuitable for applications where decisions are made, e.g. when a doctor determines
the disease of a patient based on the output of such a network.

A principled approach to address both of the aforementioned shortcomings is through
a Bayesian inference procedure. Under this framework instead of doing a point estimate
for the network parameters we infer a posterior distribution. These distributions capture
the parameter uncertainty of the network, and by subsequently integrating over them we
can obtain better uncertainties about the predictions of the model. We can see that this
is indeed the case at Figure 6b; the confidence of the network for the unseen digits is
drastically reduced when we are using a Bayesian model, thus resulting into more realistic
predictive distributions. Obtaining the posterior distributions is however no easy task, as
the nonlinear nature of neural networks makes the problem intractable. For this reason
approximations have to be made.

Many works have considered the task of approximate Bayesian inference for neural
networks using either Markov Chain Monte Carlo (MCMC) with Hamiltonian Dynam-
ics [134], distilling SGD with Langevin Dynamics [94, 191] or deterministic techniques
such as the Laplace Approximation [118], Expectation Propagation [72, 73] and varia-
tional inference [23, 50, 56, 89, 113].

In this paper we will also tackle the problem of Bayesian inference in neural networks.
We will adopt a stochastic gradient variational inference [91, 151] procedure in order
to estimate the posterior distribution over the weight matrices of the network. Arguably
one of the most important ingredients of variational inference is the flexibility of the
approximate posterior distribution; it determines how well we are able to capture the
true posterior distribution and thus the true uncertainty of our models. In Section 4.2
we will introduce multiplicative normalizing flows (MNFs) and show how they can pro-
duce very flexible distributions in an efficient way by employing auxiliary random vari-
ables [3, 117, 147, 157] and normalizing flows [150]. In Section 4.3 we will discuss related
work, whereas in Section 4.4 we will evaluate and discuss the proposed framework. Fi-
nally we will conclude with Section 4.6, where we will provide some final thoughts along
with promising directions for future research. We provide an implementation of MNFs at
https://github.com/AMLab-Amsterdam/MNF_VBNN.

https://github.com/AMLab-Amsterdam/MNF_VBNN
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4.2 M U LT I P L I C AT I V E N O R M A L I Z I N G F L O W S

4.2.1 Variational inference for Bayesian Neural Networks

Let D be a dataset consisting of input output pairs {(x1, y1), . . . , (xn, yn)} and let W1:L

denote the weight matrices of L layers. Assuming that p(Wi), qφ(Wi) are the prior and
approximate posterior over the parameters of the i’th layer we can derive the following
lower bound on the marginal log-likelihood of the dataset D using variational Bayes [23,
50, 56, 76, 89, 113, 145]:

L(φ) = Eqφ(W1:L)

[
logp(y|x, W1:L) + logp(W1:L) − logqφ(W1:L)

]
, (46)

where φ are the parameters of the variational posterior. For continuous q(·) distributions
that allow for the reparametrization trick [91] or stochastic backpropagation [151] we can
reparametrize the random sampling from q(·) of the lower bound in terms of noise vari-
ables ε and deterministic functions f(φ, ε):

L(φ) = Ep(ε)
[

logp(y|x, f(φ, ε)) + logp(f(φ, ε)) − logqφ(f(φ, ε))
]
. (47)

This reparametrization allow us to treat approximate parameter posterior inference as a
straightforward optimization problem that can be optimized with off-the-shelf (stochastic)
gradient ascent techniques.

4.2.2 Improving the variational approximation

For Bayesian neural networks the most common family for the approximate posterior is
that of mean field with independent Gaussian distributions for each weight. Despite the
fact that this leads to a straightforward lower bound for optimization, the approximation
capability is quite limiting; it corresponds to just a unimodal “bump" on the very high
dimensional space of the parameters of the neural network. There have been attempts to
improve upon this approximation with works such as [50] with mixtures of delta peaks
and [113] with matrix Gaussians that allow for non-trivial covariances among the weights.
Nevertheless, both of the aforementioned methods are still, in a sense, limited; the true
parameter posterior is more complex than delta peaks or correlated Gaussians.

There has been a lot of recent work on ways to improve the posterior approximation
in latent variable models; normalizing flows [150] and auxiliary random variables [3, 117,
147, 157] have shown that we can improve the flexibility of the approximate posterior in
e.g. Deep Latent Gaussian Models [91, 151]. Nevertheless, applying these ideas to the pa-
rameters in a neural network has not yet been explored. While it is straightforward to apply
normalizing flows to a sample of the weight matrix from q(W), this quickly becomes very
expensive; for example with planar flows [150] we will need two extra matrices for each
step of the flow. Furthermore, by utilizing this procedure we also lose the benefits of local
reparametrizations [89, 113] which are possible with Gaussian approximate posteriors.

In order to simultaneously maintain the benefits of local reparametrizations and increase
the flexibility of the approximate posteriors in a Bayesian neural network we will rely on
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auxiliary random variables [3, 117, 147, 156, 157]; more specifically we will exploit the
well known “multiplicative noise" concept, e.g. as in (Gaussian) Dropout [174], in neural
networks and we will parametrize the approximate posterior with the following process:

z ∼ qφ(z); W ∼ qφ(W|z), (48)

where now the approximate posterior becomes a compound distribution, i.e., q(W) =∫
q(W, z)dz, with z being a vector of random variables distributed according to the mixing

density q(z). To allow for local reparametrizations we will parametrize the conditional
distribution for the weights to be a fully factorized Gaussian. Therefore we assume the
following form for the fully connected layers:

qφ(W|z) =
Din∏
i=1

Dout∏
j=1

N(ziµij,σ2ij), (49)

where Din,Dout is the input and output dimensionality, and the following form for the
kernels in convolutional networks:

qφ(W|z) =
Dh∏
i=1

Dw∏
j=1

Df∏
k=1

N(zkµijk,σ2ijk), (50)

whereDh,Dw,Df are the height, width and number of filters for each kernel. Note that we
did not let z affect the variance of the Gaussian approximation; in a pilot study we found
that this parametrization was prone to local optima due to large variance gradients, an ef-
fect also observed with the multiplicative parametrization of the Gaussian posterior [89,
130]. We have now reduced the problem of increasing the flexibility of the approximate
posterior over the weights W to that of increasing the flexibility of the mixing density q(z).
Since z is of much lower dimension, compared to W, it is now straightforward to apply
normalizing flows to q(z); in this way we can significantly enhance our approximation
and allow for e.g. multimodality and nonlinear dependencies between the elements of the
weight matrix. This will in turn better capture the properties of the true posterior distribu-
tion, thus leading to better performance and predictive uncertainties. We will coin the term
multiplicative normalizing flows (MNFs) for this family of approximate posteriors. Algo-
rithms 1, 2 describe the forward pass using local reparametrizations for fully connected
and convolutional layers with this type of approximate posterior.

For the normalizing flow of q(z) we will use the masked RealNVP [43] using the nu-
merically stable updates introduced in Inverse Autoregressive Flow (IAF) [90]:

m ∼ Bern(0.5), h = tanh(f(m� zt)), µ = g(h), σ = σ(k(h))
zt+1 = m� zt+(1− m)� (zt �σ+ (1−σ)� µ) (51)

log
∣∣∣∣∂zt+1
∂zt

∣∣∣∣ = (1− m)T logσ,

where � corresponds to element-wise multiplication, σ(·) is the sigmoid function2 and
f(·), g(·), k(·) are linear mappings. We resampled the mask m every time in order to avoid

2 f(x) = 1
1+exp(−x)
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Algorithm 1 Forward propagation for each fully connected layer h. Mw,Σw are the means
and variances of each layer, H is a minibatch of activations and NF(·) is the normalizing
flow described at eq. 51. For the first layer we have that H = X where X is the minibatch
of inputs.
Require: H, Mw,Σw

1: Z0 ∼ q(z0)
2: ZTf = NF(Z0)
3: Mh = (H�ZTf)Mw

4: Vh = H2Σw
5: E ∼ N(0, 1)
6: return Mh +

√
Vh � E

Algorithm 2 Forward propagation for each convolutional layer h. Nf are the number of
convolutional filters, ∗ is the convolution operator and we assume the [batch, height, width,
feature maps] convention.
Require: H, Mw,Σw

1: z0 ∼ q(z0)
2: zTf = NF(z0)
3: Mh = H ∗ (Mw � reshape(zTf , [1, 1,Df]))
4: Vh = H2 ∗Σw
5: E ∼ N(0, 1)
6: return Mh +

√
Vh � E

a specific splitting over the dimensions of z. For the starting point of the flow q(z0) we
used a simple fully factorized Gaussian and we will refer to the final iterate as zTf .

4.2.3 Bounding the entropy

Unfortunately, parametrizing the posterior distribution as eq. 48 makes the lower bound
intractable as generally we do not have a closed form density function for q(W). This
makes the entropy calculation −Eq(W)[logq(W)] challenging. Fortunately we can make
the lower bound tractable again by further lower bounding the entropy in terms of an aux-
iliary distribution r(z|W) [3, 117, 147, 156, 157]. This can be seen as if we are performing
variational inference on the augmented probability space p(D, W1:L, z1:L), that maintains
the same true posterior distribution p(W|D) (as we can always marginalize out r(z|W) to
obtain the original model). The lower bound in this case becomes:

L(φ, θ) = Eqφ(z1:L,W1:L)

[
logp(y|x, W1:L, z1:L) + logp(W1:L)

+ log rθ(z1:L|W1:L) − logqφ(W1:L|z1:L) − logqφ(z1:L)
]
, (52)

where θ are the parameters of the auxiliary distribution r(·). This bound is looser than
the previous bound, however the extra flexibility of q(W) can compensate and allow for
a tighter bound. Furthermore, the tightness of the bound also depends on the ability of
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r(z|W) to approximate the “auxiliary" posterior distribution q(z|W) =
q(W|z)q(z)
q(W) . There-

fore, to allow for a flexible r(z|W) we will follow [147] and we will parametrize it with
inverse normalizing flows as follows:

r(zTb |W) =

Dz∏
i=1

N(µ̃i, σ̃2i ), (53)

where for fully connected layers we have that:

µ̃i =
(
b1 ⊗ tanh(cTW)

)
(1�D−1

out) (54)

σ̃i = σ

((
b2 ⊗ tanh(cTW)

)
(1�D−1

out)

)
, (55)

and for convolutional:

µ̃i =
(
tanh(mat(W)c)⊗ b1

)
(1� (DhDw)

−1) (56)

σ̃i = σ

((
tanh(mat(W)c)⊗ b2

)
(1� (DhDw)

−1)

)
, (57)

where b1, b2, c are trainable vectors that have the same dimensionality as z, Dz, 1 corre-
sponds to a vector of 1s, ⊗ corresponds to the outer product and mat(·) corresponds to the
matricization3 operator. The zTb variable corresponds to the fully factorized variable that
is transformed by a normalizing flow to zTf or else the variable obtained by the inverse
normalizing flow, zTb = NF−1(zTf). We will parametrize this inverse directly with the
procedure described at eq. 51. Notice that we can employ local reparametrizations also
in eq. 54,55,56,57, so as to avoid sampling the, potentially big, matrix W. With the stan-
dard normal prior and the fully factorized Gaussian posterior of eq. 49 the KL-divergence
between the prior and the posterior can be computed as follows:

−KL(q(W, z)||p(W, z)) = Eq(zTf)
[−KL(q(W|zTf)||p(W))]+

Eq(W,zTf)
[log r(zTf |W) − logq(zTf)], (58)

where each of the terms corresponds to:

KL(q(W|zTf)||p(W)) =
1

2

∑
i,j

(− logσ2i,j + σ
2
i,j + z

2
Tfi
µ2i,j − 1) (59)

log r(zTf |W) = log r(zTb |W) +

Tf+Tb∑
t=Tf

log
∣∣∣∣∂zt+1
∂zt

∣∣∣∣ (60)

logq(zTf) = logq(z0) −
Tf∑
t=1

log
∣∣∣∣∂zt+1
∂zt

∣∣∣∣. (61)

We also found that in general it is beneficial to “constrain" the standard deviations σij
of the conditional Gaussian posterior q(W|z) during the forward pass for the computation

3 Converting the multidimensional tensor to a matrix.
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of the likelihood to a lower than the true range, e.g. [0,α] instead of the [0, 1] we have with
a standard normal prior. This results into a small bias and a looser lower bound, however
it helps in avoiding bad local minima in the variational objective. This is akin to the free
bits objective described at [90].

4.3 R E L AT E D W O R K

Approximate inference for Bayesian neural networks has been pioneered by [118] and
[134]. Laplace approximation [118] provides a deterministic approximation to the poste-
rior that is easy to obtain; it is a Gaussian centered at the MAP estimate of the parameters
with a covariance determined by the inverse of the Hessian of the log-likelihood. Despite
the fact that it is straightforward to implement, its scalability is limited unless approxima-
tions are made, which generally reduces performance. Hamiltonian Monte Carlo [134] is
so far the golden standard for approximate Bayesian inference; nevertheless it is also not
scalable to large networks and datasets due to the fact that we have to explicitly store the
samples from the posterior. Furthermore as it is an MCMC method, assessing convergence
is non trivial. Nevertheless there is interesting work that tries to improve upon those issues
with stochastic gradient MCMC [30] and distillation methods [94].

Deterministic methods for approximate inference in Bayesian neural networks have re-
cently attained much attention. One of the first applications of variational inference in neu-
ral networks was in [145] and [76]. More recently [56] proposed a practical method for
variational inference in this setting with a simple (but biased) estimator for a fully factor-
ized posterior distribution. [23] improved upon this work with an unbiased estimator and a
scale mixture prior. [72] proposed to use Expectation Propagation [124] with fully factor-
ized posteriors and showed good results on regression tasks. [89] showed how Gaussian
dropout can be interpreted as performing approximate inference with log-uniform priors,
multiplicative Gaussian posteriors and local reparametrizations, thus allowing straightfor-
ward learning of the dropout rates. Similarly [50] showed interesting connections between
binary Dropout [174] networks and approximate Bayesian inference in deep Gaussian
Processes [40] thus allowing the extraction of uncertainties in a principled way. Similarly
[113] arrived at the same result through structured posterior approximations via matrix
Gaussians and local reparametrizations [89].

It should also be mentioned that uncertainty estimation in neural networks can also be
performed without the Bayesian paradigm; frequentist methods such as Bootstrap [140]
and ensembles [97] have shown that in certain scenarios they can provide reasonable con-
fidence intervals.

4.4 E X P E R I M E N T S

All of the experiments were coded in Tensorflow [1] and optimization was done with
Adam [88] using the default hyper-parameters. We used the LeNet 54 [99] convolutional
architecture with ReLU [131] nonlinearities. The means M of the conditional Gaussian

4 The version from Caffe.
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q(W|z) were initialized with the scheme proposed in [68], whereas the log of the variances
were initialized by sampling from N(−9, 0.001). Unless explicitly mentioned otherwise
we use flows of length two for q(z) and r(z|W) with 50 hidden units for each step of
the flow of q(z) and 100 hidden units for each step of the flow of r(z|W). We used 100
posterior samples to estimate the predictive distribution for all of the models during testing
and 1 posterior sample during training.

Table 3: Models considered in this paper. Dropout corresponds to the model used in [49], Deep
Ensemble to the model used in [97], FFG to the Bayesian neural network employed in [23], FFLU
to the Bayesian neural network used in [89, 130] with the additive parametrization of [130] and
MNFG corresponds to the proposed variational approximation. It should be noted that Deep En-
sembles use adversarial training [55].

Name Prior Posterior
L2 N(0, I) delta peak

Dropout N(0, I) mixture of zero and delta peaks

D. Ensem. - mixture of peaks

FFG N(0, I) fully factorized additive Gaussian

FFLU log(|W|) = c fully factorized additive Gaussian

MNFG N(0, I) multiplicative normalizing flows

4.4.1 Predictive performance and uncertainty

M N I S T We trained on MNIST LeNet architectures using the priors and posteriors de-
scribed at Table 3. We trained Dropout with the way described at [49] using 0.5 for the
dropout rate and for Deep Ensembles [97] we used 10 members and ε = .25 for the ad-
versarial example generation. For the models with the Gaussian prior we constrained the
standard deviation of the conditional posterior to be 6 .5 during the forward pass. The
classification performance of each model can be seen at Table 4; while our overall focus is
not classification accuracy per se, we see that with the MNF posteriors we improve upon
mean field reaching similar accuracies with Deep Ensembles.

N OT M N I S T To evaluate the predictive uncertainties of each model we performed the
task described at [97]; we estimated the entropy of the predictive distributions on notM-
NIST5 from the LeNet architectures trained on MNIST. Since we a-priori know that none
of the notMNIST classes correspond to a trained class (since they are letters and not digits)
the ideal predictive distribution is uniform over the MNIST digits, i.e. a maximum entropy
distribution. Contrary to [97] we do not plot the histogram of the entropies across the im-
ages but we instead use the empirical CDF,which we think is more informative. Curves
that are closer to the bottom right part of the plot are preferable, as it denotes that the prob-

5 Can be found at http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
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ability of observing a high confidence prediction is low. At Figure 7 we show the empirical
CDF over the range of possible entropies, [0, 2.5], for all of the models.

Figure 7: Empirical CDF for the entropy of the
predictive distributions on notMNIST.

Figure 8: Empirical CDF for the entropy of the
predictive distributions on the 5 hidden classes
from CIFAR 10.

It is clear from the plot that the uncertainty estimates from MNFs are better than the
other approaches, since the probability of a low entropy prediction is overall lower. The
network trained with just weight decay was, as expected, the most overconfident with
an almost zero median entropy while Dropout seems to be in the middle ground. The
Bayesian neural net with the log-uniform prior also showed overconfidence in this task;
we hypothesize that this is due to the induced sparsity [130] which results into the pruning
of almost all irrelevant sources of variation in the parameters thus not providing enough
variability to allow for uncertainty in the predictions. The sparsity levels6 are 62%, 95.2%
for the two convolutional layers and 99.5%, 93.3% for the two fully connected. Similar
effects would probably be also observed if we optimized the dropout rates for Dropout. The
only source of randomness in the neural network is from the Bernoulli random variables
(r.v.) z. By employing the Central Limit Theorem7 we can express the distribution of the
activations as a Gaussian [190] with variance affected by the variance of the Bernoulli
r.v., V(z) = π(1 − π). The maximum variance of the Bernoulli r.v. is when π = 0.5,
therefore any tuning of the Dropout rate will result into a decrease in the variance of the
r.v. and therefore a decrease in the variance of the Gaussian at the hidden units. This will
subsequently lead into less predictive variance and more confidence.

Finally, whereas it was shown at [97] that Deep Ensembles provide good uncertainty
estimates (better than Dropout) on this task using fully connected networks, this result did
not seem to apply for the LeNet architecture we considered. We hypothesize that they are
sensitive to the hyperparameters (e.g. adversarial noise, number of members in the ensem-
ble) and it requires more tuning in order to improve upon Dropout on this architecture.

C I F A R 1 0 We performed a similar experiment on CIFAR 10. To artificially create the
"unobserved class" scenario, we hid 5 of the labels (dog, frog, horse, ship, truck) and

6 Computed by pruning weights where logσ2 − logµ2 > 5 [130].
7 Assuming that the network is wide enough.
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trained on the rest (airplane, automobile, bird, cat, deer). For this task we used the larger
LeNet architecture8 described at [49]. For the models with the Gaussian prior we similarly
constrained the standard deviation during the forward pass to be 6 .4. For Deep Ensembles
we used five members with ε = .1 for the adversarial example generation. The predictive
performance on these five classes can be seen in Table 4, with Dropout and MNFs achiev-
ing the overall better accuracies. We subsequently measured the entropy of the predictive
distribution on the classes that were hidden, with the resulting empirical CDFs visualized
in Figure 8.

We similarly observe that the network with just weight decay was the most overconfi-
dent. Furthermore, Deep Ensembles and Dropout had similar uncertainties, with Deep En-
sembles having lower accuracy on the observed classes. The networks with the Gaussian
priors also had similar uncertainty with the network with the log uniform prior, neverthe-
less the MNF posterior had much better accuracy on the observed classes. The sparsity
levels for the network with the log-uniform prior now were 94.9%, 99.8% for the convo-
lutional layers and 99.9%, 92.7% for the fully connected. Overall, the network with the
MNF posteriors seem to provide the better trade-off in uncertainty and accuracy on the
observed classes.

Table 4: Test errors (%) with the LeNet architecture on MNIST and the first five classes of CIFAR
10.

Dataset L2 Dropout D.Ensem. FFG FFLU MNFG
MNIST 0.6 0.5 0.7 0.9 0.9 0.7

CIFAR 5 24 16 21 22 23 16

4.4.2 Accuracy and uncertainty on adversarial examples

We also measure how robust our models and uncertainties are against adversarial exam-
ples [55, 179] by generating examples using the fast sign method [55] for each of the
previously trained architectures using Cleverhans [143]. For this task we do not include
Deep Ensembles as they are trained on adversarial examples.

M N I S T On this scenario we observe interesting results if we plot the change in accu-
racy and entropy by varying the magnitude of the adversarial perturbation. The resulting
plot can be seen in Figure 9. Overall Dropout seems to have better accuracies on adver-
sarial examples; nevertheless, those come at an "overconfident" price since the entropy of
the predictive distributions is quite low thus resulting into predictions that have, on aver-
age, above 0.7 probability for the dominant class. This is in contrast with MNFs; while
the accuracy almost immediately drops close to random, the uncertainty simultaneously
increases to almost maximum entropy. This implies that the predictive distribution is more
or less uniform over those examples. So despite the fact that our model cannot overcome
adversarial examples at least it “knows that it doesn’t know".

8 192 filters at each convolutional layer and 1000 hidden units for the fully connected layer.
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Figure 9: Accuracy (solid) vs entropy (dashed)
as a function of the adversarial perturbation ε on
MNIST.

Figure 10: Accuracy (solid) vs entropy (dashed)
as a function of the adversarial perturbation ε on
CIFAR 10 (on the first 5 classes).

C I F A R We performed the same experiment also on the five class subset of CIFAR 10.
The results can be seen in Figure 10. Here we however observe a different picture, com-
pared to MNIST, since all of the methods experienced overconfidence. We hypothesize
that adversarial examples are harder to escape and be uncertain about in this dataset, due
to the higher dimensionality, and therefore further investigation is needed.

(a) Dropout π = 0.5 (b) FFLU (c) MNFG

Figure 11: Predictive distributions for the toy dataset. Blue areas correspond to ±3 standard devia-
tions around the mean.

4.4.3 Regression on toy dataset

For the final experiment we visualize the predictive distributions obtained with the dif-
ferent models on the toy regression task introduced at [72]. We generated 20 training
inputs from U[−4, 4] and then obtained the corresponding targets via y = x3 + ε, where
ε ∼ N(0, 9). We fixed the likelihood noise to its true value and then fitted a Dropout net-
work with π = 0.5 for the hidden layer9, an FFLU network and an MNFG. The resulting
predictive distributions can be seen at Figure 11.

As we can observe, MNF posteriors provide more realistic predictive distributions,
closer to the true posterior (which can be seen at [72]) and with the network being more un-

9 No Dropout was used for the input layer since it is 1-dimensional.
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certain on areas where we do not observed any data. The uncertainties obtained by Dropout
with fixed π = 0.5 did not diverge as much in those areas but overall they were better com-
pared to the uncertainties obtained with FFLU. We could probably attribute the latter to
the sparsification of the network since 95% and 44% of the parameters were pruned for
each layer respectively. In general, we see that MNFs are flexible enough to allow for op-
timizing all of their parameters in a way that does better approximate the true posterior
distribution.

4.5 M E M O R I Z AT I O N C A PA B I L I T I E S

As it was shown in [203], deep neural networks can exhibit memorization, even with ran-
dom labels. Therefore deep neural networks could perfectly fit the training data while
having random chance accuracy on the test data. It was further shown that performing
regularization such as Dropout or weight decay did not alleviate this phenomenon. [130]
instead showed that by employing Sparse Variational Dropout this phenomenon did not
appear, thus resulting into the network pruning everything and having random chance ac-
curacy on both training and test sets. We similarly show here that with Gaussian priors and
MNF posteriors we also have random chance accuracy on both train and test sets. This
suggests that it is Bayesian inference that penalizes memorization.

Table 5: Accuracy (%) with the LeNet architecture on MNIST and the first five classes of CIFAR
10 using random labels. Random chance is 11% on MNIST and 20% on CIFAR 5.

Dataset Dropout train Dropout test MNFG train MNFG test

MNIST 30 11 11 11

CIFAR 5 89 20 20 20

4.6 C O N C L U S I O N

We introduce multiplicative normalizing flows (MNFs); a family of approximate posteriors
for the parameters of a variational Bayesian neural network. We have shown that through
this approximation we can significantly improve upon mean field on both predictive perfor-
mance as well as predictive uncertainty. We compared our uncertainty on notMNIST and
CIFAR with Dropout [50, 174] and Deep Ensembles [97] using convolutional architec-
tures and found that MNFs achieve more realistic uncertainties while providing predictive
capabilities on par with Dropout. We suspect that the predictive capabilities of MNFs can
be further improved through more appropriate optimizers that avoid the bad local minima
in the variational objective.

There are a couple of promising directions for future research. One avenue would be to
explore how much can MNFs sparsify and compress neural networks under either sparsity
inducing priors, such as the log-uniform prior [89, 130], or empirical priors [185]. An-
other promising direction is that of designing better priors for Bayesian neural networks.
For example [134] has identified limitations of Gaussian priors and proposes alternative
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priors such as the Cauchy. Furthermore, the prior over the parameters also affects the type
of uncertainty we get in our predictions; for instance we observed in our experiments a
significant difference in uncertainty between Gaussian and log-uniform priors. Since dif-
ferent problems require different types of uncertainty it makes sense to choose the prior
accordingly, e.g. use an informative prior so as to alleviate adversarial examples.





5
T H E F U N C T I O NA L N E U R A L P RO C E S S

In the previous chapters we considered the Bayesian inference setting when we posit pri-
ors and approximate posteriors over the weights of the network. In this chapter we take
a different view and we present a new family of exchangeable stochastic processes, the
Functional Neural Processes (FNPs). FNPs model distributions over functions by learning
a graph of dependencies on top of latent representations of the points in the given dataset.
In doing so, they define a Bayesian model without explicitly positing a prior distribution
over latent global parameters; they instead adopt priors over the relational structure of the
given dataset, a task that is much simpler. We show how we can learn such models from
data, demonstrate that they are scalable to large datasets through mini-batch optimization
and describe how we can make predictions for new points via their posterior predictive
distribution. We experimentally evaluate FNPs on the tasks of toy regression and image
classification and show that, when compared to baselines that employ global latent param-
eters, they offer both competitive predictions as well as more robust uncertainty estimates.
1

5.1 I N T RO D U C T I O N

Neural networks are a prevalent paradigm for approximating functions of almost any kind.
Their highly flexible parametric form coupled with large amounts of data allows for accu-
rate modelling of the underlying task, a fact that usually leads to state of the art prediction
performance. While predictive performance is definitely an important aspect, in a lot of
safety critical applications, such as self-driving cars, we also require accurate uncertainty
estimates about the predictions.

Bayesian neural networks [23, 56, 119, 134] have been an attempt at imbuing neural
networks with the ability to model uncertainty; they posit a prior distribution over the
weights of the network and through inference they can represent their uncertainty in the
posterior distribution. Nevertheless, for such complex models, the choice of the prior is
quite difficult since understanding the interactions of the parameters with the data is a non-
trivial task. As a result, priors are usually employed for computational convenience and
tractability. Furthermore, inference over the weights of a neural network can be a daunting
task due to the high dimensionality and posterior complexity [114, 163].

1 This chapter is adapted from our publication [110].

47
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An alternative way that can “bypass” the aforementioned issues is that of adopting a
stochastic process [92]. They posit distributions over functions, e.g. neural networks, di-
rectly, without the necessity of adopting prior distributions over global parameters, such
as the neural network weights. Gaussian processes [148] (GPs) is a prime example of a
stochastic process; they can encode any inductive bias in the form of a covariance structure
among the datapoints in the given dataset, a more intuitive modelling task than positing
priors over weights. Furthermore, for vanilla GPs, posterior inference is much simpler. De-
spite these advantages, they also have two main limitations: 1) the underlying model is not
very flexible for high dimensional problems and 2) training and inference is quite costly
since it generally scales cubically with the size of the dataset.

Given the aforementioned limitations of GPs, one might seek an alternative way to
parametrize stochastic processes that can bypass these issues. To this end, we present
our main contribution, Functional Neural Processes (FNPs), a family of exchangeable
stochastic processes that posit distributions over functions in a way that combines the
properties of neural networks and stochastic processes. We show that, in contrast to prior
literature such as Neural Processes (NPs) [52], FNPs do not require explicit global latent
variables in their construction, but they rather operate by building a graph of dependen-
cies among local latent variables, reminiscing more of autoencoder type of latent variable
models [91, 151]. We further show that we can exploit the local latent variable structure
in a way that allows us to easily encode inductive biases and illustrate one particular in-
stance of this ability by designing an FNP model that behaves similarly to a GP with
an RBF kernel. Furthermore, we demonstrate that FNPs are scalable to large datasets, as
they can facilitate for minibatch gradient optimization of their parameters, and have a
simple to evaluate and sample posterior predictive distribution. Finally, we evaluate FNPs
on toy regression and image classification tasks and show that they can obtain competi-
tive performance and more robust uncertainty estimates. We have open sourced an imple-
mentation of FNPs for both classification and regression along with example usages at
https://github.com/AMLab-Amsterdam/FNP.

5.2 T H E F U N C T I O N A L N E U R A L P RO C E S S

For the following we assume that we are operating in the supervised learning setup, where
we are given tuples of points (x,y), with x ∈ X being the input covariates and y ∈ Y being
the given label. Let D = {(x1,y1) . . . , (xN,yN)} be a sequence of N observed datapoints.
We are interested in constructing a stochastic process that can bypass the limitations of
GPs and can offer the predictive capabilities of neural networks. There are two necessary
conditions that have to be satisfied during the construction of such a model: exchangeabil-
ity and consistency [92]. An exchangeable distribution over D is a joint probability over
these elements that is invariant to permutations of these points, i.e.

p(y1:N|x1:N) = p(yσ(1:N)|xσ(1:N)), (62)

where σ(·) corresponds to the permutation function. Consistency refers to the phenomenon
that the probability defined on an observed sequence of points {(x1,y1), . . . , (xn,yn)},

https://github.com/AMLab-Amsterdam/FNP
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Figure 12: Venn diagram of
the sets used in this work.
The blue is the training in-
puts Dx, the red is the ref-
erence set R and the parts
enclosed in the dashed and
solid lines are M, the train-
ing points not in R, and
B, the union of the train-
ing points and R. The white
background corresponds to
O, the complement of R.

Figure 13: The Functional Neural Process (FNP) model. We embed
the inputs (dots) from a complicated domain X to a simpler domain
U where we then sample directed graphs of dependencies among
them, G, A. Conditioned on those graphs, we use the parents from
the reference set R as well as their labels yR to parameterize a latent
variable zi that is used to predict the target yi. Each of the points
has a specific number id for clarity.

pn(·), is the same as the one defined on an extended sequence {(x1,y1), . . . , (xn+m,yn+m)},
pn+m(·), when we marginalize over the new points:

pn(y1:n|x1:n) =
∫
pn+m(y1:n+m|x1:n+m)dyn+1:n+m. (63)

Ensuring that both of these conditions hold, allows us to invoke the Kolmogorov Extension
and de-Finneti’s theorems [92], hence prove that the model we defined is an exchangeable
stochastic process. In this way we can guarantee that there is an underlying Bayesian
model with an implied prior over global latent parameters pθ(w) such that we can ex-
press the joint distribution in a conditional i.i.d. fashion, i.e., pθ(y1, . . . ,yN|x1, . . . , xN) is
expressed as

∫
pθ(w)

∏N
i=1 p(yi|xi, w)dw.

This constitutes the main objective of this work; how can we parametrize and optimize
such distributions? Essentially, our target is to introduce dependence among the points of
D in a manner that respects the two aforementioned conditions. We can then encode prior
assumptions and inductive biases to the model by considering the relations among said
points, a task much simpler than specifying a prior over latent global parameters pθ(w).
To this end, we introduce in the following our main contribution, the Functional Neural
Process (FNP).

5.2.1 Designing the Functional Neural Process

On a high level the FNP follows the construction of a stochastic process as described
at [41]; it posits a distribution over functions h ∈ H from x to y by first selecting a “refer-
ence” set of points from X, and then basing the probability distribution over h around
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those points. This concept is similar to the “inducing inputs” that are used in sparse
GPs [169, 182]. More specifically, let R = {xr1, . . . , xrK} be such a reference set and let
O = X \ R be the “other” set, i.e. the set of all possible points that are not in R. Now let
Dx = {x1, . . . , xN} be any finite random set from X, that constitutes our observed inputs.
To facilitate the exposition we also introduce two more sets;M = Dx \R that contains the
points of Dx that are from O and B = R ∪M that contains all of the points in Dx and R.
We provide a Venn diagram in Fig. 12. In the following we describe the construction of the
model, shown in Fig. 13, and then prove that it corresponds to an infinitely exchangeable
stochastic process.

E M B E D D I N G T H E I N P U T S T O A L AT E N T S PAC E The first step of the FNP is to
embed each of the xi of B independently to a latent representation ui

pθ(UB|XB) =
∏
i∈B
pθ(ui|xi), (64)

where pθ(ui|xi) can be any distribution, e.g. a Gaussian or a delta peak, where its pa-
rameters, e.g. the mean and variance, are given by a function of xi. This function can be
any function, provided that it is flexible enough to provide a meaningful representation
for xi. For this reason, we employ neural networks, as their representational capacity has
been demonstrated on a variety of complex high dimensional tasks, such as natural image
generation and classification.

C O N S T RU C T I N G A G R A P H O F D E P E N D E N C I E S I N T H E E M B E D D I N G S PAC E

The next step is to construct a dependency graph among the points in B; it encodes the
correlations among the points in D that arise in the stochastic process. For example, in
GPs such a correlation structure is encoded in the covariance matrix according to a kernel
function g(·, ·) that measures the similarity between two inputs. In the FNP we adopt a
different approach. Given the latent embeddings UB that we obtained in the previous step
we construct two directed graphs of dependencies among the points in B; a directed acyclic
graph (DAG) G among the points in R and a bipartite graph A from R toM. These graphs
are represented as random binary adjacency matrices, where e.g. Aij = 1 corresponds to
the vertex j being a parent for the vertex i. The distribution of the bipartite graph can be
defined as

p(A|UR, UM) =
∏
i∈M

∏
j∈R

Bern
(
Aij|g(ui, uj)

)
. (65)

where g(ui, uj) provides the probability that a point i ∈ M depends on a point j in the
reference set R. This graph construction reminisces graphon [138] models, with however
two important distinctions. Firstly, the embedding of each node is a vector rather than a
scalar and secondly, the prior distribution over u is conditioned on an initial vertex rep-
resentation x rather than being the same for all vertices. We believe that the latter is an
important aspect, as it is what allows us to maintain enough information about the vertices
and construct more informative graphs.
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Figure 14: An example of the bipartite graph A
that the FNP learns. The first column of each
image is a query point and the rest are the five
most probable parents from the R. We can see
that the FNP associates same class inputs.

Figure 15: A DAG over R on MNIST, obtained
after propagating the means of U and threshold-
ing edges that have less than 0.5 probability in G.
We can see that FNP learns a meaningful G by
connecting points that have the same class.

The DAG among the points in R is a bit trickier, as we have to adopt a topological
ordering of the vectors in UR in order to avoid cycles. Inspired by the concept of stochastic
orderings [160], we define an ordering according to a parameter free scalar projection t(·)
of u, i.e. ui > uj when t(ui) > t(uj). The function t(·) is defined as t(ui) =

∑
k tk(uik)

where each individual tk(·) is a monotonic function (e.g. the log CDF of a standard normal
distribution); in this case we can guarantee that ui > uj when individually for all of the
dimensions k we have that uik > ujk under tk(·). This ordering can then be used in

p(G|UR) =
∏
i∈R

∏
j∈R,j 6=i

Bern
(
Gij|I[t(ui) > t(uj)]g(ui, uj)

)
(66)

which leads into random adjacency matrices G that can be re-arranged into a triangular
structure with zeros in the diagonal (i.e. DAGs). In a similar manner, such a DAG con-
struction reminisces of digraphon models [26], a generalization of graphons to the directed
case. The same two important distinctions still apply; we are using vector instead of scalar
representations and the prior over the representation of each vertex i depends on xi. It is
now straightforward to bake in any relational inductive biases that we want our function to
have by appropriately defining the g(·, ·) that is used for the construction of G and A. For
example, we can encode an inductive bias that neighboring points should be dependent
by choosing g(ui, uj) = exp

(
−τ
2‖ui − uj‖2

)
. This what we used in practice. We provide

examples of the A, G that FNPs learn in Figures 14, 15 respectively.

PA R A M E T R I Z I N G T H E P R E D I C T I V E D I S T R I B U T I O N Having obtained the depen-
dency graphs A, G, we are now interested in how to construct a predictive model that in-
duces them. To this end, we parametrize predictive distributions for each target variable yi
that explicitly depend on the reference set R according to the structure of G and A. This is
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realized via a local latent variable zi that summarizes the context from the selected parent
points in R and their targets yR∫

pθ(yB, ZB|R, G, A)dZB =∫
pθ(yR, ZR|R, G)dZR

∫
pθ(yM, ZM|R, yR, A)dZM

=
∏
i∈R

∫
pθ
(
zi|parGi(R, yR)

)
pθ(yi|zi)dzi

∏
j∈M

∫
pθ

(
zj|parAj(R, yR)

)
pθ(yj|zj)dzj (67)

where parGi(·), parAj(·) are functions that return the parents of the point i, j according to
G, A respectively. Notice that we are guaranteed that the decomposition to the condition-
als at Eq. 67 is valid, since the DAG G coupled with A correspond to another DAG. Since
permutation invariance in the parents is necessary for an overall exchangeable model, we
define each distribution over z, e.g. p

(
zi|parAi(R, yR)

)
, as an independent Gaussian dis-

tribution per dimension k of z2

pθ
(
zik|parAi(R, yR)

)
= N

(
zik

∣∣∣∣Ci∑
j∈R

Aijµθ(xrj ,y
r
j )k,

exp

Ci∑
j∈R

Aijνθ(xrj ,y
r
j )k

) (68)

where the µθ(·, ·) and νθ(·, ·) are vector valued functions with a codomain in R|z| that
transform the data tuples of R, yR. TheCi is a normalization constant withCi = (

∑
jAij+

ε)−1, i.e. it corresponds to the reciprocal of the number of parents of point i, with an extra
small ε to avoid division by zero when a point has no parents. By observing Eq. 67 we
can see that the prediction for a given yi depends on the input covariates xi only indirectly
via the graphs G, A which are a function of ui. Intuitively, it encodes the inductive bias
that predictions on points that are “far away”, i.e. have very small probability of being
connected to the reference set via A, will default to an uninformative standard normal
prior over zi hence a constant prediction for yi. This is similar to the behaviour that GPs
with RBF kernels exhibit.

Nevertheless, Eq. 67 can also hinder extrapolation, something that neural networks can
do well. In case extrapolation is important, we can always add a direct path by conditioning
the prediction on ui, the latent embedding of xi, i.e. p(yi|zi, ui). This can serve as a middle
ground where we can allow some extrapolation via u. In general, it provides a knob, as
we can now interpolate between GP and neural network behaviours by e.g. changing the
dimensionalities of z and u.

2 The factorized Gaussian distribution was chosen for simplicity, and it is not a limitation. Any distribution is
valid for z provided that it defines a permutation invariant probability density w.r.t. the parents.
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P U T T I N G E V E RY T H I N G T O G E T H E R : T H E F N P A N D F N P+ M O D E L S Now by
putting everything together we arrive at the overall definitions of the two FNP models that
we propose

FNPθ(D) :=∑
G,A

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)dUBdZBdyi∈R\Dx , (69)

FNP+
θ (D) :=∑

G,A

∫
pθ(UB, G, A|XB)pθ(yB, ZB|R, UB, G, A)dUBdZBdyi∈R\Dx , (70)

where the first makes predictions according to Eq. 67 and the second further conditions on
u. Notice that besides the marginalizations over the latent variables and graphs, we also
marginalize over any of the points in the reference set that are not part of the observed
dataset D. This is necessary for the proof of consistency that we provide later. For this
work, we always chose the reference set to be a part of the dataset D so the extra integration
is omitted. In general, the marginalization can provide a mechanism to include unlabelled
data to the model which could be used to e.g. learn a better embedding u or “impute” the
missing labels. We leave the exploration of such an avenue for future work. Having defined
the models at Eq. 69, 70 we now prove that they both define valid permutation invariant
stochastic processes by borrowing the methodology described at [41].

Proposition 1. The distributions defined at Eq. 69, 70 are valid permutation invariant
stochastic processes, hence they correspond to Bayesian models.

Proof sketch. The full proof can be found in the Appendix. Permutation invariance can
be proved by noting that each of the terms in the products are permutation equivariant
w.r.t. permutations of D hence each of the individual distributions defined at Eq. 69, 70
are permutation invariant due to the products. To prove consistency we have to consider
two cases [41], the case where we add a point that is part of R and the case where we add
one that is not part of R. In the first case, marginalizing out that point will lead to the same
distribution (as we were marginalizing over that point already), whereas in the second
case the point that we are adding is a leaf in the dependency graph, hence marginalizing it
doesn’t affect the other points.

5.2.2 The FNPs in practice: fitting and predictions

Having defined the two models, we are now interested in how we can fit their parameters
θ when we are presented with a dataset D, as well as how to make predictions for novel
inputs x∗. For simplicity, we assume that R ⊆ Dx and focus on the FNP as the derivations
for the FNP+ are analogous. Notice that in this case we have that B = Dx = XD.

F I T T I N G T H E M O D E L T O DATA Fitting the model parameters with maximum marginal
likelihood is difficult, as the necessary integrals / sums of Eq.69 are intractable. For this
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reason, we employ variational inference and maximize the following lower bound to the
marginal likelihood of D

L = Eqφ(UD,G,A,ZD|XD)[ logpθ(UD, G, A, ZD, yD|XD)−

logqφ(UD, G, A, ZD|XD)], (71)

with respect to the model parameters θ and variational parameters φ. For a tractable lower
bound, we assume the variational distribution factorization

qφ(UD, G, A, ZD|XD) = pθ(UD|XD)p(G|UR)p(A|UD)qφ(ZD|XD)

with qφ(ZD|XD) =
∏|D|
i=1 qφ(zi|xi). This leads to

LR +LM|R =

Epθ(UR,G|XR)qφ(ZR|XR)[logpθ(yR, ZR|R, G) − logqφ(ZR|XR)]+ (72)

+ Epθ(UD,A|XD)qφ(ZM|XM)[logpθ(yM|ZM) + logpθ (ZM|parA(R, yR))

− logqφ(ZM|XM)]

where we decomposed the lower bound into the terms for the reference set R, LR, and
the terms that correspond to M, LM|R. For large datasets D we are interested in doing
efficient optimization of this bound. While the first term is not, in general, amenable to
minibatching, the second term is. As a result, we can use minibatches that scale according
to the size of the reference set R. We provide more details in the Appendix.

In practice, for all of the distributions over u and z, we use diagonal Gaussians, whereas
for G, A we use the concrete / Gumbel-softmax relaxations [85, 120] during training. In
this way we can jointly optimize θ,φ with gradient based optimization by employing
the pathwise derivatives obtained with the reparametrization trick [91, 151]. Furthermore,
we tie most of the parameters θ of the model and φ of the inference network, as the
regularizing nature of the lower bound can alleviate potential overfitting of the model
parameters θ. More specifically, for pθ(ui|xi), qφ(zi|xi) we share a neural network torso
and have two output heads, one for each distribution. We also parametrize the priors over
the latent z in terms of the qφ(zi|xi) for the points in R; the µθ(xri ,y

r
i),νθ(x

r
i ,y

r
i) are both

defined as µq(xri) +µ
r
y, νq(xri) +ν

r
y, where µq(·),νq(·) are the functions that provide the

mean and variance for qφ(zi|xi) and µry,νry are linear embeddings of the labels.
It is interesting to see that the overall bound at Eq. 72 reminisces the bound of a latent

variable model such as a variational autoencoder (VAE) [91, 151] or a deep variational
information bottleneck model (VIB) [6]. We aim to predict the label yi of a given point
xi from its latent code zi where the prior, instead of being globally the same as in [6,
91, 151], it is conditioned on the parents of that particular point. The conditioning is also
intuitive, as it is what converts the i.i.d. to the more general exchangeable model. This is
also similar to the VAE for unsupervised learning described at associative compression
networks (ACN) [57] and reminisces works on few-shot learning [14].

T H E P O S T E R I O R P R E D I C T I V E D I S T R I B U T I O N In order to perform predictions
for unseen points x∗, we employ the posterior predictive distribution of FNPs. More specif-
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ically, we can show that by using Bayes rule, the predictive distribution of the FNPs has
the following simple form

∑
a∗

∫
pθ(UR, u∗|XR, x∗)p(a∗|UR, u∗)

pθ(z∗|para∗(R, yR))pθ(y∗|z∗)dURdu∗dz∗ (73)

where u are the representations given by the neural network and a∗ is the binary vector that
denotes which points from R are the parents of the new point. We provide more details in
the Appendix. Intuitively, we first project the reference set and the new point on the latent
space u with a neural network and then make a prediction y∗ by basing it on the parents
from R according to a∗. This predictive distribution reminisces the models employed in
few-shot learning [187].

5.3 R E L AT E D W O R K

There has been a long line of research in Bayesian Neural Networks (BNNs) [23, 56, 72,
89, 114, 163]. A lot of works have focused on the hard task of posterior inference for
BNNs, by positing more flexible posteriors [13, 113, 114, 163, 204]. The exploration of
more involved priors has so far not gain much traction, with the exception of a handful
of works [10, 64, 89, 112]. For flexible stochastic processes, we have a line of works that
focus on (scalable) Gaussian Processes (GPs); these revolve around sparse GPs [169, 182],
using neural networks to parametrize the kernel of a GP [196, 197], employing finite rank
approximations to the kernel [39, 71] or parametrizing kernels over structured data [121,
194]. Compared to such approaches, FNPs can in general be more scalable due to not
having to invert a matrix for prediction and, furthermore, they can easily support arbitrary
likelihood models (e.g. for discrete data) without having to consider appropriate transfor-
mations of a base Gaussian distribution (which usually requires further approximations).

There have been interesting recent works that attempt to merge stochastic processes and
neural networks. Neural Processes (NPs) [52] define distributions over global latent vari-
ables in terms of subsets of the data, while Attentive NPs [87] extend NPs with a determin-
istic path that has a cross-attention mechanism among the datapoints. In a sense, FNPs can
be seen as a variant where we discard the global latent variables and instead incorporate
cross-attention in the form of a dependency graph among local latent variables. Another
line of works is the Variational Implicit Processes (VIPs) [116], which consider BNN
priors and then use GPs for inference, and functional variational BNNs (fBNNs) [176],
which employ GP priors and use BNNs for inference. Both methods have their drawbacks,
as with VIPs we have to posit a meaningful prior over global parameters and the objective
of fBNNs does not always correspond to a bound of the marginal likelihood. Finally, there
is also an interesting line of works that study wide neural networks with random Gaussian
parameters and discuss their equivalences with Gaussian Processes [102, 137], as well as
the resulting kernel [84].

Similarities can be also seen at other works; Associative Compression Networks (ACNs) [57]
employ similar ideas for generative modelling with VAEs and conditions the prior over the
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latent variable of a point to its nearest neighbors. Correlated VAEs [180] similarly employ
a (a-priori known) dependency structure across the latent variables of the points in the
dataset. In few-shot learning, metric-based approaches [14, 93, 168, 177, 187] similarly
rely on similarities w.r.t. a reference set for predictions.

5.4 E X P E R I M E N T S

We performed two main experiments in order to verify the effectiveness of FNPs. We
implemented and compared against 4 baselines: a standard neural network (denoted as
NN), a neural network trained and evaluated with Monte Carlo (MC) dropout [50] and a
Neural Process (NP) [52] architecture. The architecture of the NP was designed in a way
that is similar to the FNP. For the first experiment we explored the inductive biases we can
encode in FNPs by visualizing the predictive distributions in toy 1d regression tasks. For
the second, we measured the prediction performance and uncertainty quality that FNPs
can offer on the benchmark image classification tasks of MNIST and CIFAR 10. For this
experiment, we also implemented and compared against a Bayesian neural network trained
with variational inference [23]. We provide the experimental details in the Appendix.

For all of the experiments in the paper, the NP was trained in a way that mimics the
FNP, albeit we used a different set R at every training iteration in order to conform to
the standard NP training regime. More specifically, a random amount from 3 to num(R)

points were selected as a context from each batch, with num(R) being the maximum
amount of points allocated for R. For the toy regression task we set num(R) = N− 1.

E X P L O R I N G T H E I N D U C T I V E B I A S E S I N T OY R E G R E S S I O N To visually access
the inductive biases we encode in the FNP we experiment with two toy 1-d regression tasks
described at [140] and [72] respectively. The generative process of the first corresponds to
drawing 12 points fromU[0, 0.6], 8 points fromU[0.8, 1] and then parametrizing the target
as yi = xi + ε+ sin(4(xi + ε)) + sin(13(xi + ε)) with ε ∼ N(0, 0.032). This generates a
nonlinear function with “gaps” in between the data where we, ideally, want the uncertainty
to be high. For the second we sampled 20 points from U[−4, 4] and then parametrized the
target as yi = x3i + ε, where ε ∼ N(0, 9). For all of the models we used a heteroscedastic
noise model. Furthermore, due to the toy nature of this experiment, we also included a
Gaussian Process (GP) with an RBF kernel. We used 50 dimensions for the global latent
of NP for the first task and 10 dimensions for the second. For the FNP models we used
3, 50 dimensions for the u, z for the first task and 3, 10 for the second. For the reference
set R we used 10 random points for the FNPs and the full dataset for the NP.

The results we obtain are presented in Figure 16. We can see that for the first task the
FNP with the RBF function for g(·, ·) has a behaviour that is very similar to the GP. We
can also see that in the second task it has the tendency to quickly move towards a flat
prediction outside the areas where we observe points, something which we argued about
at Section 5.2.1. This is not the case for MC-dropout or NP where we see a more linear
behaviour on the uncertainty and erroneous overconfidence, in the case of the first task, in
the areas in-between the data. Nevertheless, they do seem to extrapolate better compared
to the FNP and GP. The FNP+ seems to combine the best of both worlds as it allows for
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(a) MC-dropout (b) Neural Process (c) Gaussian Pro-
cess

(d) FNP (e) FNP+

Figure 16: Predictive distributions for the two toy regression tasks according to the different models
we considered. Shaded areas correspond to ± 3 standard deviations.

extrapolation and GP like uncertainty, although a free bits [32] modification of the bound
for z was helpful in encouraging the model to rely more on these particular latent variables.
Empirically, we observed that adding more capacity on u can move the FNP+ closer to
the behaviour we observe for MC-dropout and NPs. In addition, increasing the amount
of model parameters θ can make FNPs overfit, a fact that can result into a reduction of
predictive uncertainty.

P R E D I C T I O N P E R F O R M A N C E A N D U N C E RTA I N T Y Q UA L I T Y For the second
task we considered the image classification of MNIST and CIFAR 10. For MNIST we
used a LeNet-5 architecture that had two convolutional and two fully connected layers,
whereas for CIFAR we used a VGG-like architecture that had 6 convolutional and two
fully connected. In both experiments we used 300 random points from D as R for the
FNPs and for NPs, in order to be comparable, we randomly selected up to 300 points from
the current batch for the context points during training and used the same 300 points as
FNPs for evaluation. The dimensionality of u, z was 32, 64 for the FNP models in both
datasets, whereas for the NP the dimensionality of the global variable was 32 for MNIST
and 64 for CIFAR.

As a proxy for the uncertainty quality we used the task of out of distribution (o.o.d.)
detection; given the fact that FNPs are Bayesian models we would expect that their epis-
temic uncertainty will increase in areas where we have no data (i.e. o.o.d. datasets). The
metric that we report is the average entropy on those datasets as well as the area under an
ROC curve (AUCR) that determines whether a point is in or out of distribution according
to the predictive entropy. Notice that it is simple to increase the first metric by just learning
a trivial model but that would be detrimental for AUCR; in order to have good AUCR the
model must have low entropy on the in-distribution test set but high entropy on the o.o.d.
datasets. For the MNIST model we considered notMNIST, Fashion MNIST, Omniglot,
Gaussian N(0, 1) and uniform U[0, 1] noise as o.o.d. datasets whereas for CIFAR 10 we
considered SVHN, a tinyImagenet resized to 32 pixels, iSUN and similarly Gaussian and
uniform noise. The summary of the results can be seen at Table 6.
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Table 6: Accuracy and uncertainty on MNIST and CIFAR 10 from 100 posterior predictive samples.
For the all of the datasets the first column is the average predictive entropy whereas for the o.o.d.
datasets the second is the AUCR and for the in-distribution it is the test error in %.

NN MC-Dropout VI BNN NP FNP FNP+

MNIST 0.01 / 0.6 0.05 / 0.5 0.02 / 0.6 0.01 / 0.6 0.04 / 0.7 0.02 / 0.7

nMNIST 1.03 / 99.73 1.30 / 99.48 1.33 / 99.80 1.31 / 99.90 1.94 / 99.90 1.77 / 99.96
fMNIST 0.81 / 99.16 1.23 / 99.07 0.92 / 98.61 0.71 / 98.98 1.85 / 99.66 1.55 / 99.58

Omniglot 0.71 / 99.44 1.18 / 99.29 1.61 / 99.91 0.86 / 99.69 1.87 / 99.79 1.71 / 99.92
Gaussian 0.99 / 99.63 2.03 / 100.0 1.77 / 100.0 1.58 / 99.94 1.94 / 99.86 2.03 / 100.0
Uniform 0.85 / 99.65 0.65 / 97.58 1.41 / 99.87 1.46 / 99.96 2.11 / 99.98 1.88 / 99.99

Average 0.9±0.1 / 99.5±0.1 1.3±0.2 / 99.1±0.4 1.4±0.1 / 99.6±0.3 1.2±0.2 / 99.7±0.2 1.9±0.1 / 99.8±0.1 1.8±0.1 / 99.9±0.1

CIFAR10 0.05 / 6.9 0.06 / 7.0 0.06 / 6.4 0.06 / 7.5 0.18 / 7.2 0.08 / 7.2

SVHN 0.44 / 93.1 0.42 / 91.3 0.45 / 91.8 0.38 / 90.2 1.09 / 94.3 0.42 / 89.8

tImag32 0.51 / 92.7 0.59 / 93.1 0.52 / 91.9 0.45 / 89.8 1.20 / 94.0 0.74 / 93.8

iSUN 0.52 / 93.2 0.59 / 93.1 0.57 / 93.2 0.47 / 90.8 1.30 / 95.1 0.81 / 94.8

Gaussian 0.01 / 72.3 0.05 / 72.1 0.76 / 96.9 0.37 / 91.9 1.13 / 95.4 0.96 / 97.9
Uniform 0.93 / 98.4 0.08 / 77.3 0.65 / 96.1 0.17 / 87.8 0.71 / 89.7 0.99 / 98.4

Average 0.5±0.2 / 89.9±4.5 0.4±0.1 / 85.4±4.5 0.6±0.1 / 94±1.1 0.4±0.1 / 90.1±0.7 1.1±0.1 / 93.7±1.0 0.8±0.1 / 94.9±1.6

Table 7: Results obtained by training a NP
model with a fixed reference set (akin to FNP)
and a FNP+ model with a random reference
set (akin to NP).

NP fixed R FNP+ random R

MNIST 0.01 / 0.6 0.02 / 0.8

nMNIST 1.09 / 99.78 2.20 / 100.0

fMNIST 0.64 / 98.34 1.58 / 99.78

Omniglot 0.79 / 99.53 2.06 / 99.99

Gaussian 1.79 / 99.96 2.28 / 100.0

Uniform 1.42 / 99.93 2.23 / 100.0

CIFAR10 0.07 / 7.5 0.09 / 6.9

SVHN 0.46 / 91.5 0.56 / 91.4

tImag32 0.55 / 91.5 0.77 / 93.4

iSUN 0.60 / 92.6 0.83 / 94.0

Gaussian 0.20 / 87.2 1.23 / 99.1

Uniform 0.53 / 94.3 0.90 / 97.2

We observe that both FNPs have compara-
ble accuracy to the baseline models while hav-
ing higher average entropies and AUCR on the
o.o.d. datasets. FNP+ in general seems to per-
form better than FNP. The FNP did have a rel-
atively high in-distribution entropy for CIFAR
10, perhaps denoting that a larger R might
be more appropriate. We further see that the
FNPs have almost always better AUCR than
all of the baselines we considered. Interest-
ingly, out of all the non-noise o.o.d. datasets
we did observe that Fashion MNIST and
SVHN, were the hardest to distinguish on av-
erage across all the models. This effect seems
to agree with the observations from [133], al-
though more investigation is required. We also
observed that, sometimes, the noise datasets
on all of the baselines can act as “adversarial
examples” [179] thus leading to lower entropy
than the in-distribution test set (e.g. Gaussian
noise for the NN on CIFAR 10). FNPs did
have a similar effect on CIFAR 10, e.g. the FNP on uniform noise, although to a much
lesser extent. We leave the exploration of this phenomenon for future work. It should be
mentioned that other advances in o.o.d. detection, e.g. [33, 104], are orthogonal to FNPs
and could further improve performance.
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We further performed additional experiments in order to better disentangle the perfor-
mance differences between NPs and FNPs: we trained an NP with the same fixed reference
set R as the FNPs throughout training, as well as an FNP+ where we randomly sample a
new R for every batch (akin to the NP) and use the same R as the NP for evaluation. While
we argued in the construction of the FNPs that with a fixed R we can obtain a stochastic
process, we could view the case with random R as an ensemble of stochastic processes,
one for each realization of R. The results from these models can be seen at Table 7. On the
one hand, the FNP+ still provides robust uncertainty while the randomness in R seems to
improve the o.o.d. detection, possibly due to the implicit regularization. On the other hand
the fixed R seems to hurt the NP, as the o.o.d. detection decreased, similarly hinting that
the random R has beneficial regularizing effects.

Finally, we provide some additional insights after doing ablation studies on MNIST w.r.t.
the sensitivity to the number of points in R for NP, FNP and FNP+, as well as varying the
amount of dimensions for u, z in the FNP+. The results can be found in the Appendix.
We generally observed that NP models have lower average entropy at the o.o.d. datasets
than both FNP and FNP+ irrespective of the size of R. The choice of R seems to be more
important for the FNPs rather than NPs, with FNP needing a larger R, compared to FNP+,
to fit the data well. In general, it seems that it is not the quantity of points that matters
but rather the quality; the performance did not always increase with more points. This
supports the idea of a “coreset” of points, thus exploring ideas to infer it is a promising
research direction that could improve scalability and alleviate the dependence of FNPs on a
reasonable R. As for the trade-off between z, u in FNP+; a larger capacity for z, compared
to u, leads to better uncertainty whereas the other way around seems to improve accuracy.
These observations are conditioned on having a reasonably large u, which facilitates for
meaningful G, A.

5.5 D I S C U S S I O N

We presented a novel family of exchangeable stochastic processes, the Functional Neural
Processes (FNPs). In contrast to NPs [52] that employ global latent variables, FNPs operate
by employing local latent variables along with a dependency structure among them, a
fact that allows for easier encoding of inductive biases. We verified the potential of FNPs
experimentally, and showed that they can serve as competitive alternatives. We believe
that FNPs open the door to plenty of exciting avenues for future research; designing better
function priors by e.g. imposing a manifold structure on the FNP latents [46], extending
FNPs to unsupervised learning by e.g. adapting ACNs [57] or considering hierarchical
models similar to deep GPs [40].





Part II

P RO BA B I L I S T I C C O M P R E S S I O N F O R N E U R A L
N E T W O R K S

In this section of the thesis we propose techniques that can allow for practical
neural network compression and speed-ups. In the first chapter we make a con-
nection to part i and show how Bayesian inference through specific choices for
the prior distributions over the parameters can lead to highly compressed mod-
els through joint pruning and quantization. In the next two chapters, we tease
these two objectives apart and take a closer look at sparsity and quantization
by proposing two general purpose recipes that can allow for gradient based
optimization of such objectives.
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BAY E S I A N C O M P R E S S I O N F O R D E E P L E A R N I N G

Compression and computational efficiency in deep learning have become a problem of
great significance. In this chapter, we argue that the most principled and effective way to
attack this problem is by taking a Bayesian point of view, where through sparsity inducing
priors we prune large parts of the network. We introduce two novelties: 1) we use hier-
archical priors to prune nodes instead of individual weights, and 2) we use the posterior
uncertainties to determine the fixed point precision to encode the weights. Both factors
significantly contribute to achieving the state of the art in terms of compression rates,
while still staying competitive with methods designed to optimize for speed or energy
efficiency.1

6.1 I N T RO D U C T I O N

Deep neural networks have been improving state of the art in several benchmark tasks,
ranging from computer vision to natural language processing. Despite these successes,
they face challenges when they are to be deployed for real world applications and at re-
source constrained devices, such as mobile phones. In such cases, the computational and
energy consumption costs can become prohibitive. For this reason, compression, quantiza-
tion and efficiency have risen as a topic of increasing practical importance.

While these metrics are certainly correlated, optimizing for one might not always yield
gains on the other. For example, compressing a convolutional neural network (CNN) by
removing parameters from its fully connected layers can, sometimes significantly, reduce
its overall number of parameters, but that might not necessarily lead to better efficiency as
the majority of computations happen at the convolutional layers. As an example, we have
that 96% of the parameters of Alexnet are in the fully connected layers but 91% of the
overall computation is from the convolutional layers [178].

In the literature, the most common way to address these problems is by “shrinking” the
neural network architecture, since NNs suffer from significant parameter redundancy [42],
along with reducing the effective bit precision for each of the neural network parameters.
For the former, relevant methods are network pruning, where weights are being removed
from the network [59, 66, 101] and student-teacher architectures, where a smaller, and
thus more efficient, network is being trained to mimic the predictions of the larger teacher
network [12, 77].

1 This chapter is adapted from our publication [112].
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From a Bayesian perspective network pruning and reducing bit precision for the weights
is aligned with achieving high accuracy, because Bayesian methods search for the optimal
model structure (which leads to pruning with sparsity inducing priors), and reward uncer-
tain posteriors over parameters through the bits back argument [76] (which leads to remov-
ing insignificant bits). This relation is made explicit in the MDL principle [58] which is
known to be related to Bayesian inference.

In this paper we will use the variational Bayesian approximation for Bayesian infer-
ence which has also been explicitly interpreted in terms of model compression [76]. By
employing sparsity inducing priors for hidden units (and not individual weights) we can
prune neurons including all their ingoing and outgoing weights. This avoids more compli-
cated and inefficient coding schemes needed for pruning or vector quantizing individual
weights. As a additional Bayesian bonus we can use the posterior uncertainties to assess
which bits are significant and remove the ones which fluctuate too much under posterior
sampling. From this we derive the fixed point precision per layer, which is still practical
on hardware.

6.2 VA R I AT I O N A L B AY E S A N D M I N I M U M D E S C R I P T I O N L E N G T H

A core aspect of our proposed method is variational inference [56, 76, 78, 145, 188]. In
variational inference, the goal is to approximate the posterior distribution of a probabilis-
tic model by optimizing the parameters of a variational approximation. More specifically,
let D be a dataset consisting of N tuples {(xi,yi)}i=1:N denoting our inputs x and cor-
responding targets y. Now consider a parametric likelihood for our dataset defined as
p(D|w) =

∏N
i=1 p(yi|xi, w), where w are the parameters of our model, e.g., a neural

network. We can then posit a prior distribution over these parameters p(w) and seek the
posterior distribution p(w|D). Since for neural networks, this posterior distribution is in-
tractable, we will posit a variational approximation qφ(w) with parameters φ to the true
posterior distribution p(w|D) and we will optimize φ in order to maximize the so-called
Evidence Lower Bound (ELBO)

L(φ) = Eqφ(w)[logp(D|w)]︸ ︷︷ ︸
LE

+ Eqφ(w)[logp(w)] +H(qφ(w))︸ ︷︷ ︸
LC

(74)

where H(q) corresponds to the entropy of our approximate posterior distribution. Provided
that our approximation qφ(w) is sufficiently flexible, optimization of Eq. 74 will lead to
qφ(w) = p(w|D).

It is interesting to see that the ELBO is comprised from two terms, the data fit term LE,
i.e., how well does our approximation qφ(w) fit the dataset D, and the complexity loss
term LC, i.e., how much does our approximation differ from our prior, and independent
of the data, assumptions in p(w). This connects the ELBO with a fundamental theorem
in information theory, the minimum description length (MDL) principle [58]. The MDL
principle connects to compression directly, in that it defines the best model / hypothesis, to
be that which minimizes the sum of the model complexity and the data misfit errors with
the minimum number of bits [152, 153].
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As a result, by maximizing the ELBO we will naturally arrive at compressed solutions,
in that parameters which do not contribute much in explaining the data D will be “ig-
nored” and thus fall back to our prior assumptions. Therefore, by employing priors that
encourage sparsity for groups of weights that are associated with specific neurons, this
mechanism will start pruning the unnecessary neurons and will result into neural networks
that are more efficient. As an additional bonus, we can further benefit from the bits-back
argument [76, 78] due to the stochastic weights qφ(w) and the entropy term in the ELBO,
leading to even more compression. This is in contrast to deterministic weights that lead to
H(δ(w)) = −∞2.

In practice, optimizing Eq. 74 can be challenging, due to the fact that the LE term is
intractable for neural networks when we maintain a distribution over weights via qφ(w).
Nevertheless, for continuous qφ(w) not all is lost, as we can efficiently perform Monte
Carlo approximations of the expectation with the reparametrization trick [91, 151]; we
can express the random sampling w ∼ qφ(w) as a deterministic and differentiable trans-
formation that involves parameter-less noise ε and the parameters of our approximation φ,
i.e., ε ∼ p(ε), w = f(ε,φ). In this way, we can obtain unbiased stochastic gradients of
the ELBO with respect to φ and plug them to any off-the-shelf gradient based optimizer.
For neural networks, the efficiency of this procedure can be further improved via the lo-
cal reparametrization trick [89], which samples the neuron pre-activations instead of the
weights themselves at each layer, leading to less variance in the stochastic gradients.

6.3 R E L AT E D W O R K

One of the earliest ideas and most direct approaches to tackle efficiency is pruning. Orig-
inally introduced by [101], pruning has recently been demonstrated to be applicable to
modern architectures [59, 65]. It had been demonstrated that an overwhelming amount of
up to 99,5% of parameters can be pruned in common architectures. There have been quite a
few encouraging results obtained by (empirical) Bayesian approaches that employ weight
pruning [23, 56, 130, 132, 185]. Nevertheless, weight pruning is in general inefficient for
compression since the matrix format of the weights is not taken into consideration; as a
result, Compressed Sparse Column (CSC) format has to be employed. Moreover, note that
in conventional CNNs most flops are used by the convolution operation. Inspired by this
observation, several authors proposed pruning schemes that take these considerations into
account [192, 199] or even go as far as efficiency aware architectures to begin with [44,
79, 81]. From the Bayesian viewpoint, similar pruning schemes have been explored at [86,
98, 119, 134].

Given optimal architecture, NNs can further be compressed by quantization. More pre-
cisely, there are 2 common techniques. First, the set of accessible weights can be reduced
drastically. As an extreme example, [36, 122, 149, 208] and [35] trained NN to use only
binary or tertiary weights with floating point gradients. This approach however is in need
of significantly more parameters than their ordinary counterparts. Work by [53] explores
various techniques beyond binary quantization: k-means quantization, product quantiza-

2 In practice this term is a large constant determined by the weight precision.
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tion and residual quantization. Later studies extent this set to optimal fixed point [106] and
hashing quantization [31]. [65] apply k-means clustering and consequent center training.
From a practical point of view, however, all these are fairly unpractical during test time.
For the computation of each feature map in a net, the original weight matrix must be re-
constructed from the indexes in the matrix and a codebook that contains all the original
weights. This is an expensive operation and this is why some studies propose a different ap-
proach than set quantization. Precision quantization simply reduces the bit size per weight.
This has a great advantage over set quantization at inference time since feature maps can
simply be computed with less precision weights. Several studies show that this has little to
no effect on network accuracy when using 16bit weights [29, 37, 61, 123, 186]. Somewhat
orthogonal to the above discussion but certainly relevant are approaches that customize the
implementation of CNNs for hardware limited devices[11, 79, 164].

6.4 B AY E S I A N C O M P R E S S I O N W I T H S C A L E M I X T U R E S O F N O R M A L S

Consider the following prior over a parameter w where its’ scale z is governed by a distri-
bution p(z):

z ∼ p(z); w ∼ N(w; 0, z2) (75)

with z2 serving as the variance of the zero-mean normal distribution over w. By treating
the scales of w as random variables we can recover marginal prior distributions over the
parameters that have heavier tails and more mass at zero; this subsequently biases the
posterior distribution over w to be sparse. This family of distributions is known as scale-
mixtures of normals [7, 17] and it is quite general, as a lot of well known sparsity inducing
distributions are special cases.

One example of the aforementioned framework is the spike-and-slab distribution [127],
the golden standard for sparse Bayesian inference. Under the spike-and-slab, the mixing
density of the scales is a Bernoulli distribution, thus the marginal p(w) has a delta “spike”
at zero and a continuous “slab” over the real line. Unfortunately, this prior leads to a com-
putationally expensive inference since we have to explore a space of 2M models, where
M is the number of the model parameters. Dropout [174], one of the most popular regu-
larization techniques for neural networks, can be interpreted as positing a spike and slab
distribution over the weights where the variance of the “slab” is zero [50, 107]. Another ex-
ample is the Laplace distribution which arises by considering p(z2) = Exp(λ). The mode
of the posterior distribution under a Laplace prior is known as the Lasso [181] estimator
and has been previously used for sparsifying neural networks at [158, 192]. While compu-
tationally simple, the Lasso estimator is prone to “shrinking" large signals [28] and only
provides point estimates about the parameters. As a result it does not provide uncertainty
estimates, it can potentially overfit and, according to the bits-back argument, is inefficient
for compression.

For these reasons, in this paper we will tackle the problem of compression and efficiency
in neural networks by adopting a full Bayesian treatment and inferring a posterior distri-
bution over the parameters under a scale mixture prior. We will consider two choices for
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prior over the scales p(z); the hyperparameter free log-uniform prior [48, 89] and the half-
Cauchy prior, which results into a horseshoe [28] distribution. Both of these distributions
correspond to a continuous relaxation of the spike-and-slab prior and we provide a brief
discussion on their shrinkage properties at Appendix C.

6.4.1 Reparametrizing variational dropout for group sparsity

One potential choice for p(z) is the improper log-uniform prior: p(z) ∝ |z|−1. It turns out
that we can recover the log-uniform prior over the weights w if we marginalize over the
scales z:

p(w) ∝
∫
1

|z|
N(w|0, z2)dz =

1

|w|
(76)

This alternative parametrization of the the log uniform prior is known in the statistics
literature as the normal-Jeffreys prior and has been introduced by [48]. This formulation
allows to “couple" the scales of weights that belong to the same group (e.g. neuron or
feature map), by simply sharing the corresponding scale variable z in the joint prior:

p(W, z) ∝
A∏
i

1

|zi|

A,B∏
ij

N(wij|0, z2i ) (77)

where W is the weight matrix of a fully connected neural network layer with A being
the dimensionality of the input and B the dimensionality of the output. Now consider
performing variational inference with a joint posterior parametrized as follows:

qφ(W, z) =
A∏
i=1

N(zi|µzi ,µ
2
zi
αi)

A,B∏
i,j

N(wij|ziµij, z2iσ
2
ij) (78)

where αi is the dropout rate [89, 130, 174] of the given group. As explained at [89, 130],
the multiplicative parametrization of the approximate posterior over z suffers from high
variance gradients; therefore we will follow [130] and re-parametrize it in terms of σ2zi =
µ2ziαi, hence optimize w.r.t. σ2zi . The lower bound under this prior and posterior becomes:

L(φ) = Eqφ(z)qφ(W|z)[logp(D|W)] − Eqφ(z)[KL(qφ(W|z)||p(W|z))]−

KL(qφ(z)||p(z)) (79)

Under this particular posterior parametrization the KL-divergence between the conditional
prior p(W|z) and posterior qφ(W|z) is independent of z:

KL(qφ(W|z)||p(W|z)) =
1

2

A,B∑
i,j

(
log �

�z2i

�
�z2iσ

2
ij

+ �
�z2iσ

2
ij

�
�z2i

+ �
�z2iµ

2
ij

�
�z2i

− 1

)
(80)

This independence can be better understood if we consider a non-centered parametrization
of the prior [142]. More specifically, consider reparametrizing the weights as w̃ij =

wij
zi

;
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this will then result into p(W|z)p(z) = p(W̃)p(z), where p(W̃) =
∏
i,jN(wij|0, 1) and

W = diag(z)W̃. Now if we perform variational inference under the p(W̃)p(z) prior with
a posterior of the form qφ(W̃, z) = qφ(W̃)qφ(z), with qφ(W̃) = N(w̃ij|µij,σ2ij), then
we see that we arrive at the same expressions for the KL-divergence between the prior and
the posterior. Finally, the KL-divergence between the normal-Jeffreys scale prior p(z) and
Gaussian posterior qφ(z) depends only on the “implied” dropout rate, αi = σ2zi/µ

2
zi

, and
takes the following form [130]:

KL(qφ(z)||p(z)) ≈
A∑
i

(
k1σ(k2 + k3 logαi) − 0.5m(− logαi) − k1

)
(81)

where σ(·), m(·) are the sigmoid and softplus functions respectively3 and k1 = 0.63576,
k2 = 1.87320, k3 = 1.48695. We can now prune entire groups of parameters by simply
specifying a threshold for the variational dropout rate of the corresponding group, e.g.
logαi = (logσ2zi − logµ2zi) > t. It should be mentioned that this prior parametrization
readily allows for a more flexible marginal posterior over the weights as we now have a
compound distribution, qφ(W) =

∫
qφ(W|z)qφ(z)dz; this is in contrast to the original

parametrization and the Gaussian approximations employed by [89, 130]. At test time, in
order to have a single feedforward pass we replace the distribution over W at each layer
with a single weight matrix, the masked posterior mean:

Ŵ = diag(m)�Eq(z)q(W̃)[diag(z)W̃] = diag
(
m� µz

)
MW (82)

where m is a binary mask determined according to the group variational dropout rate and
MW are the means of qφ(W̃).

6.4.2 Group horseshoe with half-Cauchy scale priors

Another choice for p(z) is a, proper, half-Cauchy: C+(0, s) = 2(sπ(1 + (z/s)2))−1; it
induces a horseshoe prior [28] distribution over the weights, which is a well known spar-
sity inducing prior in the statistics literature. More formally, the prior hierarchy over the
weights is expressed as (in a non-centered parametrization):

s ∼ C+(0, τ0); z̃i ∼ C+(0, 1); w̃ij ∼ N(0, 1); wij = w̃ijz̃is (83)

where τ0 is the free parameter that can be tuned for specific desiderata. The idea behind
the horseshoe is that of the “global-local" shrinkage; the global scale variable s pulls all of
the variables towards zero whereas the heavy tailed local variables zi can compensate and
allow for some weights to escape. Instead of directly working with the half-Cauchy priors
we will employ a decomposition of the half-Cauchy that relies upon (inverse) gamma
distributions [136] as this will allow us to compute the KL-divergence between the scale
prior p(z) and a log-normal scale posterior qφ(z) in closed form (the derivation is given

3 σ(x) = (1+ exp(−x))−1,m(x) = log(1+ exp(x))



6.4 B AY E S I A N C O M P R E S S I O N W I T H S C A L E M I X T U R E S O F N O R M A L S 69

in Appendix D). More specifically, we have that the half-Cauchy prior can be expressed in
a non-centered parametrization as:

p(β̃) = IG(0.5, 1); p(α̃) = G(0.5,k2); z2 = α̃β̃ (84)

where IG(),G() correspond to the inverse Gamma, Gamma distributions according to the
scale parametrization, and z follows a half-Cauchy distribution with scale k. Therefore we
will re-express the whole hierarchy as:

sb ∼ IG(0.5, 1); sa ∼ G(0.5, τ20); β̃i ∼ IG(0.5, 1); α̃i ∼ G(0.5, 1);

w̃ij ∼ N(0, 1); wij = w̃ij

√
sasbα̃iβ̃i (85)

It should be mentioned that the improper log-uniform prior is the limiting case of the horse-
shoe prior when the shapes of the (inverse) Gamma hyperpriors on α̃i, β̃i go to zero [28].
In fact, several well known shrinkage priors can be expressed in this form by altering
the shapes of the (inverse) Gamma hyperpriors [8]. For the variational posterior we will
employ the following mean field approximation:

qφ(sb, sa, β̃) = LN(sb|µsb ,σ2sb)LN(sa|µsa ,σ2sa)
A∏
i

LN(β̃i|µβ̃i ,σ
2
β̃i
) (86)

qφ(α̃, W̃) =

A∏
i

LN(α̃i|µα̃i ,σ
2
α̃i
)

A,B∏
i,j

N(w̃ij|µw̃ij ,σ
2
w̃ij

) (87)

where LN(·, ·) is a log-normal distribution. Furthermore, notice that we can also apply
local reparametrizations [89] when we are sampling

√
α̃iβ̃i and

√
sasb by exploiting

properties of the log-normal distribution4 and thus forming the implied:

z̃i =

√
α̃iβ̃i ∼ LN(µz̃i ,σ

2
z̃i
); s =

√
sasb ∼ LN(µs,σ2s) (88)

µz̃i =
1

2
(µα̃i + µβ̃i); σ2z̃i =

1

4
(σ2α̃i + σ

2
β̃i
); (89)

µs =
1

2
(µsa + µsb); σ2s =

1

4
(σ2sa + σ

2
sb
) (90)

As a threshold rule for group pruning we will use the negative log-mode5 of the local
log-normal r.v. zi = sz̃i:

p(zi) = LN(zi|µzi ,σ
2
zi
); µzi = µz̃i + µs; σ2zi = σ

2
z̃i
+ σ2s (91)

i.e. prune when (σ2zi −µzi) > t. This ignores dependencies among the zi elements induced
by the common scale s, but nonetheless we found that it works well in practice. Similarly

4 The product of log-normal r.v.s is another log-normal and a power of a log-normal r.v. is another log-normal.
5 We empirically found that it has similar behavior to the negative log-mean, −(µzi +

1
2σ
2
zi
), albeit slightly

better separating the scales.
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with the group normal-Jeffreys prior, we will replace the distribution over W at each layer
with the masked posterior mean during test time:

Ŵ = diag(m)�Eq(z)q(W̃)[diag(z)W̃]

= diag
(
m� exp(µz +

1

2
σ2z)
)
MW (92)

where m is a binary mask determined according to the aforementioned threshold, MW are
the means of q(W̃) and µz,σ2z are the means and variances of the local log-normals over
zi.

6.5 E X P E R I M E N T S

For our experimental evaluation, we measure the compression achieved by our methods
along with the speed-up that they provide on several neural network architectures and
datasets; the LeNet-300-100 [99], LeNet-5-Caffe6 on MNIST [100], along with VGG [166]7

on CIFAR 10 [95]. We realized the group of variables by tying the scale variables for each
output channel for convolutional layers and for each input neuron for the fully connected
layers. We provide the algorithms for the forward pass in the appendix. As for other hy-
perparameters; we set the scale of the global half-Cauchy prior τ0 to a small value, i.e.,
τ0 = 1e− 5, in order to increase the prior mass at zero and further encourage sparse mod-
els. Furthermore, we constrained the posterior variance [114] and used “warm-up” [170] in
order to facilitate for better optimization that avoids the bad local optima of the variational
objective. We provide in the appendix further details about the rest of the experimental
setup along with a sample visualization of the pruning thresholds. In the latter it is easy
to see that two well separated clusters are formed characterizing the signal and noise, thus
making easy the determination of the appropriate cut-off point.

6.5.1 Architecture learning & bit precisions

We will first demonstrate the group sparsity capabilities of our methods by illustrating the
learned architectures at Table 8. We also provide the inferred bit precision per layer for
the Bayesian methods, which we obtain by using the marginal posterior variances of the
weights as a proxy8:

V(wij)NJ = σ
2
zi

(
σ2ij + µ

2
ij

)
+ σ2ijµ

2
zi

(93)

V(wij)HS = (exp(σ2zi) − 1) exp(2µzi + σ
2
zi
)
(
σ2ij + µ

2
ij

)
+

σ2ij exp(2µzi + σ
2
zi
) (94)

6 https://github.com/BVLC/caffe/tree/master/examples/mnist
7 We use the adaptation for CIFAR 10 described at http://torch.ch/blog/2015/07/30/cifar.
html.

8 Due to the non-centered parametrization it is easy to compute: V(wij) = V(ziw̃ij) = V(zi)
(
E[w̃ij]

2 +

V(w̃ij)
)
+ V(w̃ij)E[zi]

2.

https://github.com/BVLC/caffe/tree/master/examples/mnist
http://torch.ch/blog/2015/07/30/cifar.html
http://torch.ch/blog/2015/07/30/cifar.html
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We used the mean variance across a layer to compute the unit round off necessary to rep-
resent weights. This method will give us the amount of significant bits, we furthermore
add 3 exponent and 1 sign bit to compute the final bit precision per layer. As we can
observe, our methods infer significantly smaller architectures for the LeNet-300-100 and
LeNet-5-Caffe, compared to Sparse Variational Dropout (VD) [130], Generalized Dropout
(GD) [171] and Group Lasso (GL) [192]. Interestingly, we observe that for the VGG net-
work almost all of big 512 feature map layers are drastically reduced to around 10 feature
maps whereas the initial layers are mostly kept intact. Furthermore, all of the Bayesian
methods considered require far fewer than the standard 32 bits per-layer to represent the
weights, sometimes even allowing for 5 bit precisions.

Table 8: Learned architectures with Sparse VD [130], Generalized Dropout (GD) [171] and Group
Lasso (GL) [192]. Bayesian Compression (BC) with group normal-Jeffreys (GNJ) and group horse-
shoe (GHS) priors correspond to the proposed models. We show the amount of neurons left after
pruning along with the average bit precisions for the weights at each layer.

Network & size Method Pruned architecture Bit-precision

LeNet-300-100 Sparse VD 512-114-72 8-11-14

784-300-100 BC-GNJ 278-98-13 8-9-14

BC-GHS 311-86-14 13-11-10

LeNet-5-Caffe Sparse VD 14-19-242-131 13-10-8-12

GD 7-13-208-16 -

20-50-800-500 GL 3-12-192-500 -

BC-GNJ 8-13-88-13 18-10-7-9

BC-GHS 5-10-76-16 10-10-14-13

VGG BC-GNJ 63-64-128-128-245-155-63- 10-10-10-10-8-8-8-

-26-24-20-14-12-11-11-15 -5-5-5-5-5-6-7-11

(2× 64)-(2× 128)- BC-GHS 51-62-125-128-228-129-38- 11-12-9-14-10-8-5-

-(3×256)-(8× 512) -13-9-6-5-6-6-6-20 -5-6-6-6-8-11-17-10

6.5.2 Compression Rates

In order to measure the compression rates obtained by our algorithms we consider three
different scenarios. For the first scenario, we measure the compression achieved by only
removing the groups of weights that have been pruned and keeping everything else on full
precision. For baselines that performed unstructured instead of group pruning, we measure
the compression under a Compressed Sparse Column (CSC) format to store the parameters.
This scenario is interesting, in that it can directly be applied to existing frameworks such as
Tensorflow [1]. For the second scenario, which we name as “fast prediction”, in addition



72 B AY E S I A N C O M P R E S S I O N F O R D E E P L E A R N I N G

to pruning, we also reduce the bit precision of the weights for each layer independently.
This can simultaneously decrease the size of the network to be stored and improve its
computational efficiency. This scenario is relevant, since upcoming hardware can facilitate
for mixed precision computation [62, 105]. For the third and final scenario, which we name
as “maximum compression”, we consider the scheme described at [65], by performing K-
means with a K=32 on the neural network weights and thus storing only the centroids and
centroid assignment for each weight. While this scheme leads to the best compression, it
is not as practical since one needs to decompress the weight matrix at each layer when
making predictions.

Table 9: Compression results for our methods. “DC” corresponds to Deep Compression method
introduced at [65], “DNS” to the method of [59] and “SWS” to the Soft-Weight Sharing of [185].
Numbers marked with * are best case guesses.

Compression Rates (Error %)

Model Fast Maximum

Original Error % Method |w6=0|
|w|

% Pruning Prediction Compression

LeNet-300-100 DC 8.0 6 (1.6) - 40 (1.6)

DNS 1.8 28* (2.0) - -

1.6 SWS 4.3 12* (1.9) - 64(1.9)

Sparse VD 2.2 21(1.8) 84(1.8) 113 (1.8)

BC-GNJ 10.8 9(1.8) 36(1.8) 58(1.8)

BC-GHS 10.6 9(1.8) 23(1.9) 59(2.0)

LeNet-5-Caffe DC 8.0 6*(0.7) - 39(0.7)

DNS 0.9 55*(0.9) - 108(0.9)

0.9 SWS 0.5 100*(1.0) - 162(1.0)

Sparse VD 0.7 63(1.0) 228(1.0) 365(1.0)

BC-GNJ 0.9 108(1.0) 361(1.0) 573(1.0)

BC-GHS 0.6 156(1.0) 419(1.0) 771(1.0)

VGG BC-GNJ 6.7 14(8.6) 56(8.8) 95(8.6)

8.4 BC-GHS 5.5 18(9.0) 59(9.0) 116(9.2)

The compression results can be seen at Table 9. Overall, both BC-GNJ and BC-GHS
offer competitive accuracy vs compression trade-offs compared to the state-of-the-art.
It should be mentioned that group sparsity and unstructured sparsity are not mutually-
exclusive, so in principle we could combine our method with weight sparsity and further
improve our results on, e.g., LeNet-300-100. To obtain the VGG results, we started by
initializing the posterior means from a “pretrained” network, similarly to what was per-
formed at [130], as training from a random initialization resulted into overall lower accu-
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racy (∼1%-2% less). After this initialization step, we trained the network normally for 200
epochs with the Adam optimizer and its default hyperparameters. We observe that for this
network, deterministic predictions yield slightly higher error compared to sampling the
posterior distribution (∼0.2%-0.4% higher) and averaging, but we report the performance
with the former for consistency.

6.5.3 Speed and energy consumption

In order to further show that group pruning from our methods results into networks that
are faster and more energy efficient, we measure the time and energy consumption of
the pruned LeNet-5-Caffe network when performing a forward pass with a large batch of
8192 examples. The measurements we report are averages over 104 forward passes and
were run with Tensorflow 1.0.1, Cuda 8.0 and its respective cuDNN. We report results
on both CPU and a Titan X GPU. We compare the network obtained from our methods
with those obtained by performing group Lasso, denoted as GL, at [192]. As we can see
at figure 17, moving from a CPU to a GPU yields the largest speedup offset (as expected),
and applying our method on top can yield speed-up factors of ∼8×, while also reducing the
energy consumption by 3×. This effect can be even more dramatic for larger networks; for
the VGG network with a batch size of 256 we observe a speed-up factor of 51× compared
to running the original network on CPU.

Figure 17: Left: Avg. Time a batch of 8192 samples takes to pass through LeNet-5-Caffe. Numbers
on top of the bars represent speed-up factor relative to the CPU implementation of the original
network. Right: Energy consumption of the GPU of the same process (when run on GPU).

6.6 C O N C L U S I O N

We introduced Bayesian compression, a way to tackle efficiency and compression in deep
neural networks in a unified and principled way. Our proposed methods allow for theoreti-
cally principled compression of neural networks, improved energy efficiency with reduced
computation while naturally learning the bit precisions for each weight. This serves as a
strong argument in favor of Bayesian methods for neural networks, when we are concerned
with compression and speed up.





7
L E A R N I N G S PA R S E N E U R A L N E T W O R K S T H RO U G H L 0
R E G U L A R I Z AT I O N

In the previous chapter we showed how through specific choices of the prior distributions
over the parameters, Bayesian inference can jointly provide sparse and quantized models.
In this chapter, we decouple those two objectives and take a closer look on sparsity alone,
in a way that allows for more fine grained and direct control compared to the Bayesian
equivalent. For this reason, we propose a practical method for L0 norm regularization for
neural networks: pruning the network during training by encouraging weights to become
exactly zero. Such regularization is interesting since (1) it can greatly speed up training and
inference, and (2) it can improve generalization. AIC and BIC, well-known model selec-
tion criteria, are special cases of L0 regularization. However, since the L0 norm of weights
is non-differentiable, we cannot incorporate it directly as a regularization term in the objec-
tive function. We propose a solution through the inclusion of a collection of non-negative
stochastic gates, which collectively determine which weights to set to zero. We show that,
somewhat surprisingly, for certain distributions over the gates, the expected L0 regularized
objective is differentiable with respect to the distribution parameters. We further propose
the hard concrete distribution for the gates, which is obtained by “stretching” a binary con-
crete distribution and then transforming its samples with a hard-sigmoid. The parameters
of the distribution over the gates can then be jointly optimized with the original network
parameters. As a result our method allows for straightforward and efficient learning of
model structures with stochastic gradient descent and allows for conditional computation
in a principled way. We perform various experiments to demonstrate the effectiveness of
the resulting approach and regularizer. 1

7.1 I N T RO D U C T I O N

Deep neural networks are flexible function approximators that have been very successful
in a broad range of tasks. They can easily scale to millions of parameters while allow-
ing for tractable optimization with mini-batch stochastic gradient descent (SGD), graph-
ical processing units (GPUs) and parallel computation. Nevertheless they do have draw-
backs. Firstly, it has been shown in recent works [65, 130, 185] that they are greatly over-
parametrized as they can be pruned significantly without any loss in accuracy; this exhibits
unnecessary computation and resources. Secondly, they can easily overfit and even mem-

1 This chapter has been adapted from our publication [115].

75
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orize random patterns in the data [203], if not properly regularized. This overfitting can
lead to poor generalization in practice.

A way to address both of these issues is by employing model compression and spar-
sification techniques. By sparsifying the model, we can avoid unnecessary computation
and resources, since irrelevant degrees of freedom are pruned away and do not need to
be computed. Furthermore, we reduce its complexity, thus penalizing memorization and
alleviating overfitting.

A conceptually attractive approach is the L0 norm regularization of (blocks of) param-
eters; this explicitly penalizes parameters for being different than zero with no further
restrictions. However, the combinatorial nature of this problem makes for an intractable
optimization for large models.

In this paper we propose a general framework for surrogate L0 regularized objectives.
It is realized by smoothing the expected L0 regularized objective with continuous distri-
butions in a way that can maintain the exact zeros in the parameters while still allowing
for efficient gradient based optimization. This is achieved by transforming continuous ran-
dom variables (r.v.s) with a hard nonlinearity, the hard-sigmoid. We further propose and
employ a novel distribution obtained by this procedure; the hard concrete. It is obtained
by “stretching” a binary concrete random variable [85, 120] and then passing its samples
through a hard-sigmoid. We demonstrate the effectiveness of this simple procedure in var-
ious experiments.

7.2 M I N I M I Z I N G T H E L0 N O R M O F PA R A M E T R I C M O D E L S

One way to sparsify parametric models, such as deep neural networks, with the least as-
sumptions about the parameters is the following; let D be a dataset consisting of N i.i.d.
input output pairs {(x1, y1), . . . , (xN, yN)} and consider a regularized empirical risk mini-
mization procedure with an L0 regularization on the parameters θ of a hypothesis (e.g. a
neural network) h(·;θ)2:

R(θ) =
1

N

( N∑
i=1

L
(
h(xi;θ), yi

))
+ λ‖θ‖0, ‖θ‖0 =

|θ|∑
j=1

I[θj 6= 0], (95)

θ∗ = arg min
θ

{R(θ)},

where |θ| is the dimensionality of the parameters, λ is a weighting factor for the regular-
ization and L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or
mean-squared error for regression. The L0 norm penalizes the number of non-zero entries
of the parameter vector and thus encourages sparsity in the final estimates θ∗. The Akaike
Information Criterion (AIC) [5] and the Bayesian Information Criterion (BIC) [159], well-
known model selection criteria, correspond to specific choices of λ. Notice that the L0
norm induces no shrinkage on the actual values of the parameters θ; this is in contrast to

2 This assumption is just for ease of explanation; our proposed framework can be applied to any objective
function involving parameters.
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Figure 18: Lp norm penalties for a parameter θ according to different values of p. It is easily
observed that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for
large values of θ. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the
limit of p = 0 we observe that the penalty is a constant for θ 6= 0.

e.g. L1 regularization and the Lasso [181], where the sparsity is due to shrinking the actual
values of θ. We provide a visualization of this effect in Figure 18.

Unfortunately, optimization under this penalty is computationally intractable due to the
non-differentiability and combinatorial nature of 2|θ| possible states of the parameter vector
θ. How can we relax the discrete nature of the L0 penalty such that we allow for efficient
continuous optimization of Eq. 95, while allowing for exact zeros in the parameters? This
section will present the necessary details of our approach.

7.2.1 A general recipe for efficiently minimizing L0 norms

Consider the L0 norm under a simple re-parametrization of θ:

θj = θ̃jzj, zj ∈ {0, 1}, θ̃j 6= 0, ‖θ‖0 =
|θ|∑
j=1

zj, (96)

where the zj correspond to binary “gates” that denote whether a parameter is present and
the L0 norm corresponds to the amount of gates being “on”. By letting q(zj|πj) = Bern(πj)
be a Bernoulli distribution over each gate zj we can reformulate the minimization of Eq. 95
as penalizing the number of parameters being used, on average, as follows:

R(θ̃,π) = Eq(z|π)

[
1

N

( N∑
i=1

L
(
h(xi; θ̃� z), yi

))]
+ λ

|θ|∑
j=1

πj, (97)

θ̃∗,π∗ = arg min
θ̃,π

{R(θ̃,π)},

where � corresponds to the elementwise product. The objective described in Eq. 97 is in
fact a special case of a variational bound over the parameters involving spike and slab [127]
priors and approximate posteriors; we refer interested readers to appendix 10.5.1.

Now the second term of the r.h.s. of Eq. 97 is straightforward to minimize however
the first term is problematic for π due to the discrete nature of z, which does not al-
low for efficient gradient based optimization. While in principle a gradient estimator such
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as the REINFORCE [195] could be employed, it suffers from high variance and control
variates [128, 129, 184], that require auxiliary models or multiple evaluations of the net-
work, have to be employed. Two simpler alternatives would be to use either the straight-
through [19] estimator as done at [172] or the concrete distribution as e.g. at [51]. Un-
fortunately both of these approach have drawbacks; the first one provides biased gradients
due to ignoring the Heaviside function in the likelihood during the gradient evaluation
whereas the second one does not allow for the gates (and hence parameters) to be exactly
zero during optimization, thus precluding the benefits of conditional computation [19].

Fortunately, there is a simple alternative way to smooth the objective such that we allow
for efficient gradient based optimization of the expected L0 norm along with zeros in the
parameters θ. Let s be a continuous random variable with a distribution q(s) that has
parameters φ. We can now let the gates z be given by a hard-sigmoid rectification of s3,
as follows:

s ∼ q(s|φ) (98)

z = min(1, max(0, s)). (99)

This would then allow the gate to be exactly zero and, due to the underlying continuous
random variable s, we can still compute the probability of the gate being non-zero (active).
This is easily obtained by the cumulative distribution function (CDF) Q(·) of s:

q(z 6= 0|φ) = 1−Q(s 6 0|φ), (100)

i.e. it is the probability of the s variable being positive. We can thus smooth the binary
Bernoulli gates z appearing in Eq. 97 by employing continuous distributions in the afore-
mentioned way:

R(θ̃,φ) = Eq(s|φ)

[
1

N

( N∑
i=1

L
(
h(xi; θ̃� g(s)), yi

))]
+

λ

|θ|∑
j=1

(
1−Q(sj 6 0|φj)

)
, (101)

θ̃∗,φ∗ = arg min
θ̃,φ

{R(θ̃,φ)}, g(·) = min(1, max(0, ·)).

Notice that this is a close surrogate to the original objective function in Eq. 97, as we
similarly have a cost that explicitly penalizes the probability of a gate being different from
zero. Now for continuous distributions q(s) that allow for the reparameterization trick [91,
151] we can express the objective in Eq. 101 as an expectation over a parameter free

3 We chose to employ a hard-sigmoid instead of a rectifier, g(·) = max(0, ·), so as to have the variable z better
mimic a binary gate (rather than a scale variable).
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noise distribution p(ε) and a deterministic and differentiable transformation f(·) of the
parametersφ and ε:

R(θ̃,φ) = Ep(ε)

[
1

N

( N∑
i=1

L
(
h(xi; θ̃� g(f(φ,ε))), yi

))]
+

λ

|θ|∑
j=1

(
1−Q(sj 6 0|φj)

)
, (102)

which allows us to make the following Monte Carlo approximation to the (generally) in-
tractable expectation over the noise distribution p(ε):

R̂(θ̃,φ) =
1

L

L∑
l=1

(
1

N

( N∑
i=1

L
(
h(xi; θ̃� z(l)), yi

)))
+

λ

|θ|∑
j=1

(
1−Q(sj 6 0|φj)

)
= LE(θ̃,φ) + λLC(φ),

where z(l) = g(f(φ,ε(l))) and ε(l) ∼ p(ε). (103)

LE corresponds to the error loss that measures how well the model is fitting the current
dataset whereas LC refers to the complexity loss that measures the flexibility of the model.
Crucially, the total cost in Eq. 103 is now differentiable w.r.t.φ, thus enabling for efficient
stochastic gradient based optimization, while still allowing for exact zeros at the parame-
ters. One price we pay is that now the gradient of the log-likelihood w.r.t. the parameters
φ of q(s) is sparse due to the rectifications; nevertheless this should not pose an issue
considering the prevalence of rectified linear units in neural networks. Furthermore, due
to the stochasticity at s the hard-sigmoid gate z is smoothed to a soft version on average,
thus allowing for gradient based optimization to succeed, even when the mean of s is neg-
ative or larger than one. An example visualization can be seen in Figure 19b. It should be
noted that a similar argument was also shown at [19], where with logistic noise a rectifier
nonlinearity was smoothed to a softplus4 on average.

7.2.2 The hard concrete distribution

The framework described in Section 7.2.1 gives us the freedom to choose an appropriate
smoothing distribution q(s). A choice that seems to work well in practice is the following;
assume that we have a binary concrete [85, 120] random variable s distributed in the (0, 1)
interval with probability density qs(s|φ) and cumulative densityQs(s|φ). The parameters
of the distribution areφ = (logα,β), where logα is the location and β is the temperature.
We can “stretch” this distribution to the (γ, ζ) interval, with γ < 0 and ζ > 1, and then
apply a hard-sigmoid on its random samples:

4 f(x) = log(1+ exp(x)).
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u ∼ U(0, 1), s = Sigmoid
(
(logu− log(1− u) + logα)/β

)
, (104)

s̄ = s(ζ− γ) + γ, z = min(1, max(0, s̄)). (105)

This would then induce a distribution where the probability mass of qs̄(s̄|φ) on the neg-
ative values, Qs̄(0|φ), is “folded” to a delta peak at zero, the probability mass on values
larger than one, 1−Qs̄(1|φ), is “folded” to a delta peak at one and the original distribution
qs̄(s̄|φ) is truncated to the (0, 1) range. We provide more information and the density of
the resulting distribution at the appendix.

Notice that a similar behavior would have been obtained even if we passed samples from
any other distribution over the real line through a hard-sigmoid. The only requirement of
the approach is that we can evaluate the CDF of s̄ at 0 and 1. The main reason for picking
the binary concrete is its close ties with Bernoulli r.v.s. It was originally proposed at [85,
120] as a smooth approximation to Bernoulli r.vs, a fact that allows for gradient based opti-
mization of its parameters through the reparametrization trick. The temperature β controls
the degree of approximation, as with β = 0 we can recover the original Bernoulli r.v. (but
lose the differentiable properties) whereas with 0 < β < 1 we obtain a probability density
that concentrates its mass near the endpoints (e.g. as shown in Figure 19a). As a result,
the hard concrete also inherits the same theoretical properties w.r.t. the Bernoulli distri-
bution. Furthermore, it can serve as a better approximation of the discrete nature, since
it includes {0, 1} in its support, while still allowing for (sub)gradient optimization of its
parameters due to the continuous probability mass that connects those two values. We can
also view this distribution as a “rounded" version of the original binary concrete, where
values larger than 1−γ

ζ−γ are rounded to one whereas values smaller than −γ
ζ−γ are rounded to

zero. We provide an example visualization of the hard concrete distribution in Figure 19a.
The L0 complexity loss of the objective in Eq. 103 under the hard concrete r.v. is conve-

niently expressed as follows:

LC =

|θ|∑
j=1

(
1−Qs̄j(0|φ)

)
=

|θ|∑
j=1

Sigmoid
(

logαj −β log
−γ

ζ

)
. (106)

At test time we use the following estimator for the final parameters θ∗ under a hard con-
crete gate:

ẑ = min(1, max(0, Sigmoid(logα)(ζ− γ) + γ)), θ∗ = θ̃∗ � ẑ. (107)

7.2.3 Combining the L0 norm with other norms

While the L0 norm leads to sparse estimates without imposing any shrinkage on θ it might
still be desirable to impose some form of prior assumptions on the values of θwith alterna-
tive norms, e.g. impose smoothness with the L2 norm (i.e. weight decay). In the following
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(a) (b)

Figure 19: (a) The binary concrete distribution with location logα = 0 and temperature β = 0.5
and the hard concrete equivalent distribution obtained by stretching the concrete distribution to
(γ = −0.1, ζ = 1.1) and then applying a hard-sigmoid. Under this specification the hard concrete
distribution assigns, roughly, half of its mass to {0, 1} and the rest to (0, 1). (b) The expected value
of the afforementioned concrete and hard concrete gate as a function of the location logα, obtained
by averaging 10000 samples. We also added the value of the gates obtained by removing the noise
entirely. We can see that the noise smooths the hard-sigmoid to a sigmoid on average.

we will show how this combination is feasible for the L2 norm. The expected L2 norm
under the Bernoulli gating mechanism can be conveniently expressed as:

Eq(z|π)
[
‖θ‖22

]
=

|θ|∑
j=1

Eq(zj|πj)
[
z2j θ̃

2
j

]
=

|θ|∑
j=1

πjθ̃
2
j , (108)

where πj corresponds to the success probability of the Bernoulli gate zj. To maintain a
similar expression with our smoothing mechanism, and avoid extra shrinkage for the gates
zj, we can take into account that the standard L2 norm penalty is proportional to the neg-
ative log density of a zero mean Gaussian prior with a standard deviation of σ = 1. We
will then assume that the σ for each θ is governed by z in a way that when z = 0 we have
that σ = 1 and when z > 0 we have that σ = z. As a result, we can obtain the following
expression for the L2 penalty (where θ̂ = θ

σ):

Eq(z|φ)

[
‖θ̂‖22

]
=

|θ|∑
j=1

(
Qs̄j(0|φj)

0

1
+

(
1−Qs̄j(0|φj)

)
Eq(zj|φj,s̄j>0)

[
θ̃2j �
�z2j

�
�z2j

])

=

|θ|∑
j=1

(
1−Qs̄j(0|φj)

)
θ̃2j . (109)
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7.2.4 Group sparsity under an L0 norm

For reasons of computational efficiency it is usually desirable to perform group sparsity
instead of parameter sparsity, as this can allow for practical computation savings. For ex-
ample, in neural networks speedups can be obtained by employing a dropout [174] like
procedure with neuron sparsity in fully connected layers or feature map sparsity for con-
volutional layers [112, 135, 192]. This is straightforward to do with hard concrete gates;
simply share the gate between all of the members of the group. The expected L0 and,
according to section 7.2.3, L2 penalties in this scenario can be rewritten as:

Eq(z|φ)

[
‖θ‖0

]
=

|G|∑
g=1

|g|

(
1−Q(sg 6 0|φg)

)
(110)

Eq(z|φ)

[
‖θ̂‖22

]
=

|G|∑
g=1

((
1−Q(sg 6 0|φg)

) |g|∑
j=1

θ̃2j

)
. (111)

where |G| corresponds to the number of groups and |g| corresponds to the number of pa-
rameters of group g. For all of our subsequent experiments we employed neuron sparsity,
where we introduced a gate per input neuron for fully connected layers and a gate per
output feature map for convolutional layers. Notice that in the interpretation we adopt
the gate is shared across all locations of the feature map for convolutional layers, akin to
spatial dropout [183]. This can lead to practical computation savings while training, a ben-
efit which is not possible with the commonly used independent dropout masks per spatial
location (e.g. as at [202]).

7.3 R E L AT E D W O R K

Compression and sparsification of neural networks has recently gained much traction in the
deep learning community. The most common and straightforward technique is parameter
/ neuron pruning [101] according to some criterion. Whereas weight pruning [65, 130,
185] is in general inefficient for saving computation time, neuron pruning [112, 135, 192]
can lead to computation savings. Unfortunately, all of the aforementioned methods require
training the original dense network thus precluding the benefits we can obtain by having
exact sparsity on the computation during training. This is in contrast to our approach where
sparsification happens during training, thus theoretically allowing conditional computation
to speed-up training [18, 19].

Emulating binary r.v.s with rectifications of continuous r.v.s is not a new concept and
has been previously done with Gaussian distributions in the context of generative mod-
elling [67, 75, 155] and with logistic distributions at [19] in the context of conditional
computation. These distributions can similarly represent the value of exact zero, while still
maintaining the tractability of continuous optimization. Nevertheless, they are sub-optimal
when we require approximations to binary r.v.s (as is the case for the L0 penalty); we can-
not represent the bimodal behavior of a Bernoulli r.v. due to the fact that the underlying
distribution is unimodal. Another technique that allows for gradient based optimization of
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discrete r.v.s are the smoothing transformations proposed by [154]. There the core idea is
that if a model has binary latent variables, then we can smooth them with continuous noise
in a way that allows for reparametrization gradients. There are two main differences with
the hard concrete distribution we employ here; firstly, the double rectification of the hard
concrete r.v.s allows us to represent the values of exact zero and one (instead of just zero)
and, secondly, due to the underlying concrete distribution the random samples from the
hard concrete will better emulate binary r.v.s.

7.4 E X P E R I M E N T S

We validate the effectiveness of our method on two tasks. The first corresponds to the
toy classification task of MNIST using a simple multilayer perceptron (MLP) with two
hidden layers of size 300 and 100 [99], and a simple convolutional network, the LeNet-5-
Caffe5. The second corresponds to the more modern task of CIFAR 10 and CIFAR 100
classification using Wide Residual Networks [202]. For all of our experiments we set
γ = −0.1, ζ = 1.1 and, following the recommendations from [120], set β = 2/3 for
the concrete distributions. We initialized the locations logα by sampling from a normal
distribution with a standard deviation of 0.01 and a mean that yields α

α+1 to be approx-
imately equal to the original dropout rate employed at each of the networks. We used a
single sample of the gate z for each minibatch of datapoints during the optimization, even
though this can lead to larger variance in the gradients [89]. In this way we show that
we can obtain the speedups in training with practical implementations, without actually
hurting the overall performance of the network. We have made the code publicly available
at https://github.com/AMLab-Amsterdam/L0_regularization.

7.4.1 MNIST classification and sparsification

For these experiments we did no further regularization besides the L0 norm and optimiza-
tion was done with Adam [88] using the default hyper-parameters and temporal averaging.
We can see at Table 10 that our approach is competitive with other methods that tackle neu-
ral network compression. However, it is worth noting that all of these approaches prune the
network post-training using thresholds while requiring training the full network. We can
further see that our approach minimizes the amount of parameters more at layers where
the gates affect a larger part of the cost; for the MLP this corresponds to the input layer
whereas for the LeNet5 this corresponds to the first fully connected layer. In contrast, the
methods with sparsity inducing priors [112, 135] sparsify parameters irrespective of that
extra cost (since they are only encouraged by the prior to move parameters to zero) and
as a result they achieve similar sparsity on all of the layers. Nonetheless, it should be
mentioned that we can in principle increase the sparsification on specific layers simply by
specifying a separate λ for each layer, e.g. by increasing the λ for gates that affect less
parameters. We provide such results at the “λ sep.” rows.

5 https://github.com/BVLC/caffe/tree/master/examples/mnist

https://github.com/AMLab-Amsterdam/L0_regularization
https://github.com/BVLC/caffe/tree/master/examples/mnist
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Table 10: Comparison of the learned architectures and performance of the baselines from [112] and
the proposed L0 minimization under L0hc . We show the amount of neurons left after pruning with
the estimator in Eq. 107 along with the error in the test set after 200 epochs.N denotes the number
of training datapoints.

Network & size Method Pruned architecture Error (%)

MLP Sparse VD [130] 512-114-72 1.8

784-300-100 BC-GNJ [112] 278-98-13 1.8

BC-GHS [112] 311-86-14 1.8

L0hc , λ = 0.1/N 219-214-100 1.4

L0hc , λ sep. 266-88-33 1.8

LeNet-5-Caffe Sparse VD [130] 14-19-242-131 1.0

20-50-800-500 GL [192] 3-12-192-500 1.0

GD [171] 7-13-208-16 1.1

SBP [135] 3-18-284-283 0.9

BC-GNJ [112] 8-13-88-13 1.0

BC-GHS [112] 5-10-76-16 1.0

L0hc , λ = 0.1/N 20-25-45-462 0.9

L0hc , λ sep. 9-18-65-25 1.0

To get a better idea about the potential speedup we can obtain in training we plot in Fig-
ure 20 the expected, under the probability of the gate being active, floating point operations
(FLOPs) as a function of the training iterations. We also included the theoretical speedup
we can obtain by using dropout [174] networks. As we can observe, our L0 minimization
procedure that is targeted towards neuron sparsity can potentially yield significant com-
putational benefits compared to the original or dropout architectures, with minimal or no
loss in performance. We further observe that there is a significant difference in the flop
count for the LeNet model between the λ = 0.1/N and λ sep. settings. This is because
we employed larger values for λ (10/N and 0.5/N) for the convolutional layers (which
contribute the most to the computation) in the λ sep. setting. As a result, this setting is
more preferable when we are concerned with speedup, rather than network compression
(which is affected only by the number of parameters).

7.4.2 CIFAR classification

For WideResNets we apply L0 regularization on the weights of the hidden layer of the
residual blocks, i.e. where dropout is usually employed. We also employed an L2 regular-
ization term as described in Section 7.2.3 with the weight decay coefficient used in [202].
For the layers with the hard concrete gates we divided the weight decay coefficient by 0.7
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(a) Expected FLOPs at the MLP. (b) Expected FLOPs at LeNet5.

Figure 20: Expected number of floating point operations (FLOPs) during training for the original,
dropout and L0 regularized networks. These were computed by assuming one flop for multiplica-
tion and one flop for addition.

to ensure that a-priori we assume the same length-scale as the 0.3 dropout equivalent net-
work. For optimization we employed the procedure described in [202] with a minibatch of
128 datapoints, which was split between two GPUs, and used a single sample for the gates
for each GPU.

Table 11: Results on the benchmark classification tasks of CIFAR 10 and CIFAR 100. All of the
baseline results are taken from [202]. For the L0 regularized WRN we report the median of the
error on the test set after 200 epochs over 5 runs.

Network CIFAR-10 CIFAR-100

original-ResNet-110 [69] 6.43 25.16

pre-act-ResNet-110 [70] 6.37 -

WRN-28-10 [202] 4.00 21.18

WRN-28-10-dropout [202] 3.89 18.85

WRN-28-10-L0hc , λ = 0.001/N 3.83 18.75
WRN-28-10-L0hc , λ = 0.002/N 3.93 19.04

As we can observe at Table 11, with a λ of 0.001/N the L0 regularized wide residual
network improves upon the accuracy of the dropout equivalent network on both CIFAR 10
and CIFAR 100. Furthermore, it simultaneously allows for potential training time speedup
due to gradually decreasing the number of FLOPs, as we can see in Figures 21a, 21b.
This sparsity is also obtained without any “lag” in convergence speed, as at Figure 21c
we observe a behaviour that is similar to the dropout network. Finally, we observe that by
further increasing λ we obtain a model that has a slight error increase but can allow for a
larger speedup.
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(a) (b) (c)

Figure 21: (a, b) Expected number of FLOPs during training for the dropout and L0 regularized
WRNs for CIFAR 10 (a) and CIFAR 100 (b). The original WRN is not shown as it has the same
practical FLOPs as the dropout equivalent network. (c) Train (dashed) and test (solid) error as a
function of the training epochs for dropout and L0 WRNs at CIFAR 10.

7.5 D I S C U S S I O N

We have described a general recipe that allows for optimizing the L0 norm of parametric
models in a principled and effective manner. The method is based on smoothing the com-
binatorial problem with continuous distributions followed by a hard-sigmoid. To this end,
we also proposed a novel distribution which we coin as the hard concrete; it is a “stretched”
binary concrete distribution, the samples of which are transformed by a hard-sigmoid. This
in turn better mimics the binary nature of Bernoulli distributions while still allowing for
efficient gradient based optimization. In experiments we have shown that the proposed
L0 minimization process leads to neural network sparsification that is competitive with
current approaches while theoretically allowing for speedup in training. We have further
shown that this process can provide a good inductive bias and regularizer, as on the CIFAR
experiments with wide residual networks we improved upon dropout.

As for future work; better harnessing the power of conditional computation for effi-
ciently training very large neural networks with learned sparsity patterns is a potential
research direction. It would be also interesting to adopt a full Bayesian treatment over the
parameters θ, such as the one employed at [112, 130]. This would then allow for further
speedup and compression due to the ability of automatically learning the bit precision of
each weight. Finally, it would be interesting to explore the behavior of hard concrete r.v.s
at binary latent variable models, since they can be used as a drop in replacement that allow
us to maintain both the discrete nature as well as the efficient reparametrization gradient
optimization.
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R E L A X E D Q UA N T I Z AT I O N F O R D I S C R E T I Z E D N E U R A L
N E T W O R K S

In the previous chapter we showed how we can prune neural networks through the golden
standard for sparsity, the L0 norm. In this chapter, we address the second part of the neu-
ral network compression recipe, quantization of the weights and activations of the neural
network. In order to train networks that can be effectively discretized without loss of per-
formance, we introduce a differentiable quantization procedure. Differentiability can be
achieved by transforming continuous distributions over the weights and activations of the
network to categorical distributions over the quantization grid. These are subsequently
relaxed to continuous surrogates that can allow for efficient gradient-based optimization.
We further show that stochastic rounding can be seen as a special case of the proposed
approach and that under this formulation the quantization grid itself can also be opti-
mized with gradient descent. We experimentally validate the performance of our method
on MNIST, CIFAR 10 and Imagenet classification.1

8.1 I N T RO D U C T I O N

Neural networks excel in a variety of large scale problems due to their highly flexible
parametric nature. However, deploying big models on resource constrained devices, such
as mobile phones, drones or IoT devices is still challenging because they require a large
amount of power, memory and computation. Neural network compression is a means to
tackle this issue and has therefore become an important research topic.

Neural network compression can be, roughly, divided into two not mutually exclusive
categories: pruning and quantization. While pruning [65, 101] aims to make the model
“smaller” by altering the architecture, quantization aims to reduce the precision of the arith-
metic operations in the network. In this paper we focus on the latter. Most network quan-
tization methods either simulate or enforce discretization of the network during training,
e.g. via rounding of the weights and activations. Although seemingly straighforward, the
discontinuity of the discretization makes the gradient-based optimization infeasible. The
reason is that there is no gradient of the loss with respect to the parameters. A workaround
to the discontinuity are the “pseudo-gradients” according to the straight-through estima-
tor [19], which have been successfully used for training low-bit width architectures at
e.g. [80, 208].

1 This chapter is adapted from our publication [108].
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The purpose of this work is to introduce a novel quantization procedure, Relaxed Quan-
tization (RQ). RQ can bypass the non-differentiability of the quantization operation during
training by smoothing it appropriately. The contributions of this paper are four-fold: First,
we show how to make the set of quantization targets part of the training process such that
we can optimize them with gradient descent. Second, we introduce a way to discretize
the network by converting distributions over the weights and activations to categorical
distributions over the quantization grid. Third, we show that we can obtain a “smooth”
quantization procedure by replacing the categorical distributions with concrete [85, 120]
equivalents. Finally we show that stochastic rounding [61], one of the most popular quan-
tization techniques, can be seen as a special case of the proposed framework. We present
the details of our approach in Section 8.2, discuss related work in Section 8.3 and experi-
mentally validate it in Section 8.4. Finally we conclude and provide fruitful directions for
future research in Section 8.5.

8.2 R E L A X E D Q UA N T I Z AT I O N F O R D I S C R E T I Z I N G N E U R A L N E T W O R K S

The central element for the discretization of weights and activations of a neural network
is a quantizer q(·). The quantizer receives a (usually) continous signal as input and dis-
cretizes it to a countable set of values. This process is inherently lossy and non-invertible:
given the output of the quantizer, it is impossible to determine the exact value of the input.
One of the simplest quantizers is the rounding function:

q(x) = α

⌊
x

α
+
1

2

⌋
,

where α corresponds to the step size of the quantizer. With α = 1, the quantizer rounds x
to its nearest integer number.

Unfortunately, we cannot simply apply the rounding quantizer to discretize the weights
and activations of a neural network. Because of the quantizers’ lossy and non-invertible na-
ture, important information might be destroyed and lead to a decrease in accuracy. To this
end, it is preferable to train the neural network while simulating the effects of quantization
during the training procedure. This encourages the weights and activations to be robust to
quantization and therefore decreases the performance gap between a full-precision neural
network and its discretized version.

However, the aforementioned rounding process is non-differentiable. As a result, we
cannot directly optimize the discretized network with stochastic gradient descent, the
workhorse of neural network optimization. In this work, we posit a “smooth” quantizer
as a possible way for enabling gradient based optimization.

8.2.1 Learning (fixed point) quantizers via gradient descent

The proposed quantizer comprises four elements: a vocabulary, its noise model and the
resulting discretization procedure, as well as a final relaxation step to enable gradient based
optimization.
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(a) (b)

Figure 22: The proposed discretization process. (a) Given a distribution p(x̃) over the real line
we partition it into K intervals of width α where the center of each of the intervals is a grid point
gi. The shaded area corresponds to the probability of x̃ falling inside the interval containing that
specific gi. (b) Categorical distribution over the grid obtained after discretization. The probability
of each of the grid points gi is equal to the probability of x̃ falling inside their respective intervals.

The first element of the quantizer is the vocabulary: it is the set of (countable) output
values that the quantizer can produce. In our case, this vocabulary has an inherent structure,
as it is a grid of ordered scalars. For fixed point quantization the grid G is defined as

G =
[
−2b−1, . . . , 0, . . . , 2b−1 − 1

]
, (112)

where b is the number of available bits that allow for K = 2b possible integer values. By
construction this grid of values is agnostic to the input signal x and hence suboptimal; to
allow for the grid to adapt to x we introduce two free parameters, a scale α and an offset
β. This leads to a learnable grid via Ĝ = αG+ β that can adapt to the range and location
of the input signal.

The second element of the quantizer is the assumption about the input noise ε; it de-
termines how probable it is for a specific value of the input signal to move to each grid
point. Adding noise to x will result in a quantizer that is, on average, a smooth function
of its input. In essense, this is an application of variational optimization [175] to the non-
differentiable rounding function, which enables us to do gradient based optimization.

We model this form of noise as acting additively to the input signal x and being governed
by a distribution p(ε). This process induces a distribution p(x̃) where x̃ = x+ ε. In the
next step of the quantization procedure, we discretize p(x̃) according to the quantization
grid Ĝ; this neccesitates the evaluation of the cumulative distribution function (CDF). For
this reason, we will assume that the noise is distributed according to a zero mean logistic
distribution with a standard deviation σ, i.e. L(0,σ), hence leading to p(x̃) = L(x,σ).
The CDF of the logistic distribution is the sigmoid function which is easy to evaluate
and backpropagate through. Using Gaussian distributions proved to be less effective in
preliminary experiments. Other distributions are conceivable and we will briefly discuss
the choice of a uniform distribution in Section 8.2.3.

The third element is, given the aforementioned assumptions, how the quantizer de-
termines an appropriate assignment for each realization of the input signal x. Due to the
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stochastic nature of x̃, a deterministic round-to-nearest operation will result in a stochas-
tic quantizer for x. Quantizing x in this manner corresponds to discretizing p(x̃) onto Ĝ

and then sampling grid points gi from it. More specifically, we construct a categorical dis-
tribution over the grid by adopting intervals of width equal to α centered at each of the
grid points. The probability of selecting that particular grid point will now be equal to the
probability of x̃ falling inside those intervals:

p(x̂ = gi|x,σ) = P(x̃ 6 (gi +α/2)) − P(x̃ < (gi −α/2))) (113)

= Sigmoid((gi +α/2− x)/σ) − Sigmoid((gi −α/2− x)/σ), (114)

where x̂ corresponds to the quantized variable, P(·) corresponds to the CDF and the step
from equation 113 to equation 114 is due to the logistic noise assumption. A visualization
of the aforementioned process can be seen in Figure 22. For the first and last grid point
we will assume that they reside within (g0 − α/2,g0 + α/2] and (gK − α/2,gK + α/2]
respectively. Under this assumption we will have to truncate p(x̃) such that it only has
support within (g0 − α/2,gK + α/2]. Fortunately this is easy to do, as it corresponds to
just a simple modification of the CDF:

P(x̃ 6 c|x̃ ∈ (g0 −α/2,gK +α/2]) =
P(x̃ 6 c) − P(x̃ < (g0 −α/2))

P(x̃ 6 (gK +α/2)) − P(x̃ < (g0 −α/2))
. (115)

Armed with this categorical distribution over the grid, the quantizer proceeds to assign a
specific grid value to x̂ by drawing a random sample. This procedure emulates quantiza-
tion noise, which prevents the model from fitting the data. This noise can be reduced in
two ways: by clustering the weights and activations around the points of the grid and by
reducing the logistic noise σ. As σ → 0, the CDF converges towards the step function,
prohibiting gradient flow. On the other hand, if ε is too high, the optimization procedure
is very noisy, prohibiting convergence. For this reason, during optimization we initialize σ
in a sensible range, such that L(x,σ) covers a significant portion of the grid. Please confer
Appendix 10.6.1 for details. We then let σ be freely optimized via gradient descent such
that the loss is minimized. Both effects reduce the gap between the function that the neural
network computes during training time vs. test time. We illustrate this in Figure 23.

The fourth element of the procedure is the relaxation of the non differentiable cate-
gorical distribution sampling. This is achieved by replacing the categorical distribution
with a concrete distribution [85, 120]. This relaxation procedure corresponds to adopt-
ing a “smooth” categorical distribution that can be seen as a “noisy” softmax. Let πi be
the categorical probability of sampling grid point i, i.e. πi = p(x̂ = gi); the “smoothed”
quantized value x̂ can be obtained via:

ui ∼ Gumbel(0, 1), zi =
exp((logπi + ui)/λ)∑
j exp((logπj + uj)/λ)

, x̂ =

K∑
i=1

zigi, (116)

where zi is the random sample from the concrete distribution and λ is a temperature pa-
rameter that controls the degree of approximation, since as λ→ 0 the concrete distribution
becomes a categorical.
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Figure 23: Best viewed in color. Illustration of the inductive bias obtained via training with the
proposed quantizer; means of the logistic distribution over the weights for each layer of the LeNet-
5 when trained with 2 bits per weight and activation. Each color corresponds to an assignment to
a particular grid point and the vertical dashed lines correspond to the grid points (β = 0). We can
clearly see that the real valued weights are naturally encouraged through training to cluster into
multiple modes, one for each grid point. It should also be mentioned, that for the right and leftmost
grid points the probability of selecting them is maximized by moving the corresponding weight
furthest right or left respectively. Interestingly, we observe that the network converged to ternary
weights for the input and (almost) binary weights for the output layer.

We have thus defined a fully differentiable “soft” quantization procedure that allows for
stochastic gradients for both the quantizer parameters α,β,σ as well as the input signal
x (e.g. the weights or the activations of a neural network). We refer to this alrogithm as
Relaxed Quantization (RQ). We summarize its forward pass as performed during training
in Algorithm 3. It is also worthwhile to notice that if there were no noise at the input x
then the categorical distribution would have non-zero mass only at a single value, thus
prohibiting gradient based optimization for x and σ.

One drawback of this approach is that the smoothed quantized values defined in equa-
tion 116 do not have to coincide with grid points, as z is not a one-hot vector. Instead, these
values can lie anywhere between the smallest and largest grid point, something which is
impossible with e.g. stochastic rounding [61]. In order to make sure that only grid-points
are sampled, we propose an alternative algorithm RQ ST in which we use the variant of the
straight-through (ST) estimator proposed in [85]. Here we sample the actual categorical
distribution during the forward pass but assume a sample from the concrete distribution for
the backward pass. While this gradient estimator is obviously biased, in practice it works
as the “gradients” seem to point towards a valid direction. We perform experiments with
both variants.

After convergence, we can obtain a “hard” quantization procedure, i.e. select points
from the grid, at test time by either reverting to a categorical distribution (instead of the
continuous surrogate) or by rounding to the nearest grid point. In this paper we chose the
latter as it is more aligned with the low-resource environments in which quantized models
will be deployed. Furthermore, with this goal in mind, we employ two quantization grids
with their own learnable scalar α,σ (and potentially β) parameters for each layer; one for
the weights and one for the activations.
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Algorithm 3 Quantization during training.

Require: Input x, grid Ĝ, scale of the grid α, scale of noise σ, temperature λ, fuzz param.
ε

r = [Ĝ−α/2,gK +α/2] # interval points
c = Sigmoid((r − x)/σ) # evaluate CDF
πi =

c[i+1]−c[i]+ε
c[K+1]−c[1]+Kε # categorical distr.

z ∼ Concrete(π, λ)
return

∑
i zigi

8.2.2 Scalable quantization via a local grid

Sampling x̂ based on drawing K random numbers for the concrete distribution as described
in equation 116 can be very expensive for larger values of K. Firstly, drawing K ran-
dom numbers for every individual weight and activation in a neural network drastically
increases the number of operations required in the forward pass. Secondly, it also requires
keeping many more numbers in memory for gradient computations during the backward
pass. Compared to a standard neural network or stochastic rounding approaches, the pro-
posed procedure can thus be infeasible for larger models and datasets.

Figure 24: Local grid construction

Fortunately, we can make sampling x̂ independent of
the grid size by assuming zero probability for grid-points
that lie far away from the signal x. Specifically, by only
considering grid points that are within δ standard devi-
ations away from x, we truncate p(x̃) such that it lies
within a “localized" grid around x.

To simplify the computation required for determining
the local grid elements, we choose the grid point closest
to x, bxe, as the center of the local grid (Figure 24). Since σ is shared between all elements
of the weight matrix or activation, the local grid has the same width for every element.
The computation of the probabilities over the localized grid is similar to the truncation
happening in equation 115 and the smoothed quantized value is obtained via a manner
similar to equation 116:

P(x̃ 6 c|x̃ ∈ (bxe− δσ, bxe+ δσ]) = P(x̃ 6 c) − P(x̃ < bxe− δσ)
P(x̃ 6 bxe+ δσ) − P(x̃ < bxe− δσ)

(117)

x̂ =
∑

gi∈(bxe−δσ,bxe+δσ]
zigi (118)
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Algorithm 4 Quantization during testing.
Require: Input x, scale and offset of the grid α,β, minimum and maximum values g0,gK

y = α · round((x−β)/α) +β
return min(gK, max(g0,y))

8.2.3 Relation to Stochastic Rounding

One of the pioneering works in neural network quantization has been the work of [61];
it introduced stochastic rounding, a technique that is one of the most popular approaches
for training neural networks with reduced numerical precision. Instead of rounding to the
nearest representable value, the stochastic rounding procedure selects one of the two clos-
est grid points with probability depending on the distance of the high precision input from
these grid points. In fact, we can view stochastic rounding as a special case of RQ where
p(x̃) = U(x− α

2 , x+ α
2 ). This uniform distribution centered at x of width equal to the grid

width α generally has support only for the closest grid point. Discretizing this distribution
to a categorical over the quantization grid however assigns probabilities to the two closest
grid points as in stochastic rounding, following equation 113:

p(x̂ =
⌊ x
α

⌋
α |x) = P(x̃ 6 (

⌊ x
α

⌋
α+α/2)) − P(x̃ < (

⌊ x
α

⌋
α−α/2))

=
⌈ x
α

⌉
−
x

α
. (119)

Stochastic rounding has proven to be a very powerful quantization scheme, even though
it relies on biased gradient estimates for the rounding procedure. On the one hand, RQ
provides a way to circumvent this estimator at the cost of optimizing a surrogate objec-
tive. On the other hand, RQ ST makes use of the unreasonably effective straight-through
estimator as used in [85] to avoid optimizing a surrogate objective, at the cost of biased
gradients. Compared to stochastic rounding, RQ ST further allows sampling of not only
the two closest grid points, but also has support for more distant ones depending on the
estimated input noise σ. Intuitively, this allows for larger steps in the input space without
first having to decrease variance at the traversion between grid sections.

8.3 R E L AT E D W O R K

In this work we focus on hardware oriented quantization approaches. As opposed to meth-
ods that focus only on weight quantization and network compression for a reduced mem-
ory footprint, quantizing all operations within the network aims to additionally provide
reduced execution speeds. Within the body of work that considers quantizing weights and
activations fall papers using stochastic rounding [61, 63, 80, 198]. [198] also consider
quantized backpropagation, which is out-of-scope for this work.
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Furthermore, another line of work considers binarizing [36, 206] or ternarizing [103,
206] weights and activations [80, 149, 207] via the straight-through gradient estimator [19];
these allow for fast implementations of convolutions using only bit-shift operations. In a
similar vein, the straight through estimator has also been used in [27, 47, 83, 125, 205]
for quantizing neural networks to arbitrary bit-precision. In these approaches, the full pre-
cision weights that are updated during training correspond to the means of the logistic
distributions that are used in RQ. Furthermore, [83] maintains moving averages for the
minimum and maximum observed values for activations while parameterises the network’s
weights’ grids via their minimum and maximum values directly. This fixed-point grid is
therefore learned during training, however without gradient descent; unlike the proposed
RQ. Alternatively, instead of discretizing real valued weights, [161] directly optimize dis-
crete distributions over them. While providing promising results, this approach does not
generalize straightforwardly to activation quantization.

Another line of work quantizes networks through regularization. [112] formulate a vari-
ational approach that allows for heuristically determining the required bit-width precision
for each weight of the model. Improving upon this work, [2] proposed a quantizing prior
that encourages ternary weights during training. Similarly to RQ, this method also allows
for optimizing the scale of the ternary grid. In contrast to RQ, this is only done implic-
itly via the regularization term. One drawback of these approaches is that the strength of
the regularization decays with the amount of training data, thus potentially reducing their
effectiveness on large datasets.

Weights in a neural network are usually not distributed uniformly within a layer. As
a result, performing non-uniform quantization is usually more effective. [15] employ a
stochastic quantizer by first uniformizing the weight or activation distribution through a
non-linear transformation and then injecting uniform noise into this transformed space.
[146] propose a version of their method in which the quantizer’s code book is learned by
gradient descent, resulting in a non-uniformly spaced grid. Another line of works quantizes
by clustering and therefore falls into this category; [65, 185] represent each of the weights
by the centroid of its closest cluster. While such non-uniform techniques can be indeed
effective, they do not allow for efficient implementations on todays hardware.

Within the liteterature on quantizing neural networks there are many approaches that
are orthogonal to our work and could potentially be combined for additional improve-
ments. [125, 146] use knowledge distrillation techniques to good effect, whereas works
such as [126] modify the architecture to compensate for lower precision computations. [15,
205, 206] perform quantization in an step-by-step manner going from input layer to output,
thus allowing the later layers to more easily adapt to the rounding errors introduced. [47,
146] further employ “bucketing", where small groups of weights share a grid, instead of
one grid per layer. As an example from [146], a bucket size of 256 weights per grid on
Resnet-18 translates to ∼ 45.7k separate weight quantization grids as opposed to 22 in
RQ.
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8.4 E X P E R I M E N T S

For the subsequent experiments RQ will correspond to the proposed procedure that has
concrete sampling and RQ ST will correspond to the proposed procedure that uses the
Gumbel-softmax straight-through estimator [85] for the gradient. We did not optimize an
offset for the grids in order to be able to represent the number zero exactly, which al-
lows for sparcity and is required for zero-padding. Furthermore we assumed a grid that
starts from zero when quantizing the outputs of ReLU. We provide further details on the
experimental settings at Appendix 10.6.1. We will also provide results of our own imple-
mentation of stochastic rounding [61] with the dynamic fixed point format [63] (SR+DR).
Here we used the same hyperparameters as for RQ. All experiments were implemented
with TensorFlow [1], using the Keras library [34].

8.4.1 LeNet-5 on MNIST and VGG7 on CIFAR 10

For the first task we considered the toy LeNet-5 network trained on MNIST with the 32C5
- MP2 - 64C5 - MP2 - 512FC - Softmax architecture and the VGG 2x(128C3) - MP2 -
2x(256C3) - MP2 - 2x(512C3) - MP2 - 1024FC - Softmax architecture on the CIFAR 10
dataset. Details about the hyperparameter settings can be found in Appendix 10.6.1.

By observing the results in Table 12, we see that our method can achieve competitive
results that improve upon several recent works on neural network quantization. Consider-
ing that we achieve lower test error for 8 bit quantization than the high-precision models,
we can see how RQ has a regularizing effect. Generally speaking we found that the gra-
dient variance for low bit-widths (i.e. 2-4 bits) in RQ needs to be kept in check through
appropriate learning rates.

8.4.2 Resnet-18 on Imagenet

In order to demonstrate the effectiveness of our proposed approach on large scale tasks we
considered the task of quantizing a Resnet-18 [69] trained on the Imagenet (ILSVRC2012)
dataset. We started from a pre-trained full precision model that was trained for 90 epochs.
We quantized the weights of all layers, post ReLU activations and average pooling layer
for various bit-widths via fine-tuning for ten epochs. Further details can be found in Ap-
pendix 10.6.2.

Some of the existing quantization works do not quantize the first (and sometimes) last
layer. Doing so simplifies the problem but it can, depending on the model and input dimen-
sions, significantly increase the amount of computation required. We therefore make use
of the bit operations per second (BOPs) metric [15], which can be seen as a proxy for the
execution speed on appropriate hardware. In BOPs, the impact of not quantizing the first
layer in, for example, the Resnet-18 model on Imagenet, becomes apparent: keeping the
first layer in full precision requires roughly 2.5 times as many BOPs for one forward pass
through the whole network compared to quantizing all weights and activations to 5 bits.
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Table 12: Test error (%) on MNIST and CIFAR 10 using LeNet5-Caffe and VGG-7 respectively.
Two and four bit for VGG with SR+DR resulted in a big gap between training and validation
accuracy, so we omit those results.

Method # Bits weights/act. MNIST CIFAR 10

Original 32/32 0.64 6.95

SR+DR 8/8 0.58 7.06
[61, 63] 4/4 0.66 -

2/2 1.03 -

Deep Comp. [65] (5-8)/32 0.74 -

TWN [103] 2/32 0.65a 7.44
BWN [149] 1/32 - 9.88
XNOR-net [149] 1/1 - 10.17
SWS [185] 3/32 0.97 -

Bayesian Comp. [112] (7-18)/32 1.00 -

VNQ [2] 2/32 0.73 -

WAGE [198] 2/8 0.40 6.78

LR Net [161]b 1/32 0.53a 6.82
2/32 0.50a 6.74

RQ (ours) 8/8 0.55 6.70
4/4 0.58 8.43
2/2 0.76 11.75

RQ ST (ours) 8/8 0.56 6.72
4/4 0.61 7.96
2/2 0.63 9.08

a With batch normalization after convolution
b Last layer in full precision

Figure 25 compares a wide range of methods in terms of accuracy and BOPs. We choose
to compare only against methods that employ fixed-point quantization on Resnet-18 hence
do not compare with non-uniform quantization techniques, such as the one described
at [15]. In addition to our own implementation of [61] with the dynamic fixed point for-
mat [63], we also report results of “rounding”. This corresponds to simply rounding the
pre-trained high-precision model followed by re-estimation of the batchnorm statistics.
The grid in this case is defined as the initial grid used for fine-tuning with RQ. For batch-
norm re-estimation and grid initialization, please confer Appendix 10.6.1.
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Figure 25: Best viewed in color. Comparison of various methods on Resnet-18 according to top-1
error (on the y-axis) and bit operations per second (on the x-axis) computed according to the for-
mula described in [15]. Each dashed line corresponds to employing a specific bit configuration for
every layer’s weights and activations. Values for top-1 and top-5 errors are given in Table 16 in the
Appendix. We compare against multiple works that employ fixed-point quantization: SR+DR [61,
63], LR Net [161], [83], TWN [103], INQ [205], BWN [149], XNOR-net [149], HWGQ [27],
ELQ [206], SYQ [47], Apprentice [125] and rounding.

We observe that on ResNet-18 the RQ variants form the “Pareto frontier” in the trade-
off between accuracy and efficiency, along with SYQ, Apprentice and [83]. SYQ, however,
employs “bucketing” and Apprentice uses distillation, both of which can be combined
with RQ and improve performance. [83] does better than RQ with 8 bits, however RQ
improved w.r.t. to its pretrained model, whereas [83] decreased slightly. For experimental
details with [83], please confer Appendix 10.6.2.1. SR+DR underperforms in this setting
and is worse than simple rounding for 5 to 8 bits.

8.5 D I S C U S S I O N

We have introduced Relaxed Quantization (RQ), a powerful and versatile algorithm for
learning low-bit neural networks using a uniform quantization scheme. As such, the mod-
els trained by this method can be easily transferred and executed on low-bit fixed point
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chipsets. We have extensively evaluated RQ on various image classification benchmarks
and have shown that it allows for the better trade-offs between accuracy and bit operations
per second.

Future hardware might enable us to cheaply do non-uniform quantization, for which
this method can be easily extended. [96, 139] for example, show the benefits of low-bit
floating point weights that can be efficiently implemented in hardware. The floating point
quantization grid can be easily learned with RQ by redefining Ĝ. General non-uniform
quantization, as described for example in [15], is a natural extension to RQ, whose explo-
ration we leave to future work. Currently, the bit-width of every quantizer is determined
beforehand, but in future work we will explore learning the required bit precision within
this framework. In our experiments, batch normalization was implemented as a sequence
of convolution, batch normalization and quantization. On a low-precision chip, however,
batch normalization would be ”folded" [83] into the kernel and bias of the convolution,
the result of which is then rounded to low precision. In order to accurately reflect this
folding at test time, future work on the proposed algorithm will emulate folded batchnorm
at training time and learn the corresponding quantization grid of the modified kernel and
bias. For fast model evaluation on low-precision hardware, quantization goes hand-in-hand
with network pruning. The proposed method is orthogonal to pruning methods such as, for
example, L0 regularization [115], which allows for group sparsity and pruning of hidden
units.
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C O N C L U S I O N

In this thesis we aimed to improve deep learning, in hopes of making it a robust and ef-
fective tool that we can use to improve our lives. We identified two key research questions
that involved 1) enhancing neural networks with the ability to robustly represent their
uncertainty and 2) making neural networks smaller and faster while retaining their good
predictive capabilities.

For the first question we believe that Bayesian reasoning provide us with an elegant
and principled way to obtain effective uncertainty estimates for neural networks. In Chap-
ters 3, 4 we explored the straightforward application of such reasoning to neural networks
and we verified that this is indeed the case. As a follow up work, we presented in Chapter 5
the functional neural process (FNP), a model that combines the power of deep learning
and the Bayesian machinery of stochastic processes. We showed that such models allow
for more intuitive priors (compared to priors over the weights of the neural network), a fact
that allowed us to obtain more robust uncertainty estimates than Bayesian neural networks
while retaining the same predictive accuracy. As a result, these three chapters provided a
positive answer to the first research question.

Nevertheless, while we do believe that the research of this work is a step towards a
good direction, there is still more work to be done in order to obtain neural networks that
can robustly represent their uncertainty in real world tasks. First of all, there are signifi-
cant optimization challenges for variational BNNs that are yet to be resolved; the Monte
Carlo sampling that is necessary for sampling the variational distribution over the weights,
e.g. in Chapters 3, 4, 6, can lead to large variance in the gradients, a fact that prohibits
convergence to high accuracy optima. For this reason, we had to resort to ad-hoc ways to
mitigate this effect by e.g. clamping the variance of the approximate posterior in Chap-
ters 4, 6. While lower variance gradient estimators such as [89, 193] exist, we believe
that they are only a part of the final solution and optimizers that are better suited for such
kind of tasks, along with better prior / variational posterior pairs can provide more princi-
pled solutions to this phenomenon. Secondly, the priors usually adopted are overly generic
or chosen for computational convenience; for varational BNNs the standard Gaussian is
prevalent in the literature [23, 50, 113, 114], whereas for models that posit distributions
over functions such as the functional variational BNNs [176] or the FNPs [110] generic
Gaussian process priors or priors based on locality in the latent space are employed. We
believe that we, as a community, should collectively work towards allowing a broader
range of prior knowledge, for example informative group structure priors that respect the
symmetries in the data, thus expanding the toolbox of a practitioner. Finally, we believe

99
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that proper benchmarks for this particular problem need to be established as they can
greatly help in advancing the state of the art, akin to how Imagenet1 guided the research in
neural networks for computer vision. For this reason, works such as the one described at
https://github.com/OATML/bdl-benchmarks or [141] are important for this
field.

For the second question we showed in Chapter 6 that through Bayesian inference and
sparsity inducing priors over the weights of the network we can also provide neural net-
works that are fast and compact via joint pruning and quantization. We further elaborated
on pruning and quantization separately in Chapters 7, 8. In Chapter 7 we showed how the
golden standard for sparsity and pruning but non-differentiable L0 norm can be optimized
with stochastic gradient descent via the inclusion of a collection of non-negative stochastic
gates. In Chapter 8 we showed how we can effectively optimize quantized neural networks
where both their weights and activations are constrained to obey a fixed point quantization
grid with an-apriori defined bit-width budget. The answer to the second research question
has thus been similarly positive.

Similarly to the first research question, there is still work to be done in order to push
towards even smaller and accurate neural networks. We believe that promising research
directions are towards formalizing objectives that can perform joint pruning and quanti-
zation, akin to how it was performed (albeit at an implicit way) in Chapter 6. This will
allow the given optimizer to find better trade-offs between the computational complexity
and accuracy of the model. Furthermore, we need to define proper metrics for the perfor-
mance of the model on a given device, such as a mobile phone. The amount of FLOPs
is only loosely correlated with the actual performance on-device, as we have to also take
into account e.g. memory and data transfer. Finally, most modern architectures have been
defined with the goal of best performance in mind, something which does not always cor-
relate with efficiency. For this reason, we believe that neural architecture search methods,
something which was not explored in this thesis, coupled with hardware simulators are
well suited to tackle this task.

1 Imagenet

https://github.com/OATML/bdl-benchmarks
http://www.image-net.org
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10
A P P E N D I C E S

10.1 N OTAT I O N

Symbol Description

A − Z Capital bold letters denote matrices or higher order tensors.

a − z Small bold letters denote vectors.

a− z Regular letters denote scalars.

p(·),q(·) Both are used in order to denote either continuous or discrete prob-
ability distributions. With p(·) we denote distributions that are ex-
act, whereas with q(·) we denote distributions that approximate
intractable distributions p(·).

P(·),Q(·) Both are used in order to denote the cumulative distribution func-
tions (CDFs) of p(·),q(·) respectively. The CDF is defined as
P(x 6 a) =

∫a
−∞ p(t)dt.

pθ(·),qφ(·) Both are used in order to denote probability distributions
p(·),q(·) with parameters θ,φ respectively.

KL The KL-divergence from a distribution p(x) to q(x),
KL(p(x)||q(x)) =

∫
p(x) log p(x)

q(x)dx.

H(q(x)) or
Hq

The entropy of a given distribution, in this case q(x), be-
ing either −

∑
x q(x) logq(x) for when q(x) is discrete or

−
∫
q(x) logq(x)dx when q(x) is continuous.

10.2 A P P E N D I X O F C H A P T E R 2

10.2.1 KL divergence between matrix variate Gaussian prior and posterior

Let MN0(M0, U0, V0) and MN1(M1, U1, V1) be two matrix variate Gaussian distribu-
tions for random matrices of size n × p. We can use the fact that the matrix variate
Gaussian is a multivariate Gaussian if we flatten the matrix, i.e. MN0(M0, U0, V0) =
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N0(vec(M0), V0 ⊗U0), and as a result use the KL-divergence between two multivariate
Gaussians:

KL(N0||N1) =
1

2

(
tr(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0) −K+ log
|Σ1|

|Σ0|

)
=
1

2

(
tr
(
(V1 ⊗U1)

−1(V0 ⊗U0)
)
+

+
(

vec(M1) − vec(M0)
)T(V1 ⊗U1

)−1(vec(M1) − vec(M0)
)
−

−np+ log
|V1 ⊗U1|

|V0 ⊗U0|

)
Now to compute each term in the KL efficiently we need to use some properties of the
vectorization and Kronecker product:

ta = tr
(
(V1 ⊗U1)

−1(V0 ⊗U0)
)
= tr

(
(V−1

1 ⊗U−1
1 )(V0 ⊗U0)

)
= tr

(
(V−1

1 V0)⊗ (U−1
1 U0)

)
= tr(U−1

1 U0) tr(V−1
1 V0) (120)

tb =
(

vec(M1) − vec(M0)
)T(V1 ⊗U1

)−1(vec(M1) − vec(M0)
)

= vec(M1 − M0)
T (V−1

1 ⊗U−1
1 )vec(M1 − M0)

= vec(M1 − M0)
T vec(U−1

1 (M1 − M0)V−1
1 )

= tr
(
(M1 − M0)

TU−1
1 (M1 − M0)V−1

1

)
(121)

tc = log
|V1 ⊗U1|

|V0 ⊗U0|
= log

|U1|
p|V1|

n

|U0|p|V0|n

= p log |U1|+n log |V1|− p log |U0|−n log |V0| (122)

So putting everything together we have that:

KL(MN0,MN1) =
1

2

(
tr(U−1

1 U0) tr(V−1
1 V0)+

+ tr
(
(M1 − M0)

TU−1
1 (M1 − M0)V−1

1

)
−np

+ p log |U1|+n log |V1|− p log |U0|−n log |V0|

)
(123)

10.2.2 Different toy dataset

We also performed an experiment with a different toy dataset that was employed in [140].
We generated 12 inputs from U[0, 0.6] and 8 inputs from U[0.8, 1]. We then transform
those inputs via:

yi = xi + εi + sin(4(xi + εi)) + sin(13(xi + εi))
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where εi ∼ N(0, 0.0009). We continued in fitting four neural networks that had two hidden-
layers with 50 units each. The first was trained with probabilistic back-propagation [72],
and the remaining three with our model while varying the nonlinearities among the layers:
we used ReLU, cosine and hyperbolic tangent activations. For our model we set the upper
bound of the variational dropout rate to 0.2 and we used 2 pseudo data pairs for the input
layer and 4 for the rest. The resulting predictive distributions can be seen at Figure 26.

(a) PBP (b) MG ReLU (c) MG cosine (d) MG tanh

Figure 26: Predictive distributions for the toy dataset. Grey areas correspond to ±{1, 2} standard
deviations around the mean function.

10.3 A P P E N D I X O F C H A P T E R 4

10.3.1 Experimental details

Throughout the experiments, the architectures for the FNP and FNP+ were constructed
as follows. We used a neural network torso in order to obtain an intermediate hidden
representation h of the inputs x and then parametrized two linear output layers, one that
lead to the parameters of p(u|x) and one that lead to the parameters of q(z|x), both of
which were fully factorized Gaussians. The function g(·, ·) for the Bernoulli probabilities
was set to an RBF, i.e. g(ui, uj) = exp(−.5τ‖ui − uj‖2), where τ was optimized to
maximize the lower bound. The temperature of the binary concrete / Gumbel-softmax
relaxation was kept at 0.3 throughout training and we used the log CDF of a standard
normal as the τk(·) for G. For the classifiers p(y|z),p(y|z, u) we used a linear model that
operated on top of ReLU(z) or ReLU([z, u]) respectively. We used a single Monte Carlo
sample for each batch during training in order to estimate the bound of FNPs. We similarly
used a single sample for the NP, MC-dropout and the variationally trained Bayesian neural
network (VI BNN). All of the models were implemented in PyTorch and were run across
six Titan X (Pascal) GPUs (one GPU per model).

The NN, MC-dropout and VI BNN had the same torso and classifier as the FNPs. As
the NP has not been previously employed in the settings we considered, we designed the
architecture in a way that is similar to the FNP. More specifically, we used the same neural
network torso to provide an intermediate representation h for the inputs x. To obtain the
global embedding r we concatenated the labels y to obtain h̃ = [h, y], projected h̃ to 256
dimensions with a linear layer and then computed the average of each dimension across
the context. The parameters of the distribution over the global latent variables θ were then
given by a linear layer acting on top of ReLU(r). After sampling θ we then used a linear
classifier that operated on top of [h, ReLU(θ)].
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In the regression experiment for the initial transformation of x we used 100 ReLUs for
both NP and FNP models via a single layer MLP, whereas for the regressor we used a
linear layer for NP (more capacity lead to overfitting and a decrease in predictive uncer-
tainty) and a single hidden layer MLP of 100 ReLUs for the FNPs. For the MC-dropout
network used a single hidden layer MLP of 100 units and we applied dropout with a rate
of 0.5 at the hidden layer. In all of the neural networks models, the heteroscedastic noise
was parametrized according to σ = .1+ 0.9 log(1+ exp(d)), where d was a neural net-
work output. For the GP, we optimized the kernel lengthscale according to the marginal
likelihood. We also found it beneficial to apply a soft-free bits [32] modification of the
bound to help with the optimization of z, where we allowed 1 free bit on average across
all dimensions and batch elements for the FNP and 4 for the FNP+.

For the MNIST experiment, the model architecture was a 20C5 - MP2 - 50C5 - MP2 -
500FC - Softmax, where 20C5 corresponds to a convolutional layer of 20 output feature
maps with a kernel size of 5, MP2 corresponds to max pooling with a size of 2, 500FC
corresponds to fully connected layer of 500 output units and Softmax corresponds to the
output layer. The initial representation of x for the NP and FNPs was provided by the
penultimate layer of the network. For the MC-dropout network we applied 0.5 dropout
to every layer, whereas for the VI BNN we performed variational inference over all of
the parameters. The number of points in R was set to 300, a value that was determined
from a range of [50, 100, 200, 300, 500] by judging the performance of the NP and FNP
models on the MNIST / notMNIST pair. For the FNP we used minibatches of 100 points
from M, while we always appended the full R to each of those batches. For the NP, since
we were using a random set of contexts every time, we used a batch size of 400 points,
where, in order to be comparable to the FNP, we randomly selected up to 300 points from
the current batch for the context points during training and used the same 300 points as
FNP for evaluation. We set the upper bound of training epochs for the FNPs, NN, MC-
dropout and VI BNN networks to 100 epochs, and 200 epochs for the NP as it did less
parameter updates per epoch than the others. Optimization was done with Adam [88] using
the default hyperparameters. We further did early stopping according to the accuracy on the
validation set and no other regularization was employed. Finally, we also employed a soft-
free bits [32] modification of the bound to help with the optimization; for the z of FNPs we
allowed 1 free bit on average across all dimensions and batch elements throughout training
whereas for the VI BNN we allowed 1 free bit on average across all of the parameters.

The architecture for the CIFAR 10 experiment was a 2x(128C3) - MP2 - 2x(256C3) -
MP2 - 2x(512C3) - MP2 - 1024FC - Softmax along with batch normalization [82] em-
ployed after every layer (besides the output one). Similarly to the MNIST experiment, the
initial representation of x for the NP and FNPs was provided by the penultimate layer
of each of the networks. We didn’t optimize any hyperparameters for these experiments
and used the same number of reference points, free bits, amount of epochs, regularization
and early stopping criteria we used at MNIST. For the MC-dropout network we applied
dropout with a rate of 0.2 at the beginning of each stack of convolutional layers that shared
the same output channels and with a rate of 0.5 before every fully connected layer. For the
VI BNN, we performed variational inference over the layers were dropout was originally
employed in the MC-dropout network, and we performed maximum likelihood for the rest.
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Optimization was done with Adam with an initial learning rate of 0.001 that was decayed
by a factor of 10 every thirty epochs for the NN, MC-Dropout, VI BNN and FNPs and
every 60 epochs for the NP. We also performed data augmentation during training by do-
ing random cropping with a padding of 4 pixels and random horizontal flips for both the
reference and other points. We did not do any data augmentation during test time. The
images were further normalized by subtracting the mean and by dividing with the standard
deviation of each channel, computed across the training dataset.

10.3.2 Ablation study on MNIST

In this section we provide the additional results we obtained on MNIST during the abla-
tion study. The discussion of the results can be found in the main text. We measured the
sensitivity of NPs and FNPs to the size of the reference set R, the trade-offs we obtain by
varying the dimensionalities of u, z for the FNP+, and finally the deviation of the scores
for the FNPs after 5 replications, where on each one we select a different subset of size
300 (the size we used for the experiments in the main paper) of the training set as R. The
results can be seen at Table 13, Table 14 and Table 15.

Table 13: Test error and uncertainty quality as a function of the size of the reference set R. For the
o.o.d. entropy and AUCR we report the mean and standard error across all of the o.o.d. datasets.

(a) Error %

# R NP FNP FNP+

50 0.6 30.6 0.7

100 0.6 0.9 0.9

200 0.4 0.8 0.7

500 0.5 0.9 0.7

(b) o.o.d. entropy

# R NP FNP FNP+

50 1.0±0.2 2.1±0.0 1.6±0.1

100 1.4±0.3 1.8±0.1 2.0±0.1

200 0.9±0.2 1.8±0.1 1.6±0.1

500 0.8±0.1 1.7±0.1 1.3±0.1

(c) AUCR

# R NP FNP FNP+

50 99.4±0.3 80.0±0.3 99.7±0.2

100 99.7±0.2 99.6±0.1 99.9±0.1

200 99.5±0.2 99.8±0.1 99.8±0.1

500 99.5±0.2 99.8±0.1 99.4±0.3

Table 14: Test error and uncertainty quality as a function of the size of u, z for the FNP+. We used
the same R as the one for the experiments in the main text.

u, z Error % o.o.d. entropy AUCR

32, 64 0.7 1.8±0.1 99.9±0.1

64, 32 0.7 1.2±0.3 99.3±0.6

16, 80 0.7 2.0±0.1 99.6±0.4

8, 88 0.8 1.1±0.0 99.4±0.1

2, 94 4.7 0.4±0.0 91.4±2.2
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Table 15: Average and standard error for the FNP models after 5 replications with different refer-
ence sets R of size 300.

FNP FNP+

MNIST 0.02± 0.0 / 0.7±0.0 0.02±0.0 / 0.7±0.0

nMNIST 1.95±0.06 / 99.93±0.03 1.97±0.05 / 99.97± 0.02

fMNIST 1.69±0.05 / 99.43±0.10 1.63±0.04 / 99.58±0.07

Omniglot 1.88±0.04 / 99.86±0.04 1.85±0.06 / 99.90±0.03

Gaussian 1.95±0.14 / 99.81±0.16 2.07±0.02 / 99.98±0.02

Uniform 1.99±0.06 / 99.96±0.02 1.95±0.06 / 99.96±0.02

CIFAR10 0.17±0.01 / 7.5±0.08 0.08±0.01 / 7.3±0.04

SVHN 0.86±0.05 / 90.74±0.81 0.51±0.04 / 91.3±0.76

tImag32 1.22±0.02 / 94.49±0.29 0.69±0.02 / 92.6±0.39

iSUN 1.33±0.02 / 95.71±0.24 0.75±0.02 / 93.8±0.38

Gaussian 1.05±0.10 / 93.73±1.29 0.60±0.08 / 93.6±1.09

Uniform 0.85±0.16 / 89.43±4.20 0.61±0.11 / 93.4±1.89

10.3.3 The Functional Neural Process is an exchangeable stochastic process

Proposition. The distributions defined in Eq.8, 9 define valid permutation invariant stochas-
tic processes, hence they correspond to Bayesian models.

Proof. In order to prove the proposition we will rely on de Finetti’s and Kolmogorov Ex-
tension Theorems [92] and show that p(yD|XD) is permutation invariant and its marginal
distributions are consistent under marginalization. We will focus on FNP as the proof for
FNP+ is analogous. As a reminder, we previously defined R to be a set of reference inputs
R = {xr1, . . . , xrK}, we defined Dx to be the set of observed inputs, and we also defined the
auxiliary sets M = Dx \ R, the set of all inputs in the observed dataset that are not a part
of the reference set R, and B = R ∪M, the set of all points in the reference and observed
dataset.

We will start with the permutation invariance. It will suffice to show that each of the
individual probability densities described at Section 2.1 are permutation equivariant, as
the products / sums will then make the overall probability permutation invariant. Without
loss of generality we will assume that the elements in the set B are arranged as B =

{Dx,R \ Dx}. Consider applying a permutation σ(·) over D, D̃ = σ(D); this will also
induce the same permutation over Dx, hence we will have that σ(B) = {σ(Dx),R \ Dx}.
Now consider the fact that in the FNP each individual ui is a function, let it be f(·), of the
values of xi; as a result we will have that:

f(σ(B)) = σ(f(B)), (124)
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i.e. the latent variables u are permutation equivariant w.r.t. B. Continuing to the latent
adjacency matrices G, A; in the FNP each particular element i, j of these is a function of
the values of the specific ui, uj. As a result, we will also have permutation equivariance
for the rows / columns of G, A. Now since G, A are essentially used as a way to factorize
the joint distribution over the zi in B and given the fact that the distribution of each zi
is invariant to the permutation of its parents, we will have that the permutation of B will
result into the same re-ordering of the zi’s i.e.:

σ(ZB) = g(σ(B)), (125)

where g(·) is the function that maps B to ZB. Finally, as each yi is a function, let it be h(·),
of the specific zi, we will similarly have that σ(yB) = h(σ(B)). We have thus described
that all of the aforementioned random variables are permutation equivariant to B and as a
result, due to the permutation invariant product / integral / summation operators, we will
have that the FNP model is permutation invariant.

Continuing to the consistency under marginalization. Following [41] let us define D̃ =

D ∪ {(x0,y0)} and consider two cases, one where the x0 belongs in R and one where it
doesn’t. We will show that in both cases

∫
p(yD̃|XD̃)dy0 = p(yD|XD). Lets consider the

case when x0 ∈ R. In this case we have that the M and B sets will be the same across D
and D̃. As a result we can proceed as∫

p(yD̃|XD̃)dy0 =
∑
G,A

∫
pθ(UB|XB)p(G, A|UB)

pθ(ZB, yB|R, G, A)dUBdZBdyi∈R\D̃xdy0. (126)

Now we can notice that yi∈R\D̃x ∪ y0 = yi∈R\Dx , hence the measure that we are integrat-
ing over above can be rewritten as∫

p(yD̃|XD̃)dy0 =
∑
G,A

∫
pθ(UB|XB)p(G, A|UB)

pθ(yB, ZB|R, G, A)dUBdZBdyi∈R\Dx , (127)

where it is easy to see that we arrived at the same expression as the one provided at Eq. 8.
Now we will consider the case where x0 /∈ R. In this case we have that R \ D̃x = R \ Dx
and thus ∫

p(yD̃|XD̃)dy0 =
∑

G,A,a0

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)

pθ(u0|x0)p(a0|UR, u0)pθ(z0|para0(R, yR))

pθ(y0|z0)dUBdZBdu0dz0dyi∈R\Dxdy0. (128)
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Notice that in this case the new point that is added is a leaf in the dependency graph,
hence it doesn’t affect any of the points in D. As a result we can easily marginalize it out
sequentially∫

p(yD̃|XD̃)dy0 =
∑

G,A,a0

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)

pθ(u0|x0)p(a0|UR, u0)pθ(z0|para0(R, yR))

���
���

���
�:1(∫

pθ(y0|z0)dy0

)
dUBdZBdu0dz0dyi∈R\Dx . (129)

=
∑

G,A,a0

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)

pθ(u0|x0)p(a0|UR, u0)

���
���

���
���

���:1(∫
pθ(z0|para0(R, yR))dz0

)
dUBdZBdu0dyi∈R\Dx (130)

=
∑
G,A

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)

pθ(u0|x0)
���

���
���

��:1
(∑

a0

p(a0|UR, u0)

)
dUBdZBdu0dyi∈R\Dx (131)

=
∑
G,A

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)

��
���

���
��:1(∫

p(u0|x0)du0

)
dUBdZBdyi∈R\Dx (132)

=
∑
G,A

∫
pθ(UB|XB)p(G, A|UB)pθ(yB, ZB|R, G, A)dUBdZBdyi∈R\Dx (133)

where it is similarly easy to see that we arrived at Eq. 8. So we just showed that in both
cases we have that

∫
p(yD̃|XD̃)dy0 = p(yD|XD), hence the model is consistent under

marginalization.

10.3.4 Minibatch optimization of the bound of FNPs

As we mentioned in the main text, the objective of FNPs is amenable to minibatching
where the size of the batch scales according to the reference set R. We will only describe
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the procedure for the FNP as the extension for FNP+ is straightforward. Lets remind our-
selves that the bound of FNPs can be expressed into two terms:

L = Eqφ(ZR|XR)pθ(UR,G|XR)[logpθ(yR, ZR|R, G) − logqφ(ZR|XR)]+

+ Epθ(UD,A|XD)qφ(ZM|XM)[logpθ(yM|ZM) + logpθ (ZM|parA(R, yR))

− logqφ(ZM|XM)]

= LR +LM|R, (134)

where we have a term that corresponds to the variational bound on the datapoints in R, LR,
and a second term that corresponds to the bound on the points inM when we condition on
R, LM|R. While the LR term of Eq. 134 cannot, in general, be decomposed to independent
sums due to the DAG structure in R, the LM|R term can; from the conditional i.i.d. nature
of M and the structure of the variational posterior we can express it as M independent
sums:

LM|R = Epθ(UR|XR)

[
|M|∑
i=1

Epθ(ui,Ai|xi,UR)qφ(zi|xi)

[

logpθ
(
yi, zi|parAi(R, yR)

)
− logqφ(zi|xi)

]]
. (135)

We can now easily use a minibatch M̂ of points fromM in order to approximate the inner
sum and thus obtain unbiased estimates of the overall bound that depend on a minibatch
{R, M̂}:

L̃M|R = Epθ(UR|XR)

[
|M|

|M̂|

|M̂|∑
i=1

Epθ(ui,Ai|xi,UR)qφ(zi|xi)

[

logpθ
(
yi, zi|parAi(R, yR)

)
− logqφ(zi|xi)

]]
, (136)

thus obtain the following unbiased estimate of the overall bound that depends on a mini-
batch {S, M̂}

L ≈ LR + L̃M|R. (137)

In practice, this might limit us to use relatively small reference sets as training can become
relatively expensive; in this case an alternative would be to subsample also the reference
set and just reweigh appropriately LR. This provides a biased gradient estimator but, after
a limited set of experiments, it seems that it can work reasonably well.

10.3.5 Predictive distribution of FNPs

Given the fact that the parameters of the model has been optimized, we are now seeking a
way to do predictions for new unseen points. As we assumed that all of the reference points
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are a part of the observed dataset D, every new point x∗ will be a part of O. Furthermore,
we will have that B = Dx = XD. We will only provide the derivation for the FNP model,
since the extension to FNP+ is straightforward. To derive the predictive distribution for
this point we will rely on Bayes theorem and thus have:

pθ(y
∗|x∗, XD, yD) =

pθ(y
∗, yD|x∗, XD)∫

pθ(y∗, yD|x∗, XD)dy∗
. (138)

As we have established the consistency of FNP, we know that the denominator is pθ(yD|XD).
Therefore we can expand the enumerator and rewrite Eq. 138 as

pθ(y
∗|x∗, XD, yD) =

∑
G,A,a∗

∫
pθ(UD|XD)p(G, A|UD)pθ(ZD, yD|R, G, A)

pθ(yD|XD)

pθ(u∗|x∗)p(a∗|UR, u∗)pθ(z∗|para∗(R, yR))
pθ(y

∗|z∗)dUDdu∗dZDdz∗, (139)

where a∗ is the binary vector that denotes which points from R are the parents of the
new point. We can now see that the top part is the posterior distribution of the latent
variables of the model when we condition on D. We can thus replace it with its variational
approximation

pθ(UD|XD)p(G, A|UD)qφ(ZD|XD)

and obtain

pθ(y
∗|x∗, XD, yD) ≈

∑
G,A,a∗

∫
pθ(UD|XD)p(G, A|UD)qφ(ZD|XD)

pθ(u∗|x∗)p(a∗|UR, u∗)pθ(z∗|para∗(R, yR))
pθ(y

∗|z∗)dUDdu∗dZDdz∗ (140)

=
∑
a∗

∫
pθ(UR, u∗|XR, x∗)p(a∗|UR, u∗)

pθ(z∗|para∗(R, yR))
pθ(y

∗|z∗)dURdu∗dz∗ (141)

after integrating / summing over the latent variables that do not affect the distributions that
are specific to the new point.

10.4 A P P E N D I X O F C H A P T E R 5

10.4.1 Detailed experimental setup

We implemented our methods in Tensorflow [1] and optimized the variational parameters
using Adam [88] with the default hyperparameters. The means of the conditional Gaussian
qφ(W|z) were initialized with the scheme proposed at [68], whereas the log of the standard
deviations were initialized by sampling from N(−9, 1e − 4). The parameters of qφ(z)
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were initialized such that the overall mean of z is ≈ 1 and the overall variance is very
low (≈ 1e − 8); this ensures that all of the groups are active during the initial training
iterations.

As for the standard deviation constraints; for the LeNet-300-100 architecture we con-
strained the standard deviation of the first layer to be 6 0.2 whereas for the LeNet-5-Caffe
we constrained the standard deviation of the first layer to be 6 0.5. The remaining standard
deviations were left unconstrained. For the VGG network we constrained the standard de-
viations of the 64 and 128 feature map layers to be 6 0.1, the standard deviations of the
256 feature map layers to be 6 0.2 and left the rest of the standard deviations uncon-
strained. We also found beneficial the incorporation of “warm-up” [170], i.e we annealed
the negative KL-divergence between the approximate posterior and the prior with a linear
schedule for the first 100 epochs. We initialized the means of the approximate posterior by
the weights and biases obtained from a VGG network trained with batch normalization and
dropout on CIFAR 10. For our method we disabled batch-normalization during training.

As for preprocessing the data; for MNIST the only preprocessing we did was to rescale
the digits to lie at the [−1, 1] range and for CIFAR 10 we used the preprocessed dataset
provided by [202].

Furthermore, do note that by pruning a given filter at a particular convolutional layer we
can also prune the parameters corresponding to that feature map for the next layer. This
similarly holds for fully connected layers; if we drop a given input neuron then the weights
corresponding to that node from the previous layer can also be pruned.

10.4.2 Shrinkage properties of the normal-Jeffreys and horseshoe priors

(a) Empirical CDF (b) Prior on shrinkage coefficient

Figure 27: Comparison of the behavior of the log-uniform / normal-Jeffreys (NJ) prior and the
horseshoe (HS) prior (where s = 1). Both priors behave similarly at zero but the normal-Jeffreys
has an extremely heavy tail (thus making it non-normalizable).

In this section we will provide some insights about the behavior of each of the priors we
employ by following the excellent analysis of [28]; we can perform a change of variables
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and express the scale mixture distribution of eq.3 in the main paper in terms of a shrinkage
coefficient, λ = 1

1+z2
:

λ ∼ p(λ); w ∼ N

(
0,
1− λ

λ

)
(142)

It is easy to observe that eq. 142 corresponds to a continuous relaxation of the spike-and-
slab prior: when λ = 0 we have that p(w|λ = 0) = U(−∞,∞), i.e. no shrinkage/regu-
larization for w, when λ = 1 we have that p(w|λ = 1) = δ(w = 0), i.e. w is exactly
zero, and when λ = 1

2 we have that p(w|λ = 1
2) = N(0, 1). Now by examining the

implied prior on the shrinkage coefficient λ for both the log-uniform and the horseshoe
priors we can better study their behavior. As it is explained at [28], the half-Cauchy prior
on z corresponds to a beta prior on the shrinkage coefficient, p(λ) = B(12 , 12), whereas
the normal-Jeffreys / log-uniform prior on z corresponds to p(λ) = B(ε, ε) with ε ≈ 0.
The densities of both of these distributions can be seen at Figure 27b. As we can observe,
the log-uniform prior posits a distribution that concentrates almost all of its mass at either
λ ≈ 0 or λ ≈ 1, essentially either pruning the parameter or keeping it close to the maxi-
mum likelihood estimate due to p(w|λ ≈ 1) = U(−∞,∞). In contrast the horseshoe prior
maintains enough probability mass for the in-between values of λ and thus can, potentially,
offer better regularization and generalization.

10.4.3 Negative KL-divergences for log-normal approximating posteriors

Let q(z) = LN(µ,σ2) be a log-normal approximating posterior. Here we will derive
the negative KL-divergences between q(z) and inverse gamma, gamma and half-normal
distributions.

Let p(z) be an inverse gamma distribution, i.e. p(z) = IG(α,β). The negative KL-
divergence can be expressed as follows:

−KL(q(z)||p(z)) =

∫
q(z) logp(z)dz−

∫
q(z) logq(z)dz (143)

The second term is the entropy of the log-normal distribution which has the following
form:

Hq = −

∫
q(z) logq(z)dz =

1

2
logσ2 + µ+

1

2
+
1

2
log(2π) (144)

The first term is the cross entropy between the log-normal posterior and the inverse-Gamma
prior:

CEqp =

∫
q(z)

(
α logβ− log Γ(α) − (α+ 1) log z) −

β

z

)
dz (145)

= α logβ− log Γ(α) − (α+ 1)Eq(z)[log z] −βEq(z)[z
−1] (146)

Since the natural logarithm of a log-normal distribution LN(µ,σ2) follows a normal distri-
bution N(µ,σ2) we have that Eq(z)[log z] = µ. Furthermore we have that if x ∼ LN(µ,σ2)
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then 1
x ∼ LN(−µ,σ2), therefore Eq(z)[z

−1] = exp(−µ+ σ2

2 ). Putting everything together
we have that:

CEqp = α logβ− log Γ(α) − (α+ 1)µ−β exp(−µ+
σ2

2
) (147)

Therefore the negative KL-divergence is:

−KL(q(z)||p(z)) = α logβ− log Γ(α) −αµ−β exp(−µ+ 0.5σ2)+

+ 0.5(logσ2 + 1+ log(2π)) (148)

Now let p(z) be a Gamma prior, i.e. p(z) = G(α,β). We have that the cross-entropy
changes to:

CEqp =

∫
q(z)

(
−α logβ− log Γ(α) −

z

β
+ (α− 1) log z

)
dz (149)

= −α logβ− log Γ(α) −β−1Eq(z)[z] + (α− 1)Eq(z)[log z] (150)

= −α logβ− log Γ(α) −β−1 exp(µ+
σ2

2
) + (α− 1)µ (151)

Therefore the negative KL-divergence is:

−KL(q(z)||p(z)) = −α logβ− log Γ(α) +αµ−β−1 exp(µ+ 0.5σ2)+

+ 0.5(logσ2 + 1+ log(2π)) (152)

Now, with the above we can express the KL-divergence between the prior p(sa, sb, α̃, β̃)
and the variational posterior qφ(sa, sb, α̃, β̃) as follows:

−KL(qφ(sa)||p(sa)) = log τ0 + τ−10 exp
(
µsa +

1

2
σ2sa
)
+

1

2

(
µsa + logσ2sa + 1+ log 2

)
(153)

−KL(qφ(sb)||p(sb)) = − exp
(1
2
σ2sb − µsb

)
+

1

2

(
− µsb + logσ2sb + 1+ log 2

)
(154)

−KL(qφ(α̃)||p(α̃)) =

A∑
i

(
exp

(
µα̃i +

1

2
σ2α̃i

)
+

1

2

(
µα̃i + logσ2α̃i + 1+ log 2

))
(155)

−KL(qφ(β̃)||p(β̃)) =

A∑
i

(
− exp

(1
2
σ2
β̃i

− µβ̃i

)
+

1

2

(
− µβ̃i + logσ2

β̃i
+ 1+ log 2

))
(156)

with the KL-divergence for the weight distribution qφ(W̃) given by eq.8 in the main paper.
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10.4.4 Visualizations

(a)

(b)

(c)

Figure 28: Distribution of the thresholds for the Sparse Variational Dropout 28a, Bayesian Com-
pression with group normal-Jeffreys (BC-GNJ) 28b and group Horseshoe (BC-GHS) 28c priors for
the three layer LeNet-300-100 architecture. It is easily observed that there are usually two well sep-
arable groups with BC-GNJ and BC-GHS, thus making the choice for the threshold easy. Smaller
values indicate signal whereas larger values indicate noise (i.e. useless groups).
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(a)

(b)

(c)

Figure 29: Distribution of the bit precisions for the Sparse Variational Dropout 29a, Bayesian Com-
pression with group normal-Jeffreys (BC-GNJ) 29b and group Horseshoe (BC-GHS) 29c priors
for the three layer LeNet-300-100 architecture. All of the methods usually require far fewer than
32bits for the weights.

10.4.5 Algorithms for the feedforward pass

Algorithms 5, 6, 7, 8 describe the forward pass using local reparametrizations for fully con-
nected and convolutional layers with the approximate posteriors for the Bayesian Compres-
sion (BC) with group normal-Jeffreys (BC-GNJ) and group Horseshoe (BC-GHS) priors
employed at the experiments. For the fully connected layers we coupled the scales for each
input neuron whereas for the convolutional we couple the scales for each output feature
map. Mw,Σw are the means and variances of each layer, H is a minibatch of activations of
size K. For the first layer we have that H = X where X is the minibatch of inputs. For the
convolutional layersNf are the number of convolutional filters, ∗ is the convolution opera-
tor and we assume the [batch, height, width, feature maps] convention. rsh corresponds to
a reshape operation.
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Algorithm 5 Fully connected layer
with BC-GNJ.
Require: H, Mw,Σw

1: Ê ∼ N(0, 1)
2: Z = µz +σz � Ê
3: Ĥ = H�Z
4: Mh = ĤMw

5: Vh = Ĥ2Σw
6: E ∼ N(0, 1)
7: return Mh +

√
Vh � E

Algorithm 6 Convolutional BC-GNJ layer.
Require: H, Mw,Σw

1: Mh = H ∗Mw

2: Vh = H2 ∗Σw
3: Ê ∼ N(0, 1)
4: µ̂z = rsh(µz, [K, 1, 1,Nf])
5: σ̂z = rsh(σz, [K, 1, 1,Nf])
6: Z = µ̂z + σ̂z � Ê
7: E ∼ N(0, 1)
8: return Mh �Z +

√
Vh �Z2 � E

Algorithm 7 Fully connected layer
with BC-GHS.
Require: H, Mw,Σw

1: ε̂ ∼ N(0, 1)
2: µs = .5µsa + .5µsb
3: σs =

√
.25σ2sa + .25σ2sb

4: log s = µs + σs � ε̂
5: µz̃ = .5µα̃ + .5µβ̃ + log s

6: σz̃ =
√

.25σ2α̃ + .25σ2
β̃

7: Ê ∼ N(0, 1)
8: Z = exp(µz̃ +σz̃ � Ê)
9: Ĥ = H�Z

10: Mh = ĤMw

11: Vh = Ĥ2Σw
12: E ∼ N(0, 1)
13: return Mh +

√
Vh � E

Algorithm 8 Convolutional BC-GHS layer.
Require: H, Mw,Σw

1: Mh = H ∗Mw

2: Vh = H2 ∗Σw
3: ε̂ ∼ N(0, 1)
4: µs = .5µsa + .5µsb
5: σs =

√
.25σ2sa + .25σ2sb

6: log s = rsh(µs + σs � ε̂, [K, 1, 1, 1])
7: µz̃ = rsh(.5µα̃ + .5µβ̃, [K, 1, 1,Nf])

8: σz̃ = rsh(
√

.25(σ2α̃ +σ
2
β̃
), [K, 1, 1,Nf])

9: Ê ∼ N(0, 1)
10: Z = exp(µz̃ + log s +σz̃ � Ê)
11: E ∼ N(0, 1)
12: return Mh �Z +

√
Vh �Z2 � E

10.5 A P P E N D I X O F C H A P T E R 6

10.5.1 Relation to variational inference

The objective function described in Eq. 97 is in fact a special case of a variational lower
bound over the parameters of the network under a spike and slab [127] prior. The spike and
slab distribution is the golden standard in sparsity as far as Bayesian inference is concerned
and it is defined as a mixture of a delta spike at zero and a continuous distribution over the
real line (e.g. a standard normal):

p(z) = Bernoulli(π), p(θ|z = 0) = δ(θ), p(θ|z = 1) = N(θ|0, 1). (157)
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Since the true posterior distribution over the parameters under this prior is intractable, we
will use variational inference [16]. Let q(θ, z) be a spike and slab approximate posterior
over the parameters θ and gate variables z, where we assume that it factorizes over the
dimensionality of the parameters θ. It turns out that we can write the following variational
free energy under the spike and slab prior and approximate posterior over a parameter
vector θ:

F = −Eq(z)q(θ|z)[logp(D|θ)] +

|θ|∑
j=1

KL(q(zj)||p(zj))+

+

|θ|∑
j=1

(
q(zj = 1)KL(q(θj|zj = 1)||p(θj|zj = 1))+

+ q(zj = 0)KL(q(θj|zj = 0)||p(θj|zj = 0))
)

(158)

= −Eq(z)q(θ|z)[logp(D|θ)] +

|θ|∑
j=1

KL(q(zj)||p(zj))+

+

|θ|∑
j=1

q(zj = 1)KL(q(θj|zj = 1)||p(θj|zj = 1)), (159)

where the last step is due to KL(q(θj|zj = 0)||p(θj|zj = 0)) = 01. The term that involves
KL(q(zj)||p(zj)) corresponds to the KL-divergence from the Bernoulli prior p(zj) to the
Bernoulli approximate posterior q(zj) and KL(q(θj|zj = 1)||p(θj|zj = 1)) can be inter-
preted as the “code cost” or else the amount of information the parameter θj contains about
the data D, measured by the KL-divergence from the prior p(θj|zj = 1).

Now consider making the assumption that we are optimizing, rather than integrating,
over θ and further assuming that KL(q(θj|zj = 1)||p(θj|zj = 1)) = λ. We can justify
this assumption from an empirical Bayesian procedure: there is a hypothetical prior for
each parameter p(θj|zj = 1) that adapts to q(θj|zj = 1) in a way that results into needing,
approximately, λ nats to transform p(θj|zj = 1) to that particular q(θj|zj = 1). Those λ
nats are thus the amount of information the q(θj|zj = 1) can encode about the data had we
used that p(θj|zj = 1) as the prior. Notice that under this view we can consider λ as the
amount of flexibility of that hypothetical prior; with λ = 0 we have a prior that is flexible
enough to represent exactly q(θj|zj = 1), thus resulting into no code cost and possible
overfitting. Under this assumption the variational free energy can be re-written as:

F = −Eq(z)[logp(D|θ̃� z)] +
|θ|∑
j=1

KL(q(zj)||p(zj)) + λ

|θ|∑
j=1

q(zj = 1) (160)

> −Eq(z)[logp(D|θ̃� z)] + λ
|θ|∑
j=1

πj, (161)

1 We can see that this is indeed the case by taking the limit of σ → 0 of the KL divergence of two Gaussians
that have the same mean and variance.
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where θ̃ corresponds to the optimized θ and the last step is due to the positivity of the
KL-divergence. Now by taking the negative log-probability of the data to be equal to the
loss L(·) of Eq. 95 we see that Eq. 161 is the same as Eq. 97. Note that in case that
we are interested over the uncertainty of the gates z, we should optimize Eq. 160, rather
than Eq. 161, as this will properly penalize the entropy of q(z). Furthermore, Eq. 160
also allows for the incorporation of prior information about the behavior of the gates (e.g.
gates being active 10% of the time, on average). We have thus shown that the expected L0
minimization procedure is in fact a close surrogate to a variational bound involving a spike
and slab distribution over the parameters and a fixed coding cost for the parameters when
the gates are active.

10.5.2 The hard concrete distribution

As mentioned in the main text, the hard concrete is a straightforward modification of the bi-
nary concrete [85, 120]; let qs(s|φ) be the probability density function (pdf) andQs(s|φ)
the cumulative distribution function (CDF) of a binary concrete random variable s:

qs(s|φ) =
βαs−β−1(1− s)−β−1

(αs−β + (1− s)−β)2
, (162)

Qs(s|φ) = Sigmoid((log s− log(1− s))β− logα). (163)

Now by stretching this distribution to the (γ, ζ) interval, with γ < 0 and ζ > 1 we obtain
s̄ = s(ζ− γ) + γ with the following pdf and CDF:

qs̄(s̄|φ) =
1

|ζ− γ|
qs

(
s̄− γ

ζ− γ

∣∣∣∣φ), Qs̄(s̄|φ) = Qs

(
s̄− γ

ζ− γ

∣∣∣∣φ). (164)

and by further rectifying s̄ with the hard-sigmoid, z = min(1, max(0, s̄)), we obtain the
following distribution over z:

q(z|φ) = Qs̄(0|φ)δ(z) + (1−Qs̄(1|φ))δ(z− 1)+

(Qs̄(1|φ) −Qs̄(0|φ))qs̄(z|s̄ ∈ (0, 1),φ), (165)

which is composed by a delta peak at zero with probability Qs̄(0|φ), a delta peak at one
with probability 1−Qs̄(1|φ), and a truncated version of qs̄(s̄|φ) in the (0, 1) range.

10.5.3 Negative KL-divergence for hard concrete distributions

In case th 160 is to be optimized with a hard concrete q(z) then we have to compute the
KL-divergence from a prior p(z) to q(z). It is necessary for the prior p(z) to have the same
support as q(z) in order for the KL-divergence to be valid; as a result we can let the prior
p(z) similarly be a hard-sigmoid transformation of an arbitrary continuous distribution
p(s̄) with CDF Ps̄(s̄):

p(z) = Ps̄(0)δ(z) + (1− Ps̄(1))δ(z− 1) + (Ps̄(1) − Ps̄(0))ps̄(z|s̄ ∈ (0, 1)) (166)
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Since both q(z) and p(z) are mixtures with the same number of components we can use
the chain rule of relative entropy [38, 74] in order to compute the KL-divergence:

KL(q(z)||p(z)) = Qs̄(0) log
Qs̄(0)

Ps̄(0)
+ (1−Qs̄(1)) log

1−Qs̄(1)

1− Ps̄(1)
+

+ (Qs̄(1) −Qs̄(0))Eqs̄(z|s̄∈(0,1))

[
log

qs̄(z)

ps̄(z)

]
, (167)

where s̄ corresponds to the the pre-rectified variable. Notice that in case that the integral
under the truncated distribution q(s̄|s̄ ∈ (0, 1)) is not available in closed form we can
still obtain a Monte Carlo estimate by sampling the truncated distribution, on e.g. a (γ, ζ)
interval, via the inverse transform method:

u ∼ U(0, 1), z = Q−1
s̄

(
Qs̄(γ) + u(Qs̄(ζ) −Qs̄(γ))

)
, (168)

where Q−1
s̄ (·) corresponds to the quantile function and Qs̄(·) to the CDF of the random

variable s̄. Furthermore, it should be mentioned that, since the rectifications are not invert-
ible transformations, KL(q(z)||p(z)) 6= KL(q(s̄)||p(s̄)).

10.6 A P P E N D I X O F C H A P T E R 7

10.6.1 Experimental details

The grid width α of each grid was initialized according to the bit-width b and the max-
imum and minimum values of the input x to the quantizer2. Since the inputs x̃ in both
cases for our approach are stochastic it makes sense to assume a width for the grid that
is slightly larger than the standard width t = (max(x) − min(x))/2b; for the activations,
whenever b > 4, we initialize α = t+ 3t/2b, for 4 > b > 2 we used α = t+ 3t/2b+1

and finally for b = 2 we used α = t. Since with ReLU activations the magnitude can be-
come quite large (thus leading to increased quantization noise for smaller bit widths), this
scheme keeps the noise injected to the network in check. For the weights we always used
an initial α = t+ 3t/2b. The standard deviation of the logistic noise σ was initialized to
be three times smaller than the width α, i.e. σ = α/3. Under this specification, most of
the probability mass of the logistic distribution is initially (roughly) in the bins containing
the closest grid point and its’ two neighbors.

The moving averages of layer statistics that are aggregated during the training phase
for the batch normalization do not necessarily reflect the statistics of the quantized model
accurately. Even though RQ aims to minimize the gap between training and testing phase,
we found that the aggregated statistics in combination with the learned scale and shift
parameters of batch normalization lead to decreased test performance. In order to avoid
this drop in accuracy, we apply the insights from [144] and recompute the statistics of the
quantized model before reporting the final test error rate. The final models were determined
through early stopping using the validation loss computed with minibatch statistics, in case
the model uses batch normalization.

2 For activations we computed the minimum and maximum on a random minibatch of inputs.
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For the MNIST experiment we rescaled the input to the [-1, 1] range, employed no
regularization and the network was trained with Adam [88] and a batch size of 128. We
used a local grid whenever the bit width was larger than 2 for both, weights and biases
(shared grid parameters), as well as for the ouputs of the ReLU, with δ = 3. For the 8
and 4 bit networks we used a temperature λ of 2 whereas for the 2 bit models we used
a temperature of 1 for RQ. We trained the 8 and 4 bit networks for 100 epochs using a
learning rate of 1e-3 and the 2 bit networks for 200 epochs with a learning rate of 5e-4. In
all of the cases the learning rate was annealed to zero during the last 50 epochs.

For the CIFAR 10 experiment, the hyperparameters were chosen identically to the
LeNet-5 experiments except a few differences. We chose a learning rate ot 1e-4 instead
of 1e-3 for 8 and 4 bit networks and trained for 300 epochs with a batch size of 100. We
also included a weight decay term of 1e-4 for the 8 bit networks. For the 2 bit model we
started with a learning rate of 1e-3. The VGG model contains a batch normalization layer
after every convolutional layer, but preceeded by max pooling, if present.

10.6.2 Imagenet details

Each channel of the input images was preprocessed by subtracting the mean and dividing
by the standard deviation of that channel across the training set. We then resized the images
such that the shorter side is set to 256 and then applied random 224x224 crops and random
horizontal flips for data augmentation. For evaluation we consider the center 224x224 crop
of the images.

We trained the base Resnet-18 model with stochastic gradient descent, a batch size of
128, nesterov momentum of 0.9 and a learning rate of 0.1 which was multiplied by 0.1 at
the 30th and 60th epoch. We also applied weight decay with a strength of 1e-4. For the
quantized model fine-tuning phase, we used Adam with a learning rate of 5e−6, a batch
size of 24 and a momentum of 0.99. We used a temperature of 2 for both RQ variants.
Following the strategy in [83], we did not quantize the biases.

Table 16 contains the error rates for Resnet-18 on which Figure 22 is based on. Algo-
rithm and architecture specific changes are mentioned explicitly through footnotes.

10.6.2.1 [83] for Resnet18

We used the code provided at https://github.com/tensorflow/models/tree/
master/official/resnet and modified the construction of the computation graph
by inserting quantization operations provided at tensorflow.contrib.quantize.
In a first step, the unmodified code was used to train a high-precision Resnet18 model
using the hyper-parameter settings for the learning rate scheduling that are provided in the
github repository. More specifically, the model was trained for 90 epochs with a batch size
of 128. The learning rate scheduling involved a "warm up" period in which the learning
rate was annealed from zero to 0.64 over the first 50k steps, after which it was divided by
10 after epochs 30, 60 and 80 respectively. Gradients were modified using a momentum of
0.9. Final test performance under this procedure is 29.53% top-1 error and 10.44% top-5
error. From the high-precision model checkpoint, the final quantized model was then fine-

https://github.com/tensorflow/models/tree/master/official/resnet
https://github.com/tensorflow/models/tree/master/official/resnet
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tuned for 10 epochs using a constant learning rate of 1e−4 and momentum of 0.9. We did
not freeze the moving averages of the batch normalization layers. Finally, we found that
re-estimating the batchnorm statistics was harmful for this algorithm. We hypothesise that
this is due to the usage of folded batch normalization, which incorporates the statistics into
the construction of the grid at training time.
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Table 16: Top-1 and top-5 error (%) with Resnet18 on Imagenet

Resnet18

Method # Bits weights/act. Top-1 Top-5

Original 32/32 30.46 10.81

SR+DR 8/8 31.83 11.48

[61, 63] 6/6 40.75 16.90

5/5 45.48 20.16

Rounding 8/8 30.22 10.60

6/6 31.61 11.32

5/5 36.97 14.95

4/4 78.79 57.10

[83]a 8/8 29.62 10.45

6/6 32.69 12.46

5/5 35.36 13.33

LR Net [161] 1/32b 40.10 17.70

2/32c 36.50 15.20

TWN [103] 2/32 38.20 15.80

INQ [205] 5/32 31.02 10.90

BWN [149] 1/32 39.20 17.00

XNOR-net [149] 1/1 48.80 26.80

HWGQ [27]b 1/2 40.4 17.8

ELQ [206] 1/32 35.28 13.96

2/32 32.48 11.95

SYQ [47]d 1/8 37.1 15.4

2/8 32.3 12.2

Apprentice [125]b 2/8 32 -

4/8 29.6 -

RQ (ours) 8/8 30.03 10.56

6/6 31.35 11.22

5/5 34.90 13.43

4/4 38.48 16.01

RQ ST (ours) 8/8 30.37 10.67

6/6 31.85 11.62

5/5 36.65 14.54

4/4 37.54 15.22

a Includes folded batch normalization
b First and last layer not quantized
c First layer not quantized
d Weights of first and last layer not quantized



S TAT I S T I S C H R E D E N E R E N OV E R O N Z E K E R H E I D E N
C O M P R E S S I E I N D I E P L E R E N : S A M E N VAT T I N G

Er bestaat een groot aantal verschillende taken waarbij de voorspellende capaciteit van
neurale netwerken en diep leren excelleren. Dit heeft er toe geleid dat deze technologie
wordt gebruikt voor verscheidene toepassingen die een belangrijke rol spelen in het dageli-
jks leven. Mede hierom is onderzoek naar potentiële verbeteringen van deze technieken
een belangrijk onderwerp. In dit proefschrift werken we aan het verbeteren van twee be-
langrijke aspecten van neuraal netwerk modellen; het vermogen om naast voorspellingen
ook de onzekerheden van die voorspellingen te leren, en de inherente noodzaak van grote
hoeveelheden rekenkracht en andere computationele middelen.

Dit werk begint met een introductie waarin de twee hoofd onderzoeksvragen van dit
proefschrift worden gesteld. Hierbij wordt ook de benodigde achtergrondkennis behandeld
die zal worden gebruikt in de rest van het proefschrift. We beschrijven neurale netwerken
en Bayesiaanse neurale netwerken. Dit laatste soort neurale netwerken heeft parameters
(aka de weights en biases) die geen vaste waarde hebben maar stochastisch zijn en wor-
den beschreven door een kansverdeling. Dit wordt gecombineerd met Bayesiaanse infer-
entie, een manier om de kansverdeling over de parameters aan te passen aan de hand van
geobserveerde data. Tenslotte geven we ook een korte introductie over de compressie van
neurale netwerken door middel van pruning en quantisatie. Bij pruning worden de niet
relevante parameters en delen van het netwerk verwijderd door ze op nul te zetten. Bij
quantisatie worden de numerieke waardes van de weights en tussenliggende representaties
van het netwerk gerepresenteerd in een hardware-vriendelijk formaat (bijv. fixed point).

Het eerste gedeelte van dit proefschrift beschrijft drie contributies die het vermogen van
neurale netwerken verbeteren om onzekerheden in voorspellingen in te schatten. De eerste
twee contributies gaan over het verbeteren van de kwaliteit van voorspellings onzekerhe-
den van variationele Bayesiaanse neurale netwerken door middel van betere benaderingen
van de kansverdeling van de parameters bij het observeren van nieuwe data. We stellen
een simpele manier voor om lineaire afhankelijkheid tussen de weights van een neuraal
netwerk te introduceren door middel van matrix variate Gaussian distributies; dit zijn
distributies over stochastische matrices die eenvoudig de correlaties kunnen modelleren
tussen input en output neuronen in elke laag. We zullen aantonen dat dit leidt tot verbeterde
prestaties. Vervolgens stellen we multiplicative normalizing flows voor, een algemeen
kader waarbij niet-lineaire afhankelijkheden worden geïntroduceerd tussen de parameters
van het netwerk. Dit wordt mogelijk gemaakt door middel van een combinatie van auxil-
iaire stochastische variabelen en geparametriseerde bijecties, op een manier die flexibele
correlaties tussen de weights van elke laag mogelijk maakt zonder dat het te computa-
tioneel intensief wordt. Door middel van experimenten laten we zien dat de kwaliteit van
de onzekerheden van de voorspellingen hierdoor is verbeterd ten opzichte van meer een-
voudige Gaussische benaderingen uit eerder werk. De laatste contributie van dit gedeelte
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betreft functional neural processes, een model dat een ander standpunt aanneemt; in tegen-
stelling tot het maken van een aanname over de kansverdelingen en het uitvoeren van
(variationele) inferentie over de weights van het neurale netwerk, wordt het raamwerk van
stochastische processen gebruikt. Hierbij wordt een kansverdeling aangenomen en inferen-
tie gedaan over de ruimte van functies die het neurale netwerk kan representeren. Hierbij
is een bijkomend voordeel dat inferentie eenvoudiger is en de modelleer taak intuïtiever,
doordat dit raamwerk het mogelijk maakt om te redeneren over de relaties tussen verschil-
lende datapunten in een dataset door het introduceren van een referentieset van datapunten.
Dit is in tegenstelling tot de moeilijk te interpreteren parameters van een neuraal netwerk.
Aan de hand van experimenten laten we zien dat dit soort modellen betere onzekerheden
verstrekken terwijl de voorspellingen van vergelijkbare kwaliteit blijven.

Het tweede gedeelte van dit proefschrift beschrijft drie nieuwe technieken voor com-
pressie die de mogelijkheid bieden om neurale netwerken te leren die zowel kleiner als
sneller zijn, zodat de noodzaak voor een grote hoeveelheid rekenkracht en computationele
middelen verminderd wordt. De eerste contributie betreft Bayesian compression, een varia-
tionele Bayesiaanse inferentie procedure waarbij door middel van welgekozen kansverdelin-
gen over de parameters van een netwerk goed presterende en computationeel efficiënte ar-
chitecturen kunnen worden ontdekt met behulp van een combinatie van pruning en quanti-
satie. Hoewel deze benadering kan leiden tot zeer gecompresste architecturen, ontbreekt er
een differentiatie van zowel pruning als quantisatie voor een specifieke taak of probleem.
Om deze reden zijn de andere twee contributies apart gefocused op pruning en quantisatie.
De tweede contributie betreft een nieuwe methode voor optimalisatie van de L0 norm, de
gouden standaard voor sparsiteit, van neurale netwerken. We stellen een algemene tech-
niek voor waarbij een geschikt niveau van ruis optimalisatie aan de hand van gradiënten
van de niet-differentieerbare L0 norm mogelijk maakt. Aan de hand van empirische resul-
taten laten we zien dat deze aanpak leidt tot nauwkeurige modellen met een hoge sparsiteit,
waarbij getraind kan worden met een spars model door middel van conditionele compu-
tatie en geschikte software. Het laatstgenoemde kan ook kortere trainingstijden faciliteren.
Tenslotte bestaat de laatste contributie uit vergelijkbare ideeën waarbij we relaxed quan-
tization introduceren; een optimalisatie procedure met behulp van gradiënten die het mo-
gelijk maakt om neurale netwerken te leren met parameters en activaties die liggen op
een (adaptief) gequantiseerd grid. We laten met empirische resultaten zien dat dit het mo-
gelijk maakt om accurate neurale netwerken op trainen op taken van grote schaal, terwijl
er slechts gebruik wordt gemaakt van 4 bits per weight en activatie.

We sluiten dit proefschrift af door antwoord te geven op de hoofd onderzoeksvragen,
waarbij ook de valkuilen en nadelen van de voorgestelde methodes worden besproken,
alsmede veelbelovende onderzoeksrichtingen.
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