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Abstract

This thesis proposes multiple methods for approximate inference in deep Bayesian

neural networks split across three parts.

The first part develops a scalable Laplace approximation based on a block-

diagonal Kronecker factored approximation of the Hessian. This approximation

accounts for parameter correlations – overcoming the overly restrictive independence

assumption of diagonal methods – while avoiding the quadratic scaling in the num-

ber of parameters of the full Laplace approximation. The chapter further extends

the method to online learning where datasets are observed one at a time. As the

experiments demonstrate, modelling correlations between the parameters leads to

improved performance over the diagonal approximation in uncertainty estimation

and continual learning, in particular in the latter setting the improvements can be

substantial.

The second part explores two parameter-efficient approaches for variational

inference in neural networks, one based on factorised binary distributions over the

weights, one extending ideas from sparse Gaussian processes to neural network

weight matrices. The former encounters similar underfitting issues as mean-field

Gaussian approaches, which can be alleviated by a MAP-style method in a hierarchi-

cal model. The latter, based on an extension of Matheron’s rule to matrix normal

distributions, achieves comparable uncertainty estimation performance to ensembles

with the accuracy of a deterministic network while using only 25% of the number of

parameters of a single ResNet-50.

The third part introduces TyXe, a probabilistic programming library built on top

of Pyro to facilitate turning PyTorch neural networks into Bayesian ones. In contrast
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to existing frameworks, TyXe avoids introducing a layer abstraction, allowing it

to support arbitrary architectures. This is demonstrated in a range of applications,

from image classification with torchvision ResNets over node labelling with DGL

graph neural networks to incorporating uncertainty into neural radiance fields with

PyTorch3d.



Impact Statement
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increasingly important component of safety-critical machine learning systems. Most
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block for researchers to develop more complex methods in the future.
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Chapter 1

Introduction

Deep neural networks [195, 98, 304] have found wide-ranging success in learning

from high-dimensional, large-scale datasets in various domains, making them the

arguably most popular class of machine learning models at this time. Applications

range from classical ones, such as image classification [180, 114, 115], natural

language processing [322, 344, 57, 37] or speech recognition [127, 101], over more

recent areas such as reinforcement learning [243, 312, 8, 313, 345] and generation of

images [96] and speech [342], all the way to training on data as diverse as computer

programs [102], graphs [169] and tertiary protein structures [306].

Despite their impressive performance in terms of accuracy, neural networks

suffer from various problems that limit their practical applicability. One such issue

is that of mis-calibration, i.e. the predicted probabilities of a class being true not

corresponding to its empirical frequency [105]. In particular, neural networks tend

to be overconfident in their predictions and typically assign a probability of 1 to the

class that they predict as most likely. This problem is often exacerbated by shifts in

the data distribution, e.g. noise or corruption of input images [120].

We visualise this phenomenon after training on an example dataset of handwrit-

ten digits [194] as in Fig. 1.1 in Fig. 1.2. While the prediction on an initial test data

point (Fig. 1.2a) is correct (Fig. 1.2d), a small rotation of the image (Fig. 1.2b) leads

to a near-certain incorrect prediction (Fig. 1.2e). Similarly, an image of a letter rather

than a digit (Fig. 1.2c) will be assigned a class label with high confidence (Fig. 1.2e).

Neural networks are further susceptible to adversarial attacks [97, 325], where an
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Figure 1.1: Samples
of training images for
a neural classifier with
two fully connected
hidden layers of 512
units and ReLU non-
linearities.

(a) Test image (b) Data shift (c) OOD image
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(d) Test prediction
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(e) Shift prediction

0 1 2 3 4 5 6 7 8 9
Digit

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
pr

ed
ict

ed

(f) OOD prediction

Figure 1.2: Predictions on an example image from the test set, a
rotated version of the same picture and an out-of-distribution (OOD)
image of a letter. While the original prediction is correct, the ro-
tated digit is mis-classified with high confidence and a digit class is
assigned with high confidence to the image of the letter.

imperceptible, targeted change to the input data drastically changes the prediction of

the network.

Clearly, if we have no control over the data that is presented to a neural network

at test time, we cannot trust its predictions. This is particularly problematic for

safety-critical applications such as self-driving cars [43, 27] or medical imaging

[207], where basing downstream decisions on incorrect predictions can have severe

consequences.

Another problem that neural networks encounter is that of catastrophic forget-

ting, which had been studied in the early literature on neural networks [77, 232] and

has received attention again more recently [95, 170]. Here, a network will ‘forget’

what it learned from previous data when trained on new data in an unconstrained

manner, as the parameters quickly move away from old values. We show an example

of this in Fig. 1.3. After having trained on the images of digits from Fig. 1.1, we now

train the same network on images of the first ten letters of the alphabet as in Fig. 1.3a.

While the network correctly identifies the letter from Fig. 1.2c as in Fig. 1.3b, it now

makes an incorrect prediction on the digit from Fig. 1.2a as in Fig. 1.3c.

The above example is an instance of multi-task learning [42], where we aim to
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(a) Second dataset.
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(b) New Fig. 1.2c prediction.
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(c) New Fig. 1.2a prediction.

Figure 1.3: After re-training the image classifier from Fig. 1.2 on letters, it is now able
classify letters, but forgets to recognise the digits on which is had previously been trained.

train a single network to solve multiple unrelated tasks. However, there are many

other settings in which we might want to process data as it arrives. There might

simply be more data arriving over time, however the cost of training grows with the

size of the dataset, so ideally we want to only use the most recent data. Similarly, we

might want to transfer knowledge from one dataset to another [368] or might be in

a federated learning setting [234] where we have access to small, separate datasets

from which we wish to aggregate information without being able to collect all of the

data in a central place. See also [108] for a recent discussion of continual learning

for neural networks.

All of these issues and settings can naturally be approached as problems of

Bayesian inference [19, 187, 302]. Rather than minimising a loss function to obtain

parameters for a deterministic input-output mapping, a BNNs maintains uncertainty

over the parameters θθθ given the data D via the posterior distribution

p(θθθ |D) =
p(D |θθθ) p(θθθ)

p(D)
, (1.1)

where p(D |θθθ) is the likelihood, p(θθθ) the prior and p(D) =
∫

p(D |θθθ) p(θθθ)dθθθ the

marginal likelihood or model evidence.

The posterior distribution allows us to take different parameter settings into

account when predicting, which are similar around training data but quickly differ

significantly away from data.

Fig. 1.4 visualises this in a 1d regression setting. A network trained via maxi-
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(c) HMC uncertainty

Figure 1.4: Toy regression example. Training a deterministic network with maximum
likelihood gives us a single fit to the data, while Bayesian inference takes all possible
parameter settings into account according to how well they fit the data. While highly
probable parameter settings under the posterior correspond to similar functions near the
training data, they extra- and interpolate differently, giving us a measure of predictive
uncertainty. Ground truth function in black, predicted function in blue and noisy training
data in red. Each shaded area corresponds to one additional standard deviation around the
mean of the predictive posterior.

mum likelihood gives us a deterministic function as in Fig. 1.4a without any measure

of uncertainty. The different functions that have a high posterior probability as in

Fig. 1.4b are similar around the training data (as they need to assign a relatively

high likelihood to those data points), but differ substantially in how they inter- and

extrapolate. This can be summarised as a measure of the predictive uncertainty, e.g.

the standard deviation of the predictions as in Fig. 1.4c.

In continual learning, the posterior always serves as the prior for the newly

arriving data and succinctly summarises the philosophy behind Bayesian learning:

continuously updating beliefs about the unknown in light of new information.

Unfortunately, the exact posterior is not available in closed form due to the non-

linear nature of neural networks, so either closed-form approximations or sampling-

based approaches are needed. Bayesian inference has first been pioneered in the

context of neural networks in [220, 250]. Both methods were designed with the

small-scale architectures of the time in mind and are computationally prohibitive

for modern networks and datasets. In response, more recent works [100, 124, 26]

have considered strong approximations to remain tractable, at the cost of restrictive

factorisation assumptions in the posterior. Yet, even under a fully factorised Gaussian

approximate posterior, the number of parameters doubles compared to a deterministic

network, which can already be problematic in resource-constrained settings.
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This thesis is broadly composed of three independent parts, the first one devel-

oping a scalable posterior approximation that can account for parameter correlations,

the second one parameter-efficient variational methods, and finally the third one

discussing software design considerations for flexibly implementing Bayesian ap-

proaches with modern probabilistic programming languages. More specifically, the

structure is as follows:

Chapter 2 further elaborates on the techniques brought up in this introduction

and lays out the background on neural networks and approximate Bayesian

inference in an attempt to make this document self-contained.

Chapter 3 develops a Laplace approximation that can be applied to large neural

network architectures based on structured approximations of the Hessian that

account for parameter correlations without sacrificing computational efficiency,

and extends the approximation to the continual learning setting. The chapter

is based on the following publications:

A. Botev, H. Ritter and D. Barber. Practical Gauss-Newton optimisation for deep learning. In

ICML, 2017.

H. Ritter, A. Botev and D. Barber. A scalable Laplace approximation for neural networks. In

ICLR, 2018.

H. Ritter, A. Botev and D. Barber. Online structured Laplace approximations for overcoming

catastrophic forgetting. In NeurIPS, 2018.

We have recently extended this line of work to sequences of few-shot learning

problems in:

P. Yap, H. Ritter and D. Barber. Addressing catastrophic forgetting in few-shot problems. In

ICML, 2021.

However the content of this paper will not be covered in the present thesis.

Chapter 4 discusses two approaches to parameter-efficient variational inference,

one through the use of binary neural networks, i.e. Bernoulli priors and varia-

tional posteriors, the other, taking inspiration from sparse Gaussian processes,
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through augmenting Gaussian priors on the weight matrices with a smaller,

inducing weight matrix and performing inference in that lower dimensional

space.

The first half of the chapter is based on unpublished material, the second half

has been published as:

H. Ritter, M. Kukla, C. Zhang and Y. Li. Sparse uncertainty representation in deep learning

with inducing weights. In NeurIPS, 2021.

Chapter 5 presents TyXe [287], a software library at the intersection of PyTorch

[269] and Pyro [22] to facilitate the use of BNNs. The corresponding paper

will be published as:

H. Ritter and T. Karaletsos. TyXe: Pyro-based Bayesian neural nets for PyTorch. In MLSys,

2022.

Additionally, the following paper has been published during my PhD, but won’t

be covered in this thesis:

J. Kunze, L. Kirsch, H. Ritter and D. Barber. Gaussian mean field regularizes by limiting

learned information. Entropy, 2019.



Chapter 2

Background

Assuming a general background in multivariate calculus, linear algebra and proba-

bility theory, this chapter introduces the necessary notation, terminology and back-

ground on neural networks, Bayesian inference and their evaluation based on uncer-

tainty estimation for the methods developed in this thesis. The fundamental literature

will be discussed here, while more closely related recent work will be covered in

the context of the respective method in the corresponding sections. As this thesis

is composed of multiple pieces of relatively independent work, the most relevant

background material will also briefly be recapped in each section.

2.1 Neural networks
Research on neural networks dates back to 1950s and the ‘Perceptron’ [292, 293], a

binary classification algorithm that was able to automatically update parameters based

on examples and provide a threshold function based on some input features. After

an initial wave of optimism that perceptrons could soon be developed into systems

resembling an ‘artificial intelligence’, results on limitations of their expressiveness

discouraged more work [239, 240]. This line of work was re-popularised in the

80s [139], in particular as multi-layer non-linear models that learn a hierarchy of

internal representations of their input data, and whose parameters are updated based

on gradients of an error function w.r.t. to those parameters [206, 356, 268, 294, 295].

Again, these more complex models fell out of favour, this time for more tractable

convex methods [50].
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Breakthroughs on learning representations of images [129] and image classifi-

cation [180] have sparked the most recent wave of enthusiasm for neural networks as

a class of machine learning algorithms. With progress on regularisation techniques

[317], non-linearities [247], parameter initialisation [92, 113] and optimisation

[166, 149] in conjunction with parallel compute devices and easy-to-use software

packages [328, 45, 1, 269] becoming widely available, neural networks have es-

tablished themselves as arguably the most popular item in the machine learning

toolbox.

2.1.1 Architectures

On a high level, neural networks are parametric function approximations that are

formed by composing simpler building blocks or ‘layers’. These recursively trans-

form some input data through intermediate representations into an output. This thesis

focuses on feedforward architectures for labelled i.i.d. data, mostly images. In the

following, we will give an overview of the most relevant neural network architectures,

namely fully-connected and convolutional networks.

2.1.1.1 Fully-connected networks

The simplest, yet most fundamental architecture is the fully-connected network. Its

core component is the fully-connected or linear layer, which calculates multiple

weighted linear combinations of its inputs, so effectively corresponds to a multivariate

regression model. A neural network general has at least two subsequent layers of

this kind, each of which is alternated with an elementwise non-linear function.

Mathematically, a fully-connected neural network is defined as recursively

mapping an input xxx =: a0 to an output aL as

hl =WWW lal−1 (2.1)

al = fl(hl) (2.2)

for l = 1, . . . ,L. WWW l are the weights of layer l and fl the non-linearity, e.g. tanh or

relu where relu(x)i = max(xi,0). We refer to h as the pre-activations and to a as the

activations. Commonly used bias terms can be incorporated by appending a constant
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1 to all activations, i.e. defining a0 = [x>,1]> and al = [ fl(hl)
>,1]>. Generally, we

assume that aL = hL, i.e. that fL is the identity function, meaning that the output of

the network is an unconstrained vector or scalar. Any transformation of the network

outputs, such as to probabilities for classification, can be absorbed into the error

function (see Section 2.1.2).

An interesting property of fully-connected networks is that as a model class they

are invariant to a permutation of their input dimensions. As the same permutation

can be applied to the columns of the first-layer weight matrix, the subsequent pre-

activations will be the same as before applying the permutation and the network

output will be unchanged. Hence they are well-suited for datasets with heterogeneous

features, but on the other hand do not have any built-in inductive biases that exploit

the local structure e.g. of images, where abrupt changes in the values of neighbouring

pixels typically indicate an edge.

2.1.1.2 Convolutional networks

Originally developed with inspiration from the visual cortex [80, 79] for image recog-

nition, convolutional neural networks (CNNs) have found wide-spread use in data

domains with locally structured inputs [193]. Similar to linear layers, convolutional

layers calculate a weighted linear combination of inputs. In contrast to linear layers,

however, they do not consider all inputs, but apply a set of weights to a sliding

windows across the input. Hence they assume a local structure within the input.

Formally, a convolutional in the context of deep learning is defined as mapping

a 3d image tensor X : Cin×H ×W , where the three dimensions correspond to

the number of channels Cin, height H and width W , through a 4d weight tensor

W : Cout ×Cin× h×w to another 3d tensor. The value at each location i, j in

channels k is computed as

Hk,i, j = [X ∗W ]k,i, j =
bh/2c

∑
δh=−bh/2c

bw/2c

∑
δw=−bw/2c

cin

∑
c′=1

Xc′,i+δh, j+δwWk,c′,bh/2c+δh,bw/2c+δw .

(2.3)

At its core, a convolution is a linear mapping with a sum over K =Cinhw terms.

Hence we can equivalently express it as a matrix multiplication by rearranging X
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into a matrix XXX : K×M, where M corresponds to the number of locations in the

resulting tensor H , and W into WWW : Cout×Cinhw

HHH =WWWXXX . (2.4)

So another view of convolutional layers is that of a linear layer with shared

weights across all input patches to the layer.

Besides the shape of the weight tensor, the most commonly used hyperparame-

ters are the padding, i.e. a constant value that is filled in around the borders of the

input to preserve its size, and the stride, i.e. the shift in the center of the convolution,

which can be used for reducing the size of the input.

Another component often found in convolutional networks is the pooling or

sub-sampling layer. This applies a parameter-free aggregation function to a region

of inputs, e.g. they might calculate the mean or the maximum over a patch of 2×2

pixels. In conjunction with convolutional and linear layers, pooling layers still find

use in most modern CNNs. Some of the historically most influential networks, such

as LeNet [190, 191] and AlexNet [180], were composed entirely of these.

A more recent addition to many CNN architectures is Batch Normalisa-

tion [149], which normalises its input by subtracting the mean and dividing by

the standard deviation and replaces these with a learnt mean and scale

BN(x) = γ
x−E [x]√

V[x]
+β , (2.5)

where β is the learnt mean and γ the scale. The empirical mean and variance

here are calculated from mini-batch statistics during training, and running averages

accumulated throughout training for test-time prediction. There is currently no formal

understanding of how and when Batch Normalisation indeed leads to improvements,

but the consensus in the literature revolves around it simplifying the loss landscape

and thus aiding optimisation [25, 301].

Finally, ‘residual layers’ have recently been popularised by ResNets [114, 115].

They pass their input x through a block g consisting of a sequence of the previously
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discussed neural network components and then adds the result to the input

r(x) = x+g(x). (2.6)

If g is initialised to map all inputs to (almost) zero, the residual block is overall

initialised to the identity, which has proven itself as a helpful inductive bias in neural

network training. In ResNets, g consists of a small number of convolutional, Batch

Normalisation and non-linearity layers. These residual blocks are then repeated at

increasing channel sizes to form one of the most widely used architectures for image

data at this time.

2.1.2 Training

2.1.2.1 Loss functions

In supervised learning, which is the focus of this thesis, neural networks are generally

trained by finding some parameter values θθθ
∗ that minimise a loss function, i.e.

θθθ
∗ = argmin

θθθ

L(θθθ), (2.7)

where the loss is defined as a sum of per-datapoint errors

L(θθθ) = Eθθθ (D) =
N

∑
i

E( fθθθ (xi),yi) = NEx,y∼p(D) [E( fθθθ (x),y)] , (2.8)

and D= {(xi,y)}N
i=1 is the dataset consisting of N inputs x and labels y.

Examples of commonly used error functions are the squared error for regression

where y ∈ R

E( f (x),y) = ( f (x)− y)2, (2.9)

binary cross-entropy for binary classification where y ∈ {0,1}

E( f (x),y) = y logσ( f (x))+(1− y) log(1−σ( f (x))), (2.10)

and σ(a) = (1+ e−a)−1 is the sigmoid or logistic function. Finally, for multi-class
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classification, where y is a D-dimensional vector of all 0s except for a single 1, the

cross entropy loss is:

E( f (x),y) =−
D

∑
d=1

yd logsoftmax( f (x))d, (2.11)

where softmax(a)d = ead/∑d′ ead′ is the softmax function that maps a real-valued

vector to the probability simplex.

Often a regularisation term that only depends on the parameters is further added

to the data-dependent error term

L(θθθ) = Eθθθ (D)+
λ

2
R(θθθ), (2.12)

where λ is a scalar hyperparameter that determines the relative weight of the regular-

isation term. This is to avoid overfitting, i.e. adapting the parameters to noise rather

than signal in the training data that does not generalise to independent test data.

The most commonly used regulariser is the squared error or L2-norm

R(θθθ) = ||θθθ ||22 = ∑
i

θ
2
i . (2.13)

2.1.2.2 Gradients and automatic differentiation

Due to the non-linear nature of neural networks, the loss function cannot be min-

imised w.r.t. the parameters in closed form. However, we can find a (local) minimum

via gradient descent. That is, we choose some initial values θθθ 0 for the parameters,

typically through random initialisation, and update these values iteratively as

θθθ t+1 = θθθ t−η∇θθθL(θθθ t), (2.14)

using the gradients of the loss. While the gradients of the regulariser are typically easy

to determine, the procedure for the data error is somewhat more involved. Yet, these

can be calculated by recursively applying the chain rule, i.e. ‘backpropagation’ [294,

295] or reverse-mode automatic differentiation. For example, the gradients w.r.t. the
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weights of some layer l are

∇WWW l E(θθθ) =
∂E(θθθ)
∂WWW l

=
∂hl

∂WWW l

∂al

∂hl

∂E(θθθ)
∂al

= a>l−1 diag( f ′l (hl))
∂E(θθθ)

∂al
, (2.15)

where ∂E(θθθ)
∂al

can be calculated via the chain rule and the recursion is initialised with

the gradient of the loss w.r.t. the network outputs.

2.1.2.3 Stochastic gradient descent

The core realisation towards scaling neural network training to arbitrarily large

datasets, is that we do not need to calculate gradients over the full dataset, but can

instead calculate them over random subsets of data and optimise using stochastic

gradient descent [291, 30, 31].

Since the error function is an expectation over the data, which does not depend

on the parameters, our gradients are also an expected value

∇θθθ E(θθθ) = N∇θθθ Ep(x,y) [E(θθθ)] = NEp(x,y) [∇θθθ E(θθθ)] , (2.16)

where p(x,y) is the empirical training data distribution with a point mass on each

data point, i.e. p(x,y) = 1/N if (x,y) ∈D and 0 otherwise.

We can get an unbiased Monte Carlo estimate of the of the gradient by choosing

a random subset M⊂D of size M and approximate the gradient as

∇θθθ E(θθθ)≈ N
M ∑

x,y∈M
∇θθθ E( fθθθ (x),y). (2.17)

In practice, a common approach is to sample the data points without replacement,

i.e. iterate over the dataset in random order for an entire pass or ‘epoch’, before

returning to a data point.

Typically, rather than using a fixed step size η , it is decayed over time, e.g.

exponentially as ηt = ctη0 with 0 < c < 1, or kept constant for some number of

iterations and then reduced after some number of updates, e.g. as ηt = c1 if 0 < t ≤

N0, ηt = c2 if N0 < t ≤ N1 etc.

Gradient descent as described above can be slow to converge, since each update
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is calculated independently and may be too small to make sufficient progress in flat

regions of the loss landscape. A popular improvement is to maintain a momentum

term or velocity v for each parameter, which makes the optimisation procedure more

similar to a ball rolling down a surface [273]. The velocity and parameters are then

updated as

vt = µvt−1−η∇θθθL(θθθ t−1) (2.18)

θθθ t = θθθ t−1 +vt , (2.19)

where µ is an additional momentum hyperparameter determining the relative weight

of the newest gradient estimate against the history of gradients.

A slightly more involved approach is Nesterov momentum [252], which updates

the parameters and velocity as

vt = µvt−1−η∇θθθL(θθθ t−1) (2.20)

θθθ t = θθθ t−1−µvt−1 +(1+µ)vt , (2.21)

which provably accelerates convergence for convex objectives [252].

Yet, using a scalar learning rate, i.e. the same rate for all parameters, can be

overly simplistic for models with error surfaces as complex as neural networks.

In recent years, adaptive gradient methods, which automatically set a learning

rate for each parameters, have attracted significant attention [61, 370, 128]. Of

these, Adam [166] has emerged as arguably the most popular one, and despite some

concerns regarding its behaviour around minima [286], often gives good performance

without significant tuning of learning rates or decay schedules. Specifically, Adam

maintains moving averages of the gradients and squared gradients, and updates the
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parameters as

mt = β1mt−1 +(1−β1)∇θθθL(θθθ t−1) (2.22)

vt = β2vt−1 +(1−β2)∇θθθL(θθθ t−1)
2 (2.23)

θθθ t = θθθ t−1−
η√

vt/(1−β t
2)+ ε

� mt

1−β t
1
, (2.24)

where β1,β2 are momentum hyperparameters, the ε is a small positive constant

to avoid division by zero, the square operation is elementwise and � denotes ele-

mentwise multiplication of two vectors. Finally, the division of the gradient and

squared-gradient moving averages in the parameter-update equation is to account for

them being biased towards zero through their initialisation. Scaling the updates by

the inverse of the squared gradients allows for large steps being taken in directions

with small gradients and small ones in directions with large gradients, enabling fast

progress of the optimisation procedure while reducing the risk of taking overly large

steps that lead to divergence.

2.1.3 Probabilistic interpretation

Neural networks can also be interpreted from a probabilistic viewpoint. Here, we

typically assume independence between the data given the parameters and have the

output of the network for the inputs parameterise the corresponding likelihood of the

label. The (unregularised) error function used for optimisation is then the negative

log likelihood of the data

E(θθθ) =− log p(D |θθθ) =−∑
i

log p(yi | fθθθ (x)) . (2.25)

Most commonly used error function, such as those discussed in the previous

section, have corresponding data likelihoods, so that unregularised neural network

training can be interpreted as maximum likelihood estimation in the probabilistic

model. For the squared error in regression, the corresponding likelihood is the
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Gaussian distribution

p(y |x,θθθ)) =N(y; fθθθ (x),τ−1), (2.26)

with the network outputs corresponding to the mean of the Gaussian in label space.

The variance τ may be known or can be learnt, but only plays a role when we place

a prior on the parameters for a full Bayesian treatment that can also account for

regularisation (see next section).

For binary classification, we have a Bernoulli likelihood with

p(y = 1 |x,θθθ)) = σ( fθθθ (x)). (2.27)

And finally for multi-class classification, the corresponding likelihood is the

Categorical distribution

p(yd = 1 |x,θθθ)) = softmax( fθθθ (x))d. (2.28)

In both classification settings the (unconstrained) network outputs correspond

to the logits of the classes.

2.2 Bayesian inference
We will now move to a full Bayesian treatment of neural networks and performing

inference in them. Bayesian inference is of course much more broadly applicable

than in neural network models, see e.g. [223, 24, 17, 244, 88] for introductory texts.

The key step from a probabilistic view of training deterministic neural networks to

Bayesian deep learning is placing a prior p(θθθ) on the parameters in addition to inter-

preting them as parameterising a likelihood. Through Bayes’ rule, the combination

of the sum and product rules of probability, we then obtain the posterior as

p(θθθ |D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D |θθθ)

Prior︷︸︸︷
p(θθθ)

p(D)︸ ︷︷ ︸
Evidence

=
p(D |θθθ) p(θθθ)∫

p(D |θθθ) p(θθθ)dθθθ
∝ p(D |θθθ) p(θθθ). (2.29)
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When making predictions on unseen data, the posterior is used to average over

all possible parameter settings to find the predictive posterior

p
(
y′
∣∣x′,D)= Ep(θθθ |D)

[
p
(
y′
∣∣x′,θθθ)]= ∫ p

(
y′
∣∣x′,θθθ) p(θθθ |D)dθθθ . (2.30)

Since this expectation is generally not available in closed form, it is usually

estimated through a Monte Carlo approximation with T samples

p
(
y′
∣∣x′,D)≈ 1

T

T

∑
t=1

p
(
y′
∣∣x′,θθθ t

)
with θθθ t ∼ p(θθθ |D) . (2.31)

The main difficulty in evaluating the posterior is the evidence or marginal

likelihood as this involves an integral over the full parameter space. As this term

is a constant w.r.t. the parameters, however, finding a mode of the posterior is no

more difficult than the deterministic optimisation problems discussed in the previous

section. In particular, we can define a loss function for training a neural network as

additively proportional to the negative log posterior

L(θθθ) =− log p(D |θθθ)− log p(θθθ). (2.32)

Finding a mode of the posterior is also referred to as Maximum a-Posteriori or

MAP inference and can be seen as approximating the posterior as a delta distribution

with infinite mass at the value of the MAP parameters

p(θθθ |D)≈ qMAP(θθθ) := δ (θθθ = θθθ
∗) =

∞ if θθθ = θθθ
∗

0 otherwise.
(2.33)

This reduces the predictive posterior to the prediction made by the optimised

parameters.

Despite its conceptual simplicity, Bayesian inference is challenging computa-

tionally as the posterior is generally not available in closed form. In many cases

this is due to the structure of the probabilistic model, however in the case of neural

networks the main difficulty lies in their non-linearity, exacerbated by the typically
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high dimensionality of θθθ .

Hence, approximate inference procedures are required and particular care needs

to be taken to remain computationally tractable. We will refer to any neural network

where an attempt is made to approximate the posterior over the parameters as a

Bayesian neural network (BNN). Below, we provide an overview of approaches for

approximate inference, with a particular emphasis on the Laplace approximation and

variational inference, where this thesis makes its core contributions.

2.2.1 Laplace approximation

A first approximate inference procedure that we will discuss is the Laplace or – for a

more descriptive name – quadratic approximation [187]. This technique forms the

basis of Chapter 3.

The core idea is that once we have found a mode or MAP estimate of the

posterior as described previously, we can add uncertainty in the parameter space post-

hoc based on the geometry around that mode. Specifically, the Laplace approximation

exploits the connection between deterministic training with the negative log-posterior

as an objective and Bayesian inference by approximating the loss as locally quadratic

with a 2nd-order Taylor expansion around a minimum

L(θθθ)≈ L(θθθ ∗)︸ ︷︷ ︸
constant

+(θθθ −θθθ
∗)>∇θθθL(θθθ

∗)︸ ︷︷ ︸
0

+
1
2
(θθθ −θθθ

∗)>∇
2
θθθ
L(θθθ ∗)(θθθ −θθθ

∗) (2.34)

' 1
2
(θθθ −θθθ

∗)>∇
2
θθθ
L(θθθ ∗)(θθθ −θθθ

∗), (2.35)

where ' denotes additive proportionality, the first-order term is 0 due to expanding

around a mode, and

∇
2
θθθ
L(θθθ ∗) =

∂ 2L(θθθ ∗)

∂θθθ
2 (2.36)

is the Hessian of the negative log posterior evaluated at the MAP parameters.

Since the posterior is proportional to the negative exponentiated loss, it is

approximately proportional to

p(θθθ |D) ∝ exp{−L(θθθ)} ≈ exp
{
−1

2
(θθθ −θθθ

∗)>∇
2
θθθ
L(θθθ ∗)(θθθ −θθθ

∗)

}
. (2.37)
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We can recognise this as an unnormalised Gaussian probability density with

the Hessian of the negative log posterior being the precision matrix or inverse of the

covariance, so that the Laplace approximation to the posterior is

p(θθθ |D)≈ qLAP(θθθ) :=N(θθθ ∗,∇2
θθθ
L(θθθ ∗)−1). (2.38)

Note that, by default, the Laplace approximation uses the inverse of the full

Hessian as the covariance. This means that in space complexity it scales as O(d2)

and O(d3) in time complexity for calculating the (square root of the) inverse, where

d = |θθθ | is the total number of parameters. Hence its use is prohibitively expensive

for models with a large number of parameters, see Chapter 3 for specific numerical

examples with neural networks.

The Laplace approximation bases its approximation of the posterior on a

quadratic approximation of the loss around a mode. From a practical point of

view this two-stage procedure of first optimising deterministic parameters and only

adding uncertainty over the parameters post-hoc is highly appealing, as it allows

for ‘Bayesianising’ pre-existing models without any modifications to an existing

training pipeline. However, the accuracy of the posterior approximation depends

of course on the optimisation procedure finding a representative mode (for multi-

model posteriors) and how well the log posterior is locally described by a quadratic.

Higher-order effects and asymmetries can lead to the Laplace approximation over-

or under-assigning probability mass to areas in parameter space [255], as it only

takes the local curvature information around a single point, the MAP estimate, into

account.

A common justification for the Laplace approximation is the Bernstein-von-

Mises theorem [189, 347, 343], which, informally, states that the posterior in an

identifiable model converges in the infinite data limit to a Normal distribution

around the maximum likelihood estimate with covariance equal to the inverse Fisher

information (which for now can be thought of as equal to the Hessian and will be

defined later) divided by the number of data. Unfortunately, neural networks are

unidentifiable (e.g. they are invariant to a permutation of the hidden units in fully
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connected networks and a permutation of the channels in convolutional networks) and

the Fisher information is singular [349, 350]. Therefore, neural network posteriors do

not enjoy these theoretical guarantees. Even if the theory applied, in most practical

settings the number of parameters greatly exceeds the number of data, hence even for

the most generous interpretation of approaching infinity, neural networks would be

far off the asymptotic regime. Yet, as Radford Neal already noted in his PhD thesis

during the previous iteration of the deep learning hype cycle: “to hesitate because of

such qualms would be contrary to the spirit of the neural network field” [250].

2.2.2 Variational inference

To explicitly account for matching the mass of the posterior, variational infer-

ence [346, 372] introduces a parametric family approximation to posterior, e.g.

a Gaussian, and optimises its parameters such that the parametric approximation is

similar. Specifically it optimises a lower bound on the marginal likelihood, the evi-

dence lower bound (ELBO), which can be derived as minimising the KL divergence

between the parametric approximation qφφφ and p(θθθ |D)

KL[q(θθθ) || p(θθθ |D)] = Eq(θθθ)

[
log

q(θθθ)
p(θθθ |D)

]
(2.39)

= Eq(θθθ)

[
log

q(θθθ)p(D)

p(D |θθθ) p(θθθ)

]
(2.40)

= log p(D)−Eq(θθθ)

[
log

p(D |θθθ) p(θθθ)
q(θθθ)

]
(2.41)

= log p(D)− (Eq(θθθ) [log p(D |θθθ)]−KL[q(θθθ) || p(θθθ)]︸ ︷︷ ︸
ELBO

)

(2.42)

⇔ ELBO(q(θθθ)) =−L(q(θθθ)) = log p(D)−KL[q(θθθ) || p(θθθ |D)]≤ log p(D),

(2.43)

so that optimising the ELBO reduces the mis-match as measured by the KL di-

vergence between the approximate and the true posterior. Crucially, the difficult

integration problem for finding p(D) has now been turned into an optimisation prob-

lem for finding parameter of an integral with a known solution – qφφφ – that matches
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the integral with unknown solution as closely as possible. A simple and efficient

choice for qφφφ for inference over unconstrained real-valued variables such as neural

network weights is a factorised Gaussian, i.e.

qφφφ (θθθ) = ∏
i
N(θi; µi,σ

2
i ) =N(θθθ ; µµµ,diag(σσσ2)), (2.44)

s.t. φφφ = [µµµ>,σσσ>]>, which means that for every variable (or deterministic parameter

with ML or MAP estimation) we now have two parameters, a mean and a variance

for a univariate Gaussian over that parameter. This approximation has been used in

multiple variational inference approaches for BNNs [130, 100, 26, 168, 164, 260,

361, 324].

While early approaches typically involved deriving model-specific update equa-

tions [14], recent work has shifted towards developing black-box methods for ar-

bitrary arbitrary models based on stochastic optimisation. For estimating the log

likelihood term, mini-batches can be utilised for both local and global variables

[136]. Gradients w.r.t. φφφ can further be estimated by sampling from qφφφ . This can be

done for arbitrary distributions that allow for efficient sampling [278, 182] via the

score-function trick [357]. More recently, it has been observed that ‘reparameterisa-

tion gradients’[167, 332], i.e. samples that are differentiable w.r.t. the parameters

of their distribution, reduce the variance of the gradients and improve optimisation.

This applies e.g. for our Gaussian example above as

θθθ ∼N(µµµ,diag(σσσ2)) ⇔ θθθ = µµµ +σσσ � εεε with εεε ∼N(000, III) (2.45)

is differentiable w.r.t. both µµµ and σσσ , hence gradients w.r.t. the log likelihood can

be estimated efficiently if the log likelihood is differentiable w.r.t. θθθ . For neural

networks specifically, it can also be feasible to integrate out the distributions over

the parameters through deterministic computations such as the linear mapping of a

fully connected layer and obtain distributions over the respective outputs [168]. If

those distributions allow for reparameterisable sampling, sampling from these can

allow for estimating the gradients with even lower variance.
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The specific choice of the parametric family for qφφφ is generally a trade-off

between computational efficiency, which encourages simpler, factorised distributions,

and expressivity to allow for the approximation to more closely match the true

posterior, as the ELBO is maximised by the posterior and only a family containing

it can achieve this maximum. Interestingly, however, more expressive variational

families do not necessarily lead to better predictive performance [339].

2.2.3 Markov chain Monte Carlo

While the present thesis does not make any contribution in this direction, we will

briefly cover Markov chain Monte Carlo (MCMC) methods here for the sake of

completeness. In contrast to the Laplace approximation and variational inference,

MCMC avoids defining a closed-form approximation to the posterior and instead

relies on drawing a sequence of samples that (in the infinite limit) are from the

posterior distribution as e.g. for approximating the predictive posterior only samples

are required. Most commonly used approaches were derived from the Metropolis-

Hastings algorithm [236, 110], which picks some transition probabilities p
(
θθθ
′ ∣∣θθθ)

(such that the sequence of samples form a Markov chain) and then accepts a sample

with probability

A = min

(
1,

p
(
θθθ
′ ∣∣D) p

(
θθθ
∣∣θθθ ′)

p(θθθ |D) p
(
θθθ
′ ∣∣θθθ)

)
. (2.46)

While the posterior probability of a single setting of the parameters can generally

not be computed, in the odds of two different settings the normaliser cancels out,

making the acceptance probability of a transition tractable.

As MCMC methods are asymptotically exact, they are generally considered the

‘gold standard’ for inference. In particular HMC [250, 249, 251], further developed

as NUTS [135], which proposes transitions based on gradients of the negative

log posterior and a random momentum term, has enjoyed tremendous success on

small datasets with neural network models. However, as calculating the acceptance

probability of a transition requires evaluating the full log likelihood, these methods

are not practical for modern-scale datasets and architectures and they are mainly

used as a ground-truth baseline (although recent work [152] has investigated HMC
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on some large-scale settings). As the accept-reject step requires evaluating the

likelihood of the full dataset, stochastic gradient methods that take sufficiently

small steps to assume that the acceptance probability is 1 have received attention

[351, 4, 202, 44, 219, 117, 374].

2.2.4 Ad-hoc methods

Finally, various ad-hoc methods that do not explicitly approximate the posterior,

but construct a distribution over parameters and hence give access to the results of

different forward passes for averaging, have become popular in the literature due to

their simplicity and practicality. In fact, recent work argues that model averaging is

the core component of Bayesian deep learning [358, 359]. As some of these methods

will be considered as baselines in this work, we will give an overview of the most

relevant ones.

2.2.4.1 Deep ensembles

Most notably deep ensembles [185] have found wide-ranging success in not only

reducing test errors over individual models, but also offering comparably strong

uncertainty estimation as compared to other techniques [315]. Implementation-

wise, they are as simple to construct as training multiple deterministic models

independently from different intitialisations of the parameters. The distribution over

the parameters can then be regarded as a mixture over K delta distributions (for an

ensemble of K networks)

qENS(θθθ) =
1
K

K

∑
k=1

δ (θθθ = θθθ k). (2.47)

However, deep ensembles are a computationally expensive method, requiring

both storing K times as many parameters as well as performing that many forward

passes through the network. Further, as they rely on training multiple ML or MAP

models, with little data or limited diversity thereof, trained networks may end up

making the same predictions [263], hence taking a principled approach with a faithful

approximation of the posterior promises to be more robust across different settings.
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2.2.4.2 Monte Carlo Dropout

Various stochastic regularisation techniques for neural networks have been inter-

preted as performing approximate inference, in particular Dropout [83] and Batch

Normalisation [327, 12]. Dropout has originally been proposed as a regularisation

technique where individual units of the network, i.e. dimensions of the activations,

are randomly set to zero in the forward pass during training. This can also been

formulated as sampling the weights of a layer as

WWW l = MMMl diag(zl) with zl ∼B(pl), (2.48)

where MMM is a learnable parameters that takes the role of the weight matrix in determin-

istic networks and B(p) is the Bernoulli distribution with probability p for a positive

outcome. For testing, the usual approach is to set the weights deterministically as

WWW l = MMMl diag(pl) (2.49)

to maintain the expected magnitude of the linear mapping. In contrast, MC Dropout

[83] proposes averaging the outputs of multiple stochastic forward passes as in

the Bayesian model average and argues that training a network with Dropout is a

form of variational inference. However, concerns have been raised both that this

interpretation [140, 141] is not sound and that the predictive uncertainty estimates

can be poorly calibrated [263, 73]. An alternative interpretation as a prior [248]

has been put forward. Nevertheless, MC Dropout is frequently used in practical

settings [157, 200, 246] as Dropout is a commonly used building block in many

architectures and hence MC dropout gives access to improved uncertainty estimates

over deterministic networks with minimal overhead.

2.3 Evaluation: uncertainty estimation
As the true posterior is intractable, approximate inference techniques for BNNs can

generally not be evaluated as to how well they approximate the posterior outside of

toy settings. Further, accurate sampling techniques such as HMC are only available
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at a significant computational expense for larger datasets and architectures [152].

Hence, besides commonly used supervised measures on the predictive mean, such

as squared or classification error/accuracy and negative log likelihood (NLL), the

empirical evaluation of BNNs usually revolves around downstream uncertainty

estimation tasks (typically in classification settings) on which deterministic networks

tend to perform poorly.

2.3.1 Calibration

One such example is that of calibration on the test set. Deterministic networks tend to

exhibit overconfidence [105], i.e. they assign a higher probability to their prediction

than their empirical accuracy. The most commonly used measure of calibration is

the expected calibration error, which for a binary classifier is calculated by grouping

the predicted probabilities into B bins of equal width and calculating

ECE = ∑
b

nb

N
|acc(b)− con f (b)| , (2.50)

where nb denotes the number of predictions assigned to bin b, acc(b) their accuracy

and con f (b) their confidence, i.e. their average value. For multi-class problems we

can take the highest predicted probability for each class or treat all class predictions

independently. Further variants, such as using bins of equal size rather than fixed

width, have recently been discussed in [257]. In any case, the ECE should never be

used as the sole measure of the quality of a classifier, as input-independent solutions

such as predicting the probability for each class as its empirical frequency trivially

optimise the ECE. Hence, it is mostly useful for comparing classifiers with similar

accuracy.

For a single calibration measure, recent work [315] advocates for the use of

proper scoring rules [93, 35], which measure the accuracy of probability predictions

and are uniquely optimised by the correct set of predictions. One such scoring rule

is the Brier score, the squared difference between predicted probabilities and the
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one-hot encoding of the label

Brier(p) =
1
C ∑

c
(pc−yc)

2. (2.51)

Negative log likelihoods are usually also proper scoring rules [93]. However, these

all share the drawback of being a function of predictive accuracy, i.e. when one

classifier outperforms another in terms of the Brier score, it is not clear whether this

is due to better discriminative performance or better calibration.

2.3.2 Robustness to distributional shift

To increase the difficulty of the benchmarking problems, a common procedure is

to apply perturbations to the test data, such as random noise or image distortions

[120, 315] to simulate a shift of the data distributions. As the data usually remains

recognisable to humans, a ‘robust’ model would maintain its test performance on

the shifted data. Robustness and data shift have become an increasingly popular

problem setting in the recent literature, leading to the development of more realistic

benchmarks [174, 226].

2.3.3 Out-of-distribution detection

Another popular task is detecting out-of-distribution (OOD) inputs based on the

uncertainty of the predictive distribution [121, 315]. This uncertainty is measured,

for example, by the entropy, which for classification with predicted probabilities p is

defined as

H(p) =−∑
c

pc logpc. (2.52)

The commonly used priors for a BNN generally lead to a uniform prediction over

classes in classification, i.e. the maximum possible entropy. After observing the

training data, the uncertainty near these is reduced to highly confident predictions

near those data points under the posterior. Therefore, we would expect an approx-

imate inference procedure that represents the true posterior well to exhibit low

uncertainty on known data and high uncertainty on unseen data, therefore being able

to distinguish between the in-distribution test data and previously unobserved OOD
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data. In contrast, deterministic networks with ReLU non-linearities are provably

over-confident away from the training data [118] and it can be shown that a Bayesian

treatment alleviates this issue [176].

2.3.4 Adversarial attacks

A further weakness of deterministic networks is their susceptibility to adversarial

attacks [97, 325], which are artificial inputs constructed to alter the predictions of the

neural network. Examples include noise-like data points that receive high-confidence

predictions as well as imperceptible changes to real data points that change the

network’s prediction to another class. Specifically, the untargeted fast gradient sign

method (FGSM) [97] sets its input as

xADV = x−η sgn(∇xpi), (2.53)

with i = argmax j p j and η being the scalar step size. Similarly the targeted FGSM

takes the gradient w.r.t. the input for a specific class but adds the gradient in order to

increase the corresponding classes’ probability. First examples of works observing

that BNNs are more robust to adversarial attacks include [205, 285, 84, 20, 211],

with [40] providing a more recent systematic study. Briefly, the argument for BNNs

being more robust to adversarial attacks is that such inputs are presumed to lie off

the manifold of training data and are therefore out-of-distribution data where BNNs

are increasingly uncertain. Yet, adversarial examples are a sub-field that has been

attracting significant attention with a wide range of attacks and defenses having been

developed over the past years and FGSM is a rather simplistic attack.

2.3.5 Uncertainty and Risk

Finally, BNNs allow us to distinguish between different types of uncertainty: risk

inherent in the data and uncertainty over the model [172], which can be reduced by

collecting additional data. These are also referred to as ‘aleatoric’ and ‘epistemic’

uncertainty [56, 161, 144]. The distinction is possible through the likelihood of

a prediction given a specific set of parameters as well as the posterior over these

parameters.



2.3. Evaluation: uncertainty estimation 41

In regression problems this is relatively straight-forward, as we typically have a

variance for the Gaussian over the prediction. This variance may depend on the input

and be predicted alongside the mean by the network in the case of heteroskedas-

tic regression to add to the variance of the predictive means. The latter can be

approximated by drawing multiple samples from the approximate posterior.

For classification, the categorical distribution lacks a similar notion of a variance

parameter. However, we can leverage tools from information theory [308] such as the

mutual information between the parameters and the predictions. There are various

ways of calculating the mutual information, the most convenient one in the context

of Bayesian deep learning [81] is to take the difference between the marginal and

the average conditional entropy

MI
(
y′,θθθ

∣∣x′,D)=H
(

p
(
y′
∣∣x′,D))−Ep(θθθ |D)

[
H
(

p
(
y′
∣∣x′,θθθ))] . (2.54)

Intuitively, the mutual information quantifies to what degree a single setting

of the parameters agrees with the predictive posterior that marginalises over the

parameters. If the predictions under all plausible parameter settings of the posterior

are the same – whether they are all predicting the same class with probability 1 or

making uniform predictions, i.e. low or high risk – the two entropies in Eq. 2.54

are identical and cancel out. The mutual information being 0 indicates that there

is no model uncertainty. Conversely, if all predictions are made with probability 1,

but uniformly distributed over the class labels, the marginal predictive posterior is

a uniform distribution and has entropy − logC, while each conditional predictive

distribution has 0 entropy and the mutual information is high, indicating high model

uncertainty.



Chapter 3

The Kronecker factored Laplace

approximation

The Laplace approximation has a long history in the literature on BNNs. After first

having been used in [55] and [38], with a diagonal approximation to the Hessian in

the former, MacKay [220, 222] developed a unifying framework around the Laplace

approximation that estimates predictive uncertainty, sets hyperparameters such as

the prior precision and data noise for regression, and prunes network parameters in

a principled way based on the ‘evidence framework’ [104]. In particular, MacKay

strongly argues for the use of the full Hessian rather than a cheap diagonal approxi-

mation in order to account for parameter correlations in the posterior. See also [73]

for a recent discussion of the importance of accounting for parameter correlations in

BNNs. Further, [47] observes that with a fully factorised approximate posterior in

the infinite width-limit of a single-layer network the mean function becomes 0, i.e.

the BNN ignores the data.

While most recent works on Bayesian deep learning have focused on developing

variational inference and MCMC approaches to match the mass of the posterior as

closely as possible, the Laplace approximation holds the unique advantage of being

applicable to already trained networks. This make it a highly practical approach

for settings where a need for accurate uncertainty estimation may only emerge

post-training.

Using the full Hessian is generally infeasible for modern network architectures
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due to their number of parameters typically being in the millions to billions, so

approximations are needed. This chapter develops a Laplace approximation to

the neural network posterior that can scale to modern-sized architectures while

taking per-layer parameter correlations into account. Section 3.1 introduces the

curvature approximations used in this work and the corresponding approximate

posterior distribution based on material from [29] and [289], with an added discussion

on recent work analysing the loss landscape of neural networks in Section 3.1.4.

Section 3.2 presents the details regarding approximating the predictive posterior

using samples from the approximate distribution over the weights, alongside the

experimental results in [289], with an added discussion of the impact of the curvature

approximations on the concentration of the resulting posterior in Section 3.2.4.

Section 3.3 extends the approximation to continual learning settings based on [288].

Statement of contributions The work in this chapter was done in collaboration

with my colleague Alex Botev and my supervisor David Barber. Alex and David

developed the approximation to the Gauss-Newton of neural networks published in

[29], Alex wrote most of the code and I assisted with some experiments. Alex and

I then jointly developed a Theano [328] and Lasagne [58] implementation for the

approximate curvature matrices as the foundation for the sampling code of [289]

and the quadratic penalties in [288], for which the three of us had developed the

theoretical framework together. I designed and implemented the experiments for both

papers with feedback from Alex and David; Alex and I wrote the papers together

with feedback from David and this thesis re-uses large sections of all three papers in

a restructured and unified notation, which hopefully makes the present text easier

to follow. Most of the content of this chapter is also presented in Alex’s PhD thesis

with additional material on 2nd-order optimisation [28] from [29], which has been

omitted from the present thesis.

3.1 Approximations

Approximating the posterior of a neural network with the Laplace approximation

comes with two core challenges: 1. the loss function, i.e. the unnormalised posterior,
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is not convex, hence the Hessian is not guaranteed to be p.s.d. 2. the size of the

Hessian scales quadratically in the number of parameters, which is typically in the

millions, but can be in the billions for modern architectures [311, 277, 280]. It is

therefore infeasible to work with the full Hessian, leading to a need for approxima-

tions.

This section discusses how the Hessian can be approximated in a computa-

tionally efficient manner and how these approximations impact the structure of

corresponding approximate posterior distribution.

3.1.1 Curvature approximations

On a high level, we make three approximations to the Hessian: a block-diagonal one –

treating each layer independently – followed by a Kronecker factored approximation

of each layer’s Hessian and finally a positive-definite approximation by the Fisher or

Gauss-Newton. We visualise these approximations in Fig. 3.1 to give an intuition for

the corresponding savings in the size of the matrix. Note that the block-diagonal and

Kronecker factored approximation could also be developed directly for the Fisher or

Gauss-Newton as e.g. in [229], which are positive-definite by construction, but we

keep the discussion here in terms of the Hessian for generality.

3.1.1.1 Approximating the log likelihood Hessian

As stated above, working with the full Hessian is infeasible for all but the smallest

network architectures. Even for a by current standards modestly sized ResNet-18

[114, 115] at 11.7M parameters, storing all entries of the Hessian in single precision

requires almost 500TB (or half of that when taking advantage of the symmetry of

the Hessian).

As a reminder, we denote a feedforward network as taking an input a0 = x and

producing an output hL. The intermediate representations for layers l = 1, ...,L are

denoted as hl =WWW lal−1 and al = fl(hl). We refer to al as the activations, and hl as

the (linear) pre-activations. The bias terms are absorbed into the WWW l by appending a

1 to each al . The network parameters are optimised w.r.t. an error function E(y,hL)

for targets y plus a a regularisation term that is function of the parameters. Most
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(a) Full Hessian with layer-block structure (b) Block-diagonal approximation

⊗

⊗

⊗

(c) KF approximation of the blocks

⊗

⊗

⊗

(d) Positive semi-definite approximation

Figure 3.1: Visualisation of the sequence of Hessian approximations.

commonly used error functions, such as squared error and categorical cross-entropy,

can be interpreted as exponential family negative log likelihoods − log p(y|hL). The

regulariser is usually equivalent to the negative log probability of prior for the

parameters and typically has a simple second derivative, e.g. the identity matrix

times the precision for an isotropic Gaussian, so we will focus the discussion on the

Hessian of the negative log likelihood.

We will group the parameters by layer, i.e. θθθ = [θθθ>1 , . . . ,θθθ
>
L ]
> =

[vec(WWW 1)
>, . . . ,vec(WWW L)

>], where vec stacks the rows of a matrix into a single

vector. In the following, all vectors and matrices, indicated by bold font, will have

layer indices l as subscripts, scalar elements of these will carry them as superscripts
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with the subscripts indicating the index. So WWW l is the weight matrix of layer l and

W l
i, j its entry in row i, column j.

The Hessian for a single data point is formally defined as

HHH =
∂ 2E

∂θθθ∂θθθ
=


HHH11 . . . HHH1L

... . . . ...

HHHL1 . . . HHHLL

=


∂ 2E

∂θθθ 1∂θθθ 1
. . . ∂ 2E

∂θθθ 1∂θθθ L
... . . . ...

∂ 2E
∂θθθ L∂θθθ 1

. . . ∂ 2E
∂θθθ L∂θθθ L

 , (3.1)

with the block structure following of the Hessian following the layer structure of the

network, i.e. each block of the Hessian corresponds to the mixed partial Hessian

w.r.t. to the parameters of two layers.

As a first approximation, we will treat the layers independently, i.e. approximate

the Hessian as block-diagonal

HHH ≈


HHH1 0

. . .

0 HHHL

= diag(HHH1, . . . ,HHHL), (3.2)

where we simplify the notation of the diagonal blocks to HHH l = HHH ll . Assuming we

are dealing with a network where inputs, outputs and all layers are of dimensionality

d, i.e. all WWW l are of size d×d, this block-diagonal approximation reduces the storage

requirements from O(L2d4) to O(Ld4). Further, it allows for most relevant linear

algebra operations, such as inverses, the Cholesky decomposition and matrix-vector

products to be computed independently for each block.

The size of the blocks is, however, still problematic. For example, the block

corresponding to a 1024×1024 layer, a common building block for architectures on

small datasets such as MNIST [194], would require 4T B to store. Hence, further

approximations are needed.

Fortunately, the diagonal blocks of the Hessian have a structure that can be

exploited for an efficient approximation. Starting with the gradient w.r.t. a specific



3.1. Approximations 47

weight W l
i, j, we apply the chain rule once

∂E
∂W l

i, j
= ∑

k

∂hl
k

∂W l
i, j

∂E
∂hl

k
= al−1

j
∂E
∂hl

i
. (3.3)

Differentiating again w.r.t. another weight W l
m,n from the same layer yields

∂ 2E
∂W l

i, j∂W l
m,n

= al−1
j ∑

k

∂hl
k

∂W l
m,n

∂ 2E
∂hl

i∂hl
k
= al−1

j al−1
n

∂ 2E
∂hl

i∂hl
m
. (3.4)

Noting the independent indices on the elements of the left and right factor, we

can equivalently express this in matrix form as a Kronecker product

HHH l =
∂ 2E

∂θθθ l∂θθθ l
= (al−1a>l−1)⊗

∂ 2E
∂hl∂hl

=: Ql⊗Hl, (3.5)

where al−1 = [al−1
1 , . . . ,al−1

d ]> and hl = [hl
1, . . . ,h

l
d]
>. The Kronecker product ⊗

constructs a single large matrix by multiplying each element from the left matrix by

the entire right matrix and tiling the results, s.t.

AAA⊗BBB =


A11BBB · · · A1nBBB

... . . . ...

Am1BBB · · · AmnBBB

 (3.6)

for some matrices AAA : m×n and BBB of arbitrary shape. This allows for many operations

to be computed efficiently as a function of the individual Kronecker factors, so that

the resulting matrix never needs to be computed, see Tab. 3.1 for a summary. Still

assuming all square weight matrices, the Kronecker factors will be of shape d×d,

i.e. reducing the overall storage cost from O(Ld4) to O(Ld2). For arbitrarily shaped

weights WWW : dout×din, we will have Q : din×din and H : dout×dout .
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Table 3.1: Kronecker product identities. Note that in the vector product identity the place-
ment of the transpose depends on the definition of the vec operation. The identity here is
shown for concatenating the rows (equivalent to flattening in ‘C-order’), when stacking the
columns (flattening in ‘Fortran-order’), the AAA rather than the BBB matrix is transposed.

Operation Raw expression Efficient identity

Inverse (AAA⊗BBB)−1 AAA−1⊗BBB−1

Cholesky LLLLLL> = AAA⊗BBB (LLLA⊗LLLB)(LLL>A ⊗LLL>B ) s.t. LLLALLL>A = AAA, LLLBLLL>B = BBB
Vector product (AAA⊗BBB)vec(XXX) vec(BBB>XXXAAA)

Similar to the gradients, Hl , the Hessian w.r.t. the linear pre-activations of a

layer, can be calculated recursively as

Hl = BBBlWWW>l+1HHH l+1WWW l+1BBBl +DDDl. (3.7)

The diagonal matrices BBBl and DDDl are defined as

BBBl = diag( f ′l (hl)) (3.8)

DDDl = diag( f ′′l (hl)
∂E
∂al

), (3.9)

where f ′ and f ′′ denote the first and second derivative of the elementwise

non-linearity respectively, and the recursion is initialised with the Hessian

w.r.t. the network outputs, i.e.HL = ∂ 2E
∂hL

2 . See Appendix A for the detailed

derivation.

Typically, we will need the expected Hessian over some dataset rather than a

single datapoint. Making the dependence on the data explicit, the Hessian is

Ep(x,y) [HHH]≈ 1
N ∑

x,y∈D

∂ 2E(x,y)
∂θθθ∂θθθ

. (3.10)

Unfortunately, Kronecker products do not add up pairwise i.e. AAA⊗BBB+CCC⊗DDD 6=

(AAA+CCC)⊗ (BBB+DDD) for arbitrary compatible matrices. Therefore, the Hessian loses

its Kronecker product structure in expectation.
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To maintain this computationally efficient form, we can approximate the

blocks as being statistically independent

E [HHH l]≈ E [Ql]⊗E [Hl] . (3.11)

3.1.1.2 Positive definite approximations

Finally, we need to ensure that our curvature matrix in Eq. 3.11 is positive definite,

which for a Kronecker product is the case if both factors are. While Q is p.s.d. by

construction, H may not be due to the non-linear nature of neural networks, so a

further approximation is needed.

Gauss-Newton One option is the Gauss-Newton matrix as presented in [29]. In

general, we can decompose the Hessian into a sum of two matrices by applying the

chain rule once starting from the outputs as

HHH =
∂ 2E

∂θθθ
2 =

∂h>L
∂θθθ

∂ 2E
∂hL

2
∂hL

∂θθθ︸ ︷︷ ︸
Gauss-Newton

+∑
d

∂E
∂hL

d

∂ 2hL

∂θθθ
2 , (3.12)

where the first summand is known as the ‘Gauss-Newton’. If the Hessian of the

error w.r.t. the network outputs is p.s.d., so is the Gauss-Newton matrix and we

can use it as an approximation to the Hessian by dropping the second term. This is

justified in particular near local minima, where the gradients of the error w.r.t. the

network outputs are near 0. We can plug this definition into the Kronecker factored

approximation of the Hessian and approximate the Hessian w.r.t. the layerwise

pre-activations as

HHH l ≈Ql⊗Gl =Ql⊗
∂h>L
∂hl

HHHL
∂hL

∂hl
. (3.13)

The Gauss-Newton matrix had first been used in MacKay’s Laplace framework

in [75]. It can be calculated using Eq. 3.7 by dropping the DDDl term. Interestingly,

if the non-linear functions are piecewise linear, i.e. have zero second derivatives,

the DDDl matrices become zero and the Hessian blocks are equal to the blocks of the

Gauss-Newton. Hence using the Gauss-Newton is not necessarily an additional
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approximation on top of the block-diagonal one, e.g. for networks with ReLU

non-linearities as discussed in [29] in more detail.

Efficient computation A naive per-datapoint implementation fails to fully utilise

modern parallelised hardware and batching across many data quickly becomes

prohibitive in terms of memory. If the dimensionality of the output layer is relatively

small, e.g. in classification, we can calculate the square root of HHHL : dL×dL

HHHL =CCCLCCC>L , (3.14)

and then compute the per-layer square roots of the Gauss-Newton as

CCCl = BBBlWWW>l+1CCCl+1, (3.15)

where each CCCl will be of shape m×d×dL for a batch of m data points, which will

typically be acceptable for small dL.

Alternatively, we can recursively backpropagate the average Gauss-Newton

for an efficient approximation as presented in [29] as KFRA (Kronecker factored

resursive approximation)

E [GGG]l = E
[
BBBlWWW>l+1GGGl+1WWW l+1BBBl

]
≈ E

[
BBBlWWW>l+1E [GGGl+1]WWW l+1BBBl

]
. (3.16)

Our Theano [328] implementation for Lasagne [58] is available at https:

//github.com/BB-UCL/Lasagne. Implementations for PyTorch [269] have been

independently made available in the more recent Backpack library [51] after comple-

tion of this work.

Fisher information As an alternative to the Gauss-Newton, we can use the Fisher

information matrix, which had originally been developed in frequentist statistics to

measure the sampling statistics of maximum likelihood estimators [71, 72]. Its use

has been popularised as natural gradient descent [6, 267, 7], corresponding to locally

steepest descent in distribution rather than parameter space. The Fisher for some

https://github.com/BB-UCL/Lasagne
https://github.com/BB-UCL/Lasagne
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fixed values θθθ
∗ of the parameters is defined as

FFF = Ep(x)p(y |θθθ∗,x)

[
∇θθθ log p(y |θθθ ∗,x)∇θθθ log p(y |θθθ ∗,x)>

]
(3.17)

=−E
[
∇

2
θθθ

log p(y |θθθ ∗,x)
]

(3.18)

= E
[
∇

2
θθθ

E(θθθ ∗)
]
= E [HHH] . (3.19)

Note that the expectation is over the predictive distribution of the network, not the

empirical data distribution. The latter has been used as an approximation in various

pieces of recent work in deep learning as the ‘empirical Fisher’, however this matrix

has been shown to not reliably capture curvature information [183].

We can then approximate each block of the Hessian in Eq. 3.11 as the corre-

sponding block of the Fisher as

HHH l ≈Ql⊗Fl =Ql⊗E
[
∇hl E(θθθ

∗)∇hl E(θθθ
∗)>
]
. (3.20)

This approximation has first been discussed in [125] and more recently devel-

oped into a practical second-order optimisation method for neural networks under the

name KFAC (Kronecker factored approximate curvature) [229, 103, 274, 261, 262].

For exponential-family likelihoods, the Fisher and Gauss-Newton are equivalent

[228]. We have shown above that, with piecewise-linear non-linearities, the layerwise

blocks of the Hessian and Gauss-Newton are identical and the block-diagonal Hessian

is therefore p.s.d. for many architectures. Therefore, we will keep all discussion in

the following in terms of the Hessian for full generality and regard the final positive

definite approximation as an optional final step. Implementationwise, it is typically

easiest to work with the Fisher as it only requires calculating the Jacobian of the loss

over a batch of data w.r.t. to the parameters. While efficient implementations are not

available for most automatic differentiation packages out-of-the-box, workarounds

for the commonly used network layer types can be coded at a manageable overhead

[94, 51].

Convolutional layers Besides fully connected layers, we also need to consider

convolutional layers, which have been instrumental in the success of neural networks
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for computer vision [54]. We can exploit the connection between convolutional and

linear layers as described in Section 2.1.1.2 of a convolution being a linear operation

applied to a batch of image patches. Assuming independence across these locations,

similar to the independence assumption between data, then gives a corresponding

Kronecker product approximation of the Hessian as also discussed in [103].

3.1.2 Posterior approximations

We will now interpret the curvature approximations from a posterior-approximation

point of view. For the standard Laplace approximation, we use the full Hessian

(assuming it is positive definite) of the negative log likelihood plus the Hessian of

the negative log prior as the precision, i.e. the inverse covariance. Hence we need N

times the average Hessian

H̄HH = NE [HHH] , (3.21)

and add the negative log prior Hessian. Assuming an isotropic Gaussian prior make

the Hessian of the negative log posterior around the MAP estimate

H̃HH = H̄HH + τIII, (3.22)

so that the overall posterior is approximated as

p(θθθ |D)≈ qFull(θθθ) =N(θθθ ∗, H̃HH−1
). (3.23)

With the block-diagonal approximation, i.e.

HHH ≈ diag(HHH1, . . . ,HHHL), (3.24)

the approximate posterior factorises across the layers

p(θθθ |D)≈ qBD(θθθ) =
L

∏
l=1

N(θ ∗l , H̃HH
−1
l ). (3.25)
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For the Kronecker factored approximation we define

Q̄l =
√

NE [Ql] and Q̃l = Q̄l +
√

τIII, (3.26)

and

H̄l =
√

NE [Hl] and H̃l = H̄l +
√

τIII, (3.27)

so that overall, the block of the negative log posterior for each layer is approximated

as

H̃HH l ≈ Q̃l⊗H̃l. (3.28)

The precision and therefore the covariance of the approximate Gaussian poste-

rior is hence Kronecker factored.

A multivariate normal distribution with Kronecker factored covariance is

also known as matrix normal distribution [107], as the covariance factorises

into a row and column covariance. In conjunction with the block-diagonal

approximation, our approximate posterior is then

p(θθθ |D)≈ qKF(θθθ) =
L

∏
l=1

MN(WWW ∗l ,H̃−1
l ,Q̃−1

l ), (3.29)

where H̃−1
l is the row and Q̃−1

l the column covariance.

3.1.3 Diagonal Approximation

For a computationally more efficient baseline that does not account for parameter

correlations, we will also use a diagonal approximation. An approximation that is

easy to compute in modern automatic differentiation frameworks is the diagonal of
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the Fisher matrix F , which is simply the expectation of the squared gradients

H̃HH ≈ diag(F̃FF) (3.30)

= diag
(

NE
[
∇θθθ log p(D |θθθ)∇θθθ log p(D |θθθ)>

]
− ∂ 2 log p(θθθ)

∂θθθ
2

)
(3.31)

= diag
(
NE

[
(∇θθθ log p(D |θθθ))2])−diag

(
∂ 2 log p(θθθ)

∂θθθ
2

)
, (3.32)

where diag extracts the diagonal of a matrix or turns a vector into a diagonal matrix.

Such diagonal approximations to the curvature of a neural network have been used

successfully for pruning the weights [192] and, more recently, for continual learning

[170].

The diagonal approximation corresponds to modelling the weights with a

Normal distribution with diagonal covariance

θθθ ∼N(θθθ ∗,diag(F̃FF)−1). (3.33)

3.1.4 The loss landscape of neural networks

Developing a better understanding of the loss landscape of neural networks has

been an active area of research in recent years. While most works aim to develop a

better understanding of the optimisation dynamics and generalisation behaviour of

deterministic networks, the equivalence of the commonly used neural network losses

with the negative log likelihood in the posterior makes these results highly relevant

for Bayesian deep learning in general and the Laplace approximation in particular.

Most important for the Laplace approximation, multiple small-scale empirical

studies [297, 298] first observed that on classification problems with C classes the

spectrum of eigenvalues of the Hessian consists of C outliers and a bulk of eigenval-

ues near 0. This means that the uncertainty of the Laplace approximation is strongly

constrained in C directions by the Hessian of the negative log likelihood and depends

on the curvature of the prior in all others. These results have been confirmed on

larger networks and datasets by estimation of the density of the eigenspectrum [89]

via Hessian-vector products, which can be calculated efficiently without instantiating
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the Hessian [270]. Arjevani and Field [10] provide some theoretically-grounded

support for these observations based on shallow ReLU networks. Ghorbani et al. [89]

further note that the magnitude of the outliers can be reduced via batch normalisation,

although Yao et al. [365] find the opposite to be the case for shallow architectures.

Papyan [265] attribute these outliers to the Gauss-Newton part of the Hessian, inspir-

ing confidence that the p.s.d. approximations capture the most important information.

Further, Wu et al. [362] find that the eigenspaces of the Kronecker factored Hessian

agrees well with that of the full blocks, supporting the independence assumption in

Eq. 3.11. Papyan [266] however find that the distribution of eigenvalues can disagree

and propose a class-based (computationally more expensive) correction.

Some results that draw the use of the quadratic approximation in question have

been published in recent years. Besides it being a local, uni-modal approximation

and the success of ensembles [185] demonstrating that the loss landscape is multi-

modal beyond functionally identical symmetries in the parameter space, it has been

observed that the modes of the loss are connected via almost constant trajectories

[60, 85]. That means that the bottom of the loss landscape is more similar to a

valley-like shape rather than isolated quadratic ‘bowls’ or islands as commonly

used in one-dimensional visualisations. Frye et al. [78] further warn of gradient-flat

regions, where the quadratic approximation becomes untrustworthy, but that the

layerwise Kronecker-factored approximation may overcome this issue and therefore

be not only computationally needed, but further act as a regulariser by increasing

the concentration of the approximate posterior in some settings as will be discussed

in Section 3.2.4. Asides from the flatness, He et al. [112] find that minima of

deep modern architectures exhibit significant asymmetry and attribute this to batch

normalisation. Finally, visualisations of the loss suggest that in particular skip

connections make the loss more regular and that higher-order effects seem to be

present particularly in wide minima [203].

Overall, these results do not paint a fully clear picture due to the complexity of

neural networks arising from their non-linear nature. While there are some reasons

for concern that our approximate posterior may not be a good fit even locally, the
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irregularities in the loss surface affect any Gaussian approximation. And while

we certainly cannot hope to fully represent the posterior, it is not unreasonable to

expect that even with some degree of mismatch our Gaussian approximation will

empirically perform better than standard point estimates of the parameters. So we

now turn to developing methods for uncertainty estimation and continual learning

based on these Laplace posteriors.

3.2 Uncertainty estimation
We will begin utilising and evaluating the posterior approximation we developed

in the previous section by approximating the predictive posterior. We do so by

approximating the integral with a Monte Carlo approximation, for which we need to

draw multiple samples from our approximate posterior, which consists of independent

matrix normal distributions as discussed previously.

3.2.1 Sampling

The matrix normal distribution [107] is a multivariate distribution over an entire

matrix of shape n× p rather than just a vector. In contrast to the multivariate normal

distribution, it is parameterised by two p.s.d. covariance matrices, UUU : n× n and

VVV : p× p, which indicate the covariance of the rows and columns respectively. In

addition it has a mean matrix MMM : n× p.

For a regular multivariate normal distribution with mean µµµ and covariance ΣΣΣ),

we can draw a random sample x as

x = µµµ +LLLεεε (3.34)

with ΣΣΣ = LLLΣLLL>Σ and εεε ∼N(000, III), (3.35)

assuming that we can draw a sample εεε from the standard normal distribution, for

which all modern numerical computation libraries provide functions, and with LLLΣ

being the lower Cholesky decomposition of ΣΣΣ. A vectorised sample from a matrix

normal distribution XXX ∼ MN(MMM,AAA,BBB) corresponds to a sample from a normal

distribution vec(XXX) ∼ N(vec(MMM),BBB⊗AAA), where AAA is the row and BBB the column
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covariance and the vectorisation is performed by stacking the rows of XXX . However,

samples can be drawn more efficiently as XXX = MMM+LLLAEEEUUUB with EEE ∼MN(000, III, III),

and LLLALLL>A = AAA and UUU>B UUUB = BBB. The sample EEE corresponds to a sample from a

normal distribution of length np that has been reshaped to a n× p matrix. This is

more efficient in the sense that we only need to calculate two matrix-matrix products

of small matrices, rather than a matrix-vector product with one big one.

However, with the Laplace approximation we have only access to the precision

matrix ΛΛΛ = ΣΣΣ
−1, i.e. the inverse of the covariance. Numerically inverting the

precision to compute the Cholesky may be numerically unstable [126]. However, for

the upper Cholesky UUUΛ of ΛΛΛ we have

ΛΛΛ =UUU>ΛUUUΛ ⇒ ΣΣΣ =UUU−1
Λ

UUU−>
Λ

. (3.36)

Using any linear solver, we can therefore draw samples given only the precision

matrix without numerically calculating an inverse

x = µµµ +UUU−1
Λ

εεε. (3.37)

Similarly for the matrix normal, with AAA−1 = PPP =UUUPUUU>P and BBB−1 = QQQ = LLLQLLL>Q ,

we can draw a sample as

XXX = MMM+UUU−1
P EEELLL−1

Q , (3.38)

without needing to calculate the inverses explicitly.
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To summarise, to draw a sample from the Kronecker factored Laplace approx-

imation, we compute for each layer

WWW =WWW ∗+UUU−1
H EEELLL−1

Q ∼MN(WWW ∗,H̃−1,Q̃−1), (3.39)

with

H=UUU>HUUUH and Q= LLLQLLL>Q (3.40)

being the upper Cholesky of the activation covariance and the lower Cholesky

of the pre-activation curvature respectively.

3.2.2 Regularising the posterior approximation

Unfortunately, sampling from the posterior approximation as introduced above may

lead to poor predictive performance, either due to a mis-match between the Laplace

approximation and the true posterior or issues with the true posterior itself, see e.g.

[354]. Hence it can be desirable to adjust the spread of the mass of the Gaussian

posterior around its mean. To achieve this, recall that just as the log posterior, the

Hessian decomposes into a term depending on the data log likelihood and one on

the prior. For the commonly used L2-regularisation, corresponding to a Gaussian

prior, the Hessian is equal to the precision of the prior times the identity matrix. We

approximate this by adding a multiple of the identity to each of the Kronecker factors

from the log likelihood

H̃HH l = NE
[
−∂ 2 log p(D|θθθ)

∂θ 2

]
+ τIII ≈ (

√
NE [Ql]+

√
τIII)⊗ (

√
NE [Hl]+

√
τIII),

(3.41)

where τ is the precision of the Gaussian prior on the weights and N the size of the

dataset. However, we can also treat them as hyperparameters and optimise them w.r.t.

the predictive performance on a validation set. We emphasise that this can be done

without retraining the network, so it does not impose a large computational overhead

and is trivial to parallelise.

Setting N to a larger value than the size of the dataset can be interpreted as
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including duplicates of the data points as pseudo-observations. Adding a multiple

of the uncertainty to the precision matrix decreases the uncertainty about each

parameter. This has a regularising effect both on our approximation to the true

Laplace, which may be overestimating the variance in certain directions due to

ignoring the covariances between the layers, as well as the Laplace approximation

itself, which may be placing probability mass in low probability areas of the true

posterior. See also [145] for a visualisation.

3.2.3 Memory and Computational Requirements

If we denote the dimensionality of the input to layer l as Dl−1 and its output as Dl ,

the curvature factors correspond to the two precision matrices with Dl−1(Dl−1+1)
2 and

Dl(Dl+1)
2 ‘parameters’ to estimate, since they are symmetric. So across a network, the

number of curvature directions that we are estimating grows linearly in the number

of layers and quadratically in the dimension of the layers, i.e. the number of columns

of the weight matrices. The size of the full Hessian, on the other hand, grows

quadratically in the number of layers and with the fourth power in the dimensionality

of the layers (assuming they are all the same size).

Once the curvature factors are calculated, which only needs to be done once,

we use their Cholesky decomposition to solve two triangular linear systems when

sampling weights from the matrix normal distribution. We use the same weight

samples for each minibatch, i.e. we do not sample a weight matrix per datapoint.

This is for computational efficiency and does not change the expectation.

One possibility to save computation time would be to sample a fixed set of

weight matrices from the approximate posterior — in order to avoid solving the

linear system on every forward pass — and treat the networks that they define as

an ensemble. The individual ensemble members can be evaluated in parallel and

their outputs averaged, which can be done with a small overhead over evaluating

a single network given sufficient compute resources. A further speed up can be

achieved by distilling the predictive distributions of the Laplace network into a

smaller, deterministic feedforward network as successfully demonstrated in [16] for

posterior samples using HMC.



3.2. Uncertainty estimation 60

Finally, in contrast to second-order optimisation methods, we do not need to

approximate E [H] as it is only calculated once. However, when it is possible to

augment the data (e.g. randomised cropping of images), it may be advantageous.

While the square root of Q is calculated during the forward pass on all layers,

H requires an additional backward pass. Strictly speaking, it is not essential to

approximate E [H] for the Kronecker factored Laplace approximation, as in contrast

to optimisation procedures the curvature only needs to be calculated once and is thus

not time critical. For datasets of the scale of ImageNet and the networks used for

such datasets, it would still be impractically slow to perform the calculation for every

data point individually. Furthermore, as most datasets are augmented during training,

e.g. random cropping or reflections of images, the curvature of the network can be

estimated using the same augmentations, effectively increasing the size of the dataset

by orders of magnitude. Thus, we make use of the minibatch approximation in our

experiments — as we make use of data augmentation — in order to demonstrate its

practical applicability.

We note that E [H] can be calculated exactly by running KFRA [29] with a

minibatch-size of one, and then averaging the results. KFAC [229], in contrast,

stochastically approximates the Fisher matrix in typical implementations, so even

when run for every datapoint separately, it does not calculate the curvature factor

exactly unless the expectation over the predictive posterior is enumerated.

3.2.4 Posterior concentration

To gain some intuition for how the different curvature approximations impact the

uncertainty of the posterior, we will now compare the corresponding entropies. As

all Laplace-based approximate posteriors are Gaussians, the entropy is generally

given as

H(N(µµµ,ΣΣΣ)) =
1
2

logdet(2πeΣΣΣ), (3.42)

i.e. it is determined by the determinant of the inverse (approximate) Hessian. We

will initially assume that the prior adds no curvature, e.g. a Laplace or (improper)

uniform prior. This simplifies the comparison of the determinants of the Hessian
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approximations for the negative log likelihood. Beginning our discussion with the

structural approximations, i.e. the block-diagonal and diagonal ones compared to the

full Hessian, with Fischer’s inequality we have that

det(H̄HH)≤ det(H̄HHBD)≤ det(diag(H̄HH)). (3.43)

Therefore, assuming that we have enough data points for all Normal distri-

butions to be well-defined, i.e. none of the Hessians being rank-deficient, the

corresponding entropies are sorted in the inverted order

H(qFull)≥H(qBD)≥H(qdiag), (3.44)

as the Hessians correspond to the precision matrices. Hence the diagonal approxima-

tion is more concentrated around the mean than the block-diagonal approximation,

which in turn is more concentrated than the Laplace approximation corresponding to

the full Hessian.

With the more commonly used Gaussian priors, however, we now have a

multiple of the identity that is added to each Hessian. Even though

det(AAA+BBB)≥ detAAA+detBBB≥ detAAA, (3.45)

for AAA,BBB p.s.d. i.e. the addition of curvature from the prior decreasing the posterior

uncertainty, in general

detAAA≥ detBBB ; det(AAA+ III)≥ det(BBB+ III), (3.46)

e.g. with AAA =

5 0

0 6

 and BBB =

2 0

0 14

 we have detAAA = 30 > 28 = detBBB, but

det(AAA+ III) = 42 < 45 = det(BBB+ III). Hence, with a Gaussian prior the block-diagonal

and diagonal Laplace approximation do not necessarily concentrate their mass more

tightly around the mode than the full Laplace approximation.

Similarly, as Kronecker products factorise the same way as scalar products, the
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Kronecker factored approximation implies that each block of the average Hessian is

approximated as

E [Q]⊗E [H] =

(
1
N

N

∑
i=1

Qi

)
⊗

(
1
N

N

∑
i=1

Hi

)
≈ 1

N2

N

∑
i=1

N

∑
j=1

Qi⊗H j, (3.47)

i.e. each block is now a sum over N2 instead of N terms, which is accounted for by

a division by N2. So as the division correctly accounts for the additional (positive

definite) terms compared to the exact block, the Kronecker factored approximation

does not analytically lead to an increase or decrease of the posterior concentration.

3.2.5 Experiments

Since the Laplace approximation is a method for predicting in a Bayesian manner

and not for training, we focus on comparing to uncertainty estimates obtained from

Dropout [83]. The trained networks will be identical, but the prediction methods

will differ. We also compare to a diagonal Laplace approximation to highlight the

benefit from modelling the covariances between the weights. All experiments are

implemented using Theano [328] and Lasagne [58].

3.2.5.1 Toy regression dataset

As a first experiment, we visualise the uncertainty obtained from the Laplace ap-

proximations on a toy regression dataset, similar to [124]. We create a dataset of

20 uniformly distributed points x∼ U(−4,4) and sample y∼N(x3,32). In contrast

to [124], we use a two-layer network with seven units per layer rather than one

layer with 100 units. This is because both the input and output are one-dimensional,

hence the weight matrices are vectors and the matrix normal distribution reduces

to a multivariate normal distribution. Furthermore, the Laplace approximation is

sensitive to the ratio of the number of data points to parameters, and we want to

visualise it both with and without hyperparameter tuning.

Fig. 3.2 shows the uncertainty obtained from the Kronecker factored and di-

agonal Laplace approximation applied to the same network, as well as from a full

Laplace approximation and 50,000 HMC [249] samples. The latter two methods are
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(a) KF Laplace (b) Diagonal Laplace

(c) Full Laplace (d) HMC

Figure 3.2: Toy regression uncertainty. Black dots are data points, the black line shows the
noiseless function. The red line shows the deterministic prediction of the network, the blue
line the mean output. Each shade of blue visualises one additional standard deviation.

feasible only for such a small model and dataset. For the diagonal and full Laplace

approximation we use the Fisher identity and draw one sample per data point. We

set the hyperparameters of the Laplace approximations using a grid search over the

likelihood of 20 validation points that are sampled the same way as the training set.

The regularised Laplace approximations give an overall good fit to the HMC

predictive posterior. Their uncertainty is slightly higher close to the training data

and increases more slowly away from the data than that of the HMC posterior.

The diagonal and full Laplace approximation require stronger regularisation than

our Kronecker factored one, as they have higher uncertainty when not regularised.



3.2. Uncertainty estimation 64

In particular the full Laplace approximation vastly overestimates the uncertainty

without additional regularisation, leading to a bad predictive mean (see below), as

the Hessian of the log likelihood is underdetermined. This is commonly the case

in deep learning, as the number of parameters is typically much larger than the

number of data points. Hence restricting the structure of the covariance is not only

a computational necessity for most architectures, but also allows for more precise

estimation of the approximate covariance.

Fig. 3.3 shows the different Laplace approximations (Kronecker factored, diag-

onal, full) without any hyperparameter tuning. The figure of the uncertainty obtained

from samples using HMC is repeated. Note that the scale is larger than in Fig. 3.2

due to the high uncertainty of the Laplace approximations.

The Laplace approximations are increasingly uncertain away from the data, as

the true posterior estimated from HMC samples, however they all overestimate the

uncertainty without regularisation. This is easy to fix by optimising the hyperparam-

eters on a validation set as discussed before, resulting in posterior uncertainty much

more similar to the true posterior. As discussed in [29], the Hessian of a neural net-

work is usually underdetermined as the number of data points is much smaller than

the number of parameters — in our case we have 20 data points to estimate a 78×78

precision matrix. This leads to the full Laplace approximation vastly overestimating

the uncertainty and a bad predictive mean, in line with results in [188]. Both the

Kronecker factored and the diagonal approximation exhibit smaller variance than

the full Laplace approximation as they restrict the structure of the precision matrix.

Consistently with the other experiments, we find the diagonal Laplace approximation

to place more mass in low probability areas of the posterior than the Kronecker

factored approximation, resulting in higher variance on the regression problem. This

leads to a need for greater regularisation of the diagonal approximation to obtain

acceptable predictive performance, and underestimating the uncertainty.

3.2.5.2 Out-of-distribution uncertainty

For a more realistic test, similar to [215], we assess the uncertainty of the predictions

when classifying data from a different distribution than the training data. For this we
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(a) KF Laplace (b) Diagonal Laplace

(c) Full Laplace (d) HMC

Figure 3.3: Toy regression uncertainty. Black dots are data points, the black line shows the
underlying noiseless function. The red line shows the deterministic prediction of the trained
network, the blue line the mean output. Each shade of blue visualises one additional standard
deviation.

Table 3.2: Test accuracy of the feedforward network trained on MNIST

Method Deterministic MC Dropout FFG Diagonal Laplace KF Laplace

Accuracy 98.86% 98.85% 98.88% 98.85% 98.80%

train a network with two layers of 1024 hidden units and ReLU transfer functions to

classify MNIST digits. We use a learning rate of 10−2 and momentum of 0.9 for 250

epochs. We apply Dropout with p=0.5 after each inner layer, as our chief interest

is to compare against its uncertainty estimates. We further use L2-regularisation

with a factor of 10−2 and randomly binarise the images during training according
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Figure 3.4: Empirical cumulative distribution of predictive entropy on notMNIST obtained
from different methods for the forward pass on a network trained on MNIST. On OOD data,
higher predictive entropy (with a maximum of log10≈ 2.3 for a uniform distribution across
the 10 classes in MNIST) is desirable, so an ideal predictor would pass through the top right
corner and curves further up correspond to better performance.

to their pixel intensities and draw 1,000 such samples per datapoint for estimating

the curvature factors. We use this network to classify the images in the notMNIST

dataset1, which contains 28×28 grey-scale images of the letters ‘A’ to ‘J’ from

various computer fonts, i.e. not digits. An ideal classifier would make uniform

predictions over its classes.

We compare the uncertainty obtained by predicting the digit class of the notM-

NIST images using 1. a deterministic forward pass through the Dropout trained

network, 2. by sampling different Dropout masks and averaging the predictions, and

by sampling different weight matrices from 3. the matrix normal distribution obtained

from our Kronecker factored Laplace approximation as well as 4. the diagonal one.

As an additional baseline similar to [26, 100], we compare to a network with identical

architecture with a fully factorised Gaussian (FFG) approximate posterior on the

weights and a standard normal prior. We train the model on the variational lower

bound using the reparameterisation trick [167]. We use 100 samples for the stochas-

tic forward passes and optimise the hyperparameters of the Laplace approximations

w.r.t. the cross-entropy on the validation set of MNIST.

We measure the uncertainty of the different methods as the entropy of the

1From: http://yaroslavvb.blogspot.nl/2011/09/notmnist-dataset.html

http://yaroslavvb.blogspot.nl/2011/09/notmnist-dataset.html
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Figure 3.5: Impact of an untargeted adversarial attack with varying step size η on predictive
entropy (left) and classification accuracy (right) for different uncertainty estimation method
trained on MNIST.

predictive distribution, which has a minimal value of 0 when a single class is

predicted with certainty and a maximum of about 2.3 for uniform predictions. Fig. 3.4

shows the inverse empirical cumulative distribution of the entropy values obtained

from the four methods. Consistent with the results in [83], averaging the probabilities

of multiple passes through the network yields predictions with higher uncertainty than

a deterministic pass that approximates the geometric average [317]. However, there

still are some images that are predicted to be a digit with certainty. Our Kronecker

factored Laplace approximation makes hardly any predictions with absolute certainty

and assigns high uncertainty to most of the letters as desired. The diagonal Laplace

approximation required stronger regularisation towards predicting deterministically,

yet it performs similarly to Dropout. As shown in Tab. 3.2, however, the network

makes predictions on the test set of MNIST with similar accuracy to the deterministic

forward pass and MC Dropout when using our approximation. The variational

factorised Gaussian posterior has low uncertainty as expected.

3.2.5.3 Adversarial examples

To further test the robustness of our prediction method close to the data distribution,

we perform an adversarial attack on a neural network. As first demonstrated in [325],

neural networks are prone to being fooled by gradient-based changes to their inputs.

Li and Gal [205] suggest, and provide empirical support, that Bayesian models

may be more robust to such attacks, since they implicitly form an infinitely large
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Figure 3.6: Impact of a targeted adversarial attack with varying number of steps on predictive
entropy (left) and classification accuracy (right) for different uncertainty estimation method
trained on MNIST.

ensemble by integrating over the model parameters. For our experiments, we use the

fully connected net trained on MNIST from the previous section and compare the

sensitivity of the different prediction methods for two kinds of adversarial attacks.

First, we use the untargeted Fast Gradient Sign method xadv = x −

η sgn(∇x maxy log p(M)(y|x)) suggested in [97], which takes the gradient of the

class predicted with maximal probability by method M w.r.t. the input x and reduces

this probability with varying step size η . This step size is rescaled by the difference

between the maximal and minimal value per dimension in the dataset. It is to be

expected that this method generates examples away from the data manifold, as there

is no clear subset of the data that corresponds to e.g. "not ones". Also, note that

pixel values on grey-scale images increment by a value of 1/255, so outside of small

values of η the change to the data will correspond to perceptible modifications of

the data.

Fig. 3.5 shows the average predictive uncertainty and the accuracy on the

original class on the MNIST test set as the step size η increases. The Kronecker

factored Laplace approximation achieves significantly higher uncertainty than any

other prediction method as the images move away from the data. Both the diagonal

and the Kronecker factored Laplace maintain higher accuracy than MC Dropout on

their original predictions. Interestingly, the deterministic forward pass appears to

be most robust in terms of accuracy, however it has much smaller uncertainty on

the predictions it makes and will confidently predict a false class for most images,
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whereas the other methods are more uncertain.

Furthermore, we perform a targeted attack that attempts to force the network

to predict a specific class, in our case ‘0’ following [205]. Hence, for each method,

we exclude all data points in the test set that are already predicted as ‘0’. The

updates are of similar form to the untargeted attack, however they increase the

probability of the pre-specified class y rather than decreasing the current maximum

as x(t+1)
y = x(t)y +η sgn(∇x log p(M)(y|x(t)y )), where x(0)y = x.

We use a step size of η=10−2 for the targeted attack. The uncertainty and

accuracy on the original and target class are shown in Fig. 3.6. Here, the Kronecker

factored Laplace approximation has slightly smaller uncertainty at its peak in com-

parison to the other methods, however it appears to be much more robust. It only

mis-classifies over 50% of the images after about 20 steps, whereas for the other

methods this is the case after roughly 10 steps and reaches 100% accuracy on the

target class after almost 50 updates, whereas the other methods are fooled on all

images after about 25 steps.

In conjunction with the experiment on notMNIST, it appears that the Laplace

approximation achieves higher uncertainty than Dropout away from the data, as

in the untargeted attack. In the targeted attack it exhibits smaller uncertainty than

Dropout, yet it is more robust to having its prediction changed. The diagonal Laplace

approximation again performs similarly to Dropout.

In the following, we also show figures for the adversarial experiments in which

we calculate the curvature per datapoint and without data augmentation:

In order to study the impact of an accurate estimation of the Hessian correspond-

ing to the training process, Fig. 3.7 and Fig. 3.8 show how the Laplace approximation

with the curvature estimated from 1000 randomly sampled binary MNIST images

and the activation Hessian calculated with a minibatch size of 100 performs in

comparison to the curvature factor being calculated without any data augmentation

with a batch size of 100 or exactly. We note that without data augmentation we had

to use much stronger regularisation of the curvature factors, in particular we had

to add a non-negligible multiple of the identity to the factors, whereas with data
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Figure 3.7: Untargeted adversarial attack for Kronecker factored Laplace approximation
with the curvature calculated with and without data augmentation/approximating the activa-
tion Hessian.

Figure 3.8: Targeted adversarial attack for Kronecker factored Laplace approximation with
the curvature calculated with and without data augmentation/approximating the activation
Hessian.

augmentation it was only needed to ensure that the matrices are invertible. The

Kronecker factored Laplace approximation reaches particularly high uncertainty on

the untargeted adversarial attack and is most robust on the targeted attack when using

data augmentation, suggesting that it is particularly well suited for large datasets

and ones where some form of data augmentation can be applied. The difference

between approximating the activation Hessian over a minibatch and calculating it

exactly appears to be negligible.

3.2.5.4 Uncertainty on mis-classifications

To highlight the scalability of our method, we apply it to a state-of-the-art convo-

lutional network architecture. Recently, deep residual networks [114, 115] have

been the most successful ones among those. As demonstrated in [103], Kronecker

factored curvature methods are applicable to convolutional layers by interpreting
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them as matrix-matrix multiplications.

We compare our uncertainty estimates on wide residual networks [369], a

recent variation that achieved competitive performance on CIFAR100 [178] while,

in contrast to most other residual architectures, including Dropout at specific points.

While this does not correspond to using Dropout in the Bayesian sense [82], it

allows us to at least compare our method to the uncertainty estimates obtained from

Dropout.

We note that it is straightforward to incorporate batch normalisation [149]

into the curvature backpropagation algorithms, so we apply a standard Laplace

approximation to its parameters as well. We are not aware of any interpretation of

Dropout as performing Bayesian inference on the parameters of batch normalisation.

Our wide residual network has n=3 block repetitions and a width factor of

k=8 on CIFAR100 with and without Dropout using hyperparameters taken from

[369]: the network parameters are trained on a cross-entropy loss using Nesterov

momentum with an initial learning rate of 0.1 and momentum of 0.9 for 200 epochs

with a minibatch size of 128. We decay the learning rate every 50 epochs by a factor

of 0.2, which is slightly different to the schedule used in [369] (they decay after 60,

120 and 160 epochs). As the original authors, we use L2-regularisation with a factor

of 5×10−4.

We make one small modification to the architecture: instead of downsampling

with 1×1 convolutions with stride 2, we use 2×2 convolutions. This is due to

Theano not supporting the transformation of images into the patches extracted by a

convolution for 1×1 convolutions with stride greater than 1, which we require for

our curvature backpropagation through convolutions.

We apply a standard Laplace approximation to the batch normalisation pa-

rameters — a Kronecker factorisation is not needed, since the parameters are one-

dimensional. When calculating the curvature factors, we use the moving averages

for the per-layer means and standard deviations obtained after training, in order to

maintain independence between the data points in a minibatch.

Again, the accuracy of the prediction methods is comparable, see Tab. 3.3.
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Table 3.3: Accuracy on the final 5,000 CIFAR100 test images for a wide residual network
trained with and without Dropout.

Accuracy
Prediction Method Dropout Deterministic

Deterministic 79.12% 79.18%
MC Dropout 79.20% -
KF Laplace 79.10% 79.36%

(a) Dropout Wide Resnet (b) Deterministic Wide Resnet

Figure 3.9: Inverse ecdf of the predictive entropy from Wide Residual Networks trained with
and without Dropout on CIFAR100. For mis-classifications, curves on top corresponding to
higher uncertainty are desirable, and curves on the bottom for correct classifications.

For calculating the curvature factors, we draw 5,000 samples per image using the

same data augmentation as during training, effectively increasing the dataset size

to 2.5×108. The diagonal approximation had to be regularised to the extent of

becoming deterministic, so we omit it from the results.

In Fig. 3.9 we compare the distribution of the predictive uncertainty on the test

set.2 We distinguish between the uncertainty on correct and incorrect classifications,

as the mistakes of a system used in practice may be less severe if the network can at

least indicate that it is uncertain. Thus, high uncertainty on mis-classifications and

low uncertainty on correct ones would be desirable, such that a system could return

control to a human expert when it can not make a confident decision. In general,

the network tends to be more uncertain on its mis-classifications than its correct

ones regardless of whether it was trained with or without Dropout and of the method

used for prediction. Both Dropout and the Laplace approximation similarly increase

the uncertainty in the predictions, however this is irrespective of the correctness of

the classification. Yet, our experiments show that the Kronecker factored Laplace

2We use the first 5,000 images as a validation set to tune the hyperparameters of our Laplace
approximation and the final 5,000 ones for evaluating the predictive uncertainty on all methods.
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approximation can be scaled to modern convolutional networks and maintain good

classification accuracy while having similar uncertainty about the predictions as

Dropout.

We had to use much stronger regularisation for the Laplace approximation on the

wide residual network, possibly because the block-diagonal approximation becomes

more inaccurate on deep networks, possibly because the number of parameters is

much higher relative to the number of data. It would be interesting to see how

the Laplace approximations behaves on a much larger dataset like ImageNet for

similarly sized networks, where we have a better ratio of data to parameters and

curvature directions. However, even on a relatively small dataset like CIFAR we

did not have to regularise the Laplace approximation to the degree of the posterior

becoming deterministic. After completion of this work, [9] pointed out that applying

the Laplace approximation in networks with normalisation layers, such as ResNets,

needs to account for the weight scaling invariance induced by these layers, which

may provide an explanation for these results.

3.2.6 Related work

Most recent attempts to approximating the posterior of a neural network use fully-

factorised Gaussian distributions within a variational [130, 100, 26, 168, 164, 260,

361, 324] or moment propagation-based framework [124, 90]. These all assume

independence between the individual weights which, particularly when optimising

the KL divergence, often lets the model underestimate the uncertainty about the

weights.

This work is a scalable approximation of [221]. Since the per-layer Hessian of a

neural network is infeasible to compute, we suggest a factorisation of the covariance

into a Kronecker product, leading to a more efficient matrix normal distribution.

The Kronecker factor Laplace approximation had concurrently been explored in

[99] within the context of a Bayesian interpretation of meta-learning [303, 245, 329,

70] The posterior that we obtain is reminiscent of [214] and [320], who optimise

the parameters of a matrix normal distribution as their weights, which requires

a modification of the training procedure while the Laplace approximation can be
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applied post-hoc to a trained network. Concurrently to this work, another variational

approach with a matrix normal per layer has been proposed based on a noisy variant

of KFAC [373, 15]. Other approaches that model posterior correlations include

[242, 151], which have a low-rank covariance structure across all parameters, and

[334], which has a low-rank structure for the posterior of each layer independently.

Following the publication of the present method, various other works have

used the Laplace approximation for approximate inference in neural networks Most

relevant, [198] proposes a more accurate approximation based on the improved

Fisher approximation of [86], which uses a full rather than a Kronecker factored

eigenbasis, leading to a multivariate rather than matrix normal distribution per layer.

As the eigenbasis of the covariance of the multivariate normals is Kronecker factored,

efficient sampling is still possible. The method further includes a diagonal correction

term to match the diagonal of the full Fisher, which leads to a need for a low-rank

approximation of the Kronecker factors. Other corrections to improve the accuracy

of the Kronecker factored approximation have been proposed in [340, 175], but only

been evaluated in the context of second order optimisation.

Immer et al. [148] report improved predictive performance based on the lin-

earisation of the predictive posterior by MacKay [221] .which can be implemented

efficiently with the flexible automatic differentiation toolbox of JAX [32]. The

linearised Laplace approximation has also been investigated in [74] for small net-

works where no approximations of the curvature are needed. Finally, Immer et al.

[147] leverage the Kronecker factored Laplace approximation to tune neural network

hyperparameters based on the approximate marginal likelihood.

Kristiadi et al. [176] report that a last-layer Laplace approximation is sufficient

to alleviate the overconfidence issues of neural networks with ReLU non-linearities

and further demonstrate its efficacy in a closed-form approximation of the predictive

distribution for classification in [131]. Similarly, Liu et al. [208] use a Laplace

approximation on the last-layer weights as part of a parametric GP approximation

with random features [275, 276]. Eschenhagen et al. [63] use the last-layer approxi-

mation on all networks in an ensemble and find this to further improve the predictive
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uncertainty. Ash et al. [11] also rely on a last-layer approximation of the Fisher, but

for uncertainty quantification in active learning. Further, a low-rank Laplace approx-

imation (referred to with its frequentist name as ‘Delta method’ in the corresponding

work) has been proposed by Nilsen et al. [256]. Daxberger et al. [53] approximate

the posterior over a subset of the parameters with a Laplace approximation, leaving

the others deterministic. Finally, Kristiadi et al. [177] add learnable ‘uncertainty

units’ to a Laplace-approximated BNN and explicitly tune these to predict with high

uncertainty on OOD and high confidence on in-distribution data.

Another method that constructs a multivariate Gaussian distribution with low-

rank covariance structure over neural network parameters is SWAG [225], however

without explicitly approximating the posterior. Rather than setting the mean to the

parameters at the end of the optimisation process, it continues to make gradient

updates after convergence and averages the parameters. This allows for the mean

of the Gaussian to be placed away from the bottom of an asymmetric loss surface,

which has been linked to empirically generalising better for deterministic networks

[150]. The covariance is then the subspace spanned by parameter values collected

at regular intervals. A connection to Bayesian inference could be made through

[227], which argues that under certain assumptions and with a learning rate and batch

size that makes the sampling noise match the covariance of the mode, SGD can be

interpreted as performing variational inference. Experiments in [225] demonstrate,

however, that these assumptions are generally not met, so that SWAG might best be

interpreted as a pragmatic Laplace approximation. The paper reports that SWAG

performs better than the Kronecker factored Laplace approximation for a range

of large scale network architectures. However, it is not clear if this performance

difference arises from the different location of the mean, the structure of the posterior

covariance, the way it is estimated or a combination of (a subset of) these aspects.

3.3 Continual learning

We now discuss discuss how to leverage the previously introduced Laplace approxi-

mation to learn from a stream of datasets online. Creating an agent that performs



3.3. Continual learning 76

well across multiple tasks and continuously incorporates new knowledge has been a

longstanding goal of research on artificial intelligence. When training on a sequence

of tasks, however, the performance of many machine learning algorithms, including

neural networks, decreases on older tasks when learning new ones. This phenomenon

has been termed ‘catastrophic forgetting’ [77, 232, 283] and has recently received

attention in the context of deep learning [95, 170]. Catastrophic forgetting cannot

be overcome by simply initialising the parameters for a new task with optimal ones

from the old task and hoping that stochastic gradient descent will stay sufficiently

close to the original values to maintain good performance on previous datasets [95].

Bayesian learning provides an elegant solution to this problem. It combines the

current data with prior information to find an optimal trade-off in our belief about

the parameters. In the sequential setting, such information is readily available: the

posterior over the parameters given all previous datasets. It follows from Bayes’

rule that we can use the posterior over the parameters after training on one task as

our prior for the next one. As the posterior over the weights of a neural network

is typically intractable, we need to approximate it. This type of Bayesian online

learning has been studied extensively in the literature [259, 87, 138].

In this section, we combine Bayesian online learning [259] with the Kronecker

factored Laplace approximation [289] to update a quadratic penalty for every new

task. The block-diagonal Kronecker factored approximation of the Hessian [229, 29]

allows for an expressive scalable posterior that takes interactions between weights

within the same layer into account. In our experiments we show that this principled

approximation of the posterior leads to substantial gains in performance over simpler

diagonal methods, in particular for long sequences of tasks.

3.3.1 Bayesian online learning

In continual learning, we are interested in finding parameters θθθ or a distribution over

the for a single neural network to perform well across multiple tasks D1, . . . ,DT .

However, the datasets arrive sequentially and we can only train on one of them at a

time.

Here, we first discuss how Bayesian online learning solves this problem on a



3.3. Continual learning 77

high-level and then discuss the online Laplace approximation as an instantiation.

We continue to incorporate the Kronecker factored approximation of the Hessian of

the likelihood into the updating procedure and detail how to efficiently calculate the

resulting quadratic penalty and how the approximate posterior can be regularised to

further improve performance. Finally, we discuss some ad-hoc variants of the online

Laplace approximation that relate to existing methods in the literature.

Bayesian online learning [259], or Assumed Density Filtering [231], is a frame-

work for updating an approximate posterior when data arrive sequentially. Using

Bayes’ rule we would like to simply incorporate the most recent dataset Dt+1 into

the posterior as

p(θθθ |D1:t+1) =
p(Dt+1 |θθθ) p(θθθ |D1:t)∫

dθθθ
′p
(
Dt+1

∣∣θθθ ′) p
(
θθθ
′ ∣∣D1:t

) , (3.48)

where we use the posterior p(θθθ |D1:t) from the previously observed tasks as the

prior over the parameters for the most recent task. As the posterior given the previous

datasets is typically intractable, Bayesian online learning formulates a parametric

approximate posterior q with parameters φφφ t , which it iteratively updates in two steps:

Update step In the update step, the approximate posterior q with parameters φφφ t from

the previous task is used as a prior to find the new posterior given the most recent

data

p(θθθ |Dt+1,φφφ t) =
p(Dt+1 |θθθ)q(θθθ |φφφ t)∫

dθθθ
′p
(
Dt+1

∣∣θθθ ′)q
(
θθθ
′ ∣∣φφφ t

) . (3.49)

Projection step The projection step finds the distribution within the parametric

family of the approximation that most closely resembles this posterior, i.e. sets φφφ t+1

such that

q
(
θθθ
∣∣φφφ t+1

)
≈ p(θθθ |Dt+1,φφφ t) . (3.50)

Opper and Winther [259] suggest minimising the KL-divergence between the

approximate and the true posterior, however this is mostly appropriate for models

where the update-step posterior and a solution to the KL-divergence are available in

closed form. In the following, we therefore propose using a Laplace approximation

to make Bayesian online learning tractable for neural networks.
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3.3.2 The online Laplace approximation

Neural networks have found wide-spread success and adoption by performing simple

MAP inference, i.e. finding a mode of the posterior

θθθ
∗ = argmax

θθθ

log p(θθθ |D) = argmax
θθθ

log p(D |θθθ)+ log p(θθθ), (3.51)

where p(D |θθθ) is the likelihood of the data and p(θθθ) the prior. Most commonly used

loss functions and regularisers fit into this framework, e.g. using a categorical cross-

entropy with L2-regularisation corresponds to modeling the data with a categorical

distribution and placing a zero-mean Gaussian prior on the network parameters. A

local mode of this objective function can easily be found using standard gradient-

based optimisers.

Around a mode, the posterior can be locally approximated using a second-order

Taylor expansion, resulting in a Normal distribution with the MAP parameters as the

mean and the Hessian of the negative log posterior around them as the precision.

3.3.2.1 Quadratic regulariser & curvature update

We therefore proceed in two iterative steps similar to Bayesian online learning, using

a Gaussian approximate posterior for q, such that φφφ t = {θθθ
∗
t ,ΛΛΛt} consists of a mean

θθθ
∗ and a precision matrix ΛΛΛ.

Update step As the posterior of a neural network is intractable for all but the sim-

plest architectures, we will work with the unnormalised posterior. The normalisation

constant is not needed for finding a mode or calculating the Hessian. The Gaussian

approximate posterior results in a quadratic penalty term for the next task, encour-

aging the new parameters to stay close to the mean of the previous approximate

posterior

− log p(θθθ |Dt+1,φφφ t)'− log p(Dt+1 |θθθ)− logq(θθθ |φφφ t) (3.52)

'− log p(Dt+1 |θθθ)+
1
2
(θθθ −θθθ

∗
t )
>

ΛΛΛt(θθθ −θθθ
∗
t ) =: Lt(θθθ).
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Projection step In the projection step we approximate the posterior with a new

multivariate Gaussian.

We first set the mean of the approximation to a maximum of the new posterior

θθθ
∗
t+1 = argmax

θθθ

log p(Dt+1 |θθθ)+ logq(θθθ |φφφ t) (3.53)

= argmax
θθθ

log p(Dt+1 |θθθ)−
1
2
(θθθ −θθθ

∗
t )
>

ΛΛΛt(θθθ −θθθ
∗
t ) (3.54)

and then perform a quadratic approximation around it, which requires calcu-

lating the Hessian of the negative objective. This leads to a recursive update

to the precision with the Hessian of the most recent log likelihood, as the

Hessian of the negative log approximate posterior is its precision

ΛΛΛt+1 = H̄HHt+1(θθθ
∗
t+1)+ΛΛΛt , (3.55)

where H̄HHt+1(θθθ
∗
t+1) = −

∂ 2 log p(Dt+1 |θθθ)
∂θθθ

2

∣∣∣
θθθ=θθθ

∗
t+1

is the Hessian of the negative

log likelihood of dataset t +1 around the mode after training on dataset t +1.

The precision of a Gaussian is required to be positive semi-definite, which is

the case for the Hessian at a mode. In order to numerically guarantee this in practice,

we use the Fisher Information as an approximation that is positive semi-definite by

construction.

The recursion is initialised with the Hessian of the log prior, which is typ-

ically constant. For a zero-mean isotropic Gaussian prior, corresponding to an

L2-regulariser, it is simply the identity matrix times the prior precision.3

A desirable property of the Laplace approximation is that the approximate

posterior becomes peaked around its current mode as we observe more data. This

becomes particularly clear if we think of the precision matrix as the product of

the number of data points and the average precision. By becoming increasingly

peaked, the approximate posterior will naturally allow the parameters to change

3Huszár [146] discussed a similar recursive Laplace approximation for online learning, however
with limited experimental results and in the context of using a diagonal approximation to the Hessian.
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less for later tasks. At the same time, even though the Laplace method is a local

approximation, we would expect it to leave sufficient flexibility for the parameters to

adapt to new tasks, as the Hessian of neural networks has been observed to be flat in

most directions [298].

3.3.2.2 Regularising the approximate posterior

Kirkpatrick et al. [170], who develop a similar method inspired by the Laplace

approximation (see Section 3.3.4), termed Elastic Weight Consolidation (EWC),

suggest using a multiplier λ on the quadratic penalty in Eq. 3.54. This hyperparam-

eter provides a way of trading off retaining performance on previous tasks against

having sufficient flexibility for learning a new one. As modifying the objective would

propagate into the recursion for the precision matrix, we instead place the multiplier

on the Hessian of each log likelihood and update the precision as

ΛΛΛt+1 = λ H̄HHt+1(θθθ
∗
t+1)+ΛΛΛt . (3.56)

The multiplier affects the width of the approximate posterior and thus the

location of the next MAP estimate. As it acts directly on the parameter of a probability

distribution, its optimal value can inform us about the quality of our approximation:

if it strongly deviates from its natural value of 1, our approximation is a poor one

and over- or underestimates the uncertainty about the parameters.

A small λ resulting in high uncertainty shifts the mode towards that of the

likelihood, i.e. enables the network to learn the new task well even if our posterior

approximation underestimates the uncertainty. Vice versa, increasing λ moves the

joint mode towards the prior mode, improving how well the previous parameters are

remembered. The optimal choice depends on the true posterior and how closely it is

approximated.

In principle, it would be possible to use a different value λt for every dataset.

In our experiments, we keep the value of λ the same across all tasks as the family

of posterior approximation is the same throughout training. Furthermore, using a

separate hyperparameter for each task would let the number of hyperparameters
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Figure 3.10: Contours of a Gaussian likelihood (dashed blue) and prior (shades of purple)
for different values of λ . Values smaller than 1 shift the joint maximum θ ∗, marked by
a ‘×’,towards that of the likelihood, i.e. the new task, for values greater than 1 it moves
towards the prior, i.e. previous tasks.

grow linearly in the number of tasks, which would make tuning them costly.

3.3.3 Kronecker factored approximation

As in the previous section, working with the full Hessian is computationally in-

tractable and we will be using the Kronecker factored approximation that we devel-

oped. Hence we approximate the Hessian for each task as block-diagonal

H̄HHt(θθθ
∗
t )≈ diag(H̄HH(1)

t , . . . , H̄HH(L)
t ) (3.57)

and each block, now dropping the layer index l (which in contrast to other section

we had placed as a superscript here) and the dependence on the task parameters to

simplify the notation, as Kronecker factored

H̄HHt = Nt E [HHHt ]≈
√

Nt E [Qt ]⊗
√

Nt E [Ht ] =: Q̄t⊗H̄t , (3.58)

where Nt denotes the number of data in task t.
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3.3.3.1 Updating the Hessian blocks

Plugging the Kronecker factored approximation into the update Eq. 3.55, each block

of the precision matrix is

ΛΛΛt+1 ≈ Q̄t+1⊗H̄t+1 +ΛΛΛt =
t+1

∑
i=0

Q̄i⊗H̄i, (3.59)

i.e. a sum of Kronecker products and we define ΛΛΛ0 as the Hessian of the negative

prior on the weights, which for a Gaussian prior vec(WWW ) ∼ N(000,τ−1III)⇔WWW ∼

MN(000,τ−
1
2 III,τ−

1
2 III) is Kronecker factored.

As Kronecker products do not add up pairwise, one option, which we implement

in this work, is to calculate one penalty term per previously seen task Section 3.3.3.2,

as commonly done in the literature (Section 3.3.4). If a single term is preferable, we

can further approximate each block of the precision at time step t as

ΛΛΛt ≈ Q̃t⊗H̃t , (3.60)

with

Q̃t :=
√

N
t

t

∑
i=0

E [Qi] and H̃t :=
√

N
t

t

∑
i=0

E [Hi] . (3.61)

Here, N = ∑
t
i=1 Nt is the total number of data points observed across all tasks.

Hence we would maintain an average of each factor across time and then scale it to

the correct magnitude in calculating the penalty.

3.3.3.2 Efficiently computation of the quadratic penalty

Due to the block-diagonal approximation, the quadratic penalty decomposes across

layers as

Lt(θ) = δδδ
>

ΛΛΛtδδδ ≈
L

∑
l=1

δδδ
>
l ΛΛΛ

(l)
t δδδ l, (3.62)

where we define δδδ = θθθ −θθθ
∗
t and δδδ l the corresponding part of layer l.

Again dropping all layer indices, with the Kronecker factored approximation
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the penalty for each layer becomes

Lt(θθθ)≈ δδδ
>
(

t

∑
i=0

Q̄i⊗H̄i

)
δδδ =

t

∑
i=0

δδδ
> (Q̄i⊗H̄i

)
δδδ , (3.63)

or similarly with the single Kronecker product approximation

Lt(θθθ)≈ δδδ
> (Q̃t⊗H̃t

)
δδδ . (3.64)

In either case, we need to compute a quadratic form over a Kronecker product,

which can be done efficiently as

δδδ
> (Q⊗H)δδδ = δδδ

> vec(H∆∆∆Q), (3.65)

where we define vec(∆) := vec(WWW −WWW ∗t ) = δ . We can express this more

compactly with the Cholesky decompositions of Q and H as

δδδ
> (Q⊗H)δδδ = δδδ

>
(

LLLQLLL>Q⊗LLLHLLL>H
)

δδδ (3.66)

= δδδ
> (LLLQ⊗LLLH)

(
LLL>Q⊗LLL>H

)
δδδ (3.67)

= δδδ
> (LLLQ⊗LLLH)(LLLQ⊗LLLH)> δδδ (3.68)

= vec
(

LLLH∆∆∆LLL>Q
)>

vec
(

LLLH∆∆∆LLL>Q
)

(3.69)

=: δ̃δδ
>

δ̃δδ = ||δ̃δδ ||22 (3.70)

3.3.3.3 Computational complexity

Our method requires calculating the expectations of the two Kronecker factors from

Eq. 3.11 over the data of the most recent task after training on it as well as calculating

the quadratic penalty in Eq. 3.54 using the identity in Eq. 3.65 for every parameter

update.

Calculating the Kronecker factors can efficiently be mini-batched and requires

the same calculations as a forward and backward pass through the network plus two

additional matrix-matrix products. The overall cost is thus effectively equivalent to



3.3. Continual learning 84

that of an extra training epoch. See [229] for more details.

The computational complexity of calculating the quadratic penalty is dominated

by the two matrix-matrix products in Eq. 3.65. Assuming that all L layers of the

network as well as the inputs and outputs are of dimensionality d, all weight matrices

as well as the Kronecker factors will be of dimensionality d×d. In general, the size

of the first factor is square in the dimensionality of the input to a layer and that of

the second factor square in the number of units, i.e. din×din and dout ×dout for a

dout×din weight matrix. The complexity of calculating the penalty for all layers is

then O(Ld3).

Finally, we note that sums of Kronecker products do not add up pairwise, i.e.

AAA⊗BBB+CCC⊗DDD 6= (AAA+CCC)⊗ (BBB+DDD), so the corresponding Kronecker factors of

different tasks do not simply add. In our implementation, we keep an approximate

Hessian for every task in memory, similar to how EWC [170] keeps the MAP

parameters for each task. If constant scaling in the number of tasks is required, one

can make a further approximation by adding up the Kronecker factors separately.

This would be comparable to the independence assumption between the factors

within the same task.

3.3.4 Ad-hoc approximations of the penalty

Besides maintaining a principled approximation to the posterior, various modifica-

tions of a quadratic-penalty based framework as presented above are imaginable. We

consider these as baselines for our experiments. Below we discuss one option based

on EWC [170], which maintains a penalty term towards the parameters for each task,

and one semi-online option which updates the Hessian to that that around the most

recent parameters for all datasets.

3.3.4.1 Per-task Laplace

Following the EWC objective, we could set up an independent regulariser for each

previous task, where we carry forward the parameters after training on each dataset

and add a quadratic penalty term towards those parameter values under the cor-

responding Hessian. With no specific assumption as to the approximation of the
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Hessian (EWC uses a diagonal one), the penalty term can be denoted in our notation

as
t

∑
i=1

(θθθ −θθθ
∗
i )
>H̄HH i(θθθ

∗
i )(θθθ −θθθ

∗
i ). (3.71)

This is reminiscent of approximating a posterior independently per-task using

only the likelihood Hessian. Hence we label this approach ‘per-task Laplace’ in the

following. As discussed in [146], this may over-regularise towards tasks observed

early on, as the parameter values of a task are implicitly contained in the parameters

for the subsequent tasks due to the quadratic regulariser.

3.3.4.2 Approximate Laplace

Further, we will compare to fitting the true posterior with a new Gaussian at every

task for which we compute the Hessian of all tasks around the most recent MAP

estimate:

ΛΛΛt+1 = HHH prior +
t+1

∑
i=1

HHH i(θθθ
∗
t+1) (3.72)

This procedure differs from the online Laplace approximation only in evaluating

all Hessians at the most recent MAP parameters instead of the respective task’s ones.

Technically, this is not a valid Laplace approximation, as we only optimise an

approximation to the posterior. Hence the optimal parameters for the approximate

objective will not exactly correspond to a mode of the true posterior. However, as

we will use a positive semi-definite approximation to the Hessian, this will only

introduce a small additional approximation error.

Calculating the Hessian across all datasets requires relaxing the sequential

learning setting to allowing access to previous data ‘offline’, i.e. between tasks. We

use this baseline to check if there is any loss of information in using estimates of the

curvature at previous parameter values.

3.3.5 Experiments

In our experiments we compare our online Laplace approximation to the approximate

Laplace approximation of Eq. 3.72 as well as EWC [170] and Synaptic Intelligence

(SI) [371], both of which also add quadratic regularisers to the objective. Further, we
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Figure 3.11: Mean test accuracy on a se-
quence of permuted MNIST datasets. We
categorise SI as a diagonal method, as it
does not account for parameter interactions.
The dotted black line shows the performance
of a single network trained on all observed
data at each task.

(a) Kronecker factored

(b) Diagonal

Figure 3.12: Effect of λ for different curva-
ture approximations for permuted MNIST.
Each plot shows the mean, minimum and
maximum across the tasks observed so far,
as well as the accuracy on the first and most
recent task.

investigate the effect of using a block-diagonal Kronecker factored approximation

to the curvature over a diagonal one. We also run EWC with a Kronecker factored

approximation, even though the original method is based on a diagonal one.

3.3.5.1 Permuted MNIST

As a first experiment, we test on a sequence of permutations of the MNIST dataset

[194]. Each instantiation consists of the 28×28 grey-scale images and labels from

the original dataset with a fixed random permutation of the pixels. This makes the

individual data distributions mostly independent of each other, testing the ability of

each method to fully utilise the model’s capacity.

We train a feed-forward network with two hidden layers of 100 units and ReLU

non-linearities on a sequence of 50 versions of permuted MNIST. Every one of these

datasets is equally difficult for a fully connected network due to its permutation

invariance to the input. We stress that our network is smaller than in previous works

as the limited capacity of the network makes the task more challenging. Further, we

train on a longer sequence of datasets.

Fig. 3.11 shows the mean test accuracy as new datasets are observed for the

optimal hyperparameters of each method. We refer to the online Laplace approxima-

tion as ‘Online Laplace’, to the Laplace approximation around an approximate mode
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as ‘Approximate Laplace’ and to adding a quadratic penalty for every set of MAP

parameters as in [170] as ‘Per-task Laplace’. The per-task Laplace method with a

diagonal approximation to the Hessian corresponds to EWC.

We find our online Laplace approximation to maintain higher test accuracy

throughout training than placing a quadratic penalty around the MAP parameters of

every task, in particular when using a simple diagonal approximation to the Hessian.

However, the main difference between the methods lies in using a Kronecker factored

approximation of the curvature over a diagonal one.4 Using this approximation,

we achieve over 90% average test accuracy across 50 tasks, almost matching the

performance of a network trained jointly on all observed data. Recalculating the

curvature for each task instead of retaining previous estimates does not significantly

affect performance.

Beyond simple average performance, we investigate different values of the hy-

perparameter λ on the permuted MNIST sequence of datasets for our online Laplace

approximation. The goal is to visualise how it affects the trade-off between remem-

bering previous tasks and being able to learn new ones for the two approximations of

the curvature that we consider. Fig. 3.12 shows various statistics of the accuracy on

the test set for the smallest and largest value of the hyperparameter on the quadratic

penalty that we tested, as well as the one that optimises the validation error.

We are particularly interested in the performance on the first dataset and the most

recent one, as a measure for memory and flexibility respectively. For all displayed

values of the hyperparameter, the Kronecker factored approximation (Fig. 3.12a)

has higher test accuracy than the diagonal approximation (Fig. 3.12b) on both the

most recent and the first task, as well as on average. For the natural choice of

λ = 1 (leftmost subfigure respectively), the network’s performance decays for the

first task for both curvature approximations, yet it is able to learn the most recent

task well. The performance on the first task decays more slowly, however, for the

more expressive Kronecker factored approximation of the curvature. Increasing the

hyperparameter, corresponding to making the prior more narrow as discussed in

4In earlier work, e.g. [170, 371], diagonal approximations were reported to be effective for a
smaller number of tasks and with substantially larger networks than in our experiments.
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Section 3.3.2.2, leads to the network remembering the first task much better at the

cost of not being able to achieve optimal performance on the most recently added

task. Using λ = 3 (central subfigure), the value that achieves optimal validation

error in our experiments, the Kronecker factored approximation leads to the network

performing similarly on the most recent and first tasks. This coincides with optimal

average test accuracy. We are not able to find such an ideal trade-off for the diagonal

Hessian approximation, resulting in worse average performance and suggesting that

the posterior cannot be matched well without accounting for interactions between

the weights. Using a large value of λ = 100 (rightmost subfigure) reverts the order

of performance between the most recent and the first task for both approximations:

while for small λ the first task is ‘forgotten’, the network’s performance now stays

at a high level — for the Kronecker factored approximation it remembers it perfectly

— which comes at the cost of being unable to learn new tasks well.

We conclude from our results that the online Laplace approximation overes-

timates the uncertainty in the approximate posterior about the parameters for the

permuted MNIST task, in particular with a diagonal approximation to the Hessian.

Overestimating the uncertainty leads to a need for regularisation in the form of

reducing the width of the approximate posterior, as the value that optimises the vali-

dation error is λ = 3. Only when regularising too strongly the approximate posterior

underestimates the uncertainty about the weights, leading to reduced performance on

new tasks for large values of λ . Using a better approximation to the posterior leads

to a drastic increase in performance and a reduced need for regularisation in the sub-

sequent experiments. We note that some regularisation is still necessary, suggesting

that even the Kronecker factored approximation overestimates the variance in the

posterior, and a better approximation could lead to further improvements. However,

it is also possible that the Laplace approximation as such requires a large amount of

data to estimate the interaction between the parameters sufficiently well; hence it

might be best suited for settings where plenty of data are available.
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Figure 3.13: Disjoint MNIST test accuracy for the Laplace approximation (hyperparameter:
λ ) and SI (hyperparameter: c). ‘Kronecker factored’ and ‘Diagonal’ refer to the respective
curvature approximation for the Laplace method.

3.3.5.2 Disjoint MNIST

We further experiment with the disjoint MNIST task, which splits the MNIST dataset

into one part containing the digits ‘0’ to ‘4’, and a second part containing ‘5’ to ‘9’

and training a ten-way classifier on each set separately. Previous work [199] has

found this problem to be challenging for EWC, as during the first half of training

the network is encouraged to set the bias terms for the second set of labels to highly

negative values. This setup makes it difficult to balance out the biases for the two

sets of classes after the first task without overcorrecting and setting the biases for

the first set of classes to highly negative values. Lee et al. [199] report just over 50%

test accuracy for EWC, which corresponds to either completely forgetting the first

task or being unable to learn the second one, as each task individually can be solved

with around 99% accuracy.

We use an identical network architecture to the previous section and found

stronger regularisation of the approximate posterior to be necessary. For

the Laplace methods, we tested values of λ ∈ {1,3,10, . . . ,3×105,106}, and

c ∈ {0.1,0.3,1, . . . ,3×104,105} for SI. We train using Nesterov momentum with a

learning rate of 0.1 and momentum of 0.9 and decay the learning rate by a factor

of 10 every 1000 parameter updates using a batch size of 250. We decay the initial
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learning rate for the second task depending on the hyperparameter to prevent the

objective from diverging. We test various decay factors for each hyperparameter, but

as a rule of thumb found λ

10 to perform well for the Kronecker factored, and λ

1000 for

the diagonal approximation. The results are averaged across ten independent runs.

Fig. 3.13 shows the test accuracy for various hyperparameter values for a

Kronecker factored and a diagonal approximation of the curvature as well as SI. As

there are only two datasets, the three Laplace-based methods are identical, therefore

we focus on the impact of the curvature approximation. Approximating the Hessian

with a diagonal corresponds to EWC. While we do not match the performance of the

method developed in [199], we find the Laplace approximation to work significantly

better than reported by the authors. The Kronecker factored approximation gives a

small improvement over the diagonal one and requires weaker regularisation, which

further suggests that it better fits the true posterior. It also outperforms SI.

3.3.5.3 Vision datasets

As a final experiment, we test our method on a suite of related vision datasets.

Specifically, we train and test on MNIST [194], notMNIST5, Fashion MNIST [363],

SVHN [253] and CIFAR10 [178] in this order. All five datasets contain around

50,000 training images from 10 different classes. MNIST contains hand-written

digits from ‘0’ to ‘9’, notMNIST the letters ‘A’ to ‘J’ in different computer fonts,

Fashion MNIST different categories of clothing, SVHN the digits ‘0’ to ‘9’ on street

signs and CIFAR10 ten different categories of natural images. We zero-pad the

images of the MNIST-like datasets to be of size 32×32 and replicate their intensity

values over three channels, such that all images have the same format.

We train a LeNet-like architecture [194] with two convolutional layers with

5×5 convolutions with 20 and 50 channels respectively and a fully connected hidden

layer with 500 units. We use tanh non-linearities and perform a 2×2 max-pooling

operation after each convolutional layer with stride 2. An extension of the Kronecker

factored curvature approximations to convolutional neural networks is presented

5Originally published at www.yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.
html and downloaded from www.github.com/davidflanagan/notMNIST-to-MNIST

www.yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
www.yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
www.github.com/davidflanagan/notMNIST-to-MNIST
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(a) Online Laplace

(b) Approximate Laplace

(c) Per-task Laplace

Figure 3.14: Test accuracy of a convolutional network on a sequence of vision datasets.
We train on the datasets separately in the order displayed from top to bottom and show the
network’s accuracy on each dataset once training on it has started. The dotted black line
indicates the performance of a network with the same architecture trained separately on the
task. The diagonal and Kronecker factored approximation to the Hessian use the Laplace
updates as indicated below the corresponding subfigure.

in [103]. As the meaning of the classes in each dataset is different, we keep the

weights of the final layer separate for each task. We optimise the networks as in the

permuted MNIST experiment and compare to five baseline networks with the same

architecture trained on each task separately.

Overall, the online Laplace approximation in conjunction with a Kronecker
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factored approximation of the curvature achieves the highest test accuracy across all

five tasks, see Fig. 3.14 and Appendix D.1 for the numerical results. The difference

between the three Laplace-based methods is small in comparison to the improvement

stemming from the better approximation to the Hessian.

Using a diagonal Hessian approximation for the Laplace approximation, the

network mostly remembers the first three tasks, but has difficulties learning the fifth

one. SI, in contrast, shows decaying performance on the initial tasks, but learns the

fifth task almost as well as our method with a Kronecker factored approximation of

the Hessian. However, using the Kronecker factored approximation, the network

achieves good performance relative to the individual networks across all five tasks. In

particular, it remembers the easier early tasks almost perfectly while being sufficiently

flexible to learn the more difficult later tasks better than the diagonal methods, which

suffer from forgetting.

3.3.5.4 Optimisation details

For the permuted MNIST experiment, we found the performance of the methods that

we compared to mildly depend on the choice of optimiser. Therefore, we optimise

all techniques with Adam [166] for 20 epochs per dataset and a learning rate of 10−3

as in [371], SGD with momentum [273] with an initial learning rate of 10−2 and

0.95 momentum, and Nesterov momentum [252] with an initial learning rate of 0.1,

which we divide by 10 every 5 epochs, and 0.9 momentum. For the momentum

based methods, we train for at least 10 epochs and early-stop once the validation

error does not improve for 5 epochs. Furthermore, we decay the initial learning rate

with a factor of 1
1+kt for the momentum-based optimisers, where t is the index of the

task and k a decay constant. We set k using a coarse grid search for each value of the

hyperparameter λ in order to prevent the objective from diverging towards the end of

training, in particular with the Kronecker factored curvature approximation. For the

Laplace approximation based methods, we consider λ ∈ {1,3,10,30,100}; for SI

we try c ∈ {0.01,0.03,0.1,0.3,1}. We ultimately pick the combination of optimiser,

hyperparameter and decay rate that gives the best validation error across all tasks

at the end of training. For the Laplace-based methods, we found momentum based
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optimisers to lead to better performance, whereas Adam gave better results for SI.

3.3.6 Related work

Our method builds on Bayesian online learning [259] and Laplace propagation [64].

In contrast to Bayesian online learning, as we cannot update the posterior over the

weights in closed form, we use gradient-based methods to find a mode and perform

a quadratic approximation around it, resulting in a Gaussian approximation. Laplace

propagation, similar to expectation propagation [238], maintains a factor for every

task, but approximates each of them with a Gaussian. It performs multiple updates,

whereas we use each dataset only once to update the approximation to the posterior.

The most similar method to ours for overcoming catastrophic forgetting is

EWC [170], in particular its concurrent online variant [305]. EWC approximates the

posterior after the first task with a diagonal Gaussian. However, it continues to add a

penalty for every new task [171]. This is more closely related to Laplace propagation,

but may be overcounting early tasks [146] and does not approximate the posterior.

Furthermore, EWC uses a simple diagonal approximation to the Hessian. Lee et al.

[199] approximate the posterior around the mode for each dataset with a diagonal

Gaussian in addition to a similar approximation of the overall posterior. They update

this approximation to the posterior as the Gaussian that minimises the KL divergence

with the individual posterior approximations. Nguyen et al. [254] and its natural

gradient variant [341] implement online variational learning [87, 138], which fits an

approximation to the posterior through the variational lower bound and then uses

this approximation as the prior on the next task. Their Gaussian is fully factorised,

hence they do not take weight interactions into account either. [2] extends the

framework to share parts of the network between tasks in a learnable manner. [212]

describes how tempering the KL term in the ELBO connects variational continual

learning and the online Laplace approximation. This section links the Kronecker

factored Laplace approximation [289] to Bayesian online learning [259] similar to

how Variational Continual Learning [254] connects Online Variational Learning

[87, 138] to Bayes-by-Backprop [26].

After completion of this work, [39] explores the online Laplace framework
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with a low rank approximation of the Hessian, but does not achieve performance

improvements over the Kronecker factored approximation. [197] uses the more

accurate Kronecker factored Fisher approximation of [86] and incorporates batch

normalisation. [204] proposes to make the Hessian more amenable to approximation

through the use of ‘linear sketching methods’. In a similar spirit to the present work,

[210] proposes rotated EWC to overcome the overly strong diagonal approximation

of the curvature and similarly finds performance improvements. [367] confirms our

results of the Kronecker factored approximation improving over the diagonal one on

some additional benchmark problems. [158] further combines the Kronecker factored

online Laplace approximation with projected gradient methods for continual learning

in recurrent neural networks. [209] investigates the online Laplace approximation

in a federated learning setting. [233] applies the method proposed in this section to

continual learning with large-scale language models.

[241] suggests that flat minima – which can be targeted by appropriately set-

ting mini batch size and learning rate [162, 134, 154, 376] and have previously

been argued to improve generalisation [223, 132] – can reduce forgetting and that

regularisation-based online learning approaches typically set hyperparameters ac-

cordingly. It would be interesting to investigate whether this is strictly due to

such minima generalising better and being more robust to forgetting, or whether

there are additional factors at play, e.g. the quadratic approximation of the Laplace

approximation being more accurate.

Rather than placing priors on the weights, [333, 264] propose a functional

regulariser that encourages the predictions on a subset of previous data to remain

similar, rather than maintaining the parameters values. The former achieve this

by replacing the output layer of the network with a Gaussian process [281] and

using sparse approximations [314, 331, 122], while the latter exploit the equivalence

between BNNs with Gaussian approximate posteriors and Gaussian processes [165]

to select a subset of particularly relevant training data.

[142, 66] discuss evaluation of continual learning methods and [173, 201] cover

limitations of regularisation-based continual learning.
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Various methods for overcoming catastrophic forgetting without a Bayesian

motivation have also been proposed over the past year. Zenke et al. [371] develop

‘Synaptic Intelligence’ (SI), another quadratic penalty on deviations from previous

parameter values where the importance of each weight is heuristically measured as

the path length of the updates on the previous task. Lopez-Paz and Ranzato [213]

formulate a quadratic program to project the gradients such that the gradients on

previous tasks do not point in a direction that decreases performance; however, this

requires keeping some previous data in memory. Shin et al. [310] suggest a dual

architecture including a generative model that acts as a memory for data observed in

previous tasks. Other approaches that tackle the problem at the level of the model

architecture include [296], which augments the model for every new task, and [69],

which trains randomly selected paths through a network. Serrà et al. [307] propose

sharing a set of weights and modifying them in a learnable manner for each task.

He and Jaeger [116] introduce conceptor-aided backpropagation to shield gradients

against reducing performance on previous tasks.

3.4 Conclusion

We presented a scalable approximation to the Laplace approximation for the posterior

of a neural network and provided experimental results suggesting that the uncertainty

estimates are on par with popular alternatives like MC Dropout, if not better. The

Laplace approximation enables practitioners to obtain principled uncertainty esti-

mates from their models, even if they were trained in a maximum likelihood/MAP

setting. We further leveraged the approximation for Bayesian online learning method

to reduce forgetting in neural networks. By formulating a principled approximation

to the posterior and taking interactions between the parameters into account, we were

able to substantially improve over EWC [170] and SI [371], two popular methods

that also add a quadratic regulariser to the objective for new tasks.

Our continual learning results have been independently confirmed in [367]

and various extensions of our Laplace approximation have been proposed since its

publication, such as using more accurate Fisher approximations [198] as well as
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tuning the prior precision via the marginal likelihood during training rather than via

cross-validation afterwards [147] and predicting under a linearisation of the model

[148] as originally proposed in [221]. The methods developed in this chapter have

been implemented and made available independently as part of the recent ‘Laplace

Redux‘ library [52] for PyTorch. Overall, the papers based on the work presented in

this section have been followed by a revival of interest in Laplace-based inference in

neural networks.

Future directions for this work include developing approximations of the cur-

vature for other layer types than fully connected and convolutional ones, such as

recurrent layers as in LSTMs [133] or attention layers in transformer architectures

[344]. Further, overcoming the factorisation assumption across layers, e.g. by

augmenting the covariance with a low-rank component across all parameters, or de-

veloping more accurate approximations of the diagonal blocks of the curvature matrix

may further improve performance by representing the posterior more faithfully.



Chapter 4

Parameter-efficient posterior

approximations

Rather than increasing the expressivity of the approximate posterior to account for

parameter correlations, this chapter investigates methods for reducing the computa-

tional burden of BNNs, specifically the storage cost of the parameters. Generally,

BNNs increase the number of parameters compared to deterministic networks, as

even a variational factorised Gaussian parameters doubles the parameter count with

its mean and variance per network parameter.

Section 4.1 proposes a variational inference and an ad-hoc method for binary

neural networks where each weight is constrained to be −1 or 1. This implies

working with Bernoulli distributions which – while still requiring a real-valued

probability parameter per weight – allow for storing a number of samples from the

posterior at reduced cost, as each binary weight requires only a single bit for storage,

whereas real valued weights are typically stored at single precision i.e. 32 bits. On

an orthogonal note, Gaussian mean-field networks have been observed to suffer from

underfitting issues, making binary neural networks an interesting alternative model

class for studying the behaviour of approximate inference methods.

Taking inspiration from sparse approaches for Gaussian processes, Section 4.2

proposes inducing weights, an efficient lower-dimensional parameterisation of vari-

ational Gaussian posteriors over neural network weights. The method is based on

augmenting a matrix Gaussian prior with a smaller inducing weight matrix such that
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the marginal prior on the weights remains the same, parameterise the conditional

distribution of the weights given the inducing weights and share it between the

prior and approximate posterior. To enable efficient sampling from the conditional

distribution, we develop an extension of Matheron’s rule for matrices, exploiting the

Kronecker structure of the augmented joint distribution.

4.1 Bayesian binary neural networks

Neural networks have been applied with increasing success to perceptual data,

such as images [54] and speech [342] as models have been growing in size. The

simultaneous proliferation of mobile devices has led to a need for approaches to

deploy such models under hardware constraints. One particularly promising direction

is representing model parameters with reduced precision, down to a single bit per

weight [48]. This leads to a 32-fold memory saving compared to the standard full-

precision representation of floating point numbers. Binary weights further remove

the need for multiplication, reducing computation time as well. Indeed, Rastegari

et al. [282] report a 58-fold speedup for their implementation.

Most research efforts so far have focused on training a single network with fixed

binary weights [48, 49, 5]. However, simple deterministic networks are known to be

poorly calibrated [105] and suffer from catastrophic forgetting [232, 77, 95]. Some

recent works [309, 271] have investigated training binary neural networks using

distributions over the weights. Their main focus though has still been obtaining a

single network with strong predictive performance with a limited evaluation of the

quality of the uncertainty estimates, and they do not adopt a Bayesian viewpoint on

their training process.

In the continuous weight setting, BNNs have so far mostly been dismissed by

the greater deep learning community due to not matching the classification accuracy

of deterministic networks in large scale settings, although there has been some

progress recently [260]. Most components of BNNs have been suspected to be

responsible for this unsatisfying performance, ranging from the prior [354] over

factorised Gaussian posteriors [73] and the variational lower bound [339] to the noise
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introduced by sampling the weights during optimisation [361, 67]. Since binary

neural networks operate on discrete variables or the unit interval, there is more

flexibility in choosing the prior. For example, uniform priors are a possibility, which

would be unnormalised for real weights. Thus, we believe that neural networks with

binary weights can be an interesting alternative to the commonly used continuous

ones for evaluating different components of the Bayesian deep learning pipeline.

In this section, we leverage some of the aforementioned stochastic methods for

training binary neural networks to develop a variational inference algorithm with

a Bernoulli prior and approximate posterior. Empirically, we find the Bernoulli

prior to lead to underfitting without tempering the variational objective, so we

further experiment with an ad-hoc MAP-style inference scheme under an equivalent

hierarchical formulation of the prior as a Beta-Bernoulli. We evaluate the quality

of the uncertainty estimates through their calibration on the test set, predictive

entropy on out-of-distribution data and accuracy on a mixed dataset of test and out-

of-distribution data. We find that our Bayesian approaches lead to higher uncertainty

on out-of-distribution data and better accuracy on the most confident predictions

than ensembles of deterministic binary networks. Finally, we show that our methods

can effectively prevent forgetting in an online setting.

Statement of contributions The work in this section was carried out in collaboration

with my colleague Peter Hayes and my supervisor David Barber. We developed the

theoretical framework together, Peter and I collaborated on designing the code base

and I carried out the experiments and wrote the text with feedback from Peter and

David.

4.1.1 Binary neural networks

4.1.1.1 Deterministic binary neural networks

Neural networks are typically trained by minimising a loss L w.r.t. the network

parameters θθθ

θθθ
∗ = argmin

θθθ

L(θθθ) = E(D;θθθ)+ τR(θθθ), (4.1)
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where L is composed of an error term E (e.g. cross-entropy, squared error) that

depends on the data D (e.g. images and class labels) and a regularisation term R

that is only a function of the parameters and scaled by a factor τ . While for full-

precision parameters a local optimum can readily be found by computing gradients

via automatic differentiation [18] in one of the many modern numerical computation

libraries, e.g. [269], and performing stochastic gradient descent [30], this is less

straight-forward for binary parameters. Typically, binary parameters are defined to

be the discretisation of some continuous parameters θ ◦i = sign(θi), mapping R to

{−1,1}. This causes the gradients w.r.t. the continuous parameters to become 0,

since the derivative of the sign function is 0 almost everywhere.

A simple, but surprisingly effective solution was proposed in [48, 49]: by using

the ‘straight-through estimator’ [21], i.e. defining ∂θ ◦i /∂θi := 1. In conjunction

with small tricks like constraining the continuous weights to lie in [−1,1], binary

neural networks can be trained to achieve similar accuracies as their full-precision

counterparts [5].

4.1.1.2 Stochastic binary neural networks

An alternative approach is to train a distribution over the weights via variational

optimisation [318, 23], i.e. to sample binary weights from a distribution θθθ
◦ ∼ qφφφ (θθθ),

with parameters φφφ (e.g. probabilities of a Bernoulli) and minimise the expected loss

w.r.t. φφφ

φφφ
∗ = argmin

φφφ

Eqφφφ
[L(θθθ ◦)] . (4.2)

Gradients can be estimated using the score-function estimator [357]. This

sidesteps the non-differentiability of the sign function, although the gradients typ-

ically have high variance. One can also employ a relaxed binary distribution

[224, 153] and differentiate w.r.t. continuous weights that are nearly −1 or 1,

resulting in a small bias but lower variance.

Another solution specific to neural networks [309] is to notice that operations

such as matrix multiplications and convolutions add up scalar products of the weights

with some inputs. As long as the distribution over the weights has some variance
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V [θ ◦i ]> 0 and a known mean E [θ ◦i ], we can employ the central limit theorem and

model the pre-activations as having a Gaussian distribution

θθθ
◦ ∼∏

i
q(θ ◦i ) and h = ∑

i
θ
◦
i xi ⇒ h∼N(µ,σ2), (4.3)

with µ = ∑i xiE [θ ◦i ] and σ2 = ∑i x2
i V [θ ◦i ] and x being the input to some layer.

During training, we can then use the reparameterisation trick [167] and sample the

pre-activations – rather than the weights – while maintaining differentiability w.r.t.

φφφ .

4.1.2 Binary variational inference for neural networks

We will now briefly lay out the background for Bayesian inference before showing

how stochastic optimisation of binary neural networks can be cast as variational

inference. To keep the notation uncluttered, we denote all model parameters as θθθ

from now, as it will be either irrelevant or clear from the context if parameters are

binary or continuous.

4.1.2.1 Bayesian inference

Rather than choosing some optimal parameters, Bayesian inference maintains uncer-

tainty over all possible settings by weighing each one according to the posterior. The

posterior is proportional to a prior distribution p(θθθ) times the likelihood of the data

p(D|θθθ), i.e. p(θθθ |D) = p(D|θθθ)p(θθθ)/p(D). Predictions on new data D∗ are made

by integrating over the posterior p(D∗|D) = Ep(θθθ |D) [p(D∗|θθθ)].

Variational inference As calculating the evidence p(D) =
∫

p(D|θθθ)p(θθθ)dθθθ in-

volves an intractable integral, approximations are needed. One approach that scales

well to large datasets and models is that of variational inference [130, 346]. On a

high level, it turns the integration problem of p(D) =
∫

p(D|θθθ)p(θθθ)dθ into an opti-

misation problem. The aim is to find the parameters of an approximate distribution

qφφφ that minimise the KL divergence to the true posterior. Specifically, the objective
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is to maximise the evidence lower bound (ELBO)

log p(D) = logEp(θθθ) [p(D|θθθ)] (4.4)

≥ Eqφφφ

[
log

p(D|θθθ)p(θθθ)
qφφφ (θθθ)

]
(4.5)

= Eqφφφ
[log p(D|θθθ ]︸ ︷︷ ︸
−E(D;θθθ)

−KL[qφφφ || p]︸ ︷︷ ︸
R(θθθ)

, (4.6)

where the inequality follows from Jensen’s inequality and qφφφ is the variational

posterior that is optimised to approximate p(θθθ |D). The first term in Eq. 4.6, the

expected log likelihood, involves a sum over the data points, which can be estimated

by subsampling [136]. Further, the expectation over qφφφ can be approximated via

Monte Carlo integration [332]. Unbiased gradients can be calculated if it is possible

to sample from the distribution in way that the sample is differentiable w.r.t. θθθ . This

is the case if a sample can be obtained by transforming an independent noise variable

using φφφ [167]. While by default the scaling factor τ on the KL term is equal to

1, various works have found τ < 1 to improve performance in the context of deep

learning, e.g. [260].

Continual learning Sequentially arriving data can naturally be integrated into the

Bayesian framework. When observing a new dataset D2 after having inferred

p(θθθ |D1), that posterior can be used in place of the prior since p(θθθ |D1,D2) ∝

p(D2|θθθ)p(θθθ |D1) for D1,D2 independent given the parameters.

In an online setting, i.e. to train on a new dataset without re-using previous data,

one can simply replace the prior p with the current approximate posterior qφφφ and

train a new approximate posterior with its own parameters [259, 138, 254].

4.1.2.2 Binary Bayes-by-Backprop

To specify a variational inference algorithm for binary neural networks, we need to

choose two distributions: the prior p and the approximate posterior q. We will begin

with the approximate posterior as it will be the same for both choices of the prior

that we consider, however with slightly differing derivations.
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Figure 4.1: Graphical model for our Bernoulli inference distribution and the Bernoulli/Beta-
Bernoulli prior over the weights θθθ .

Inference For inference we will assume all θθθ to be independent and model each

weight as Bernoulli-distributed. Strictly speaking, the Bernoulli assumes that θi ∈

{0,1}, however we can rescale the distribution by a factor of 2 and shift it by −1 as

in [271] to obtain a binary distribution over {−1,1}. The approximate posterior is

then qφφφ (θθθ) = ∏i qπi(θi) with πi denoting the probability of θi being 1. To estimate

the expected log likelihood of the data, we can thus use the local reparameterisation

trick as proposed in [309] and sample the linear outputs of convolutional and dense

layers from a Gaussian distribution. From a modelling perspective, this is the binary

equivalent of training a variational Gaussian posterior for continuous weights as in

e.g. Bayes-by-Backprop [26] using the local reparameterisation trick [168]. See

Fig. 4.1a for the graphical model.

Bernoulli Prior The first option for the prior that suggests itself is to similarly

model each weight as independently Bernoulli-distributed with a common probability

parameter πprior. As there is no apparent reason to express a prior preference for a

weight to be −1 rather than 1 or vice versa, we will use a uniform distribution with

πprior = 0.5. The graphical model can be found in Fig. 4.1b.
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The constant uniform prior leads to the non-data dependent KL part of the

ELBO being equal to the entropy H(qφφφ ) of the approximate posterior plus

c := D logπprior =−D log2

−KL[qφφφ || p] = Eqφφφ

[
log

πprior

qφφφ (θθθ)

]
= c+H(qφφφ ) (4.7)

= c+∑
i
−πi logπi− (1−πi) log(1−πi). (4.8)

The functional form of the entropy regulariser is almost identical to the proba-

bility decay term/variance regulariser in [309, 271], see Fig. 4.2. However, motivated

by the aim to obtain a single well-performing binary network, they minimise rather

than maximise the entropy/variance of qφφφ in contrast to the ELBO.

Figure 4.2: Normalised (divided by the maximum value as this can be absorbed into
a multiplicative hyperparameter) entropy and variance for a Bernoulli distribution with
parameter πππ (x-axis).

While the uninformative uniform prior plays no role for a single dataset, it

matters when training online. The approximate posterior learns probabilities that

are closer to 0 or 1 on the first dataset. On the next task the KL term regularises

against shifting the mode of the weight distributions to the opposite value, allowing

the network to maintain performance on previous datasets.
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Beta-Bernoulli Prior A clear limitation of the Bernoulli prior is that it does not

account for uncertainty over πprior. As will be clear from the experiments, this prior

induces overly uncertain weight distributions when not downscaling the KL term by

τ < 1, leading to poor predictive performance. For an alternative training procedure

that allows more principled control over the regularisation of π , we consider a

hierarchical extension of the Bernoulli prior, placing a prior over the probability π .

We make the canonical choice of a Beta distribution as a prior over the unit interval.

The graphical model is in Fig. 4.1c.

The Beta distribution has two parameters denoted as α,β . Their ratio determines

the mean probability as E [π] = (1+β/α)−1. As we do not express a preference for

π 6= 0.5, we only consider parameterisations with α = β . The Beta distribution is

only normalised for α,β > 1, so we denote our single parameter as ∆ ∈ [0,∞] and

set α,β = ∆+1.

In contrast to the Bernoulli model, the Beta prior allows us to encourage or

discourage uncertain distributions over the weights. By choosing increasingly large

values of ∆, we can express a prior preference for probability values that concentrate

around 0.5. While in principle we could also choose −1 < ∆ < 0, this improper

prior would lead to an unnormalised posterior, as any deterministic setting of the

weights (which is the case for π ∈ {0,1}) has infinite mass in the prior and a non-zero

likelihood of the data for regression and classification. Hence, any such deterministic

weight setting would have infinite mass in the posterior as well.

Note that with a Beta prior over π , we can marginalise the the probability

variable out and are left with the original Bernoulli prior. We ran exploratory

experiments with a Beta-Bernoulli as the variational distribution, integrating out

the Beta distribution for the neural network forward pass and calculating the KL

divergence as the KL between the Betas as the conditional Bernoullis cancel out.

However, we were unable to achieve a good fit on the training data with these

posteriors. An avenue to explore in this direction could be the collapsed variational

bounds of [335].

For a more ad-hoc fix, as for the Bernoulli prior, we model the approximate
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posterior over θθθ as a factorised Bernoulli. Inference is then a MAP-style procedure

with πππ∗ = argmaxπππ log p(D,πππ). Since we need to marginalise the weights, the

resulting objective is a lower bound similar to the ELBO

log p(D|πππ)+ log p∆(πππ) = logEp(θθθ |πππ) [p(D|πππ,θθθ)]+ log p∆(πππ) (4.9)

≥ Ep(θθθ |πππ) [log p(D|θθθ)]+ log p∆(πππ). (4.10)

Alternatively, this could be seen as variational inference with a Delta distribution

on πππ . This requires treating the entropy of the Delta distribution, which is infinite,

as a simple constant. Probabilistic programming packages typically provide such a

deterministic distribution for variational inference [22, 336] treating it as discrete.

This makes the entropy zero, but implies inferring a continuous variable with a

discrete one.

Modelling the inference distribution in the Beta-Bernoulli prior as a Bernoulli

corresponds to placing a deterministic distribution on πππ . The joint for πππ and θθθ

is then qπππ∗(πππ)q(θθθ |πππ) = δπππ∗(πππ)p(θθθ |πππ), where δπππ∗(πππ) denotes a Delta distribution

with parameter πππ∗, such that p(πππ=πππ∗) = 1.

The entropy of the Delta distribution being constant leaves only the prior term

of the KL divergence, as the conditional distributions over θθθ are identical in

prior and approximate posterior

−KL[qφφφ || p]) =−Eqφφφ

[
log

δπππ∗(πππ)

p∆(πππ) �
�

�
��p(θθθ ◦|πππ)

p(θθθ ◦|πππ)

]
(4.11)

= log p∆(πππ
∗)+ c = ∆∑

i
logπ

∗
i (1−π

∗
i )+ c, (4.12)

where c =H [δπππ∗(πππ)] denotes the entropy of the Delta distribution, which is

infinite when treating it as a continuous distribution and 0 for a discrete one.

While MAP-style inference may appear as a somewhat ‘un-Bayesian’ choice

here since it neglects uncertainty over the probability values in the posterior, it allows

for a side-by-side comparison of the log likelihood computations. Algorithmically,
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the log likelihood of the data is estimated in the exact same way in both cases since

the forward passes are the same and the only difference lies in the regularisation

term. So even while under the ad-hoc MAP approach we account for the uncertainty

over θθθ , so the joint approximate posterior is not a point mass, but a distribution, the

objective is not a lower bound on the evidence and we cannot attribute any potential

empirical success to it being Bayesian.

Algorithm 1: Forward pass for a variational binary neural network with
local reparameterisation

Input: Logit parameter matrices φφφ = [vec(WWW 1), . . . ,vec(WWW L)]
Non-linearities f1, . . . , fL
Layer sizes D1, . . . ,DL
Data point x

Output: Predictions for the label of x
1 function BinaryForwardLR
2 a0← x
3 for l ∈ {1, . . . ,L} do
4 PPP← σ(WWW l)
5 MMM← 2PPP−1
6 VVV ← 4PPP� (1−PPP)
7 εεε ∼N(000Dl , IIIDl)

8 hl ←MMMal−1 +
√

VVV a2
l−1� εεε

9 al ← fl(hl)

10 return aL

We provide pseudocode for the forward pass in Alg. 1 to complement the

more theoretical discussion in Section 4.1.1.2 on calculating the forward pass of a

stochastic neural network in a differentiable manner. A minimal implementation

for PyTorch linear layers can be found in Appendix B to illustrate that the method

integrates well into modern deep learning frameworks.

4.1.3 Experiments

We run experiments on a range of vision classification tasks using a categorical log

likelihood model (cross-entropy loss). We train convolutional neural networks on

MNIST [194] and CIFAR10 [178]. Architectures and optimisation mostly follow

[309]. One notable difference is that we also use binary weights in the output layer.
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For this we rescale the linear outputs of the network (the logits) by the inverse square

root of the size of the last hidden layer. This is to limit the variance of the logits to

1.1

On MNIST, we use the following architecture

Conv(64)−MP(2)−Tanh−Conv(128)−MP(2)−Tanh−

Linear(2048)−Tanh−Linear(10)

where Conv(c) denotes a 3×3 2d convolutional layer with c channels, stride 1

and padding b c
2c. MP(s) denotes 2d max-pooling over an s× s patch with stride s.

Linear(d) is a linear layer with output-dimensionality d.

On CIFAR10, our architecture is

Conv(128)−BN−Tanh−Conv(128)−MP(2)−BN−Tanh−

Conv(256)−BN−Tanh−Conv(256)−MP(2)−BN−Tanh−

Conv(512)−BN−Tanh−Conv(512)−MP(2)−BN−Tanh−

Linear(1024)−BN−Tanh−Linear(10),

where BN refers to a batch normalisation layer.

We found multiplying the pre-activations in each layer (prior to the non-linearity)

by the inverse square root of the number of inputs to slightly improve accuracy on

MNIST for the binary networks, so we use this rescaling throughout all layers. On

CIFAR10, results were almost identical, so we only rescale the linear outputs. This

rescaling could be seen as inferring binary weights of value {− 1√
d
, 1√

d
} rather than

{−1,1}, where d is the dimensionality of the previous layer. The motivation would

be, similar to full precision BNNs, to preserve variance in the forward pass by using

a N(0, 1
d ) prior on the weights [251].

Similar to Shayer et al. [309] we found initialising the continuous parameters

1The variance of the weight distribution and that of the inputs to the last layer are both at most 1
as we use tanh non-linearities. The variance of each logit value is therefore bounded by the number
of terms.
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of the binary networks to the values of the weights of a full precision network with

the same architecture to slightly improve performance. Note that we did not transfer

the parameters or statistics of the batch normalisation layers. We do not use Dropout

[317] in either architecture as this is a popular tool of its own for estimating the

uncertainty in neural networks [83], although it does not match the performance of

ensembles [185].

We train parameters using the Adam optimiser [166] with default hyperparam-

eters using PyTorch [269] and decay the learning by a factor of 0.1. For initial

learning rate and further hyperparameters, see Tab. 4.1. We do not use any data

augmentation on MNIST and randomly flip and take crops of size 32× 32 after

padding by 4 pixels on all sides on CIFAR10. For the deterministic networks, we

clip the real-valued parameters to lie in [−1,1].

We compare to deterministic binary neural networks trained with the straight-

through estimator (STE) and ensembles of such binary neural networks. Ensembles

have been shown to provide reliable uncertainty estimates for full precision neural

networks [185, 315]. We repeat our experiments 8 times (ensembles are repeated

4 times) and plots display the mean of the respective quantities with two standard

errors as the shaded area around them. We use 8 samples from the approximate

posterior for prediction and ensembles of the same size.

Table 4.1: Learning rate, epochs and decay schedule for straight-through estimator and
Binary Bayes-by-Backprop.

MNIST CIFAR10 pMNIST
STE BBbB STE BBbB STE BBbB

Initial learning rate 0.1 0.1 0.1 0.01 0.01 0.01
Total epochs 200 200 300 300 200 200
Decay epochs 80,160 25,125 120,240 200 100 100

4.1.3.1 Accuracy and log likelihoods

We report test accuracy and negative log likelihood for MNIST and CIFAR10 in

Tab. 4.2 for a selection of prior parameters and scaling factors on the KL term. More

extensive results, also including Brier scores [34], for 4 and 16 posterior samples

are in Tabs. D.2 and D.3 in the appendix. On both datasets, ensembles perform
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Table 4.2: MNIST/CIFAR10 accuracies and log likelihoods. Both the ensemble size and the
number of samples from the approximate posterior are equal to 8.

MNIST CIFAR10
NLL Accuracy (%) NLL Accuracy (%)

STE 0.027±0.001 99.21±0.02 0.371±0.004 92.84±0.06
Ensemble (STE) 0.022±0.0 99.25±0.01 0.189±0.002 94.32±0.13

Bernoulli (τ=1) 0.237±0.001 95.21±0.05 1.108±0.013 64.9±0.52
Bernoulli (τ=10−2) 0.033±0.0 98.99±0.02 0.318±0.002 90.35±0.11
Bernoulli (τ=10−3) 0.032±0.001 98.97±0.02 0.27±0.002 91.73±0.06
Beta-Bernoulli (∆=0) 0.029±0.0 99.02±0.01 0.275±0.002 91.91±0.1
Beta-Bernoulli (∆=10−3) 0.028±0.0 99.03±0.03 0.284±0.001 91.16±0.09
Beta-Bernoulli (∆=10−4) 0.028±0.0 99.06±0.02 0.271±0.001 91.84±0.05

Figure 4.3: CIFAR10 test log likelihood as a function of ensemble size/number of samples
from the approximate posterior.

the best in terms of accuracy and likelihood, although the gap is rather small on

MNIST. While the single deterministic network has slightly higher accuracy than

the Bayesian ones, most of the latter have a lower negative log likelihood when not

encouraging overly uncertain distributions. As one would expect, setting a prior

with a higher ∆, i.e. forcing πππ to be closer to 0.5 inhibits classification performance.

The Bernoulli prior leads to severe underfitting, especially on CIFAR10, unless one

significantly downweights the KL term in the ELBO by setting τ<1. This failure

highlights a fundamental issue with the Bernoulli model, namely that specifying

indifference regarding the value of the weight is insufficient, and that a preference
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(a) MNIST calibration (b) MNIST→ FashionMNIST (c) MNIST confidence vs acc.

(d) CIFAR10 calibration (e) CIFAR10→ SVHN (f) CIFAR10 confidence vs acc.

Figure 4.4: Uncertainty evaluation on MNIST (top) and CIFAR10 (bottom). Left column
shows calibration on the test set (closer to diagonal is better), middle column shows the
fraction of OOD data (FashionMNIST and SVHN respectively) for which the entropy of the
prediction is below ν (lower is better), and right column displays the accuracy of predictions
with the maximum predicted probability above c on the merged test and OOD dataset (data
from the latter always count as mis-classified).

over how peaked the distribution is is needed. We think that in light of these

results, hierarchical priors for continuous BNNs as used e.g. in [123] could be worth

revisiting.

In Fig. 4.3 we show the log likelihood on CIFAR10 as a function of the number

of samples/ensemble size. We observe a greater performance improvement from

drawing additional samples for methods that encourage stronger weight uncertainty

(larger ∆,τ), although the base performance for a single sample is typically lower.

4.1.3.2 Uncertainty evaluation

Beyond basic classification accuracy, we also investigate the quality of the uncer-

tainty estimates. We show calibration curves (probability predicted for a class vs.

the corresponding empirical frequency) in Figs. 4.4a and 4.4d. For both networks,

we find the predictions made using deterministic weights to be overconfident. En-
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Figure 4.5: Continual learning on permuted MNIST. Left subfigure shows the average test
accuracy across all tasks the network has been trained on, central and right subfigures show
the test accuracy on the first task (ability to remember) and the most current task (flexibility
on new data) respectively.

sembles can remedy this problem on CIFAR10, but the predictions of the different

networks are too similar on MNIST to make a difference. The Bayesian networks

are generally well-calibrated on MNIST when encouraging weight uncertainty, but

slightly underconfident on CIFAR10, although a uniform prior on πππ leads to good

calibration.

Further, we display cumulative densities of the predictive entropies (H(p)=−

∑i p(yi|x) log p(yi|x)) on out-of-distribution (OOD) data in Figs. 4.4b and 4.4e. For

MNIST, we use FashionMNIST [363] as OOD data and SVHN [253] for CIFAR10.

As expected, the deterministic network is significantly more certain than the alterna-

tives. The Bayesian variants exhibit higher uncertainty on OOD data than ensembles

when encouraging uncertainty on the weights (∆ > 0 for the Beta-Bernoulli prior).

Combining the corresponding test and OOD sets, we show the accuracy of pre-

dictions above a moving confidence threshold c in Figs. 4.4c and 4.4f similar to

Lakshminarayanan et al. [185]. Again, the deterministic networks fare the worst,

with the Bayesian methods being more accurate than the ensembles for uncertainty-

encouraging priors. Notably, approximating the predictive posterior with a single

sample leads to overconfidence of the Bayesian networks on CIFAR10, however they

still outperform the deterministic one. 2 samples lead to substantial improvement

and most of the benefit of ensembling can be achieved with 4 samples.
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Figure 4.6: Mean entropy of the weight distributions per layer on permuted MNIST.

4.1.3.3 Continual learning

Finally, we train a fully connected network with two hidden layers of 100 units on a

sequence of ten instantiations of permuted MNIST [95]. While this is a somewhat

simple problem, it offers the advantage of providing a sequence of problems that

are of equal size and difficulty (since fully connected networks are invariant to a

permutation of their inputs).

We plot the classification accuracy throughout training in Fig. 4.5. We compare

sequentially training a deterministic binary network to using a Bernoulli and Beta-

Bernoulli prior. For the latter, we use three different parameters (∆ ∈ {0,0.1,0.01}).

We also train a deterministic network without clipping the continuous weights.

The left subplot shows the average test accuracy across datasets the network

has been trained on so far, the central subplot the accuracy on the very first task as a

measure of the network’s ability to remember old data, and the subplot on the right

performance on the current task to measure flexibility to adapt to new data, as the

parameters may be over-regularised toward old values.

As expected, the deterministic network forgets how to perform previous tasks

immediately. Interestingly, not clipping the weights slows down forgetting without

reducing the accuracy on the current task. This provides support for the hypothesis
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that continuous ‘latent’ weights provide inertia during training [119]. The Bayesian

networks only see a slow and gradual performance decay on old data. Between them,

the difference in the average performance is negligible, which is to be expected as

from the second task onward they all model the weights as Bernoulli-distributed

in the prior. We do, however observe that the Beta-Bernoulli prior leads to better

memorisation of the first task. This is due to the prior encouraging less uncertain

weight distributions as displayed in Fig. 4.6 using the average per-weight entropy as

a measure of uncertainty.

4.1.4 Related work

There are three notable prior works on Bayesian binary neural networks. Soudry et al.

[316] propose an online algorithm based on expectation propagation [238] for binary

targets. They report better performance for their binary variant over the Gaussian

one. Su et al. [319] propose a similar deterministic method based on variational

inference, but require significant downweighting of the KL term to obtain good

performance. Most recently, Meng et al. [235] introduce a binary instantiation of

the Bayesian learning rule [163]. Their main focus lies on justifying heuristics used

in the training of deterministic binary neural networks from a Bayesian viewpoint,

specifically the use of the straight-through estimator [48, 49] and exponential moving

averages of gradients for determining sign flips [119]. However, they mainly focus

on classification accuracies and only evaluate uncertainty estimates on toy data.

There is a rapidly growing literature on full precision BNNs. Most works

formulate their prior model and perform inference in weights space, aiming to

develop flexible approximate posteriors that can account for correlations while

remaining computationally efficient. We would position the method in this section

as the binary equivalent of [26], i.e. ‘Binary Bayes-by-Backprop’. As in [26] we

perform stochastic variational inference by subsampling the data and estimating

the log likelihood with Monte Carlo samples from the approximate posterior and

learn the parameters of the corresponding distribution using automatic differentiation

and gradient descent. Both works use the standard distributions for the respective

domain of the approximate posterior – the Bernoulli over a binary random variable
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in our case and the Gaussian for real numbers in the case of [26]. We use the local

reparameterisation trick to sample the pre-activations rather than the weights to

maintain differentiability w.r.t. the parameters. This marginalisation is exact in the

case of Gaussian parameters [168], but an approximation for binary ones — albeit

an accurate one as empirically demonstrated in [309].

4.1.5 Conclusion

This section proposed a method for variational inference as well as a closely related

ad-hoc approach for binary neural networks that leverage recent progress on training

stochastic binary neural networks. We investigated a uniform prior on the weights

as well as a hierarchical variation and found that the hierarchical prior allows for

a more probabilistically motivated formulation of an effective training objective.

While ensembles of binary neural networks offer stronger test log likelihood and

classification accuracy, we found the uncertainty estimates resulting from the two

methods developed in this section to be more robust to out-of-distribution data.

Future directions for this work include an extension to ternary weights, which offer

additional flexibility and avenue towards sparsifying the networks. Further, distribu-

tions that account for uncertainty over the probability parameter in the approximate

posterior, in particular structured ones, may achieve better performance thanks to

their more expressive posteriors.
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4.2 Sparse uncertainty representation with inducing

weights
Deep learning models are becoming deeper and wider than ever before. From image

recognition models such as ResNet-101 [114, 115] and DenseNet [143] to BERT

[364] and GPT-3 [36] for language modelling, deep neural networks have found con-

sistent success in fitting large-scale data. As these models are increasingly deployed

in real-world applications, calibrated uncertainty estimates for their predictions be-

come crucial, especially in safety-critical areas such as healthcare. In this regard,

BNNs [222, 26, 83, 374] and deep ensembles [185] represent two popular paradigms

for estimating uncertainty, which have shown promising results in applications such

as (medical) image processing [161, 326] and out-of-distribution detection [315].

Though progress has been made, one major obstacle to scaling up BNNs and

deep ensembles is the high cost in storing them. Both approaches require the

parameter counts to be several times higher than their deterministic counterparts.

Although recent efforts have improved memory efficiency [215, 324, 353, 62], they

still require storage memory that is higher than storing a deterministic neural network.

Meanwhile, an infinitely wide BNN becomes a Gaussian process (GP) that is

known for good uncertainty estimates [250, 230, 196]. But perhaps surprisingly,

this infinitely-wide BNN is “parameter-efficient”, as its “parameters” are effectively

the datapoints, which have a considerably smaller memory footprint than explicitly

storing the network weights. To further reduce the computational burden, sparse

posterior approximations with a small number of inducing points are widely used

[314, 331], rendering sparse GPs more memory efficient than their neural network

counterparts.

Can we bring the advantages of sparse approximations in GPs – which are

infinitely-wide neural networks – to finite width deep learning models? We provide

an affirmative answer regarding memory efficiency, by proposing an uncertainty

quantification framework based on sparse uncertainty representations. We present

our approach in the BNN context, but the proposed approach is also applicable to

deep ensembles. In detail, our contributions in this section are as follows:



4.2. Sparse uncertainty representation with inducing weights 117

• We introduce inducing weights — an auxiliary variable method with lower

dimensional counterparts to the actual weight matrices — for variational

inference in BNNs, as well as a memory efficient parameterisation and an

extension to ensemble methods (Section 4.2.2).

• We extend Matheron’s rule to facilitate efficient posterior sampling (Sec-

tion 4.2.2.2).

• We provide an in-depth computation complexity analysis (Section 4.2.3),

showing the significant advantage in terms of parameter-efficiency.

• We show the connection to sparse (deep) GPs, in that inducing weights can

be viewed as projected noisy inducing outputs in pre-activation output space

(Section 4.2.6).

• We apply the proposed approach to BNNs and deep ensembles. Experiments

in classification, model robustness and out-of-distribution detection tasks show

that our inducing weight approaches achieve competitive performance to their

counterparts in the original weight space on modern deep architectures for

image classification, while reducing the parameter count to ≤ 24.3% of that

of a single network.

Statement of contributions The work in this section was carried out in collaboration

with Martin Kukla, Cheng Zhang and Yingzhen Li during an internship at Microsoft

Research Cambridge. Yingzhen and I developed the theoretical framework with feed-

back from Cheng, I designed the codebase with feedback from Martin and Yingzhen.

Yingzhen and I ran the experiments and wrote the paper [290] together with feedback

from Martin and Cheng. The function space perspective in Section 4.2.6 was devel-

oped and written by Yingzhen and is included here from the paper for completeness.

An implementation of the method proposed in this section alongside utility code for

converting regular PyTorch neural networks into (variationally) Bayesian ones is

available at https://github.com/Microsoft/bayesianize.

https://github.com/Microsoft/bayesianize
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4.2.1 Inducing variables for variational inference

Our work is built on variational inference and inducing variables for posterior approx-

imations. Given observations D= {X,Y} with X = [xxx1, ...,xxxN ], Y = [yyy1, ...,yyyN ], we

would like to fit a neural network p(yyy|xxx,WWW 1:L) with weights WWW 1:L to the data. BNNs

posit a prior distribution p(WWW 1:L) over the weights, and construct an approximate pos-

terior q(WWW 1:L) to the intractable exact posterior p(WWW 1:L|D) ∝ p(D|WWW 1:L)p(WWW 1:L),

where p(D|WWW 1:L) = p(Y|X,WWW 1:L) = ∏
N
n=1 p(yyyn|xxxn,WWW 1:L).

Variational inference Variational inference [155, 372] constructs an approximation

q(θθθ) to the posterior p(θθθ |D) ∝ p(θθθ)p(D|θθθ) by maximising a variational lower-

bound

log p(D)≥ ELBO(q(θθθ)) := Eq(θθθ) [log p(D|θθθ)]−KL[q(θθθ) || p(θθθ)]. (4.13)

For BNNs, θθθ = {WWW 1:L}, and a simple choice of q is a fully factorised Gaussian

(FFG): q(WWW 1:L) = ∏
L
l=1 ∏

dl
out

i=1 ∏
dl

in
j=1N(Ml

i, j,V
l
i, j), with Ml

i, j,V
l
i, j the mean and vari-

ance of W l
i, j and dl

in,d
l
out the respective number of inputs and outputs to layer l. The

variational parameters are then φφφ = {MMMl,VVV l}L
l=1. Gradients of ELBO w.r.t. φφφ can be

estimated with mini-batches of data [136] and with Monte Carlo sampling from the

q distribution [332, 167]. By setting q to an FFG, a variational BNN can be trained

with similar computational requirements as a deterministic network [26].

Improved posterior approximation with inducing variables Auxiliary variable

approaches [3, 299, 279] construct the q(θθθ) distribution with an auxiliary variable a:

q(θθθ) =
∫

q(θθθ |a)q(a)da, with the hope that a potentially richer mixture distribution

q(θθθ) can achieve better approximations. As then q(θθθ) becomes intractable, an

auxiliary variational lower-bound is used to optimise q(θθθ ,a)

log p(D)≥ ELBO(q(θθθ ,a)) = Eq(θθθ ,a)[log p(D|θθθ)]+Eq(θθθ ,a)

[
log

p(θθθ)r(a|θθθ)
q(θθθ |a)q(a)

]
.

(4.14)

Here r(a|θθθ) is an auxiliary distribution that needs to be specified, where existing

approaches often use a “reverse model” for r(a|θθθ). Instead, we define r(a|θθθ) in a

generative manner: r(a|θθθ) is the “posterior” of the following “generative model”,
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whose “evidence” is exactly the prior of θθθ

r(a|θθθ) = p̃(a|θθθ) ∝ p̃(a)p̃(θθθ |a), such that p̃(θθθ) :=
∫

p̃(a)p̃(θθθ |a)da = p(θθθ).

(4.15)

Plugging Eq. 4.15 into Eq. 4.14 yields

ELBO(q(θθθ ,a))=Eq(θθθ)[log p(D|θθθ)]−Eq(a) [KL[q(θθθ |a) || p̃(θθθ |a)]]−KL[q(a) || p̃(a)].

(4.16)

This approach returns an efficient approximate inference algorithm, translating

the complexity of inference in θθθ to a, if dim(a) < dim(θθθ) and q(θθθ ,a) =

q(θθθ |a)q(a) has the following properties:

1. A “pseudo prior” p̃(a)p̃(θθθ |a) is defined such that
∫

p̃(a)p̃(θθθ |a)da =

p(θθθ);

2. The conditionals q(θθθ |a) and p̃(θθθ |a) are in the same parametric family,

so can share parameters;

3. Both sampling θθθ ∼ q(θθθ) and computing KL[q(θθθ |a) || p̃(θθθ |a)] can be

done efficiently;

4. The designs of q(a) and p̃(a) can potentially provide extra advantages

(in time and space complexities and/or optimisation easiness).

We call a the inducing variable of θθθ , which is inspired by variation-

ally sparse GP (SVGP) with inducing points [314, 331]. Indeed SVGP is a

special case: θθθ = f, a = u, the GP prior is p(f|X) = GP(000,KXX), p(u) =

GP(000,KZZ), p̃(f,u) = p(u)p(f|X,u), q(f|u) = p(f|X,u), q(f,u) = p(f|X,u)q(u),

and Z are the optimisable inducing inputs. The variational lower-bound is

ELBO(q(f,u)) = Eq(f)[log p(Y|f)]−KL[q(u) || p(u)], and the variational parame-

ters are φφφ = {Z,distribution parameters of q(u)}. SVGP satisfies the marginalisa-

tion constraint Eq. 4.15 by definition, and it has KL[q(f|u) || p̃(f|u)] = 0. Also by

using small M = dim(u) and exploiting the q distribution design, SVGP reduces

run-time from O(N3) to O(NM2) where N is the number of inputs in X, meanwhile
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it also makes storing a full Gaussian q(u) affordable. Lastly, u can be whitened, lead-

ing to the “pseudo prior” p̃(f,v) = p(f|X,u = K1/2
ZZ v)p̃(v), p̃(v) =N(v;000, III) which

could bring potential benefits in optimisation.

We emphasise that the introduction of ‘pseudo prior’ does not change the proba-

bilistic model as long as the marginalisation constraint Eq. 4.15 is satisfied. In the rest

of the section we assume the constraint Eq. 4.15 holds and write p(θθθ ,a) := p̃(θθθ ,a).

It might seem unclear how to design such p̃(θθθ ,a) for an arbitrary probabilistic model,

however, for a Gaussian prior on θθθ the rules for computing conditional Gaussian

distributions can be used to construct p̃. In Section 4.2.2 we exploit these rules to

develop an efficient approximate inference method for BNNs with inducing weights.

4.2.2 Sparse uncertainty representation with inducing weights

4.2.2.1 Inducing weights for neural network parameters

Following the above design principles, we introduce to each network layer l a

smaller inducing weight matrix UUU l to assist approximate posterior inference in WWW l .

Therefore in our context, θθθ = WWW 1:L and a = UUU1:L. In the rest of the section, we

assume a factorised prior across layers p(WWW 1:L) = ∏l p(WWW l), and drop the l indices

when the context is clear to ease notation.

Augmenting network layers with inducing weights Suppose the weight WWW ∈

Rdout×din has a Gaussian prior p(WWW ) = p(vec(WWW )) =N(000,σ2III) where vec(WWW ) con-

catenates the columns of the weight matrix into a vector and σ is the standard

deviation. A first attempt to augment p(vec(WWW )) with an inducing weight variable

UUU ∈RMout×Min may be to construct a multivariate Gaussian p(vec(WWW ),vec(UUU)), such

that
∫

p(vec(WWW ),vec(UUU))dUUU =N(000,σ2III).

This means that the block corresponding to the covariance of vec(WWW ) in the

joint covariance matrix of (vec(WWW ),vec(UUU)) needs to match the prior covariance

σ2III. We are then free to parameterise the remaining of the entries in the joint

covariance matrix, as long as this full matrix remains positive definite. Augmenting

this Gaussian with an auxiliary variable UUU that also has a mean of zero and some



4.2. Sparse uncertainty representation with inducing weights 121

covariance that we are free to parameterise, the joint distribution can be written asvec(WWW )

vec(UUU)

∼N(000,ΣΣΣ) with L =

σ III 000

ZZZ DDD


s.t. ΣΣΣ = LL> =

σ2III σZZZ>

σZZZ ZZZZZZ>+DDD2

 ,

where DDD is a positive diagonal matrix and ZZZ a matrix with arbitrary entries. Through

defining the Cholesky decomposition of ΣΣΣ we ensure its positive definiteness. By the

usual rules of Gaussian marginalisation, the augmented model leaves the marginal

prior on WWW unchanged. Further, we can analytically derive the conditional distribu-

tion on the weights given the inducing weights

p(vec(WWW )|vec(UUU)) =N(µµµWWW |UUU ,ΣΣΣWWW |UUU), (4.17)

µµµWWW |UUU = σZZZ>ΨΨΨ
−1 vec(UUU), (4.18)

ΣΣΣWWW |UUU = σ
2(III−ZZZ>ΨΨΨ

−1ZZZ), (4.19)

ΨΨΨ = ZZZZZZ>+DDD2.

For inference, we now need to define an approximate posterior over the joint space

q(WWW ,UUU). We will do so by factorising it as q(WWW ,UUU) = q(WWW |UUU)q(UUU). Factorising

the prior in the same way leads to the following KL term in the ELBO

KL[q(WWW ,UUU) || p(WWW ,UUU)] = Eq(UUU) [KL[q(WWW |UUU) || p(WWW |UUU ]]+KL[q(UUU) || p(UUU)]

(4.20)

Matrix normal augmentation Unfortunately, as dim(vec(WWW )) is typically large

(e.g. of the order of 107), using a full covariance Gaussian for p(vec(WWW ),vec(UUU))

becomes computationally intractable.

We address this issue with matrix normal distributions [107]. The prior

p(vec(WWW )) = N(000,σ2III) has an equivalent matrix normal distribution form as

p(WWW ) =MN(0,σ2
r III,σ2

c III), with σr,σc > 0 the row and column standard deviations

satisfying σ = σrσc.
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Now we introduce the inducing variable UUU in matrix space, as well as two

auxiliary variables UUU r ∈ RMout×din , UUUc ∈ Rdout×Min , so that the full augmented

prior is WWW UUUc

UUU r UUU

∼ p(WWW ,UUUc,UUU r,UUU) :=MN(0,ΣΣΣr,ΣΣΣc), (4.21)

with LLLr =

σrIII 000

ZZZr DDDr

 s.t. ΣΣΣr = LLLrLLL>r =

 σ2
r III σrZZZ>r

σrZZZr ZZZrZZZ>r +DDD2
r


and LLLc =

σcIII 000

ZZZc DDDc

 s.t. ΣΣΣc = LLLcLLL>c =

 σ2
c III σcZZZ>c

σcZZZc ZZZcZZZ>c +DDD2
c

 .

See Fig. 4.7(a) for a visualisation. The marginalisation constraint Eq. 4.15 is

satisfied for any ZZZc ∈ RMin×din ,ZZZr ∈ RMout×dout and diagonal matrices DDDc,DDDr. The

marginal distribution of UUU is p(UUU) = MN(000,ΨΨΨr,ΨΨΨc) with ΨΨΨr = ZZZrZZZ>r +DDD2
r and

ΨΨΨc = ZZZcZZZ>c +DDD2
c . In the experiments we use whitened inducing weights which trans-

forms UUU so that p(UUU) =MN(000, III, III) (Section 4.2.2.3), but for clarity we continue

with the above formulas.

Matrix normal distributions have similar marginalisation and conditioning prop-

erties as multivariate Gaussian distributions. The marginal both over some set of rows

and some set of columns is still a matrix normal. Hence, p(WWW ) =MN(000,σ2
r III,σ2

c III),

and by choosing σrσc = σ this matrix normal distribution is equivalent to the multi-

variate normal p(vec(WWW )) =N(000,σ2III). Also p(UUU) =MN(000,ΨΨΨr,ΨΨΨc), where again

ΨΨΨr = ZZZrZZZ>r +DDD2
r and ΨΨΨc = ZZZcZZZ>c +DDD2

c . Similarly, the conditionals on some rows
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or columns are matrix normal distributed

UUUc|UUU ∼MN(σrZZZ>r ΨΨΨ
−1
r UUU ,σ2

r (III−ZZZ>r ΨΨΨ
−1
r ZZZr),ΨΨΨc),

UUU r|UUU ∼MN(UUUΨΨΨ
−1
c σcZZZc,ΨΨΨr,σ

2
c (III−ZZZ>c ΨΨΨ

−1
c ZZZc)),

WWW |UUUc ∼MN
(

UUUcΨΨΨ
−1
c σcZZZc,σ

2
r III,σ2

c (III−ZZZ>c ΨΨΨ
−1
c ZZZc)

)
,

WWW ,UUU r|UUUc,UUU ∼MN(

UUUc

UUU

ΨΨΨ
−1
c σcZZZc,ΣΣΣr,σ

2
c (III−ZZZ>c ΨΨΨ

−1
c ZZZc)), (4.22)

WWW |UUU r,UUUc,UUU ∼MN(MWWW ,σ2
r (III−ZZZ>r ΨΨΨ

−1ZZZr),σ
2
c (III−ZZZ>c ΨΨΨ

−1
c ZZZc)),

MWWW = σ(ZZZ>r ΨΨΨ
−1
r UUU r +UUUcΨΨΨ

−1
c ZZZc−ZZZ>r ΨΨΨ

−1
r UUUΨΨΨ

−1
c ZZZc).

The matrix normal parameterisation introduces two additional variables

UUU r,UUUc without providing additional expressiveness. Hence it is desirable

to integrate them out, leading to a joint multivariate normal with Khatri-Rao

product structure for the covariance

p(vec(WWW ),vec(UUU)) =N

000,

 σ2
c III⊗σ2

r III σcZZZ>c ⊗σrZZZ>r

σcZZZc⊗σrZZZr ΨΨΨc⊗ΨΨΨr

 . (4.23)

As the dominating memory complexity here is O(doutMout +dinMin) which

comes from storing ZZZr and ZZZc, we see that the matrix normal parameterisation

of the augmented prior is memory efficient.

Posterior approximation in the joint space We construct a factorised posterior

approximation across the layers: q(WWW 1:L,UUU1:L) = ∏l q(WWW l|UUU l)q(UUU l). Below we

discuss options for q(WWW |UUU). For the conditional distribution on the weights, in the

simplest case we set q(WWW |UUU) = p(WWW |UUU) = p(vec(WWW )|vec(UUU)) =N(µµµWWW |UUU ,ΣΣΣWWW |UUU),

hence the KL divergence would be zero similar to sparse GPs.

For the most general case of arbitrary Gaussian distributions with q=N(µµµq,ΣΣΣq)
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and p =N(µµµ p,ΣΣΣp), the KL divergence is

KL[q || p] = 1
2
(log

detΣΣΣp

detΣΣΣq
−d + tr(ΣΣΣ−1

p ΣΣΣq)+(µµµ p−µµµq)
>

ΣΣΣ
−1
p (µµµ p−µµµq)), (4.24)

where d is the number of elements of µµµ .

As motivated, it is desirable to make q(WWW |UUU) similar to p(WWW |UUU). Hence we

consider a slightly more flexible scalar rescaling of the covariance which multiplies

a term λ 2 onto the covariance matrix

q(WWW |UUU) = q(vec(WWW )|vec(UUU)) =N(µµµWWW |UUU ,λ
2
ΣΣΣWWW |UUU). (4.25)

This allows for efficiently computing the KL as the final term, the Mahalanobis

distance between the means under p, cancels out entirely and the log determinant

and trace terms become a function of λ only

KL[q || p] = 1
2
(log

detΣΣΣ

detλ 2ΣΣΣ
−d + tr(ΣΣΣ−1

λ
2
ΣΣΣ)) (4.26)

=
1
2
(log

detΣΣΣ

λ 2d detΣΣΣ
−d + tr(λ 2III)) (4.27)

=
1
2
(−2d logλ −d +dλ

2) (4.28)

= d(
1
2

λ
2− logλ − 1

2
) =: R(λ ), (4.29)

with d = dim(vec(WWW )).
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Plugging θθθ =WWW 1:L,a =UUU1:L and Eq. 4.29 into Eq. 4.16 results in the follow-

ing variational lower-bound

ELBO(q(WWW 1:L,UUU1:L)) =Eq(WWW 1:L)[log p(D|WWW 1:L)]−∑
L
l=1(R(λl)

+KL[q(UUU l) || p(UUU l)]), (4.30)

with λl the associated scaling parameter for q(WWW l|UUU l). Again as the choices

of ZZZc,ZZZr,DDDc,DDDr do not change the marginal prior p(WWW ), we are safe to

optimise them as well. Therefore the variational parameters are now φφφ =

{ZZZc,ZZZr,DDDc,DDDr,λ ,dist. params. of q(UUU)} for each layer.

Two choices of q(UUU) A simple choice is a fully factorised Gaussian (FFG)

q(vec(UUU)) = N(mmmu,diag(vvvu)), which performs mean-field inference in UUU space

[c.f. 26], and here KL[q(UUU) || p(UUU)] has a closed-form solution. Another choice is a

“mixture of delta measures” q(UUU) = 1
K ∑

K
k=1 δ (UUU =UUU (k)), i.e. we keep K distinct sets

of parameters {UUU (k)
1:L}K

k=1 in inducing space that are projected back into the original

parameter space via the shared conditionals q(WWW l|UUU l) to obtain the weights. This

approach can be viewed as constructing “deep ensembles” in UUU space, and we follow

ensemble methods [e.g. 185] to drop KL[q(UUU) || p(UUU)] in Eq. 4.30.

Often UUU is chosen to have significantly lower dimensions than WWW , i.e. Min� din

and Mout � dout . As q(WWW |UUU) and p(WWW |UUU) only differ in the covariance scaling

constant, UUU can be regarded as a sparse representation of uncertainty for the network

layer, as the major updates in (approximate) posterior belief is quantified by q(UUU).

4.2.2.2 Efficient sampling with the extended Matheron’s rule

Computing the variational lower-bound Eq. 4.30 requires samples from q(WWW ), which

requires an efficient sampling procedure for q(WWW |UUU). Unfortunately, q(WWW |UUU) derived

from Eq. 4.23 & Eq. 4.25 is not a matrix normal, so direct sampling is prohibitive.
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Figure 4.7: Visualisation of (a) the inducing weight augmentation, and compare (b) the
original Matheron’s rule to (c) our extended version. White blocks represent samples from
the joint Gaussian.

To address this challenge, we extend Matheron’s rule [156, 137, 59] to effi-

ciently sample from q(WWW |UUU). As we show in Appendix C, we can sample

from a conditional Gaussian WWW ∼ q(WWW |UUU) by transforming a sample from a

joint matrix normal distribution

WWW = λW̄WW +σZZZ>r ΨΨΨ
−1
r (UUU−λŪUU)ΨΨΨ−1

c ZZZc; (4.31)

W̄WW ,ŪUU ∼ p(W̄WW ,ŪUUc,ŪUU r,ŪUU) =MN(000,ΣΣΣr,ΣΣΣc). (4.32)

Here W̄WW ,ŪUU ∼ p(W̄WW ,ŪUUc,ŪUU r,ŪUU) means we first sample W̄WW ,ŪUUc,ŪUU r,ŪUU from the

joint then drop ŪUUc,ŪUU r; in fact ŪUUc,ŪUU r are never computed.

Further, W̄WW ,ŪUU can be obtained by

W̄WW = σE1, ŪUU = ZZZrE1ZZZ>c + ẐZZrẼ2DDDc +DDDrẼ3ẐZZ
>
c +DDDrE4DDDc,

E1 ∼MN(000, IIIdout , IIIdin); Ẽ2, Ẽ3,E4 ∼MN(000, IIIMout , IIIMin), (4.33)

L̂LLr = chol(ZZZrZZZ>r ), L̂LLc = chol(ZZZcZZZ>c ).

The run-time cost is O(2M3
out +2M3

in +doutMoutMin +Mindoutdin) required by invert-

ing ΨΨΨr,ΨΨΨc, computing L̂LLr, L̂LLc, and the matrix products. The extended Matheron’s

rule is visualised in Fig. 4.7 with a comparison to the original Matheron’s rule

for sampling from q(vec(WWW )|vec(UUU)). Note that the original rule requires joint

sampling from Eq. 4.23 (i.e. sampling the white blocks in Fig. 4.7(b)) which has

O((doutdin +MoutMin)
3) cost. Therefore our recipe avoids inverting and multiplying

big matrices, resulting in conditional sampling becoming computationally feasible
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for neural network-sized matrices.

4.2.2.3 Whitening and hierarchical inducing variables

The inducing weights UUU1:L further allow for introducing a single inducing weight

matrix UUU that is shared across the network. By doing so, correlations of weights

between layers in the approximate posterior are introduced. The inducing weights

are then sampled jointly conditioned on the global inducing weights. This requires

that all inducing weight matrices are of the same size along at least one axis, such

that they can be concatenated along the other one.

The easiest way of introducing a global inducing weight matrix is by proceeding

similarly to the introduction of the per-layer inducing weights. As a pre-requisite,

we need to work with “whitened” inducing weights, i.e. set the covariance of the

marginal p(UUU l) to the identity and pre-multiply the covariance block between WWW l

and UUU l with the inverse Cholesky of ΨΨΨl . In this whitened model, the full augmented

prior per-layer isWWW UUUc

UUU r UUU

∼ p(WWW ,UUUc,UUU r,UUU) :=MN(0, Σ̃ΣΣr, Σ̃ΣΣr), (4.34)

with L̃LLr =

 σrIII 0

LLL−1
r ZZZr LLL−1

r DDDr

s.t. Σ̃ΣΣr = L̃LLrL̃LL
>
r =

 σ2
r III σrZZZ>r LLL−>r

σrLLL−1
r ZZZr III


and L̃LLc =

 σcIII 0

LLL−1
c ZZZc LLL−1

c DDDc

s.t. Σ̃ΣΣc = L̃LLcL̃LL>c =

 σ2
c III σcZZZ>c LLL−>c

σcLLL−1
c ZZZc III

 .

One can verify that this whitened model leads to the same conditional distribution

p(WWW |UUU) as presented in the main text. After whitening, for each UUU l we have

that p(vec(UUU l)) = N(000, III), therefore we can also write their joint distribution as

p(vec(UUU1:L)) = N(000, III). In order to construct a matrix normal prior p(UUU1:L) =

MN(0, III, III), the inducing weight matrices UUU1:L needs to be stacked either along the

rows or columns, requiring the other dimension to be matching across all layers.

Then, as the covariance is the identity with σ = σr = σc = 1, we can augment

p(UUU1:L) in the exact same way as we previously augmented the prior p(WWW l) with
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Table 4.3: Computational complexity per layer. We assume WWW ∈ Rdout×din , UUU ∈ RMout×Min ,
and K forward passes for each of the N inputs. (∗ uses a parallel computing friendly
vectorisation technique [353] for further speed-up.)

Method Time complexity Storage complexity

Deterministic-W O(Ndindout) O(dindout)

FFG-W O(NKdindout) O(2dindout)
Ensemble-W O(NKdindout) O(Kdindout)

Matrix-normal-W O(NKdindout) O(dindout +din +dout)
k-tied FFG-W O(NKdindout) O(dindout + k(din +dout))
rank-1 BNN O(NKdindout)

∗ O(dindout +2(din +dout))

FFG-U O(NKdindout +2M3
in +2M3

out O(dinMin +doutMout +2MinMout)
+K(doutMoutMin +Mindoutdin))

Ensemble-U same as above O(dinMin +doutMout +KMinMout)

UUU l . In preliminary experiments, we did not observe any performance improvements

under the hierarchical model, so will leave this approach for future work.

4.2.3 Computational complexities

In Tab. 4.3 we report the computational complexity figures for two types of inducing

weight approaches: FFG q(UUU) (FFG-U) and Delta mixture q(UUU) (Ensemble-U).

Baseline approaches include: Deterministic-W, variational inference with FFG q(WWW )

[FFG-W, 26], deep ensemble in WWW [Ensemble-W, 185], as well as parameter-efficient

approaches such as matrix-normal q(WWW ) (Matrix-normal-W, Louizos and Welling

[215]), variational inference with k-tied FFG q(WWW ) (k-tied FFG-W, Swiatkowski

et al. [324]), and rank-1 BNN [62]. The gain in memory is significant for the

inducing weight approaches, in fact with Min < din and Mout < dout the parameter

storage requirement is smaller than a single deterministic neural network. The major

overhead in run-time comes from the extended Matheron’s rule for sampling q(WWW |UUU).

Some of the computations there are performed only once, and in our experiments

we show that by using a relatively low-dimensional UUU and large batch-sizes, the

overhead is acceptable.

4.2.4 Experiments

We evaluate the inducing weight approaches on regression, classification and related

uncertainty estimation tasks. The goal is to demonstrate competitive performance

to popular WWW -space uncertainty estimation methods while using significantly fewer
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parameters. Existing parameter-efficient approaches for uncertainty estimation

(e.g. k-tied or rank-1 BNNs) have achieved close performance to deep ensembles.

However, none of them reduces the parameter count to be smaller than that of a

single network. Therefore we decide not to include these baselines and instead focus

on comparing: (1) variational inference with FFG q(WWW ) [FFG-W, 26] v.s. FFG q(UUU)

(FFG-U, ours); (2) deep ensemble in WWW space [Ensemble-W, 185] v.s. ensemble in

UUU space (Ensemble-U, ours). Another baseline is training a deterministic neural

network with maximum likelihood.

The number of parameters for FFG-U and Ensemble-U with an ensemble size

of 5 in the ResNet-50 experiments are reported in Tab. 4.4.

Table 4.4: Parameter counts for the inducing models with varying UUU size M.

M Method M = 16 M = 32 M = 64 M = 128 M = 256 Deterministic

Abs. value FFG-U 1,384,662 2,771,446 5,710,902 12,253,366 27,992,502 23,520,842
Ensemble-U 1,426,134 2,937,334 6,374,454 14,907,574 38,609,334

rel. size (%) FFG-U 5.89 11.78 24.28 52.10 119.01 100
Ensemble-U 6.06 12.49 27.10 63.38 164.15

4.2.4.1 Synthetic 1-D regression

The synthetic regression task follows Foong et al. [74], which has two clusters

of inputs x1 ∼ U [−1,−0.7], x2 ∼ U [0.5,1], and targets y∼N(cos(4x+0.8),0.01).

For reference we show the exact posterior results using the NUTS sampler [135].

The results are visualised in Fig. 4.8 with predictive mean in blue, and up to three

standard deviations as shaded area. Similar to historical results, FFG-W fails to

represent the increased uncertainty away from the data and in between clusters.

While underestimating predictive uncertainty overall, FFG-U shows a small increase

in predictive uncertainty away from the data. In contrast, a per-layer full covariance

Gaussian in both weight (FCG-W) and inducing space (FCG-U) as well as Ensemble-

U better capture the increased predictive variance, although the mean function is

more similar to that of FFG-W.

Following [74], we sample 50 inputs each from U [−1,−0.7] and U [0.5,1] as

inputs and targets y ∼ N(cos(0.4x+ 0.8),0.01). As a prior we use a zero-mean

Gaussian with standard deviation 4√
din

for the weights and biases of each layer. Our
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Figure 4.8: Toy regression results, with observations in red dots and the ground truth
function in black.

network architecture has a single hidden layer of 50 units and uses a tanh non-

linearity. All three variational methods are optimised using Adam [166] for 20,000

updates with an initial learning rate of 10−3. We average over 32 MC samples from

the approximate posterior for every update. For Ensemble-U and FCG-U we decay

the learning rate by a factor of 0.1 after 10,000 updates and the size of the inducing

weight matrix is 2×25 for the input layer (accounting for the bias) and 25×1 for

the output layer. Ensemble-U uses an ensemble size of 8.

For NUTS we use the implementation provided in Pyro [22]. We draw a total

of 25,000 samples, discarding the first 5000 as burn-in and using 1000 randomly

selected ones for prediction.

4.2.4.2 Classification and in-distribution calibration

Table 4.5: Complete in-distribution results for Resnet-50 on CIFAR10

Method Acc. ↑ NLL ↓ ECE ↓ Brier ↓

Deterministic 94.72±0.08 0.43±0.01 4.46±0.08 0.10±0.00

Ensemble-W 95.90 0.20 1.08 0.06
FFG-W 94.13±0.08 0.18±0.00 0.50±0.06 0.09±0.00

FFG-U (M=64) 94.40±0.05 0.17±0.00 0.64±0.06 0.08±0.00

FFG-U (M=128) 94.66±0.09 0.17±0.00 1.59±0.06 0.08±0.00

Ensemble-U (M=64) 94.94±0.07 0.16±0.00 0.45±0.06 0.08±0.00

Ensemble-U (M=128) 95.34±0.05 0.17±0.00 1.29±0.05 0.07±0.00
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Figure 4.9: Resnet run-times & model sizes.

Table 4.6: Complete in-distribution results for Resnet-50 on CIFAR100

Method Acc. ↑ NLL ↓ ECE ↓ Brier ↓

Deterministic 75.73±0.16 2.14±0.01 19.69±0.15 0.43±0.00

Ensemble-W 79.33 1.23 6.51 0.31
FFG-W 74.44±0.27 1.01±0.01 4.24±0.10 0.35±0.00

FFG-U (M=64) 75.37±0.09 0.92±0.01 2.29±0.39 0.34±0.00

FFG-U (M=128) 75.88±0.13 0.91±0.00 6.66±0.15 0.34±0.00

Ensemble-U (M=64) 75.97±0.12 0.90±0.00 1.12±0.06 0.33±0.00

Ensemble-U (M=128) 77.61±0.11 0.94±0.00 6.00±0.12 0.32±0.00

As the core empirical evaluation, we train Resnet-50 models [115] on CIFAR-10

and CIFAR-100 [179]. To avoid underfitting issues with FFG-W, a useful trick is to

set an upper limit σ2
max on the variance of q(WWW ) [215]. This trick is similarly applied

to the UUU-space methods, where we cap λ ≤ λmax for q(WWW |UUU), and for FFG-U we

also set σ2
max for the variance of q(UUU). In convolution layers, we treat the 4D weight

tensor WWW of shape (cout ,cin,h,w) as a cout × cinhw matrix. We use UUU matrices of

shape 64×64 for all layers (i.e. M = Min = Mout = 64), except that for CIFAR-10

we set Mout = 10 for the last layer.

In Tabs. 4.5 and 4.6 we report test accuracy and test ECE [106] along NLLs

and Brier scores as a evaluation of the uncertainty estimates. This table contains

two standard errors across the random seeds for the corresponding metrics. The

error bar results are not available for Ensemble-W, as it is constructed from the 5

independently trained deterministic neural network with maximum likelihood.

Overall, Ensemble-W achieves the highest accuracy, but is not as well-calibrated

as variational methods. For the inducing weight approaches, Ensemble-U outper-

forms FFG-U on both datasets; overall it performs the best on the more challenging
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CIFAR-100 dataset (close-to-Ensemble-W accuracy and lowest ECE). Tabs. 4.5

and 4.6 in the Appendix show that increasing the UUU dimensions to M = 128 im-

proves accuracy but leads to slightly worse calibration.

In Fig. 4.9 we show prediction run-times for batch-size = 500 on an NVIDIA

Tesla V100 GPU, relative to those of an ensemble of deterministic nets, as well as

relative parameter sizes to a single ResNet-50. The extra run-times for the inducing

methods come from computing the extended Matheron’s rule. However, as they

can be calculated once and cached for drawing multiple samples, the overhead

reduces to a small factor when using larger number of samples K, especially for the

bigger Resnet-50. More importantly, when compared to a deterministic ResNet-50,

the inducing weight models reduce the parameter count by over 75% (5,710,902

vs. 23,520,842) for M = 64.

4.2.4.3 Ablation study

We visualise in Fig. 4.10 the accuracy and ECE results for computationally lighter

inducing weight ResNet-18 models with different hyper-parameters. Performance in

both metrics improves as the UUU matrix size M is increased (right-most panels), and

the results for M = 64 and M = 128 are fairly similar. Also setting proper values for

λmax,σmax is key to the improved results. The left-most panels show that with fixed

σmax values (or Ensemble-U), the preferred conditional variance cap values λmax are

fairly small (but still larger than 0 which corresponds to a point estimate for WWW given

UUU). For σmax which controls variance in UUU space, we see from the top middle panel

Figure 4.10: Ablation study: average CIFAR-10 accuracy (↑) and ECE (↓) for the inducing
weight methods on ResNet-18. In the first two columns M = 128 for UUU dimensions. For
λmax,σmax = 0 we use point estimates for UUU ,WWW respectively.
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Figure 4.11: Mean±two errs. for Acc↑ and ECE↓ on corrupted CIFAR [120].

that the accuracy metric is fairly robust to σmax as long as λmax is not too large. But

for ECE, a careful selection of σmax is required (bottom middle panel).

We run the inducing weight method with the following options:

• Row/column dimensions of UUU l (M): M ∈ {16,32,64,128}.

We set M = Min = Mout except for the last layer, where we use Min = M and

Mout = 10.

• λmax values for FFG-U and Ensemble-U: λmax ∈ {0,0.03,0.1,0.3}.

When λmax = 0 it means q(WWW |UUU) is a delta measure centered at the mean of

p(WWW |UUU).

• σmax values for FFG-U: σmax = {0,0.1,0.3}.

When σmax = 0 we use a MAP estimate for UUU .

Each experiment is repeated with 5 random seeds to collect the averaged results

on a single NVIDIA RTX 2080TI. The models are trained for 100 epochs in total. We

first run 50 epochs of maximum likelihood to initialise the model, then run 40 epochs

training on the modified variational lower-bound with KL annealing (linear scaling

schedule), finally we run 10 epochs of training with the variational lower-bound (i.e.

no KL annealing). We use the Adam optimiser with learning rate 3e− 4 and the

default β1,β2 parameters in PyTorch’s implementation.

4.2.4.4 Robustness, out-of-distribution detection and pruning

To investigate the models’ robustness to distribution shift, we compute predictions

on corrupted CIFAR datasets [120] after training on clean data. Fig. 4.11 shows
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Table 4.7: OOD detection metrics for Resnet-50 trained on CIFAR10/100.

In-dist→ OOD C10→ C100 C10→ SVHN C100→ C10 C100→ SVHN
Method / Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Deterministic .84±.00 .80±.00 .93±.01 .85±.01 .74±.00 .74±.00 .81±.01 .72±.02

Ensemble-W .89 .89 .95 .92 .78 .79 .86 .78
FFG-W .88±.00 .90±.00 .90±.01 .86±.01 .76±.00 .79±.00 .80±.01 .69±.01

FFG-U .89±.00 .91±.00 .94±.01 .91±.01 .77±.00 .79±.00 .83±.01 .74±.01

Ensemble-U .90±.00 .91±.00 .93±.00 .91±.00 .77±.00 .79±.00 .82±.01 .72±.02
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Figure 4.12: CIFAR100 pruning accuracy(↑) and ECE(↓) as a function of the number of
parameters relative to a deterministic network. Rightmost points are without pruning.

accuracy and ECE results for the ResNet-50 models. Ensemble-W is the most

accurate model across skew intensities, while FFG-W, though performing well on

clean data, returns the worst accuracy under perturbation. The inducing weight

methods perform competitively to Ensemble-W with Ensemble-U being slightly

more accurate than FFG-U as on the clean data. For ECE, FFG-U outperforms

Ensemble-U and Ensemble-W, which are similarly calibrated. Interestingly, while

the accuracy of FFG-W decays quickly as the data is perturbed more strongly, its

ECE remains roughly constant.

Tab. 4.7 further presents the utility of the maximum predicted probability for out-

of-distribution (OOD) detection. The metrics are the area under the receiver operator

characteristic (AUROC) and the precision-recall curve (AUPR). The inducing-weight

methods perform similarly to Ensemble-W; all three outperform FFG-W and deter-

ministic networks across the board.

4.2.4.5 Parameter pruning

We further investigate pruning as a pragmatic alternative for more parameter-efficient

inference. For FFG-U, we prune entries of the Z matrices, which contribute the

largest number of parameters to the inducing methods, with the smallest magnitude.
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Table 4.8: Pruning in-distribution uncertainty results for Resnet-50. The percentage refers
to the weights left for FFG-W and the number of Z parameters for FFG-U.

CIFAR10 CIFAR100
Method Acc. ↑ NLL ↓ ECE ↓ Brier ↓ Acc. ↑ NLL ↓ ECE ↓ Brier ↓

FFG-W (100%) 94.13±0.08 0.18±0.00 0.50±0.06 0.09±0.00 74.44±0.27 1.01±0.01 4.24±0.10 0.35±0.00

FFG-W (50%) 94.07±0.03 0.18±0.00 0.40±0.04 0.09±0.00 74.38±0.21 1.02±0.01 4.15±0.09 0.36±0.00

FFG-W (10%) 94.17±0.06 0.18±0.00 0.58±0.02 0.09±0.00 74.42±0.23 1.10±0.01 6.86±0.08 0.36±0.00

FFG-W (1%) 93.60±0.09 0.19±0.00 0.80±0.06 0.09±0.00 67.08±0.33 1.19±0.01 1.36±0.18 0.44±0.00

FFG-W (0.1%) 58.59±0.75 1.15±0.02 7.33±0.23 0.55±0.01 10.66±0.43 3.97±0.03 2.80±0.15 0.96±0.00

FFG-U (100%) 94.40±0.05 0.17±0.00 0.64±0.06 0.08±0.00 75.37±0.09 0.92±0.01 2.29±0.39 0.34±0.00

FFG-U (75%) 94.45±0.05 0.18±0.00 2.19±0.11 0.09±0.00 75.26±0.07 0.93±0.00 3.74±0.67 0.35±0.00

FFG-U (50%) 94.31±0.07 0.18±0.00 2.31±0.09 0.09±0.00 74.89±0.07 0.94±0.00 5.04±0.77 0.35±0.00

FFG-U (25%) 93.34±0.03 0.22±0.00 4.83±0.09 0.11±0.00 71.32±0.16 1.09±0.01 12.44±0.90 0.42±0.00
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Figure 4.13: Accuracy (↑) and ECE (↓) on corrupted CIFAR for pruning FFG-W. We show
the mean and two standard errors for each metric on the 19 perturbations provided in [120].

For FFG-W we follow Graves [100] in setting different fractions of WWW to 0 depending

on their variational mean-to-variance ratio and repeat the previous experiments after

fine-tuning the distributions on the remaining variables. We stress that, unlike FFG-

U, the FFG-W pruning corresponds to a post-hoc change of the probabilistic model

and no longer performs inference in the original weight-space.

For FFG-W, pruning 90% of the parameters (leaving 20% of parameters as

compared to its deterministic counterpart) worsens the ECE, in particular on CI-

FAR100, see Fig. 4.12 for a plot of accuracy and ECE as a function of the number

of parameters. Further pruning to 1% worsens the accuracy and the OOD detection

results as well. On the other hand, pruning 50% of the Z matrices for FFG-U reduces

the parameter count to 13.2% of a deterministic net, at the cost of only slightly worse

calibration. The results of pruning different fractions of the weights can be found in

Tab. 4.8 for the in-distribution uncertainty evaluation for Resnet-50 and the OOD

detection in Tab. 4.10.
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Figure 4.14: Accuracy (↑) and ECE (↓) on corrupted CIFAR for pruning FFG-U. We show
the mean and two standard errors for each metric on the 19 perturbations provided in [120].

For FFG-W we find that pruning up to 90% of the weights only worsens ECE

and NLL on the more difficult CIFAR100 datasets. Pruning 99% of the weights

worsens accuracy and OOD detection, but interestingly improves ECE on CIFAR100,

where accuracy is noticeably worse.

Pruning 25% and 50% of the Z parameters in FFG-U results in a total param-

eter count of 4,408,790 and 3,106,678, i.e. 18.7 and 13.2% of the deterministic

parameters respectively on ResNet-50, see also Tab. 4.9. Up to pruning 50% of the Z

parameters, we find that only ECE becomes slightly worse, although on CIFAR100

it is still better than the ECE for FFG-W at 100% of the weights. Other metrics are

not affected neither on the in-distribution uncertainty or OOD detection, except for a

minor drop in accuracy.

Table 4.9: Pruning parameter counts for keeping fractions of the weights in FFG-W and the
Z parameters in FFG-U.

Method Abs. param. count rel. size (%)

FFG-W (100%) 46,988,564 199.8
FFG-W (50%) 23,520,852 100
FFG-W (10%) 4,746,682 20.2
FFG-W (1%) 522,494 2.2
FFG-W (0.1%) 100,075 0.4
FFG-U (100%) 5,710,902 24.28
FFG-U (75%) 4,408,790 18.7
FFG-U (50%) 3,106,678 13.2
FFG-U (25%) 1,804,566 7.7
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Table 4.10: Pruning OOD detection metrics for Resnet-50 trained on CIFAR10/100.

In-dist→ OOD C10→ C100 C10→ SVHN C100→ C10 C100→ SVHN
Method / Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

FFG-W (100%) .88±.00 .90±.00 .90±.01 .86±.01 .76±.00 .79±.00 .80±.01 .69±.01

FFG-W (50%) .88±.00 .90±.00 .90±.00 .86±.00 .76±.00 .79±.00 .79±.01 .69±.01

FFG-W (10%) .88±.00 .90±.00 .90±.01 .87±.01 .76±.00 .79±.00 .79±.01 .69±.01

FFG-W (1%) .88±.00 .89±.00 .90±.01 .86±.01 .72±.00 .75±.00 .71±.02 .57±.02

FFG-W (0.1%) .65±.01 .65±.01 .38±.03 .24±.03 .56±.01 .59±.01 .31±.04 .21±.02

FFG-U (100%) .89±.00 .91±.00 .94±.01 .91±.01 .77±.00 .79±.00 .83±.01 .74±.01

FFG-U (75%) .89±.00 .91±.00 .94±.00 .91±.00 .77±.00 .79±.00 .82±.01 .72±.02

FFG-U (50%) .89±.00 .91±.00 .93±.00 .91±.00 .77±.00 .79±.00 .82±.01 .72±.02

FFG-U (25%) .88±.00 .90±.00 .92±.01 .88±.01 .75±.00 .77±.00 .82±.02 .72±.03

4.2.4.6 Implementation details

We base our implementation on the Resnet class in torchvision [269], replacing the

input convolutional layer with a 3× 3 kernel size and removing the max-pooling

layer. We train the deterministic network on CIFAR-10 using Adam with a learning

rate of 3×10−4 for 200 epochs. On CIFAR-100 we found SGD with a momentum

of 0.9 and initial learning rate of 0.1 decayed by a factor of 0.1 after 60, 120 and 160

epochs to lead to better accuracies. The ensemble is formed of the five deterministic

networks trained with different random seeds.

For FFG-W we initialised the mean parameters using the default initialisation

in listing for the corresponding deterministic layers. The initial standard deviations

are set to 10−4. We train using Adam for 200 epochs on CIFAR-10 with a learning

rate of 3× 10−4, and 300 epochs on CIFAR-100 with an initial learning rate of

10−3, decaying by a factor of 0.1 after 200 epochs. On both datasets we only use

the negative log likelihood part of the variational lower bound for the first 100

epochs as initialisation to the maximum likelihood parameter and then anneal the

weight of the kl term linearly over the following 50 epochs. For the prior we use a

standard Gaussian on all weights and biases and restrict the standard deviation of the

posterior to be at most σmax = 0.1. We also experimented with a larger upper limit

of σmax = 0.3, but found this to negatively affect both accuracy and calibration.

All the UUU-space approaches use Gaussian priors p(vec(WWW l)) =N(000,1/
√

dinIII),

motivated by the connection to GPs. Hyperparameter and optimisation details for
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the inducing weight methods on CIFAR-10 are discussed below in the details on

the ablation study. We train all methods using Adam for 300 epochs with a learning

rate of 10−3 for the first 200 epochs and then decay by a factor of 10. For the initial

100 epochs we train without the KL-term of the ELBO and then anneal its weight

linearly over the following 50 epochs. For the tables and figures in the main text,

we set λmax = 0.1 for Ensemble-U on both datasets, and σmax = 0.1,λmax = 0.03 on

CIFAR-10 for FFG-U. We initialise the entries of the Z matrices by sampling from a

zero-mean Gaussian with variance 1
M and set the diagonal entries of the D matrices

to 10−3. For FFG-U we initialise the mean of the variational Gaussian posterior in

UUU-space by sampling from a standard Gaussian and set the initial variances to 10−3.

For Ensemble-U initialisation, we draw an M×M shaped sample from a standard

Gaussian that is shared across ensemble members and add independent Gaussian

noise with a standard deviation of 0.1 for each member. We use an ensemble size

of 5. During optimisation, we draw 1 MC samples per update step for both FFG-U

and Ensemble-U (such that each ensemble member is used once). For testing we

use 20 MC samples for all variational methods. We fit BatchNorm parameters by

minimising the negative log likelihood.

For the pruning experiments, we take the parameters from the corresponding

full runs, set a fixed percentage of the weights to be deterministically 0 and fine-tune

the remaining weights with a new optimizer for 50 epochs. We use Adam with a

learning rate of 10−4. For FFG-W we select the weights with the smallest ratio of

absolute mean to standard deviation in the approximate posterior, and for FFG-U the

Z parameters with the smallest absolute value.

4.2.5 Related Work

4.2.5.1 Parameter-efficient uncertainty quantification methods

Recent research has proposed Gaussian posterior approximations for BNNs with

efficient covariance structure [289, 373, 242]. The inducing weight approach differs

from these in introducing structure via a hierarchical posterior with low-dimensional

auxiliary variables. Another line of work reduces the memory overhead via efficient

parameter sharing [215, 353, 324, 62]. The third category of work considers a
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hybrid approach, where only a selective part of the neural network receives Bayesian

treatments, and the other weights remain deterministic [33, 53]. However, both types

of approaches maintain a “mean parameter” for the weights, making the memory

footprint at least that of storing a deterministic neural network. Instead, our approach

shares parameters via the augmented prior with efficient low-rank structure, reducing

the memory use compared to a deterministic network. In a similar spirit, Izmailov

et al. [151] perform inference in a d-dimensional sub-space obtained from PCA on

weights collected from an SGD trajectory. But this approach does not leverage the

layer-structure of neural networks and requires d× memory of a single network.

As a side note, mean-field VI approaches have shown success in network

pruning but only in terms of maintaining a minimum accuracy level [100, 216, 111].

To the best of our knowledge, our empirical study presents the first evaluation for

pruning methods in maintaining uncertainty estimation quality.

4.2.5.2 Sparse GP and function-space inference

As BNNs and GPs are closely related [250, 230, 196], recent efforts have introduced

GP-inspired techniques to BNNs [218, 321, 165, 258]. Compared to weight-space

inference, function-space inference is appealing as its uncertainty is more directly

relevant for predictive uncertainty estimation. While the inducing weight approach

performs computations in weight-space, Section 4.2.6 establishes the connection

to function-space posteriors. Our approach is related to sparse deep GP methods

with UUUc having similar interpretations as inducing outputs in e.g. Salimbeni and

Deisenroth [300]. The major difference is that UUU lies in a low-dimensional space,

projected from the pre-activation output space of a network layer.

4.2.5.3 Priors on neural network weights

Hierarchical priors for weights has also been explored [216, 181, 13, 91, 159]. How-

ever, we emphasise that p̃(WWW ,UUU) is a pseudo prior, i.e. a prior that is constructed to

assist posterior inference (rather than to improve model design by more accurately

reflecting our beliefs about the distribution of the weights). Indeed, parameters

associated with the inducing weights are optimisable for improving posterior approx-

imations. Our approach can be adapted to other priors, e.g. for a Horseshoe prior
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p(θθθ ,ννν) = p(θθθ |ννν)p(ννν) =N(θθθ ;0,ννν2)C+(ννν ;0,1), the pseudo prior can be defined as

p̃(θθθ ,ννν ,a) = p̃(θθθ |ννν ,a)p̃(a)p(ννν) such that
∫

p̃(θθθ |ννν ,a)p̃(a)da = p(θθθ |ννν). In general,

pseudo priors have found broader success in Bayesian computation [41].

4.2.6 A function-space perspective on inducing weights

We present the proposed approach again but from a function-space inference per-

spective. Assume a neural network layer with weight WWW computes the following

transformation of the input X = [xxx1, ...,xxxN ],xxxi ∈ Rdin×1

F =WWWX, H = g(F), WWW ∈ Rdout×din,X ∈ Rdin×N ,

where g(·) is the non-linearity. Therefore the Gaussian prior p(W ) = N(000,σ2III)

induces a Gaussian distribution on the linear transformation output F, in fact each

of the rows in F = [f1, ..., fdout ]
>, fi ∈ RN×1 has a Gaussian process form with linear

kernel

fi|X∼ GP(000,KXX), KXX(m,n) = σ
2xxx>mxxxn. (4.35)

Performing inference on F directly has O(N3 + doutN2) cost, so a sparse approxi-

mation is needed. Slightly different from the usual approach, we introduce “scaled

noisy inducing outputs” UUUc = [uc
1, ...,u

c
dout

]> ∈ Rdout×Min in the following way, using

shared inducing inputs ZZZ>c ∈ Rdin×Min

p(fi, ûi|X) = GP

000,

KXX KXZZZc

KZZZcX KZZZcZZZc

 ,

p(uc
i |ûi) =N

(
ûi

σc
,σ2

r DDD2
c

)
,

with KZZZcX = σ2ZZZcX and KZZZcZZZc = σ2ZZZcZZZ>c . By marginalising out the “noiseless

inducing outputs” ûi, we have the joint distribution p(fi,ui) as

p(uc
i ) =N(000,σ2

r ΨΨΨc), ΨΨΨc = ZZZcZZZ>c +DDD2
c ,

p(fi|X,uc
i ) =N(σcσ

−2KXZZZcΨΨΨ
−1
c uc

i ,KXX−σ
−2KXZZZcΨΨΨ

−1
c KZZZcX).
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Figure 4.15: Visualising UUU variables in pre-activation spaces.

Collecting all the random variables in matrix forms, this leads to

p(UUUc) =MN(000,σ2
r III,ΨΨΨc),

p(F|X,UUUc) =MN(σcσ
−2UUUcΨΨΨ

−1
c KZZZcX,σ

2
r III,σ−2

r (KXX−σ
−2KXZZZcΨΨΨ

−1
c KZZZcX))

(4.36)

=MN(UUUcΨΨΨ
−1
c σcZZZcX,σ2

r III,X>σ
2
c (III−ZZZ>c ΨΨΨ

−1
c ZZZc)X).

Also recall from conditioning rules of matrix normal distributions, we have that

p(WWW |UUUc) =MN
(

UUUcΨΨΨ
−1
c σcZZZc,σ

2
r III,σ2

c (III−ZZZ>c ΨΨΨ
−1
c ZZZc)

)
.

Since for WWW ∼MN(M,ΣΣΣ1,ΣΣΣ2) we have WWWX d∼MN(MX,ΣΣΣ1,X>ΣΣΣ2X), this imme-

diately shows that p(F|X,UUUc) is the push-forward distribution of p(WWW |UUUc) for the

operation F =WWWX. In other words

F∼ p(F|X,UUUc) ⇔ WWW ∼ p(WWW |UUUc), F =WWWX.

As {uc
i } = UUUc are the “noisy” versions of {ûi} in f space, they can be viewed

as “scaled noisy inducing outputs” in F space, see the red bars in the 2nd row of

Fig. 4.15 with σc = 1. As the inducing weights UUU are the focus of our analysis here,

we conclude that this specific choice of σc is without loss of generality.

So far the UUUc variables assist the posterior inference to capture correlations

across functions values of different inputs. Up to now the function values remain

independent across output dimensions, which is also reflected by the diagonal row
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covariance matrices in the above matrix normal distributions. As in neural networks

the output dimension can be fairly large (e.g. dout = 1000), to further improve

memory efficiency, we proceed to project the column vectors of UUUc to an Mout

dimensional space with Mout � dout . This dimension reduction step is done with a

generative approach, similar to probabilistic PCA [330]

UUU ∼MN(0,ΨΨΨr,ΨΨΨc),

UUUc|UUU ∼MN(σrZZZ>r ΨΨΨ
−1
r UUU ,σ2

r (III−ZZZ>r ΨΨΨ
−1
r ZZZr),ΨΨΨc).

(4.37)

Note that the column covariance matrices in the above two matrix normal distri-

butions are the same, and the conditional sampling procedure is done by a linear

transformation of the columns in UUU plus noise terms. Again from the marginalisation

and conditioning rules of matrix normal distributions, we have that the full joint

distribution Eq. 4.21, after proper marginalisation and conditioning, returns

p(UUU) =MN(0,ΨΨΨr,ΨΨΨc),

p(UUUc|UUU) =MN(σrZZZ>r ΨΨΨ
−1
r UUU ,σ2

r (III−ZZZ>r ΨΨΨ
−1
r ZZZr),ΨΨΨc).

This means UUU can be viewed as “projected noisy inducing points” for the GP p(F),

whose corresponding “inducing inputs” are row vectors in ZZZc, see the red bars in

Fig. 4.15. Similarly, column vectors in UUU rX can be viewed as the noisy projections

of the column vectors in F, in other words UUU r can also be viewed as “neural network

weights” connecting the data inputs X to the projected output space that UUU lives in.

As for the variational objective, since q(WWW |UUU) and p(WWW |UUU) only differ in the

scale of the covariance matrices, it is straightforward to show that the push-forward

distribution q(WWW |UUU)→ q(F|X,UUU) has the same mean as p(F|X,UUU), but with a

different covariance matrix that scales p(F|X,UUU)’s covariance matrix by λ 2. As the

operation F =WWWX maps WWW ∈ Rdout×din to F ∈ Rdout×N , this means the conditional
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KL is scaled up/down, depending on whether N ≥ din or not

KL[q(F|X,UUU) || p(F|X,UUU)] =
N
din

R(λ ),

R(λ ) :=KL[q(WWW |UUU) || p(WWW |UUU)].

In summary, the push-forward distribution of q(WWW 1:L,UUU1:L)→ q(F1:L,UUU1:L) is

q(F1:L,UUU1:L) = ∏
L
l=1 q(Fl|Fl−1,UUU l)q(UUU l), F0 := X,

and the corresponding variational lower-bound for q(F1:L,UUU1:L) becomes (with

D= (X,Y))

ELBO(q(F1:L,UUU1:L))=Eq(F1:L)[log p(Y|FL)]−∑
L
l=1

(
N
dl

in
R(λl)+KL[q(UUU l) || p(UUU l)]

)
,

(4.38)

with dl
in the input dimension of layer l.

Note that

Eq(F1:L)[log p(Y|FL)] = Eq(WWW 1:L)[log p(Y|X,WWW 1:L)] = Eq(WWW 1:L)[log p(D|WWW 1:L)].

(4.39)

Comparing equations Eq. 4.30 and Eq. 4.38, we see that the only difference between

weight-space and function-space variational objectives comes in the scale of the

conditional KL term. Though not investigated in the experiments, we conjecture that

it could bring potential advantage to optimise the following variational lower-bound

˜ELBO(q(F1:L,UUU1:L)) =Eq(F1:L)[log p(Y|FL)]−∑
L
l=1 (βlR(λl)+KL[q(UUU l) || p(UUU l)]) ,

(4.40)

βl =min(1,
N
dl

in
).

The intuition is that, as uncertainty is expected to be lower when N ≥ din, it makes

sense to use β = 1 ≤ N/din to reduce the regularisation effect introduced by the

KL term. In other words, this allows the variational posterior to focus more on



4.2. Sparse uncertainty representation with inducing weights 144

fitting the data, and in this “large-data” regime over-fitting is less likely to appear.

On the other hand, function-space inference approaches (such as GPs) often return

better uncertainty estimates when trained on small data (N < din). So choosing

β = N/din < 1 in this case would switch to function-space inference and thereby

improving uncertainty quality potentially. In the CIFAR experiments, the usage of

convolutional filters leads to the fact that N ≥ dl
in for all ResNet layers. Therefore in

those experiments βl = 1 for all layers, which effectively falls back to the weight-

space objective Eq. 4.30.

4.2.7 Conclusion

We have proposed a parameter-efficient uncertainty quantification framework for

neural networks. It augments each of the network layer weights with a small matrix

of inducing weights, and by extending Matheron’s rule to matrix-normal related

distributions, maintains a relatively small run-time overhead compared with ensemble

methods. Critically, experiments on prediction and uncertainty estimation tasks show

the competence of the inducing weight methods to the state-of-the-art, while reducing

the parameter count to under a quarter of a deterministic ResNet-50 before pruning.

This represents a significant improvement over prior Bayesian and deep ensemble

techniques, which so far have not managed to go below this threshold despite various

attempts of matching it closely.

Several directions are to be explored in the future. First, modelling corre-

lations across layers might further improve the inference quality as outlined in

Section 4.2.2.3. Second, based on the function-space interpretation of inducing

weights, better initialisation techniques can be inspired from the sparse GP and

dimension reduction literature. Similarly, this interpretation might suggest other

innovative pruning approaches for the inducing weight method, thereby achieving

further memory savings. Lastly, the small run-time overhead of our approach can be

mitigated by a better design of the inducing weight structure as well as vectorisation

techniques amenable to parallelised computation.



Chapter 5

TyXe: Pyro-based Bayesian neural

networks for PyTorch

The surge of interest in deep learning over recent years has been fuelled to a

large degree by the availability of agile software packages that enable researchers and

practitioners alike to quickly experiment with different architectures for their problem

setting [269, 1] by providing modular abstractions for automatic differentiation

and gradient-based learning. While there has been similarly growing interest in

uncertainty estimation for deep neural networks, in particular following the Bayesian

paradigm [221, 251], a comparable toolbox of software packages has mostly been

missing. A major barrier of entry for the use of BNNs is the large overhead in required

code and additional mathematical abstractions compared to stochastic maximum

likelihood estimation as commonly performed in deep learning. Moreover, BNNs

typically have intractable posteriors, necessitating the use of various approximations

when performing inference, which depending on the problem may perform better or

worse and frequently require complex bespoke implementations. This oftentimes

leads to the development of inflexible small libraries or repetitive code creation that

can lack essential “tricks of the trade” for performant BNNs, such as appropriate

initialisation schemes, gradient variance reduction [168, 337], or may only provide

limited inference strategies to compare outcomes. Even though various general

purpose probabilistic programming packages have been built on top of those deep

learning libraries (Pyro [22] for PyTorch, Edward2 [337] for Tensorflow), software
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1 net = nn.Sequential(nn.Linear(1, 50), nn.Tanh(), nn.Linear(50, 1))
2 likelihood = tyxe.likelihoods.HomoskedasticGaussian(dataset_size, scale=0.1)
3 prior = tyxe.priors.IIDPrior(dist.Normal(0, 1))
4 guide_factory = tyxe.guides.AutoNormal
5 bnn = tyxe.VariationalBNN(net, prior, likelihood, guide_factory)

Listing 5.1: Bayesian non-linear regression setup code example in 5 lines. Line 1 is a
standard PyTorch neural network definition, line 2 is the likelihood of the data, corresponding
to a data loss object. Line 3 sets the prior and line 4 constructs the approximate posterior
distribution on the weights. Line 5 finally brings all components together to set up the BNN.
For MCMC, the guide_factory would be HMC or NUTS from pyro.infer.mcmc and the
BNN a tyxe.MCMC_BNN.

linking those to BNNs has only been released recently [338] and provides substitutes

for Keras’ layers [46] to construct BNNs from scratch.

In this chapter we describe TyXe (Greek: chance), a package linking the ex-

pressive computational capabilities of PyTorch with the flexible model and inference

design of Pyro [22] in service of providing a simple, agile, and useful abstraction for

BNNs targeted at PyTorch practitioners. In contrast to Tran et al. [338], our central

design principle is to avoid modification of 3rd party code, such as requiring new

layer types and re-implementation of architectures utilising them, to enable users to

“bayesianise” their existing PyTorch neural networks with minimal overhead.

In the following, we give a high-level overview of the TyXe package and

provide examples that illustrate the ease of obtaining uncertainty estimates from

pre-defined PyTorch neural networks. We begin with a simple one-dimensional

non-linear regression example to give an overview of the features and design. Then

we continue by exploring various inference methods for a torchvision ResNet and

their impact on different uncertainty estimation metrics, highlighting that users can

use more complex architectures with existing implementations. In the following

example of a graph neural network, we demonstrate that TyXe is compatible not

only with native PyTorch packages, but also with 3rd party libraries such as DGL

[348]. TyXe can further be used in settings where the loss function does not have

a probabilistic interpretation as is often the case e.g. in computer vision. We

demonstrate that uncertainty in a pseudo-BNNs can improve generalisation to unseen

data in a PyTorch3D [284] rendering example. Finally, we show that our separation
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of prior and inference makes it straight-forward to implement variational continual

learning [254].

Statement of contributions The work in this chapter was carried out in collaboration

with Theofanis Karaletsos. We designed the library and experiments together, and I

carried out the coding and implementation with feedback from Theo. We wrote the

paper together.

5.1 TyXe by example: non-linear regression

The core components that users interact with in TyXe are the BNN classes. These

are intended as wrappers around deterministic PyTorch neural networks inheriting

from nn.Module. We then leverage Pyro to formulate a probabilistic model over

the neural network parameters, in which we perform approximate inference. There

are two primary BNN classes with identical interfaces: tyxe.VariationalBNN

and tyxe.MCMC_BNN. Both classes offer a unified workflow of constructing a BNN,

fitting it to data and then making predictions.

In this section we provide more details on each of these steps along the example

of a synthetic one-dimensional non-linear regression dataset. We use the setup

from [74] with two clusters of inputs x1 ∼ U[−1,−0.7], x2 ∼ U[0.5,1] and y ∼

N(cos(4x+0.8),0.12).

In all experiments, we use a single Monte Carlo sample for estimating the ex-

pected log likelihood during training for variational inference and standard deviations

are initialised to 10−4 unless stated otherwise. Weight priors are standard normals.

5.1.1 Defining a BNN

A TyXe BNN has four components: a PyTorch neural network, a likelihood for the

data, a prior for the weights and a guide factory1 for the posterior. We describe their

signature as well as basic instantiations that we provide below. As seen in Listing 5.1,

turning a PyTorch network into a TyXe BNN requires as little as five lines of code.

1We follow Pyro’s terminology and refer to probabilistic programs drawing approximate posterior
samples as “guides”.
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(a) Local reparameterisation (b) Shared weight samples (c) HMC

Figure 5.1: Bayesian non-linear regression using the setup from Listing 5.1 and fit using
Listing 5.2. Fig. 5.1a wraps the call to bnn.predict in the local reparameterisation context
with the call to fit, Fig. 5.1b does not. Switching between the two is as simple as adapting
the indentation of the call to predict to be in- or outside the local_reparameterization
context. Both use the same bnn object with the same approximate posterior. Fig. 5.1c uses
pyro.infer.mcmc.HMC as guide factory. The shaded area indicates up to three standard
deviations from the predictive mean.

5.1.1.1 Network architecture

PyTorch provides a range of classes that facilitate the construction of neural networks,

ranging from simple linear or convolutional layers and non-linearities as building

blocks to higher-level classes that compose these blocks, e.g. by chaining them

together as in the nn.Sequential module. A simple regression network on one-

dimensional data with one layer of 50 hidden units and a tanh non-linearity, as

commonly used for illustration in works on BNNs, can be defined in a single

line of code (first line of Listing 5.1). More generally, any neural network in

PyTorch is described by the nn.Module class, which provides functionalities such

as easy composition, parameter and gradient handling, and many more conveniences

for neural network researchers and practitioners that have contributed to the wide

adoption of this framework. Further, the torchvision package implements various

modern architectures, such as ResNets [114, 115]. TyXe can also work on top

of architectures from 3rd party libraries, such as DGL [348], that derive from

nn.Module.

Pyro inherits the elegant abstractions for neural networks from PyTorch through

its PyroModule class, which extends nn.Module to allow for instance attributes to

be modified by Pyro effect handlers, making it easy to replace nn.Parameters with

Pyro sample sites. We adopt the PyroModule class under the hood to provide a

seamless interface between TyXe and PyTorch networks.
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5.1.1.2 Prior

At this time, we restrict the probabilistic model definition to specifying priors

in weight space. Our prior classes take care of constructing distribution objects

that replace the network parameters as PyroSamples. One such prior that we

provide is an IIDPrior which takes a Pyro distribution as argument, such as a

pyro.distributions.Normal(0., 1.), applying a standard normal prior over all

parameters of the network. We further implement LayerwiseNormalPrior, a per-

layer Gaussian prior that sets the variance to the inverse of the number of input units

as recommended in [250], or analogous to the variance used for weight initialisation

in [92, 113] when using the flag method={"radford", "xavier", "kaiming"},

respectively. Crucially, we do not require users to set priors for each layer by hand,

this is dealt with under the hood automatically within our framework.

Our prior classes accept arguments that allow for certain layers or parameters to

be excluded from a Bayesian treatment. Our ResNet example in Section 5.2 passes

hide_module_types=[nn.BatchNorm2d] to the prior to hide the parameters of

the BatchNorm modules. Those parameters stay deterministic and are fit to minimise

the log likelihood part of the ELBO.

5.1.1.3 Guide

The guide argument is the only place where the initialisation of our VariationalBNN

and MCMC_BNN differs. tyxe.VariationalBNN expects a function that takes a Pyro

model as argument and returns a guide, e.g. a pyro.infer.autoguide. This is to

allow for automatic guide construction for both the network weights and random

variables in the likelihood that need to be inferred. For example, if the standard

deviation of the data noise in our example was unknown, we could infer it using a

LogNormal distribution along side the network weights.

To facilitate local reparameterisation and computation of KL-divergences in

closed form, we implement an AutoNormal guide, which samples all unobserved

sites in the model from a diagonal Normal. This is similar to Pyro’s AutoNormal au-

toguide, which constructs an auxiliary joint latent variable with a factorised Gaussian

distribution. Variational parameters can be initialised as for autoguides by sampling
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1 optim = pyro.optim.Adam({"lr": lr})
2 with tyxe.poutine.local_reparameterization():
3 bnn.fit(loader, n_epochs, optim)
4 pred_params = bnn.predict(test_data, num_predictions=n)

Listing 5.2: Regression fit and predict example with local reparameterisation enabled for
training, but not testing.

from the prior/estimating statistics like the prior median, or through additional con-

venience functions that we provide, such as sampling the means from distributions

with variances depending on the numbers of units in the corresponding layers, akin

to how deterministic layers are typically initialised. This also permits initialising

means to the values of pre-trained networks, which is particularly convenient when

converting a deep network into a BNN.

The tyxe.MCMC_BNN class expects an MCMC kernel as guide, either

HMC [251] or NUTS [135], and runs Pyro’s MCMC on the full dataset to ob-

tain (asymptotically unbiased) samples from the posterior.

For both BNN classes, arguments to the guide constructor can be passed via

partial from Python’s built-in functools module. Listing 5.3 shows an example

of this.

5.1.1.4 Likelihood

Our likelihoods are thin wrappers around Pyro’s distributions, expecting a

dataset_size argument to correctly scale the KL term when using mini-batches.

Specifically we provide Bernoulli, Categorical, HomoskedasticGaussian and Het-

erosketdasticGaussian likelihoods. Implementing a new likelihood requires a

predictive_distribution(predictions) method that returns a Pyro distribu-

tion object for sampling. Further, it should provide a method for calculating an error

estimate for evaluation, such as the squared error for Gaussian models or classifi-

cation error for discrete models. Hence it is easy to add new likelihoods based on

existing distributions, e.g. a Poisson likelihood.
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5.1.2 Fitting a BNN

Our BNN class provides a scikit-learn-style fit function which runs inference for

a given numbers of passes over an Iterable, e.g. a PyTorch DataLoader. Each

element is a length-two tuple, where the first element contains the network inputs

(and may be a list) and the second is the likelihood targets, e.g. class labels. The

VariationalBNN class further requires a Pyro optimiser as input to fit.

The tyxe.VariationalBNN class runs Stochastic Variational Inference

(SVI) [278, 360], which is a popular training algorithm for BNNs, for instance used

in [26], based on maximising the evidence lower bound (ELBO). In this case our

implementation automatically handles the correct scaling of the KL-term vs. the log

likelihood in the ELBO. The tyxe.MCMC_BNN provides a compatible interface to

Pyro’s MCMC class.

Listing 5.2 shows a call to fit. Besides the data loader and the num-

ber of epochs or samples, it is possible to pass in a callback function to the

VariationalBNN, which is invoked after every epoch with the average value of the

ELBO over the epoch and can be used e.g. to check the log likelihood of a validation

data set. By returning True, the callback function can stop training. The MCMC_BNN

passes any keyword arguments on to Pyro’s MCMC class.

5.1.3 Predicting with a BNN

The predict method returns predictions for a given number of weight samples from

the approximate posterior. Listing 5.2 invokes predict at the bottom. By default

it aggregates the sampled predictions, i.e. averages them. Via aggregate=False

the sampled predictions can be returned in a stacked tensor. We further implement

an evaluate method that expects test labels and returns their log likelihood along

with an error measure depending on the model, e.g. squared error for Gaussian

likelihoods and classification error for Categorical or Binary ones.
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5.1.4 Transformations via effect handlers

One crucial component that our library provides is effect handlers2, for example

two popular gradient variance reduction techniques, local reparameterisation[168]

and flipout[352]. Local reparameterisation samples the pre-activations of each data

point rather than a single weight matrix shared across a mini-batch for factorised

Gaussian approximate posteriors over the weights and layers performing linear

mappings, such as dense or convolutional layers. Flipout, on the other hand, samples

a rank-one matrix of signs per data point, which allows for using distinct weights in

a computationally efficient manner in linear operations, if the weights are sampled

from a factorised symmetric distribution.

Typically, these are implemented as separate layer classes, e.g. in [338].

This creates an unnecessary redundancy in the code base, since there are now

two versions of the same model, which differ only in sampling approaches for

gradient estimation at each linear mapping. Moreover, from a probabilistic mod-

eling point of view it is desirable to separate model and inference language ex-

plicitly, in order to facilitate reuse of models and inference approaches. Fortu-

nately, Pyro provides an expressive module for effect handling, which we can

leverage to modify the computation as required. Specifically, we implement a

LocalReparameterizationMessenger which marks linear functions called by

PyTorch modules, such as torch.nn.functional.linear, as effectful in order

to modify how linear computations are performed as required. The Messenger

maintains references from samples to their distributions and, when a linear function

is called in a local_reparameterization context on weights from a factorised

Gaussian, samples the output from the Gaussian over the result of the linear mapping.

Listing 5.2 calls fit in such a context. The call to predict could be wrapped

too, but the purpose of local reparameterisation and flipout is to reduce gradient

variance. As they double the computational cost, we omit them for testing.

5.2 Large-scale vision classification

2For an overview of effect handlers, see [272] or specifically Pyro’s poutine library [22].
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1 resnet = torchvision.models.resnet18(pretrained=True)
2 prior = tyxe.priors.IIDPrior(dist.Normal(0, 1), expose_all=False,
3 hide_module_types=[nn.BatchNorm2d])
4 likelihood = tyxe.likelihoods.Categorical(dataset_size)
5 guide = partial(tyxe.guides.AutoNormal, train_loc=False, init_scale=1e-4,
6 init_loc_fn=tyxe.guides.PretrainedInitializer.from_net(resnet))
7 bayesian_resnet = tyxe.VariationalBNN(resnet, prior, likelihood, guide)
8 ll_prior = tyxe.priors.IIDPrior(dist.Normal(0, 1), expose_all=False,
9 expose_modules=[resnet.fc]) # alternative last-layer prior and guide

10 lr_guide = pyro.infer.autoguide.AutoLowRankMultivariateNormal

Listing 5.3: Bayesian ResNet example. Line 1 loads a ResNet with pre-trained parameters
from torchvision. The prior in lines 2−3 excludes BatchNorm layers, keeping their
parameters deterministic. Arguments to the guide are passed with partial as in lines 5−6.
We show how to set the Gaussian means to the pre-trained weights and only fit the variances,
which are initialised to be small. The BNN object in line 7 is constructed exactly the same
way as in the regression example. Lines 8−10 show an alternative prior that only applies to
the final fully-connected layer alongside a Pyro autoguide.
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Figure 5.2: Calibration curves and empirical cumulative density of the entropy of the
predictive distribution on test and OOD data for Bayesian Resnet-18 with different inference
approaches on CIFAR10 (OOD: SVHN).

The biggest advantage resulting from our choice not to implement bespoke layer

classes is that implementations of popular architectures can immediately be turned

into their Bayesian counterparts. While implementing the two-layer network from

the regression example with Bayesian layers is of course not complicated, writing

the code for a modern computer vision architecture, e.g. a ResNet [114, 115], is

significantly more cumbersome and error-prone. With TyXe, users can make use

of the ResNet implementation available through torchvision as shown in List-

ing 5.3. In this example we further highlight the flexibility of TyXe to only perform
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inference over some parameters while keeping others deterministic by excluding

nn.BatchNorm2d layers from having the prior placed over their parameters.

To showcase how the clean separation of network architecture, prior, guide

and likelihood in TyXe facilitates an experimental workflow, we investigate the

predictive uncertainty of different inference strategies for a Bayesian ResNet. In

Listing 5.3 we define a fully factorised Gaussian guide that fixes the means to the

values of pre-trained weights and only fits the variances as parameters. While we

would usually want the approximate posterior to be as flexible as possible, it has

been observed in the literature [215, 339] that such restrictions can improve the

predictive performance of a BNN. We further investigate a mean-field guide where

we similarly initialise the means to pre-trained weight values, but do not fix them for

optimisation, and restrict the variance of the variational distribution to a maximum

of 0.1 to prevent underfitting. Finally we test performing inference in only the final

classification layer with a Gaussian guide with either a diagonal or low-rank plus

diagonal covariance matrix (also shown in the Listing) while using the pre-trained

weights for the previous layers. Switching between these options is easy, with

typically only a single or two lines of code differing. As baselines we compare to

maximum likelihood (ML) and maximum a-posteriori (MAP). For the full code see

examples/resnet.py in the supplement.

Fig. 5.2 compares calibration and the entropy of the predictive distributions on

test and out-of-distribution (OOD) data. Mean-field (MF) with learned means leads

to better calibrated predictions than variants (re-)using point estimates for parts of

or the entire network. It best distinguishes test from OOD data as measured by the

area under the ROC curve based on the maximum predicted probability and has the

lowest ECE and NLL, see Tab. 5.1.

We use the usual data augmentation techniques for CIFAR10 of randomly

flipping and cropping the images after padding them with 4 pixels on each dimension

and we normalise all channels to have zero-mean and unit-standard deviation. All

methods use the Adam optimiser [166]. We train the deterministic inference methods

(ML, MAP) for 200 epochs with a learning rate of 10−3 and another 100 epochs
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Table 5.1: Bayesian ResNet-18 predictive performance.

Inference NLL↓ Acc.↑(%) ECE↓(%) OOD↑

ML 0.33 94.29 4.10 0.78
MAP 0.29 92.14 4.44 0.82
MF (sd only) 0.27 93.66 3.14 0.93
MF 0.20 93.28 0.97 0.94
LL MF 0.35 93.36 3.62 0.89
LL low rank 0.34 93.31 3.75 0.89

with a learning rate of 10−4. All variational methods are trained for 200 epochs with

a learning rate of 10−3 and we initialise the means to pre-trained ML parameters.

We use a rank of 10 for the low-rank plus diagonal posterior and average over 32

samples for predictions on the test and OOD sets. The factorised Gaussian posteriors

all use local reparameterisation and we limit the standard deviation of the mean-field

posteriors to 0.1.

5.3 Compatibility with external libraries
TyXe is compatible with libraries outside of the native PyTorch ecosystem and

classical settings such as classification of i.i.d. images or regression, as long as

the networks build on top of nn.Module. In this section, we demonstrate this on a

semi-supervised node classification example with a graph neural network from the

DGL [348] tutorials, as well as a 3D rendering example in PyTorch3D.

5.3.1 Bayesian graph neural networks with DGL

In this section, we extend an example from the DGL tutorials3 to train a Bayesian

graph neural network (GNN) on the Cora dataset. Graph datasets are often semi-

supervised, where an entire graph of nodes is provided, but only some of them

are labelled. Hence we need a mechanism for preventing unlabelled nodes from

contributing to the log likelihood. We combine Pyro’s block and mask poutines to

implement the selective_mask effect handler, which can wrap the call to fit as a

context manager as shown in Listing 5.4 and mask out data in the likelihood. The

network is taken from the DGL tutorial without change. As it utilises nn.Linear,

it is compatible with flipout. Prior, guide, likelihood and BNN can be constructed
3https://docs.dgl.ai/en/0.5.x/tutorials/models/1_gnn/1_gcn.html

https://docs.dgl.ai/en/0.5.x/tutorials/models/1_gnn/1_gcn.html
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1 class GCNLayer(nn.Module):
2 ...
3 def forward(self, graph, x):
4 with graph.local_scope():
5 graph.ndata['h'] = x
6 graph.update_all(gcn_msg, gcn_reduce)
7 h = graph.ndata['h']
8 return self.linear(h)
9

10 class GNN(nn.Module):
11 ...
12 def forward(self, graph, x):
13 x = self.gcn_layer1(graph, x)
14 x = torch.relu(x)
15 return self.gcn_layer2(graph, x)
16 ...
17 bgnn = tyxe.VariationalBNN(gnn, prior, guide, likelihood)
18 loader = [((graph, x), y)]
19 ...
20 with tyxe.poutine.selective_mask(
21 mask=train_mask,
22 expose=["likelihood.data"]):
23 bgnn.fit(loader, optim, n_epochs)

Listing 5.4: GNN example. The graph convolutional layer definition in lines 1−9 relies on
DGL’s graph functionality and is used for the GNN in lines 11−16. The Bayesian GNN can
be constructed in lines 18−19 with the exact same prior, guide and likelihood options as in
previous examples, while the input data defined in line 20 now consists of a graph and node
features. The selective_mask in lines 22−24 ensures that only predictions on labelled
nodes contribute to the log likelihood when calling fit in line 25.

exactly as in the previous examples, see examples/gnn.py for the code.

In Tab. 5.2 we report NLLs, accuracies and ECE for ML, MAP and MF. ML

leads to overfitting and requires the use of early stopping. Further it suffers from

overconfident predictions, which can be mitigated to a degree by the use of variational

inference, although not to the same extent as in the image classification example.

Bayesian GNNs have only recently been started to be investigated in a few works

[375, 109, 217, 186] and we believe that TyXe can be a valuable tool for putting

Bayesian inference at the disposal of the graph neural network community.

Following the DGL tutorial, we train ML (and MAP) for 200 iterations with

a learning rate of 10−2 using Adam. We report the test accuracy at the iteration

with lowest validation negative log likelihood. For mean-field, we train for 400

iterations with an initial learning rate of 0.1, which we decay by a factor of 10 every
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1 nerf_bnn = tyxe.PytorchBNN(nerf_net, prior, guide)
2 optim = torch.optim.Adam(nerf_bnn.pytorch_parameters(dummy_data), lr=1e-3)
3 ...
4 images, rays = renderer(cameras_batch, nerf_bnn)
5 image_loss = calc_loss(images, rays, targets)
6 kl_loss = nerf_bnn.cached_kl_loss
7 loss = image_loss + scale * kl_loss
8 loss.backward()
9 optim.step()

Listing 5.5: Bayesian NeRF example. Constructing a PytorchBNN is similar to a
VariationalBNN in lines 1−2 but without the likelihood. No downstream changes ex-
cept for parameter collection for the PyTorch optimiser in lines 3−5 – which requires a batch
of data to trace parameters on a call to the net’s forward method – are needed. The nerf_bnn
can be passed into the PyTorch3D renderer in lines 7−8 as a drop-in replacement for the
nerf_net. The loss can be calculated as before in lines 9−10, with the possible addition of
the KL regulariser in lines 11−12. Automatic differentiation and parameter updates can be
performed as in standard PyTorch code in lines 13−14.

100 iterations and we limit the variational standard deviations to 0.3. Means are

initialised to the random initialisation of the deterministic network and we draw 8

posterior samples for evaluation. We use 10 bins to calculate the expected calibration

error.

5.3.2 Custom losses: Bayesian NeRF with PyTorch3D

Next, we adapt a more complex example on Neural Radiance Fields (NeRF)

[237] from the PyTorch3D repository4 to train a Bayesian NeRF. The loss function

does not straight-forwardly correspond to a probabilistic likelihood and is calculated

as a custom error function of rendered image and silhouette. Hence there is no

suitable likelihood class to implement for TyXe and it is not clear how the the prior

4https://github.com/facebookresearch/pytorch3d/blob/master/docs/
tutorials/fit_simple_neural_radiance_field.ipynb

Table 5.2: Performance of deterministic and Bayesian GNNs on the Cora dataset. We report
the lowest validation NLL along with the test accuracy and ECE at the corresponding epoch
(mean and two standard errors over five runs).

Inference NLL↓ Acc.↑ ECE↓

ML 1.01± .04 75.64±1.28 15.38±0.97
MAP 0.93± .03 75.94±0.73 12.78±0.96
MF 0.77± .02 78.02±1.00 10.22±1.31

https://github.com/facebookresearch/pytorch3d/blob/master/docs/tutorials/fit_simple_neural_radiance_field.ipynb
https://github.com/facebookresearch/pytorch3d/blob/master/docs/tutorials/fit_simple_neural_radiance_field.ipynb
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or KL term should be weighed relative to the error. Therefore this example is not

Bayesian in the proper sense as a ‘posterior’ as a product of likelihood and prior does

not exist, but demonstrates that the uncertainty of a pseudo-Bayesian variational

BNN can still improve the robustness on unseen data.

Specifically, we introduce a more low level PytorchBNN class that does not

require a likelihood and can be used to directly wrap a PyTorch neural network. It is

constructed similarly to VariationalBNN with a variational guide factory, but due to

the absence of the likelihood does not provide convenience functions such as fit or

predict. Instead, it is intended to serve as a drop-in replacement of the deterministic

neural network in a PyTorch-based workflow. The output of the forward method

corresponds to predictions of the network made with a single Monte Carlo sample

from the variational posterior. The corresponding KL penalty term can be accessed

through the cached_kl_loss attribute and added to the loss. It is updated on every

forward pass, i.e. when a sample is drawn from the approximate posterior. The

key difference to a regular PyTorch neural network is that since Pyro initialises

parameters lazily, we cannot provide a parameters method. Instead, optimisable

parameters are collected via pytorch_parameters, which takes a batch of data to

pass through the network for tracing the parameters.

We provide a code snippet in Listing 5.5. We emphasise that parameters are

trained with the original PyTorch instead of a Pyro optimiser, further reducing the

required changes to the original workflow. The renderer is a PyTorch3D object

and uses the Bayesian NeRF object instead of the original PyTorch network. The

data-dependent loss is then calculated as before and the KL-divergence of the ap-

proximate posterior from the prior on the weights can be added to the objective as

a regulariser, possible weighed by some scalar scale. The full code can be found

in examples/nerf.py and is identical to the original notebook for the most part,

with only a few lines needing to be modified to adapt it to TyXe, as well as some

additional plotting code for visualising the predictive uncertainty.

In the original example, the network is trained to render views of a cow from

360°. We leave out 90° to create a held-out test set. As Fig. 5.3 shows, this
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(a) Det. NeRF (b) Bayesian NeRF (c) Uncertainty

Figure 5.3: PyTorch3D example. Top row was seen during training, bottom row had been
excluded. Bayesian NeRF achieves an error of 8.1×10−3 on a set of 10 held-out angles,
while the error is 9.4×10−3 for the deterministic version. Uncertainty visualises the variance
across images rendered from different weight samples for the network.

leads to many artifacts and discontinuities with a deterministic net, suggesting

overfitting. The pseudo-Bayesian NeRF averages many of these out, and provides

helpful measures of uncertainty in form of the variances of the predicted images

(right column).

We train the deterministic NeRF with the recommended settings from the

tutorial, i.e. 20,000 iterations with an initial learning rate of 10−3, which is decayed

by a factor of 10 for the final 5000 iterations. The Bayesian NeRF uses the same

learning rate schedule. Means are initialised to the parameters of the deterministic

NeRF and standard deviations to 10−2. We linearly anneal the weight of the KL

term over the first 10,000 iterations to the inverse of the number of RGB values

in the colour images plus the number silhouette pixels. We use 8 samples for test

predictions and calculate averages and standard deviation over the final image outputs

of the renderer.
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1 bayesian_weights = tyxe.util.pyro_sample_sites(bnn.net)
2 posteriors = bnn.net_guide.get_detached_distributions(bayesian_weights)
3 new_prior = tyxe.priors.DictPrior(posteriors)
4 bnn.update_prior(new_prior)

Listing 5.6: Updating the prior of a BNN for variational continual learning. Lines 1−2 collect
all weights over which we perform inference, lines 3−5 extract the corresponding variational
distributions from the guide, lines 6−7 initialise the new prior object mapping parameter
names to distribution and line 8 finally updates the BNN’s prior.

5.4 Variational continual learning

Finally, we demonstrate how our separation of prior, guide and network ar-

chitecture allows us to elegantly implement variational continual learning (VCL)

[254]. After having set up a BNN as in the previous examples and having trained on

the first task, all one needs to do is extract the guide distributions over the weights,

construct a new prior object and use it to update the BNNs prior. We show example

code for this process in Listing 5.6 and the full implementation can be found in

examples/vcl.py. Training on the following task can then be conducted as usual

with the fit method on the current dataset.

In Fig. 5.4 we show the test accuracy across the tasks observed so far after train-

ing on each tasks on the classical Split-MNIST and Split-CIFAR benchmarks[371].

We do not make use of coresets as in [254], but this would only require some boil-

erplate code for creating the coresets prior to training and then fine-tuning on each

coreset prior to testing by calling fit on them and restoring the state of the Pyro

parameter store. As previously reported in the literature, deterministic networks

suffer from forgetting on previous tasks, which can be mitigated by using a Bayesian

approach such as VCL.

Following the recommendations in [323], we train on each MNIST task for 600

epochs and each CIFAR task for 60. We use Adam with a learning rate of 10−3.

The architecture on MNIST is a fully connected network with a hidden layer of 200

units with ReLU non-linearities. The convolutional architecture on CIFAR has two

blocks of Conv−ReLU−Conv−ReLU−Maxpool followed by a fully connected

layer with 512 units. The convolution layers in the first block have 32, in the second
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block 64 channels and all use 3× 3 kernels with a stride and padding of 1. The

maxpool operation is 2×2 with a stride of 2. We normalise all CIFAR tasks to have

zero-mean and unit-standard deviation per channel and do not use any form of data

augmentation.

5.5 Related work
The most closely related piece of recent work is Bayesian Layers [338], which

extends the layer classes of Keras with the aim of them being usable as drop-in

replacements for their deterministic counterpart. This forces the user to modify the

code where the network is defined or write their own boilerplate code. Bayesian

Layers are currently more general in scope, providing an abstraction over uncertainty

over composable functions including normalising flows and Gaussian Process map-

pings per layer, while at this point we have consciously limited ourselves to weight

space uncertainty in neural networks and treat networks holistically rather than per

layer.

For PyTorch, PyVarInf5 provides functionality for turning nn.Module instances

into BNNs in a similar spirit to TyXe. As it is not backed by a probabilistic program-

ming framework, the choice of prior distributions is limited, inference is restricted

to variational factorised Gaussian, sampling tricks such as local reparameterisation

are not implemented and MCMC-based inference is not available. More recently,

BLiTZ6 [65] provides variational counterparts to PyTorch’s linear, convolutional and

some recurrent layers. Networks need to be constructed manually based on those and

other types of layers are not supported. Priors are limited to mixtures of up to two

Gaussians and inference is performed with a factorised Gaussian without support for

gradient variance reduction techniques.

5.6 Conclusion
We have presented TyXe, a Pyro-based library that facilitates a seamless integration

of BNNs for uncertainty estimation and continual learning into PyTorch-based

5https://github.com/ctallec/pyvarinf
6https://github.com/piEsposito/blitz-bayesian-deep-learning

https://github.com/ctallec/pyvarinf
https://github.com/piEsposito/blitz-bayesian-deep-learning
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Figure 5.4: Mean accuracy and two standard errors on tasks seen so far for VCL and ML on
Split-MNIST and -CIFAR.

workflows. We have demonstrated the flexibility of TyXe with applications based on

3rd-party libraries, ranging from modern deep image classification architectures over

graph neural networks to neural radiance fields. TyXe avoids implementing bespoke

layer classes and instead leverages and expands on Pyro’s powerful effect handler

module, resulting in a flexible design that cleanly separates architecture definition,

prior, inference, likelihood and sampling logic.

TyXe’s choices of variational distributions are currently pragmatic, focused on

serving practitioners and researchers interested in generating uncertainty estimates

for downstream tasks that will benefit from the improvements offered by standard

variational families or HMC over maximum likelihood. Recent work has even argued

that mean-field may be sufficient for inference in deep networks [68]. However, we

are highly interested in further developing TyXe to support more complex recent

approaches and become a tool for Bayesian deep learning research. Its backing by

Pyro enables easy extensions for users and developers. We would expect techniques

with structured covariance matrices, such as in the previous chapters, [214] as

well as hierarchical weight models [215, 160] to be feasible to express within

TyXe, although in particular the latter may require some additional abstractions.

Nevertheless, we believe that similar to Bayesian Layers [338] TyXe already makes

a valuable contribution to the ML software ecosystem, filling the gap of easy-to-use

uncertainty estimation for PyTorch.



Chapter 6

Conclusion

6.1 Summary
This thesis presented contributions in three directions of approximate inference in

deep neural networks.

Chapter 3 proposed a scalable Laplace approximation for uncertainty estimation

and continual learning based on a block-diagonal Kronecker factored approximation

of the Hessian. This is an efficient, pragmatic technique that can be applied to

existing architectures and training pipelines to add Bayesian uncertainty estimates.

Nevertheless, as more recent extensions further demonstrate, this Laplace approxi-

mation can form the basis of a competitive approximate inference scheme in modern

architectures when combined with optimisation of the hyperparameters w.r.t. the

marginal likelihood.

Chapter 4 investigated parameter-efficient inference techniques. The first part ex-

plored placing Bernoulli distributions over the weights, for which the samples can

cheaply be represented in memory as binary numbers. With a matching Bernoulli

prior, variational inference suffers from similar underfitting issues as Gaussian

posteriors, however these can be overcome with a MAP-style approach under a

hierarchical Beta-Bernoulli prior. The second part developed a method for reducing

the parameter count of the variational posteriors by taking inspiration from sparse

Gaussian processes. Augmenting the commonly used Gaussian prior in a structured

manner and by extending Matheron’s rule for efficient sampling to matrix normal
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distributions, the approach manages to train Bayesian ResNet-50 models using

only 25% of the number of parameters of its deterministic counterpart at matching

accuracy being competitive with deep ensembles on the quality of its uncertainty

estimates.

Chapter 5 introduced TyXe, a probabilistic programming interface for Bayesian

inference in PyTorch neural networks built on top of Pyro. The package allows

for flexible experimentation with a range of approximate inference techniques on

arbitrary existing architectures by providing cleanly factorised building blocks under

a layer-agnostic design.

Below we discuss broader future directions for the field of Bayesian deep

learning, see the corresponding chapter and section conclusions for more focused

outlooks on the respective techniques.

6.2 Future research
Over the course of the years during which this work has been carried out, uncertainty

estimation in deep neural networks has established itself as a core area of machine

learning research. Bayesian methods in particular have been a driving force in

this direction, offering not only a principled approach for incorporating uncertainty

through a probabilistic treatment, but also allowing for overcoming issues such as

catastrophic forgetting in a unified way. Much work, including this present one,

has focused on developing expressive yet computationally efficient approaches for

approximating the posterior as well as possible.

One of the key issues still preventing these Bayesian methods from finding

wider adoption is the need for approximating the predictive posterior via Monte

Carlo averaging, necessitating multiple passes through a network. With the ever

growing size of neural architectures, this creates an often prohibitive overhead,

particularly when real-time predictions are needed. One promising recent direction

is restricting inference to the output layer, i.e. combining a deterministic feature

extractor with a Bayesian last layer. The methods developed in Chapter 3 have

been utilised for such pipelines [176, 63] and it will be interesting to see if there
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are certain inductive biases or regularisation techniques for the feature extractor to

make such approaches particularly effective. Alternatively, propagating the weight

uncertainty deterministically through the forward pass could significantly reduce the

computational overhead compared to multiple Monte Carlo passes, but may require

bespoke techniques for each posterior approximation.

On a more fundamental level, the key question that remains to be answered is

whether the predominantly used weight-space inference approaches and Gaussian

priors are going to lead to satisfying solutions if inference is accurate enough.

Indeed, approximate inference approaches often fall short in particular in terms of

discriminative performance when compared to deterministic models and require

ad-hoc deviations from a principled attempt at approximating the posterior as well

as possible, such as artificially forcing the approximate posterior to be more peaked,

to remain competitive. All components of the pipeline, from weight-space priors

that fail to express desirable functional priors [159, 76] over the mis-specified

likelihoods due to data augmentation [355] to inaccurate inference, have received

their share of the blame. However, recent evidence suggests that with typically

infeasible MCMC sampling approaches BNNs do outperform deterministic networks

and heuristic methods such as ensembles [152] in terms of accuracy. Given the

computational difficulty of integrating over a parameters with a dimensionality in

the dozens of millions, the overall progress that the field has seen should certainly

not be understated and it will be intriguing to see the next developments over the

coming years.



Appendix A

Derivation of the pre-activation

Hessian recursion

Here, we provide the basic derivation of the factorisation of the diagonal blocks of

the Hessian in Eq. Eq. 3.5 and the recursive formula for calculating H as presented

in [29].

The Hessian of a neural network with parameters θθθ as defined in the main text

has elements

Hi, j =
∂ 2

∂θi∂θ j
E(θθθ). (A.1)

For a given layer l, the gradient w.r.t. a weight W l
i, j is

∂E
∂W l

i, j
= ∑

k

∂hl
k

∂W l
i, j

∂E
∂hl

k
= al−1

j
∂E
∂hl

i
. (A.2)

Keeping l fixed and differentiating again, we find that the per-sample Hessian

of that layer is

H l
(i, j),(m,n) ≡

∂ 2E
∂W l

i, j∂W l
m,n

= al−1
j al−1

n Hl
i,m, (A.3)

where

Hl
i,m =

∂ 2E
∂hl

i∂hl
m

(A.4)

is the pre-activation Hessian.

We can re-express this in matrix notation as a Kronecker product as in Eq.
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Eq. 3.5

HHH l =
∂ 2E

∂ vec(WWW l)∂ vec(WWW l)
=
(

al−1a>l−1

)
⊗Hl. (A.5)

The pre-activation Hessian can be calculated recursively as

Hl = BBBlWWW>l+1Hl+1WWW l+1BBBl +DDDl (A.6)

where the diagonal matrices BBB and DDD are defined as

BBBl = diag( f ′l (hl)) (A.7)

DDDl = diag( f ′′l (hl)
∂E
∂al

) (A.8)

f ′ and f ′′ denote the first and second derivative of the transfer function. The

recursion is initialised with the Hessian of the error w.r.t. the linear network outputs.

The recursion is derived as follows

Hl
i,m =

∂

∂hl
m

∂E
∂hl

i
=

∂

∂hl
m

∑
k

∂E
∂hl+1

k

∂hl+1
k

∂hl
i

= ∑
k

∂

∂hl
m

(
∂E

∂hl+1
k

∂hl+1
k

∂al
i

∂al
i

∂hl
i

)

= ∑
k

W l+1
k,i

∂

∂hl
m

(
∂E

∂hl+1
k

∂al
i

∂hl
i

)
= ∑

k
W l+1

k,i

(
∂al

i

∂hl
i

∂ 2E
∂hl

m∂hl+1
k

+
∂E

∂hl+1
k

∂ 2al
i

∂hl
i∂hl

m

)

= ∑
k

W l+1
k,i

(
∂al

i

∂hl
i
∑

j

∂ 2E
∂hl+1

j ∂hl+1
k

∂hl+1
j

∂hl
m

+
∂E

∂hl+1
k

δi,m
∂ 2al

i

∂hl
i
2

)

= δi,m
∂ 2al

i

∂hl
i
2

(
∑
k

W l+1
k,i

∂E
∂hl+1

k

)
+∑

k, j
W l+1

k,i
∂al

i

∂hl
i

∂ 2E
∂hl+1

j ∂hl+1
k

W l+1
j,m

∂al
m

∂hl
m

= δi,m
∂ 2al

i

∂hl
i
2

∂E
∂al

i
+∑

k, j
W l+1

k,i
∂al

i

∂hl
i

∂ 2E
∂hl+1

j ∂hl+1
k

∂al
m

∂hl
m

W l+1
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and defining
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Bl
i, j = δi, j

∂al
i

∂hl
i
= δi, j f ′(hl

i) (A.9)

Dl
i, j = δi, j

∂ 2al
i

∂hl
i
2

∂E
∂al

i
= δi, j f ′′(hl

i)
∂E
∂al

i
(A.10)

yields Eq. A.6.

For further details and on how to calculate the diagonal blocks of the Gauss-

Newton and Fisher matrix, we refer the reader to [29] and [229].



Appendix B

Bayesian binary neural network

PyTorch code

We provide a basic PyTorch implementation with classes corresponding to

nn.Linear in Listings B.1 to B.3. Listing B.1 provides a binary base class im-

plementing the forward pass, reusing the .weights and .bias attribute of the base

class as the logit parameters of the elementwise Bernoulli distributions in the ap-

proximate posterior. The forward pass uses the local reparameterisation trick when

training, such that it is differentiable, and samples the weights as −1 or 1 when

testing.

The classes in Listings B.2 and B.3 inherit from this class, adding a

kl_divergence method that calculates the corresponding divergence to the prior.

Note that for continual learning the classes would have to slightly modified: rather

than just storing the prior parameter as a scalar (as it is shared across all weights in

the supervised case) it would be necessary to use the .register_buffer method

to store a tensor of the same size as the .weight and .bias attributes. After having

finished training on one dataset, the data in these prior tensor would then be overwrit-

ten by the current values of .weight and .bias. We use that logσ(x) =−ζ (−x),

where σ(x) = (1+ e−x)−1 is the sigmoid and ζ (x) = log(1+ ex) the softplus func-

tion. This allows us to calculate log probabilities directly as a function of the logits

in a numerically stable way without explicitly transforming the logits into probability

space.
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Listing B.1: Linear base class that implements the forward pass.

1def bin_mean_var(logits):
2 if logits is None:
3 return None, None
4 probs = logits.sigmoid()
5 mean = 2 * probs - 1
6 var = 4 * probs * (1 - probs)
7 return mean, var
8

9def bin_sample(logits):
10 if logits is None:
11 return None
12 d = dist.Bernoulli(logits=logits)
13 return 2 * d.sample() - 1
14

15class BinaryLinear(nn.Linear):
16 def forward(self, x):
17 if self.training:
18 m_w, v_w = bin_mean_var(
19 self.weights)
20 m_b, v_b = bin_mean_var(
21 self.bias)
22 m_a = F.linear(
23 x, m_w, m_b)
24 sd_a = F.linear(
25 x.pow(2),
26 v_w, v_b).sqrt()
27 d = dist.Normal(m_a, sd_a)
28 return d.rsample()
29 else:
30 w = bin_sample(self.weights)
31 b = bin_sample(self.bias)
32 return F.linear(x, w, b)
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Listing B.2: Linear binary layer with Bernoulli prior on the weights.

1def bernoulli_kl(logits1, logits2):
2 p = logits.sigmoid()
3 # 1 - sigmoid(x) = sigmoid(-x)
4 one_m_p = logits.neg().sigmoid()
5 t1 = F.softplus(-logits2)
6 t2 = F.softplus(-logits1)
7 t3 = F.softplus(logits2)
8 t4 = F.softplus(logits1)
9 return (p * (t1 - t2) +

10 one_m_p * (t3 - t4))
11

12class BernoulliLinear(BinaryLinear):
13 def __init__(self, *args,
14 p_logits=0.,
15 **kwargs):
16 super().__init__(
17 *args, **kwargs)
18 self.p_logits = p_logits
19

20 def kl_divergence(self):
21 w_p_logits = torch.full_like(
22 self.weights,
23 self.p_logits)
24 w_kl = bernoulli_kl(
25 self.weights, w_p_logits)
26 if self.bias is None:
27 return w_kl.sum()
28 b_p_logits = torch.full_like(
29 self.bias, self.p_logits)
30 b_kl = bernoulli_kl(
31 self.bias, b_p_logits)
32 return w_kl.sum() + b_kl.sum()
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Listing B.3: Linear binary layer with Beta-Bernoulli prior on the weights

1def betab_neg_log_prob(logits, delta):
2 t1 = F.softplus(-logits)
3 t2 = F.softplus(logits)
4 return delta * (t1 + t2)
5

6class BetaLinear(BinaryLinear):
7 def __init__(self, *args, delta=0., **kwargs):
8 super().__init__(*args, **kwargs)
9 self.delta = delta

10

11 def kl_divergence(self):
12 delta = torch.full_like(self.weights, self.delta)
13 neg_log_prob = betab_neg_log_prob(self.weights, delta).sum()
14 if self.bias is not None:
15 delta = torch.full_like(self.bias, self.delta)
16 neg_log_prob += betab_neg_log_prob(self.bias, delta).sum()
17 return neg_log_prob



Appendix C

The extended Matheron’s rule to

matrix normal distributions

The original Matheron’s rule [156, 137, 59] for sampling conditional Gaussian

variables states the following. If the joint multivariate Gaussian distribution isvec(WWW )

vec(UUU)

∼ p(vec(WWW ),vec(UUU)) :=N(000,ΣΣΣ),

ΣΣΣ =

ΣΣΣWWWWWW ΣΣΣWWWUUU

ΣΣΣUUUWWW ΣΣΣUUUUUU

 ,

then, conditioned on UUU , sampling WWW ∼ p(vec(WWW ),vec(UUU)) can be done as

vec(WWW ) = vec(W̄WW )+ΣΣΣWWWUUU ΣΣΣ
−1
UUUUUU(vec(UUU)−vec(ŪUU)),

vec(W̄WW ),vec(ŪUU)∼N(000,ΣΣΣ).

Matheron’s rule can provide significant speed-ups if vec(UUU) has significantly smaller

dimensions than that of vec(WWW ), and the Cholesky decomposition of ΣΣΣ can be

computed with low costs (e.g. due to the specific structure in ΣΣΣ). Recall from the

main text that the augmented prior is

p(vec(WWW ),vec(UUU)) =N

000,

 σ2
c III⊗σ2

r III σcZZZ>c ⊗σrZZZ>r

σcZZZc⊗σrZZZr ΨΨΨc⊗ΨΨΨr

 , (C.1)
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and the corresponding conditional distribution is:

p(vec(WWW )|vec(UUU))=N(σcσr vec(ZZZrΨΨΨ
−1
r UUUΨΨΨ

−1
c ZZZ>c ),σ

2
c σ

2
r (III−ZZZ>c ΨΨΨ

−1
c ZZZc⊗ZZZ>r ΨΨΨ

−1
r ZZZr)).

(C.2)

Therefore, while dim(vec(UUU)) is indeed significantly smaller than of dim(vec(WWW ))

by construction, the joint covariance matrix does not support fast Cholesky decompo-

sitions, meaning that Matheron’s rule for efficient sampling does not directly apply

here.

However, in the full augmented space, the joint distribution does have an

efficient matrix normal form: p(WWW ,UUUc,UUU r,UUUc) =MN(0,ΣΣΣr,ΣΣΣc). Furthermore, the

row and column covariance matrices ΣΣΣr and ΣΣΣc are parameterised by their Cholesky

decompositions, meaning that sampling from the joint distribution p(WWW ,UUUc,UUU r,UUU)

can be done in a fast way. Importantly, Cholesky decompositions for p(UUU)’s row and

column covariance matrices ΨΨΨr and ΨΨΨc can be computed in O(M3
out) and O(M3

in) time,

respectively, which are much faster than the multi-variate Gaussian case that requires

O(M3
inM3

out) time. Observing these, we extend Matheron’s rule to sample p(WWW |UUU)

where p(WWW ,UUU) is the marginal distribution of p(WWW ,UUUc,UUU r,UUUc) =MN(000,ΣΣΣr,ΣΣΣc).

In detail, for drawing a sample from p(WWW |UUU) we need to draw a sample from

the joint p(WWW ,UUU). To do so, we sample from the augmented prior W̄WW ,ŪUUc,ŪUU r,ŪUU ∼

p(W̄WW ,ŪUUc,ŪUU r,ŪUU) =MN(0,ΣΣΣr,ΣΣΣc), computed using the Cholesky decompositions of

ΣΣΣr and ΣΣΣc W̄WW ŪUUc

ŪUU r ŪUU

=

σrIII 000

ZZZr DDDr

E1 E2

E3 E4

σcIII ZZZ>c

000 DDDc

 ,

where E1 ∈ Rdout×din , E2 ∈ Rdout×Min , E3 ∈ RMout×din , E4 ∈ RMout×Min are standard

Gaussian noise samples, and W̄WW ∈ Rdout×din and ŪUU ∈ RMout×Min . Then we construct

the conditional sample WWW ∼ p(WWW |UUU) as follows, similar to Matheron’s rule in the

multivariate Gaussian case

WWW = W̄WW +σrσcZZZ>r ΨΨΨ
−1
r (UUU−ŪUU)ΨΨΨ−1

c ZZZc. (C.3)
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From the above equations we see that ŪUU r and ŪUUc do not contribute to the final WWW

sample. Therefore we do not need to compute ŪUU r and ŪUUc, and we write the separate

expressions for W̄WW and ŪUU as

W̄WW = σrσcE1, ŪUU = ZZZrE1ZZZ>c︸ ︷︷ ︸
ŪUU1

+ZZZrE2DDDc︸ ︷︷ ︸
ŪUU2

+DDDrE3ZZZ>c︸ ︷︷ ︸
ŪUU3

+DDDrE4DDDc︸ ︷︷ ︸
ŪUU4

. (C.4)

Note that ŪUU is a sum of four samples from matrix normal distributions. In particular,

we have that

ŪUU2
d∼MN(000,ZZZrZZZ>r ,DDD

2
c) and ŪUU3

d∼MN(000,DDD2
r ,ZZZcZZZ>c ).

Hence instead of sampling the “long and thin” Gaussian noise matrices E2 and

E3, we can reduce variance by sampling standard Gaussian noise matrices Ẽ2, Ẽ3 ∈

RMout×Min , and calculate ŪUU as

ŪUU = ZZZrE1ZZZ>c + L̂rẼ2DDDc +DDDrẼ3L̂>c +DDDrE4DDDc. (C.5)

This is enabled by calculating the Cholesky decompositions L̂rL̂>r = ZZZrZZZ>r and

L̂cL̂>c = ZZZcZZZ>c , which have O(M3
out) and O(M3

in) run-time costs, respectively. As a re-

minder, the Cholesky factors are square matrices, i.e. L̂r ∈RMout×Mout , L̂c ∈RMin×Min).

We name the approach the extended Matheron’s rule for sampling conditional Gaus-

sians when the full joint has a matrix normal form.

As to verify the proposed approach, we compute the mean and the variance of

the random variable WWW defined in Eq. C.3, and check if they match the mean and

variance of Eq. C.2. First as W̄WW ,ŪUU have zero mean, it is straightforward to verify that

E[W ] = σrσcZZZ>r ΨΨΨ
−1
r UUUΨΨΨ

−1
c ZZZc which matches the mean of Eq. C.2. For the variance
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of vec(WWW ), it requires computing the following terms

V(vec(WWW )) =V(vec(W̄WW ))+V(vec(σrσcZZZ>r ΨΨΨ
−1
r ŪUUΨΨΨ

−1
c ZZZc))

−2Cov[vec(WWW ),vec(σrσcZZZ>r ΨΨΨ
−1
r ŪUUΨΨΨ

−1
c ZZZc)]

=:AAA1 +AAA2−2AAA3. (C.6)

First it can be shown that

AAA1 = σ
2
r σ

2
c III since W̄WW ∼MN(000,σ2

r III,σ2
c III),

AAA2 = σ
2
r σ

2
c ZZZ>c ΨΨΨ

−1
c ZZZc⊗ZZZ>r ΨΨΨ

−1
r ZZZr

as ZZZ>r ΨΨΨ
−1
r ŪUUΨΨΨ

−1
c ZZZc

d∼MN(000,ZZZ>r ΨΨΨ
−1
r ZZZr,ZZZ>c ΨΨΨ

−1
c ZZZc).

For the correlation term AAA3, we notice that W̄WW and ŪUU only share the noise matrix EEE1

in the joint sampling procedure Eq. C.4. This also means

AAA3 = σ
2
r σ

2
c Cov[vec(EEE1),vec(ZZZ>r ΨΨΨ

−1
r ZZZrEEE1ZZZ>c ΨΨΨ

−1
c ZZZc)]

= σ
2
r σ

2
c ZZZ>c ΨΨΨ

−1
c ZZZc⊗ZZZ>r ΨΨΨ

−1
r ZZZr.

Plugging in AAA1,AAA2,AAA3 into Eq. C.6 verifies that V(vec(WWW )) matches the variance of

the conditional distribution p(vec(WWW )|vec(UUU)), showing that the proposed extended

Matheron’s rule indeed draws samples from the conditional distribution.

As for sampling WWW from q(WWW |UUU), since it has the same mean but a rescaled

covariance as compared with p(WWW |UUU), we can compute the samples by adapting

the extend Matheron’s rule as follows. Notice that the mean of WWW in Eq. C.3 is

E[WWW |UUU ] = σrσcZZZ>r ΨΨΨ
−1
r UUUΨΨΨ

−1
c ZZZc, therefore by rearranging terms, Eq. C.3 can be

re-written as

WWW =ZZZ>r ΨΨΨ
−1
r UUUΨΨΨ

−1
c ZZZc +[W̄WW −σrσcZZZ>r ΨΨΨ

−1
r ŪUUΨΨΨ

−1
c ZZZc]

:=mean+noise.

So sampling from q(WWW |UUU) can be done by rescaling the noise term in the above
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equation with the scale parameter λ . In summary, the extended Matheron’s rule for

sampling q(WWW |UUU) is as follows

WWW = λW̄WW +σrσcZZZ>r ΨΨΨ
−1
r (UUU−λŪUU)ΨΨΨ−1

c ZZZc,

W̄WW ,ŪUU ∼ p(W̄WW ,ŪUUc,ŪUU r,ŪUU).
(C.7)

Plugging in σrσc = σ here returns the conditional sampling rule Eq. 4.33 in the main

text.



Appendix D

Additional results and tables

D.1 Vision pentathlon numerical results

Table D.1: Per dataset test accuracy at the end of training on the suite of vision datasets. SI is
Synaptic Intelligence [371] and EWC Elastic Weight Consolidation [170]. We abbreviate Per-
Task Laplace (one penalty per task) as PTL, Approximate Laplace (Laplace approximation
of the full posterior at the mode of the approximate objective) and our Online Laplace
approximation as OL. nMNIST refers to notMNIST, fMNIST to FashionMNIST and C10 to
CIFAR10.

Test Error (%)
Method Approximation MNIST nMNIST fMNIST SVHN C10 Avg.
SI n/a 87.27 79.12 84.61 77.44 57.61 77.21
PTL Diagonal (EWC) 97.83 94.73 89.13 79.80 53.29 82.96

Kronecker factored 97.85 94.92 89.31 85.75 58.78 85.32
AL Diagonal 96.56 92.33 89.27 78.00 56.57 82.55

Kronecker factored 97.90 94.88 90.08 85.24 58.63 85.35
OL Diagonal 96.48 93.41 88.09 81.79 53.80 82.71

Kronecker factored 97.17 94.78 90.36 85.59 59.11 85.40
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D.2 Performance of the binary BNNs for different

number of samples



D.2. Performance of the binary BNNs for different number of samples 180

Ta
bl

e
D

.2
:B

ay
es

ia
n

bi
na

ry
N

N
nu

m
er

ic
al

re
su

lts
(4

sa
m

pl
es

).

M
N

IS
T

C
IF

A
R

10
N

L
L

A
cc

ur
ac

y
(%

)
B

ri
er

sc
or

e
N

L
L

A
cc

ur
ac

y
(%

)
B

ri
er

sc
or

e

ST
E

0.
02

7
±

0.
00

1
99

.2
1
±

0.
02

0.
01

3
±

0.
0

0.
37

1
±

0.
00

4
92

.8
4
±

0.
06

0.
12
±

0.
00

1
E

ns
em

bl
e

(S
T

E
)

0.
02

3
±

0.
00

1
99

.2
3
±

0.
04

0.
01

2
±

0.
0

0.
21
±

0.
00

1
94

.3
1
±

0.
06

0.
08

7
±

0.
0

B
er

no
ul

li
(τ
=

1)
0.

23
8
±

0.
00

1
95

.0
4
±

0.
04

0.
09

6
±

0.
00

1
1.

16
1
±

0.
01

3
61

.2
±

0.
55

0.
53

8
±

0.
00

6
B

er
no

ul
li

(τ
=

10
−

1 )
0.

08
8
±

0.
00

1
97

.7
8
±

0.
04

0.
03

8
±

0.
00

1
0.

68
7
±

0.
00

4
78

.8
6
±

0.
23

0.
32

4
±

0.
00

2
B

er
no

ul
li

(τ
=

10
−

2 )
0.

03
3
±

0.
00

1
98

.9
7
±

0.
03

0.
01

6
±

0.
0

0.
34

8
±

0.
00

2
89

.1
9
±

0.
1

0.
16

5
±

0.
00

1
B

er
no

ul
li

(τ
=

10
−

3 )
0.

03
2
±

0.
00

1
98

.9
5
±

0.
02

0.
01

6
±

0.
0

0.
30

4
±

0.
00

1
91

.3
±

0.
1

0.
13

2
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

0)
0.

03
±

0.
0

99
.0
±

0.
01

0.
01

5
±

0.
0

0.
30

4
±

0.
00

3
91

.5
9
±

0.
11

0.
12

8
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

10
−

1 )
0.

11
5
±

0.
00

1
97

.3
3
±

0.
03

0.
04

7
±

0.
0

1.
14

4
±

0.
01

4
61

.4
6
±

0.
73

0.
52

6
±

0.
00

6
B

et
a-

B
er

no
ul

li
(∆
=

10
−

2 )
0.

04
8
±

0.
00

1
98

.7
2
±

0.
03

0.
02

1
±

0.
0

0.
5
±

0.
00

4
84

.9
2
±

0.
17

0.
23

7
±

0.
00

2
B

et
a-

B
er

no
ul

li
(∆
=

10
−

3 )
0.

02
9
±

0.
0

99
.0

3
±

0.
02

0.
01

5
±

0.
0

0.
31

8
±

0.
00

2
90

.2
8
±

0.
11

0.
14

6
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

10
−

4 )
0.

02
9
±

0.
0

99
.0

3
±

0.
02

0.
01

5
±

0.
0

0.
30

3
±

0.
00

1
91

.4
3
±

0.
06

0.
13

1
±

0.
0

Ta
bl

e
D

.3
:B

ay
es

ia
n

bi
na

ry
N

N
nu

m
er

ic
al

re
su

lts
(1

6
sa

m
pl

es
).

M
N

IS
T

C
IF

A
R

10
N

L
L

A
cc

ur
ac

y
(%

)
B

ri
er

sc
or

e
N

L
L

A
cc

ur
ac

y
(%

)
B

ri
er

sc
or

e

ST
E

0.
02

7
±

0.
00

1
99

.2
1
±

0.
02

0.
01

3
±

0.
0

0.
37

1
±

0.
00

4
92

.8
4
±

0.
06

0.
12
±

0.
00

1
E

ns
em

bl
e

(S
T

E
)

0.
02

2
±

na
n

99
.2

7
±

na
n

0.
01

1
±

na
n

0.
17

4
±

na
n

94
.6

2
±

na
n

0.
08
±

na
n

B
er

no
ul

li
(τ
=

1)
0.

23
4
±

0.
00

1
95

.3
5
±

0.
05

0.
09

2
±

0.
00

1
1.

08
±

0.
01

3
67

.2
6
±

0.
56

0.
50

2
±

0.
00

6
B

er
no

ul
li

(τ
=

10
−

1 )
0.

08
6
±

0.
00

1
97

.9
±

0.
02

0.
03

6
±

0.
0

0.
61

9
±

0.
00

4
83

.8
7
±

0.
17

0.
28

6
±

0.
00

2
B

er
no

ul
li

(τ
=

10
−

2 )
0.

03
2
±

0.
0

99
.0

2
±

0.
01

0.
01

6
±

0.
0

0.
3
±

0.
00

2
90

.9
5
±

0.
12

0.
14

3
±

0.
00

1
B

er
no

ul
li

(τ
=

10
−

3 )
0.

03
2
±

0.
00

1
98

.9
6
±

0.
02

0.
01

6
±

0.
0

0.
25

4
±

0.
00

1
91

.9
5
±

0.
06

0.
11

9
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

0)
0.

02
9
±

0.
0

99
.0

2
±

0.
01

0.
01

5
±

0.
0

0.
25

6
±

0.
00

2
92

.0
8
±

0.
1

0.
11

7
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

10
−

1 )
0.

11
4
±

0.
00

1
97

.4
7
±

0.
02

0.
04

6
±

0.
0

1.
02
±

0.
01

1
68

.4
2
±

0.
8

0.
47

5
±

0.
00

5
B

et
a-

B
er

no
ul

li
(∆
=

10
−

2 )
0.

04
7
±

0.
00

1
98

.7
5
±

0.
02

0.
02

1
±

0.
0

0.
44
±

0.
00

2
88

.3
7
±

0.
12

0.
20

4
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

10
−

3 )
0.

02
8
±

0.
0

99
.0

2
±

0.
02

0.
01

4
±

0.
0

0.
26

8
±

0.
00

1
91

.6
2
±

0.
06

0.
12

8
±

0.
00

1
B

et
a-

B
er

no
ul

li
(∆
=

10
−

4 )
0.

02
8
±

0.
0

99
.0

5
±

0.
01

0.
01

4
±

0.
0

0.
25

3
±

0.
00

1
92

.0
8
±

0.
07

0.
11

8
±

0.
0



D.3. Inducing weight numerical results 181

D.3 Inducing weight numerical results
In Tables D.4 to D.7 we report the numerical results for Fig. 4.11.

Table D.4: Corrupted CIFAR-10 accuracy (↑) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 87.90±2.31 82.02±2.84 76.31±3.80 68.91±4.81 57.94±5.10

Ensemble-W 89.45±2.27 83.94±2.71 78.40±3.61 71.18±4.53 60.15±4.82

FFG-W 83.80±2.43 76.22±3.10 69.30±4.11 61.82±4.66 50.72±4.68

FFG-U 86.90±2.47 80.33±3.14 74.34±4.06 67.23±4.75 57.00±4.83

Ensemble-U 87.35±2.39 80.45±3.19 73.89±4.23 66.52±4.96 54.89±5.26

Table D.5: Corrupted CIFAR-10 ECE (↓) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 10.41±2.03 15.58±2.52 20.56±3.37 27.06±4.23 37.26±4.65

Ensemble-W 4.12±1.31 7.01±1.64 10.10±2.33 14.12±2.84 20.48±2.95

FFG-W 13.05±0.64 12.14±0.89 11.56±0.93 10.77±1.05 10.86±1.31

FFG-U 2.47±1.04 4.93±1.66 7.77±2.44 11.27±2.81 16.16±2.92

Ensemble-U 2.77±1.04 5.86±1.69 9.06±2.40 12.54±2.66 19.66±3.12

Table D.6: Corrupted CIFAR-100 accuracy (↑) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 63.18±3.06 54.23±3.67 48.47±4.27 41.84±4.59 31.96±3.96

Ensemble-W 67.10±3.19 57.92±3.82 51.83±4.50 45.16±4.91 34.93±4.27

FFG-W 57.49±3.17 47.62±3.64 41.99±4.15 35.61±4.24 26.59±3.66

FFG-U 61.71±3.35 52.61±3.84 47.08±4.36 40.56±4.54 30.88±3.93

Ensemble-U 61.87±3.36 52.69±3.97 46.96±4.52 40.59±4.72 30.85±3.98

Table D.7: Corrupted CIFAR-100 ECE (↓) values (in %).

Skew Intensity
Method 1 2 3 4 5

Deterministic 30.06±2.70 37.50±3.17 42.48±3.66 48.41±4.06 57.19±3.60

Ensemble-W 12.31±2.04 17.03±2.31 20.36±2.61 24.16±2.98 29.72±2.49

FFG-W 14.28±0.78 11.07±1.11 11.13±0.85 11.21±1.29 11.96±1.68

FFG-U 4.64±1.66 7.80±2.03 10.42±2.39 13.98±2.83 19.17±2.72

Ensemble-U 5.84±1.91 10.28±2.43 13.60±2.96 17.54±3.42 23.56±3.16

In Tables D.8 to D.11 we report the corresponding results for pruning FFG-W

and FFG-U. See Fig. 4.13 for visualisation.
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Table D.8: Corrupted CIFAR-10 accuracy (↑) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 83.80±2.43 76.22±3.10 69.30±4.11 61.82±4.66 50.72±4.68

FFG-W (50%) 83.39±2.66 75.58±3.23 68.43±4.21 60.69±4.75 49.75±4.73

FFG-W (10%) 84.04±2.61 76.21±3.24 69.35±4.18 61.65±4.72 50.51±4.74

FFG-W (1%) 84.16±2.31 76.48±3.02 69.72±3.92 62.72±4.47 51.26±4.58

FFG-W (0.1%) 46.33±1.30 41.92±1.44 38.91±1.59 36.03±1.76 32.43±1.88

FFG-U (100%) 86.90±2.47 80.33±3.14 74.34±4.06 67.23±4.75 57.00±4.83

FFG-U (75%) 86.99±2.37 80.64±2.95 74.99±3.81 67.87±4.53 57.33±4.65

FFG-U (50%) 86.93±2.36 80.70±2.93 75.10±3.76 68.14±4.44 57.66±4.49

FFG-U (25%) 85.93±2.39 79.41±2.96 73.48±3.82 66.52±4.52 55.57±4.59

Table D.9: Corrupted CIFAR-10 ECE (↓) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 13.05±0.64 12.14±0.89 11.56±0.93 10.77±1.05 10.86±1.31

FFG-W (50%) 14.27±0.59 13.19±0.88 12.36±0.94 11.59±1.07 11.43±1.33

FFG-W (10%) 12.50±0.52 11.66±0.76 11.33±0.90 10.86±1.04 11.28±1.38

FFG-W (1%) 9.86±0.49 9.17±0.62 8.85±0.87 8.87±0.93 11.10±1.45

FFG-W (0.1%) 10.08±0.87 7.82±0.96 6.74±0.81 7.34±0.79 8.77±0.93

FFG-U (100%) 2.47±1.04 4.93±1.66 7.77±2.44 11.27±2.81 16.16±2.92

FFG-U (75%) 2.79±0.60 3.92±0.92 5.27±1.59 7.63±2.00 11.80±2.39

FFG-U (50%) 3.11±0.59 4.26±0.92 5.44±1.58 7.58±1.94 11.38±2.26

FFG-U (25%) 5.27±0.35 5.33±0.57 6.20±1.19 7.95±1.55 11.19±2.21

Table D.10: Corrupted CIFAR-100 accuracy (↑) values (in %) for pruning FFG-W and
FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 57.49±3.17 47.62±3.64 41.99±4.15 35.61±4.24 26.59±3.66

FFG-W (50%) 57.16±3.16 47.33±3.65 41.43±4.18 35.02±4.25 25.89±3.58

FFG-W (10%) 58.77±3.18 48.61±3.69 42.89±4.25 36.33±4.35 26.97±3.70

FFG-W (1%) 50.64±2.89 41.70±3.35 37.35±3.69 31.56±3.65 23.84±3.05

FFG-W (0.1%) 6.72±0.23 6.00±0.24 5.77±0.28 5.43±0.33 4.82±0.33

FFG-U (100%) 61.71±3.35 52.61±3.84 47.08±4.36 40.56±4.54 30.88±3.93

FFG-U (75%) 61.47±3.41 52.25±3.95 46.84±4.46 40.37±4.65 30.48±3.97

FFG-U (50%) 60.76±3.46 51.68±3.96 46.28±4.43 39.84±4.61 29.85±3.92

FFG-U (25%) 58.11±3.20 49.06±3.64 43.62±4.09 37.20±4.23 27.93±3.60
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Table D.11: Corrupted CIFAR-100 ECE (↓) values (in %) for pruning FFG-W and FFG-U.

Skew Intensity
Method 1 2 3 4 5

FFG-W (100%) 14.28±0.78 11.07±1.11 11.13±0.85 11.21±1.29 11.96±1.68

FFG-W (50%) 15.42±0.84 12.04±1.19 11.85±0.91 11.77±1.31 11.71±1.61

FFG-W (10%) 10.85±0.84 9.08±0.95 9.96±1.10 10.97±1.74 13.35±1.98

FFG-W (1%) 14.86±1.10 11.99±1.13 11.78±1.20 11.48±1.47 11.37±1.64

FFG-W (0.1%) 3.21±0.57 4.47±0.55 5.28±0.70 6.53±0.96 7.79±1.01

FFG-U (100%) 4.64±1.66 7.80±2.03 10.42±2.39 13.98±2.83 19.17±2.72

FFG-U (75%) 4.78±1.58 7.29±1.91 9.59±2.33 13.05±2.91 18.39±2.87

FFG-U (50%) 5.31±1.55 7.10±1.81 9.06±2.18 12.35±2.82 17.43±2.83

FFG-U (25%) 9.74±0.99 8.17±1.01 8.67±1.21 10.53±1.85 13.22±2.15
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