24 research outputs found

    Bayesian regularization of non-homogeneous dynamic Bayesian networks by globally coupling interaction parameters

    Get PDF
    To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori independent. Under weak regularity conditions, the parameters can be integrated out in the likelihood, leading to a closed-form expression of the marginal likelihood. However, the assumption of prior independence is unrealistic in many real-world applications, where the segment-specific regulatory relationships among the interdependent quantities tend to undergo gradual evolutionary adaptations. We therefore propose a Bayesian coupling scheme to introduce systematic information sharing among the segment-specific interaction parameters. We investigate the effect this model improvement has on the network reconstruction accuracy in a reverse engineering context, where the objective is to learn the structure of a gene regulatory network from temporal gene expression profiles

    Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series

    Get PDF
    To understand the processes of growth and biomass production in plants, we ultimately need to elucidate the structure of the underlying regulatory networks at the molecular level. The advent of high-throughput postgenomic technologies has spurred substantial interest in reverse engineering these networks from data, and several techniques from machine learning and multivariate statistics have recently been proposed. The present article discusses the problem of inferring gene regulatory networks from gene expression time series, and we focus our exposition on the methodology of Bayesian networks. We describe dynamic Bayesian networks and explain their advantages over other statistical methods. We introduce a novel information sharing scheme, which allows us to infer gene regulatory networks from multiple sources of gene expression data more accurately. We illustrate and test this method on a set of synthetic data, using three different measures to quantify the network reconstruction accuracy. The main application of our method is related to the problem of circadian regulation in plants, where we aim to reconstruct the regulatory networks of nine circadian genes in Arabidopsis thaliana from four gene expression time series obtained under different experimental conditions

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    Approximate kernel reconstruction for time-varying networks

    Get PDF
    Most existing algorithms for modeling and analyzing molecular networks assume a static or time-invariant network topology. Such view, however, does not render the temporal evolution of the underlying biological process as molecular networks are typically “re-wired” over time in response to cellular development and environmental changes. In our previous work, we formulated the inference of time-varying or dynamic networks as a tracking problem, where the target state is the ensemble of edges in the network. We used the Kalman filter to track the network topology over time. Unfortunately, the output of the Kalman filter does not reflect known properties of molecular networks, such as sparsity

    Big Data Analytics for Network Level Short-Term Travel Time Prediction with Hierarchical LSTM and Attention

    Full text link
    The travel time data collected from widespread traffic monitoring sensors necessitate big data analytic tools for querying, visualization, and identifying meaningful traffic patterns. This paper utilizes a large-scale travel time dataset from Caltrans Performance Measurement System (PeMS) system that is an overflow for traditional data processing and modeling tools. To overcome the challenges of the massive amount of data, the big data analytic engines Apache Spark and Apache MXNet are applied for data wrangling and modeling. Seasonality and autocorrelation were performed to explore and visualize the trend of time-varying data. Inspired by the success of the hierarchical architecture for many Artificial Intelligent (AI) tasks, we consolidate the cell and hidden states passed from low-level to the high-level LSTM with an attention pooling similar to how the human perception system operates. The designed hierarchical LSTM model can consider the dependencies at different time scales to capture the spatial-temporal correlations of network-level travel time. Another self-attention module is then devised to connect LSTM extracted features to the fully connected layers, predicting travel time for all corridors instead of a single link/route. The comparison results show that the Hierarchical LSTM with Attention (HierLSTMat) model gives the best prediction results at 30-minute and 45-min horizons and can successfully forecast unusual congestion. The efficiency gained from big data analytic tools was evaluated by comparing them with popular data science and deep learning frameworks

    The Use of Bayesian Networks in Public Administration of the Economy

    No full text
    The state, exercising its managerial function in the economic sphere, pursues specific goals, the main of which is to ensure for society and the decent state welfare, as well as to increase the level of material production. Bayesian trust networks can be used in government project management as diagrams reflecting the causal relationships between events or influence diagrams. Besides, Bayesian trust networks allow integrating into the model the data obtained at each stage of project development, thereby providing feedback, which is an essential component of the public administration

    Quantum bayesian decision‑making

    Get PDF
    As a compact representation of joint probability distributions over a dependence graph of random variables, and a tool for modelling and reasoning in the presence of uncertainty, Bayesian networks are of great importance for artificial intelligence to combine domain knowledge, capture causal relationships, or learn from incomplete datasets. Known as a NP-hard problem in a classical setting, Bayesian inference pops up as a class of algorithms worth to explore in a quantum framework. This paper explores such a research direction and improves on previous proposals by a judicious use of the utility function in an entangled configuration. It proposes a completely quantum mechanical decision-making process with a proven computational advantage. A prototype implementation in Qiskit (a Python based program development kit for the IBM Q machine) is discussed as a proof-of-concept.This work is fnanced by the ERDF–European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation–COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT, within project POCI-01- 0145-FEDER-030947. The frst author was further supported by project NORTE-01-0145- FEDER-000037, funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement

    Towards a dynamic view of genetic networks: A Kalman filtering framework for recovering temporally-rewiring stable networks from undersampled data

    Get PDF
    It is widely accepted that cellular requirements and environmental conditions dictate the architecture of genetic regulatory networks. Nonetheless, the status quo in regulatory network modeling and analysis assumes an invariant network topology over time. We refocus on a dynamic perspective of genetic networks, one that can uncover substantial topological changes in network structure during biological processes such as developmental growth and cancer progression. We propose a novel outlook on the inference of time-varying genetic networks, from a limited number of noisy observations, by formulating the networks estimation as a target tracking problem. Assuming linear dynamics, we formulate a constrained Kalman ltering framework, which recursively computes the minimum mean-square, sparse and stable estimate of the network connectivity at each time point. The sparsity constraint is enforced using the weighted l1-norm; and the stability constraint is incorporated using the Lyapounov stability condition. The proposed constrained Kalman lter is formulated to preserve the convex nature of the problem. The algorithm is applied to estimate the time-varying networks during the life cycle of the Drosophila Melanogaster (fruit fly)
    corecore