3,233 research outputs found

    Learning Representations of Spatial Displacement through Sensorimotor Prediction

    Full text link
    Robots act in their environment through sequences of continuous motor commands. Because of the dimensionality of the motor space, as well as the infinite possible combinations of successive motor commands, agents need compact representations that capture the structure of the resulting displacements. In the case of an autonomous agent with no a priori knowledge about its sensorimotor apparatus, this compression has to be learned. We propose to use Recurrent Neural Networks to encode motor sequences into a compact representation, which is used to predict the consequence of motor sequences in term of sensory changes. We show that sensory prediction can successfully guide the compression of motor sequences into representations that are organized topologically in term of spatial displacement

    Identification of Invariant Sensorimotor Structures as a Prerequisite for the Discovery of Objects

    Full text link
    Perceiving the surrounding environment in terms of objects is useful for any general purpose intelligent agent. In this paper, we investigate a fundamental mechanism making object perception possible, namely the identification of spatio-temporally invariant structures in the sensorimotor experience of an agent. We take inspiration from the Sensorimotor Contingencies Theory to define a computational model of this mechanism through a sensorimotor, unsupervised and predictive approach. Our model is based on processing the unsupervised interaction of an artificial agent with its environment. We show how spatio-temporally invariant structures in the environment induce regularities in the sensorimotor experience of an agent, and how this agent, while building a predictive model of its sensorimotor experience, can capture them as densely connected subgraphs in a graph of sensory states connected by motor commands. Our approach is focused on elementary mechanisms, and is illustrated with a set of simple experiments in which an agent interacts with an environment. We show how the agent can build an internal model of moving but spatio-temporally invariant structures by performing a Spectral Clustering of the graph modeling its overall sensorimotor experiences. We systematically examine properties of the model, shedding light more globally on the specificities of the paradigm with respect to methods based on the supervised processing of collections of static images.Comment: 24 pages, 10 figures, published in Frontiers Robotics and A

    A Sensorimotor Model for Computing Intended Reach Trajectories

    Get PDF
    The presumed role of the primate sensorimotor system is to transform reach targets from retinotopic to joint coordinates for producing motor output. However, the interpretation of neurophysiological data within this framework is ambiguous, and has led to the view that the underlying neural computation may lack a well-defined structure. Here, I consider a model of sensorimotor computation in which temporal as well as spatial transformations generate representations of desired limb trajectories, in visual coordinates. This computation is suggested by behavioral experiments, and its modular implementation makes predictions that are consistent with those observed in monkey posterior parietal cortex (PPC). In particular, the model provides a simple explanation for why PPC encodes reach targets in reference frames intermediate between the eye and hand, and further explains why these reference frames shift during movement. Representations in PPC are thus consistent with the orderly processing of information, provided we adopt the view that sensorimotor computation manipulates desired movement trajectories, and not desired movement endpoints

    Drifting perceptual patterns suggest prediction errors fusion rather than hypothesis selection: replicating the rubber-hand illusion on a robot

    Full text link
    Humans can experience fake body parts as theirs just by simple visuo-tactile synchronous stimulation. This body-illusion is accompanied by a drift in the perception of the real limb towards the fake limb, suggesting an update of body estimation resulting from stimulation. This work compares body limb drifting patterns of human participants, in a rubber hand illusion experiment, with the end-effector estimation displacement of a multisensory robotic arm enabled with predictive processing perception. Results show similar drifting patterns in both human and robot experiments, and they also suggest that the perceptual drift is due to prediction error fusion, rather than hypothesis selection. We present body inference through prediction error minimization as one single process that unites predictive coding and causal inference and that it is responsible for the effects in perception when we are subjected to intermodal sensory perturbations.Comment: Proceedings of the 2018 IEEE International Conference on Development and Learning and Epigenetic Robotic

    Action and behavior: a free-energy formulation

    Get PDF
    We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception

    Dance training shapes action perception and its neural implementation within the young and older adult brain

    Get PDF
    How we perceive others in action is shaped by our prior experience. Many factors influence brain responses when observing others in action, including training in a particular physical skill, such as sport or dance, and also general development and aging processes. Here, we investigate how learning a complex motor skill shapes neural and behavioural responses among a dance-naïve sample of 20 young and 19 older adults. Across four days, participants physically rehearsed one set of dance sequences, observed a second set, and a third set remained untrained. Functional MRI was obtained prior to and immediately following training. Participants’ behavioural performance on motor and visual tasks improved across the training period, with younger adults showing steeper performance gains than older adults. At the brain level, both age groups demonstrated decreased sensorimotor cortical engagement after physical training, with younger adults showing more pronounced decreases in inferior parietal activity compared to older adults. Neural decoding results demonstrate that among both age groups, visual and motor regions contain experience-specific representations of new motor learning. By combining behavioural measures of performance with univariate and multivariate measures of brain activity, we can start to build a more complete picture of age-related changes in experience-dependent plasticity

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance
    corecore