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Abstract

Jehandad Khan

INFERENCE AND ANALYSIS OF TIME VARYING NETWORKS
2014/06

Nidhal Bouaynaya, Ph.D.
Master of Science in Electrical & Computer Engineering

It is widely accepted that cellular requirements and environmental conditions dic-

tate the architecture of genetic regulatory networks. Nonetheless, the status quo

in regulatory network modeling and analysis assumes an invariant network topology

over time. We refocus on a dynamic perspective of genetic networks, one that can un-

cover substantial topological changes in network structure during biological processes

such as developmental growth and cancer progression. We propose a novel outlook

on the inference of time-varying genetic networks, from a limited number of noisy

observations, by formulating the networks estimation as a target tracking problem.

Assuming linear dynamics, we formulate a constrained Kalman filtering framework,

which recursively computes the minimum mean-square, sparse and stable estimate

of the network connectivity at each time point. The sparsity constraint is enforced

using the weighted l1-norm; and the stability constraint is incorporated using the Lya-

pounov stability condition. The proposed constrained Kalman filter is formulated to

preserve the convex nature of the problem. The algorithm is applied to estimate the

time-varying networks during the life cycle of the Drosophila Melanogaster (fruit fly).
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Chapter 1

Research Objectives and Contributions

1.1 Research Objectives

The objectives of this research are:

• To estimate time-varying interactions from gene expression data sampled at

different time intervals.

• To derive an inference method that has significant statistical power and high

temporal resolution.

• To derive a method that is computationally scalable to large genetic networks.

• To exploit parallelism and leverage the availability of large-scale computational

resources, such as a High-Performance Computer (HPC), in the implementation

of the proposed methodology.

1.2 Research Contributions

The research contributions of this thesis are:

• Formulate the dynamic network inference problem as a time-varying tracking

problem, where the moving target is the set of evolving gene interactions.
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• Increase the statistical power and temporal resolution by deriving a constrained

sequential tracker with forward and backward steps.

• Address the unavailability of multiple snapshots at a given time by incorporating

a sparsity constraint on the network connectivity.

• Include a stability constraint to ensure the estimated network does not lead to

unstable dynamics.

• Implement the proposed approach using High Performance Computing tech-

niques, and exploiting parallelism both in the algorithm and in the available

hardware.

• Scale the High-Performance implementation to efficiently process genetic net-

works of the order of thousands of genes.

1.3 Research Methods and Techniques

• Optimal Bayesian Estimation in Linear State-Space Models: the Kalman

Filter.

• Compressive Sensing and the l1-norm convex approximation.

• Lyapounov Stability as a Semi-Definite Programming (SDP) Problem.

• Open MPI (Message Passing Interface) to implement the algorithm on an

HPC platform that scales to large networks.
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Chapter 2

Introduction

2.1 Motivation

A major challenge in systems biology today is to understand the behaviors of liv-

ing cells from the dynamics of complex genomic regulatory networks. It is no more

possible to understand the cellular function from an informational point of view with-

out unraveling the underlying regulatory networks than to understand protein binding

without knowing the protein synthesis process. The advances in experimental technol-

ogy have sparked the development of genomic network inference methods, also called

reverse-engineering of genomic networks. Most popular methods include (probabilis-

tic) Boolean networks [31, 49], (dynamic) Bayesian networks [20, 21, 38] information-

theoretic approaches [9,36,60,61] and differential equation models [8,16,44]. A com-

parative study is compiled in [27]. The DREAM (Dialogue on Reverse Engineering

Assessment and Methods) project, which built a blind framework for performance

assessment of methods for gene network inference, showed that there is no single in-

ference method that performs optimally across all data sets. In contrast, integration

of predictions from multiple inference methods shows robust and high performance

across diverse data sets [35].
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These methods, however, estimate one single network from the available data,

independently of the cellular ”themes” or environmental conditions under which the

measurements were collected. In signal processing, it is senseless to find the Fourier

spectrum of a non-stationary time series [29]. Similarly, time-dependent genetic data

from dynamic biological processes such as cancer progression, therapeutic responses

and developmental processes, cannot be used to describe a unique time-invariant or

static network [11], [33]. Inter and intracellular spatial cues affect the course of events

in these processes by rewiring the connectivity between the molecules to respond

to specific cellular requirements, e.g., going through the successive morphological

stages during development. Inferring a unique static network from a time-dependent

dynamic biological process results in an ”average” network that cannot reveal the

regime-specific and key transient interactions that cause cell biological changes to

occur. For a long time, it has been clear that the evolution of the cell function occurs

by change in the genomic program of the cell, and it is now clear that we need to

consider this in terms of change in regulatory networks [11], [33].

2.2 Related Work

While there is a rich literature on modeling static or time-invariant networks, much

less has been done towards inference and learning techniques for recovering topo-

logically rewiring networks. In 2004, Luscombe et al. made the earliest attempt to

unravel topological changes in genetic networks during a temporal cellular process,

or in response to diverse stimuli [33]. They showed that, under different cellular

conditions, transcription factors, in a genomic regulatory network of Saccharomyces

4



cerevisiae, alter their interactions to varying degrees, thereby rewiring the network.

Their method, however, is still based on a static representation of known regulatory

interactions. To get a dynamic perspective, they integrated gene expression data

for five conditions: cell cycle, sporulation, diauxic shift, DAN damage and stress re-

sponse. From these data, they traced paths in the regulatory network that are active

in each condition using a trace-back algorithm [33].

The main challenge facing the community in the inference of time-varying genomic

networks is the unavailability of multiple measurements of the networks or multiple

observations at every instant t. Usually, one or at most a few observations are available

at each instant. This leads to the “large p small n” problem, where the number of

unknowns is larger than the number of available observations. The problem may seem

ill-defined because no unique solution exists. However, we will show that this hurdle

can be circumvented by using prior information.

One way to ameliorate this data scarcity problem is to presegment the time-

series into stationary epochs, and infer a static network for each epoch separately

[15, 17, 25, 43, 43, 47, 57]. The segmentation of the time-series into stationary pieces

can be achieved using several methods including estimation of the posterior distri-

bution of the change points [17], HMMs [15], clustering [43], detecting geometric

structures transformed from time series [57], MCMC sampling algorithm to learn

the times of non-stationarities (transition times) [25], [47]. The main problem with

the segmentation approach for estimating time-varying gene networks is the limited

number of time points available in each stationary segment, which is a subset of the

already limited data. Since the time-invariant networks are inferred in each segment

5



using only the data points within that segment and disregarding the rest of the data,

the resulting networks are limited in terms of their temporal resolution and statistical

power.

A semi-flexible model based on a piecewise homogeneous dynamic Bayesian net-

work, where the network structure in each segment shares information with adjacent

segments, was proposed in [12]. This setting allows the network to vary gradually

through segments. However, some information is lost by not considering the en-

tire data samples for the piecewise inference. A more flexible model of time-varying

Bayesian networks based on a non parametric Bayesian method for regression was

recently proposed in [37]. The nonparametric regression is expected to enable cap-

turing nonlinear dynamics among genes [12]. However, a full-scale study of a time-

varying system was lacking; the approach was only tested on an 11-gene Drosophila

melanogaster network.

Full resolution techniques, which allow a time-specific network topology to be

inferred from samples measured over the entire time series, rely on model-based ap-

proaches [2], [26]. However, these methods learn the structure (or skeleton) of the

network but not the detailed strength of the interactions between the nodes. Dy-

namic Bayesian networks (DBNs) have been extended to the time varying case [32],

[42], [46], [51]. Among the earliest models is the time varying autoregressive (TVAR)

model [42], which describes nonstationary linear dynamic systems with continuously

changing linear coefficients. The regression parameters are estimated recursively us-

ing a normalized least-squares algorithm. In time-varying DBNs (TVDBN), the time-

varying structure and parameters of the networks are treated as additional hidden

6



nodes in the graph model [32].

In summary, the current state-of-the-art in time-varying network inference relies

on either chopping the time-series sequence into homogeneous subsequences [15, 17,

19, 25, 39, 41, 43, 47, 54, 57] (concatenation of static networks) or extending graphical

models to the time-varying case [32,42,46,51] (time modulation of static networks).

7



Chapter 3

The State-Space Model

3.1 The State-Space Model

Static gene networks have been modeled using a standard state-space representation,

where the state xk represents the gene expression values at a particular time k and

the microarray data yk constitutes the set of noisy observations [55], [40]. A naive

approach to tackle the time-varying inference problem is to generalize this represen-

tation of time-invariant networks, and augment the gene profiles state vector by the

network parameters at all time instants. This approach, however, will result in a very

poor estimate due to the large number of unknown parameters. Instead, we propose

to re-formulate the state-space model as a function of the time-varying connections

or parameters rather than the gene expression values. In order to do so, we need to

model the time evolution of the parameters using, for instance, prior knowledge about

the biological process. Denoting by ak the network parameters to be estimated, the

state-space model of the time-varying network parameters can be written as

a(k + 1) = fk(a(k)) + w(k), (3.1)

y(k) = gk(a(k)) + v(k). (3.2)
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Where, the function fk models the dynamical evolution of the network parameters,

e.g., smooth evolution or abrupt changes across time. The observation function gk

characterizes the regulatory relationships among the genes, and can be, for instance,

derived from a differential equation model of gene expression (see Eq. (3.7)). In

particular, observe that the state-space model in (3.1)-(3.2) does not incorporate

the “true” gene expression values, which have to be estimated and subsequently

discarded. It only includes the measured gene expression values with an appropriate

measurement noise term.

3.2 The Observation Model

We model the concentrations of mRNAs, proteins, and other molecules using a time-

varying ordinary differential equation (ODE). More specifically, the concentration

of each molecule is modeled as a linear function of the concentrations of the other

components in the system. The time-dependent coefficients of the linear ODE capture

the rewiring structure of the network. We have

ẋi(t) = −λi(t)xi(t) +

p∑
j=1

wij(t)xj(t) + bi + vi(t), (3.3)

where i = 1, · · · , p, p being the number of genes, xi(t) is the expression level of gene

i at time t, ẋi(t) is the rate of change of expression of gene i at time t, λi is the self

degradation rate, wij(t) represents the time-varying influence of gene j on gene i, bi is

the base production rate and vi(t) models the measurement and biological noise. The

goal is to infer the time-varying gene interactions λi(t), {wij(t)}pi,j=1, given a limited
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number of measurements n < p.

To simplify the notation, we absorb the self degradation rate λi(t) into the in-

teraction parameters by letting aij(t) = wij(t) − λi(t)δij, where δij is the Kronecker

delta function. The external perturbation is assumed to be known. The discrete-time

equivalent of (3.3) can, therefore, be expressed as

ẋi(k) =

p∑
j=1

aij(k)xj(k) + bi + vi(k), i = 1, · · · , p, k = 1, . . . , n. (3.4)

Writing (3.4) in matrix form, we obtain

y(k) = A(k) x(k) + b + v(k), (3.5)

where y(k) = [y1(k), . . . , yp(k)]T , A(k) = {aij(k)} is the matrix of time-dependent

interactions, x(k) = [x1(k), . . . xp(k)]T ,b = [b1, . . . , bp]
T is the base production rate

and v(k) = [v1(k), . . . , vp(k)]T .

Let 1 ≤ mk < p be the number of available observations at time k. Taking into

account all mk observations, Eq. (3.5) becomes

Y(k) = A(k) X(k) + B + V(k), (3.6)

where Y (k),X(k) and V (k) ∈ Rp×mk with the mk observations ordered in the

columns of the corresponding matrices, the matrix B = b 1T represents the same

response of a particular gene in all the measurements.

The linear model in Eq. (3.6) can be decomposed into p independent linear models

10



as follows:

yti(k) = ati(k)X(k) + bi1
T + vti(k), (3.7)

where yti(k),ati(k), bi1
T and vti(k) are the ith rows of Y (k),A(k), B and V (k),

respectively. In particular, the vector ai(k) represents the set of incoming edges to

gene i at time k. Equation (3.7) represents the observation equation for gene i.

3.3 The Linear State-Space Model

The state equation models the dynamics of the state vector ai(k) given a priori

knowledge of the system. In this work, we assume a random walk model of the

network parameters. The random walk model is chosen for two reasons. First, it

reflects a flat prior or a lack of a priori knowledge. Second, it leads to a smooth

evolution of the state vector over time (if the variance of the random walk is not very

high). The state space model of the incoming edges for gene i is, therefore, given by


ai(k + 1) = ai(k) + wi(k)

yi(k) = X t(k)ai(k) + bi1 + vi(k),

(3.8)

where i = 1, · · · , p, wi(k) and vi(k) are, respectively, the process noise and the

observation noise, assumed to be zero mean Gaussian noise processes with known

covariance matrices, Q(k) and R(k), respectively. In addition, the process and obser-

vation noise are assumed to be uncorrelated with each other and with the state vector

11



Figure 3.1: Parallel architecture of the tracker. The tracking is performed for
each gene separately to find its incoming edges. The connectivity matrix A(k) =
[at1; · · · ;atp].

ai(k). In particular, we have p independent state-space models of the form (3.8) for

i = 1, · · · , p. Thus, the connectivity matrix A can be recovered by simultaneous

recovery of its rows. Another important advantage of the representation in (3.8) is

that the state vector ai(k) has dimension p (the number of genes in the network)

rather than p2 (the number of possible connections in the network); thus avoiding

the curse of dimensionality problem. For instance, in a network of 100 genes, the

state vector will have dimension 100 instead of 10,000! Though the number of genes

p can be large, we show in simulations that the performance of the Kalman tracker

is unchanged for p as large as 5000 genes by using efficient matrix decompositions

to find the numerical inverse of matrices of size p. A graphical representation of the

parallel architecture of the tracker is shown in Fig. 3.1.

It is well known that the minimum mean square estimator, which minimizes

E[‖a(k) − â(k)‖22], can be obtained using the Kalman filter if the system is observ-

able. If the system is unobservable, then the classical Kalman filter cannot recover

the optimal estimate. In particular, it seems hopeless to recover ai(k) ∈ Rp in (3.8)

12



Figure 3.2: The Constrained Kalman filter: the prior estimate is predicted to give
ak|k−1. The filter is updated with the observations to give the unconstrained estimate
ak|k. The projection operator projects this estimate to enforce the constraint. This
procedure is repeated for all time steps k = 1, · · · , n.

from an under-determined system where mk < p. Fortunately, this problem can be

circumvented by taking into account the fact that ai(k) is sparse. Genomic regula-

tory networks are known to be sparse, that is each gene is governed by only a small

number of the genes in the network [44]. We give further details in the following

chapter.
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Figure 3.3: Parallel architecture of the tracker mapped to the MPI implementation.
Image depicting the role of MPI children, both in tracking and optimization.
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Chapter 4

The Compressive-Kalman Filter

4.1 Sparse Signal Recovery

Recent studies [7], [18] have shown that sparse signals can be exactly recovered from

an under-determined system of linear equations by solving the optimization problem

min ‖ẑ‖0 s.t. ‖y −Hẑ‖22 ≤ ε, (4.1)

for a sufficiently small ε and where the l0-norm, ‖z‖0, denotes the support of z or

the number of non-zero elements in z. The optimization problem in (4.1) can be

extended to the stochastic case as follows

min ‖ẑ‖0 s.t. Ez|y[‖z − ẑ‖22] ≤ ε. (4.2)

Unfortunately, the above optimization problem is, in general, NP hard. However,

it has been shown that if the observation matrix H obeys the restricted isometry

property (RIP), then the solution of the combinatorial problem (4.1) can be recovered

15



by solving instead the convex optimization problem

min ‖ẑ‖1 s.t. ‖y −Hẑ‖22 ≤ ε. (4.3)

This is a fundamental result in the emerging theory of compressed sensing(CS) [7],

[18]. CS reconstructs large dimensional signals from a small number of measurements,

as long as the original signal is sparse or admits a sparse representation in a certain

basis. Compressed sensing has been implemented in many applications including

digital tomography [7], wireless communication [52], image processing [4] and camera

design [14]. For a further review of CS, the reader can refer to [7], [18].

Inspired by the compressed sensing approach given that genomic regulatory net-

works are sparse, we formulate a constrained Kalman objective

min
ẑ
Ez|y

[
‖z − ẑ‖22

]
s.t. ‖ẑ‖1 ≤ ε. (4.4)

The constrained Kalman objective in (4.4) can be seen as the regularized version

of least squares known as least absolute shrinkage and selection operator (LASSO)

[53], which uses the l1 constraint to prefer solutions with fewer non-zero parameter

values, effectively reducing the number of variables upon which the given solution is

dependent. For this reason, the LASSO and its variants are fundamental to the theory

of compressed sensing. In this work, we have used the weighted l1 norm as the sparsity

inducing operator. Compared to the l1 norm, the weighted l1 norm eliminates any

weak genetic interactions in the estimated matrix. Furthermore, recent theoretical

16



results [59] show that, in some cases, minimizing the weighted l1 norm of a matrix A

minimizes the cardinality or l0 norm of A with high probability.

4.2 Stability Criterion

Incorporating stability in the estimation of biological networks is crucial in order

to obtain meaningful estimates; otherwise, the estimated networks may be unstable

leading to diverging observations. Let us consider the nonlinear time-invariant system

given by :

ẋ = f(x) (4.5)

where f : Rn → Rn. Let xe ∈ Rn be the equilibrium point of the above system i.e.,

f(xe) = 0. We define two types of stability.

Global Asymptotic Stability The system (4.5) is Globally Asymptotically Sta-

ble (G.A.S.) if for every trajectory x(t), we have x(t)→ xe as t→∞. In other words,

regardless of the starting point of the system, given enough time it would always

reach its equilibrium point.

Local Asymptotic Stability The system (4.5) is Locally Asymptotically Stable

near or at xe if there exists an R > 0 s.t. ‖x(0)−xe‖ ≤ R =⇒ x(t)→ xe as t→∞.

More simply, if the state trajectory of a system is inside a ball of radius R centered

at xe, then as time approaches infinity, the system will attain the equilibrium state

xe.

A linear system with dynamics given by ẋ = Ax is both G.A.S. and L.A.S. if the

17



real part of all the eigenvalues of A is negative i.e., <{λi(A)} < 0.

4.2.1 Lyapunov Stability Theorem. The Lyapunov Stability Theorem [5]

establishes a sufficient condition for global asymptotic stability, as follows

If there exists a function V : Rn → R such that

V (x(t)) ≥ 0,∀x(t) (4.6)

V (x(t)) = 0, if and only if x(t) = 0 (4.7)

V (x(t)) → ∞ as x(t)→∞ (4.8)

V̇ (x(t)) < 0 ∀x(t) 6= 0, V̇ (0) = 0 (4.9)

then, every trajectory of ẋ = f(x) converges to zero as t → ∞. Thus the system is

globally asymptotically stable, the function V is known as the Lyapunov function and

the first three conditions state that the function is positive definite.

In light of the above theorem, if we are given the following linear time-varying

system

ẋ(t) = A(t)x(t) (4.10)

with A(t) ∈ {A1, · · · , AK}. Then it is globally asymptotically stable for the Lyapunov

function V (z) = zTPz if

ATi P + PAi ≤ 0, i = 1, · · · , K (4.11)

18



Conversely if the system (4.10) is stable, then there exists a symmetric positive

definite matrix P that satisfies (4.11). In order to constrain a system to be stable

we need to find the corresponding Lyapounov matrix. We will show that finding the

Lyapounov matrix P can be casted as a semidefinite program (SDP) [6].

Let ÂKF be the matrix estimated by the Kalman filter, which, in general, is not

stable. The aim is to perturb A by a “small” perturbation D so that ÂKF + D is

stable and sparse. Let Ã = ÂKF + D. As we discussed earlier, the necessary and

sufficient condition for the stability of Ã is the existence of a symmetric, positive

definite Lyapounov matrix P such that

ÃTP + PÃ < 0. (4.12)

Following the work in [59], we let L = PD. Equation (4.12) then becomes

ÂTKFP + LT + PÂKF + L < 0, (4.13)

which is a linear matrix inequality in both P and L. In order to solve for D, or

equivalently P and L, we minimize the error between the data resulting from the

unstable estimate ÂKF and the stable estimate Ã, i.e., we consider the objective

||(ÃX +BU)− (ÂKFX +BU)||2 = ||P−1LX||2 ≤
||LX||2
||P ||2

≤ ||LX||2, (4.14)

where ||P || ≥ 1. The SDP optimization problem to solve for P and L is then given

by

19



min
L
‖LX‖2

subject to ÂTKFP + PÂKF + LT + L ≤ 0

P ≥ I

(4.15)

Let P ∗ and L∗ be the unique solution of Eq. (4.15). The stable matrix is then

given by Ã = ÂKF + P ∗−1L∗. However, Ã may no longer be sparse. Therefore, we

need to further perturb Ã in order to impose the sparsity constraint as well as any

other desired constraints. We formulate the optimization problem to find the stable

and sparse matrix A as follows

min
A,B,ε,η

α
N∑

i,j=1

wij|aij|+ β ε+ γ η

subject to ATP ∗ + P ∗A ≤ 0

‖Y − (AX +B)‖22 ≤ ε

‖A− ÂKF‖22 ≤ η

(4.16)

Where α, β and γ are fixed weighting parameters satisfying α + β + γ = 1. The

first term in the objective function, weighted by α, ensures that the connectivity

matrix A is sparse. The second term, weighted by β, ensures that the stable matrix

also minimizes the error between the model and the observations. The third term,

weighted by γ, ensures that the stable matrix is within the vicinity of the (unstable)

Kalman estimate. The matrix W = {wij} is the weighting matrix. In each pass of

the above optimization algorithm the weights wij are updated as [59]
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wij =
δ

δ + |aij|
(4.17)

The intuition behind this heuristic weight update is that large weights are assigned

to small matrix entries |aij| and small weights to large entries, which eliminates any

weak interactions in the final matrix. This process is repeated until the values of wij

converge. In practice it takes no more than 10 iterations to converge, however this

number might change with the number of genes in the system. This algorithm is

shown in algorithm 1.

Algorithm 1 State Constraint

Require: {wij} = 1, α, β and γ.
1: Lyapunov Matrix: Solve the SDP (4.15) to determine P ∗

2: for idx = 1 to N do
3: Solve the SDP (4.16) to determine A and B
4: Update the weights using equation (4.17)
5: if ‖W (idx)−W (idx− 1)‖2 < θ then
6: end for loop
7: end if
8: end for

4.3 Constrained Kalman Filtering

Constrained Kalman filtering has been mainly investigated in the case of linear equal-

ity constraints of the form Dx = d, where D is a known matrix and d is a known

vector [50]. The most straightforward method to handle linear equality constraints is

to reduce the system model parametrization [56]. This approach, however, can only

be used for linear equality constraints and cannot be used for inequality constraints

(i.e., constraints of the form Dx ≤ d). Another approach is to treat the state
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constraints as perfect measurements or pseudo-observations (i.e., no measurement

noise) [28]. The perfect measurements technique applies only to equality constraints

as it augments the measurement equation with the constraints. The third approach

is to project the standard (unconstrained) Kalman filter estimate onto the constraint

surface [50]. Though non-linear constraints can be linearized and then treated as

perfect observations, linearization errors can prevent the estimate from converging to

the true value. Non-linear constraints are, thus, much harder to handle than linear

constraints because they embody two sources of errors: truncation errors and base

point errors [23], [30]. Truncation errors arise from the lower order Taylor series ap-

proximation of the constraint, whereas base point errors are due to the fact that the

filter linearizes around the estimated value of the state rather than the true value.

In this work, we adopt the projection approach, which projects the unconstrained

Kalman estimate at each step onto the set of stable and sparse vectors, as defined by

the optimization problem in (4.16). Hence the Kalman Filter computes a non-sparse

and possibly unstable solution to the state space, which is projected to a sparse and

stable space.

The reader might recall that this estimate may be computed in parallel since each

gene is independently characterized by the observation equation (3.7). However the

stability and sparsity criterion described in (4.16) are global properties of the time

varying connectivity matrices. Thus breaking the parallel nature of the algorithm.

This problem is addressed by employing a parallel sdp solver such as [58], which is

capable to solve large scale Semidefinite programming problems in parallel. It might

also be noted that the problem at hand is sparse in nature and thus may exploit
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efficient linear algebra routines for fast parallel solutions.

The Kalman filter equations for a Linear Time Varying system are divided in two

steps, also known as the prediction and the update steps. These equations with a

known input are given as [24]

Prediction

ak|k−1 = ak−1|k−1 (4.18)

V k|k−1 = V k−1|k−1 + Qk (4.19)

Update

Kk = V k|k−1Xk(X
t
kV k|k−1H

t
k + Rk)

−1, (4.20)

ak|k = ak|k−1 + Kk(yk −X t
kak|k−1 −Bk), (4.21)

V k|k = (I −KkX
t
k)V k|k−1. (4.22)

Where ak|k−1 is the state estimate at time k, given observations till time k − 1,

V k|k−1 is the error covariance of the estimate at time k given the observations till

time k − 1, Kk is the Kalman gain at time k and rest of the variables correspond to

the state space model. The complete procedure is listed in algorithm 3, which brings

all the pieces together and forms the complete picture.
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4.3.1 The Initial Condition. The Kalman filter is known to converge asymp-

totically to the true solution regardless of the initial condition that is supplied to

initiate the filter [50]. However for a constrained Kalman filter, particularly in this

scenario when the total number of time points is limited, it is paramount to have

an initial condition that is as close to the true state as possible. Intuitively a more

informed initial condition will result in a much more accurate filtering trajectory as

opposed to a random or uninformed one. Moreover the Kalman filter given in equa-

tions (4.18) and (4.20) assume known B(k) matrices which must be supplied. To

address this issue we employ the sparse Maximum Likelihood (sML) method adopted

in [45] to compute the initial condition for the Kalman filter.

Initial Condition Step 1 - Determine an unstable sparse solution

To determine the initial condition, first we compute a sparse and possibly unstable

solution given the data by recursively solving the following optimization problem until

convergence of the weights:

min
A,B

t
N∑

i,j=1

wij|aij|+ (1− t)‖Y − (AX +B)‖22

subject to A ∈ S

(4.23)

where we incorporate any known interactions in the set S in the initial condition.

More specifically the set of matrices S is defined as follows:
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A ∈ S =⇒


aij ≥ δ , ifsij = +1

aij ≤ δ , ifsij = −1

aij ∈ R , otherwise

(4.24)

This information further improves the estimate by incorporating existing biological

knowledge.

Step 2 - Determine a Lyapunov matrix for this solution

The resultant A matrix from the above problem might be unstable. To determine a

corresponding stable matrix, we compute a symmetric positive semidefinite Lyapunov

matrix. To compute the Lyapunov matrix Q we solve the following SDP [59]

min
Q,L

‖LX‖2

subject to Q ≥ I

ATQ+QA+ LT + L ≤ 0

(4.25)

Where X is the matrix of observations for the first time epoch. Let Q∗ be the

solution of (4.25).

Step 3 - Stabilize the solution

We use the Lyapunov solution matrix Q∗ of (4.25) in order to stabilize the matrix A

in (4.23). The final problem that needs to be solved becomes
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min
A,B

t
N∑

i,j=1

wij|aij|+ (1− t)‖Y − (AX +B)‖22

subject to ATQ∗ +Q∗A ≤ 0

A ∈ S

(4.26)

Algorithm 2 Initial Condition

Require: {wij} = 1, known interactions S, gene expression data X and Y .
1: for idx = 1 to N do
2: Solve the SDP (4.23) to determine A and B
3: Update the weights using equation (4.17)
4: if ‖W (idx)−W (idx− 1)‖2 < θ then
5: end for loop
6: end if
7: end for
8: Lyapunov Matrix: Solve the SDP (4.25) to determine P
9: for idx = 1 to N do

10: Solve the SDP (4.26) to determine A and B
11: Update the weights using equation (4.17)
12: if ‖W (idx)−W (idx− 1)‖2 < θ then
13: end for loop
14: end if
15: end for

Algorithm 3 Constrained Kalman Filter

1: Initialization Apply algorithm 2 to find the initial condition
2: for each time t do
3: Compute the Kalman Estimate using equations (4.18) and (4.20)
4: Constraint: Apply algorithm 1 to constrain the estimate
5: end for
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Chapter 5

Results and Discussion

5.1 Synthetic Data

In order to assess the efficacy of the proposed compressive Kalman filter in estimating

the connectivity of time-varying networks, we first perform Monte Carlo simulations

on generated data to assess the prediction error using the following criterion

|aij − âij| ≤ α|aij| (5.1)

Where aij is the (i, j)th true edge value and âij is the corresponding predicted edge

value. The criterion in (5.1) counts an error if the estimated edge value is outside an

α-vicinity of the true edge value. In our simulations, we adopted a value of α equal to

0.2. That is, the error tolerance interval is ±20% of the true value. The percentage

of total correct or incorrect edges in a connectivity matrix is used to determine the

accuracy of the algorithm.

We first investigate the effect of the network size on the estimation error. We

generate networks of different sizes according to the model in (3.6), and calculate the

prediction error. Figure 5.1a shows the prediction error as a function of the network
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size with a number of measurements equal to 70% the network size p. We observe

that the network estimation error is about constant between p = 100 to p = 1000,

and is thus unaffected by how large the network is, at least for networks of size

few thousand genes. The reason for this outcome may be the linear increase of the

size vector with the number of genes, which is due to the splitting of the original

connectivity estimation problem (p2 parameters) into p smaller problems, that can

be solved simultaneously.

(a) Error v.s. number of genes (b) Error v.s. number of observations

Figure 5.1: (a) Effect of the network size on the prediction error; (b) Effect of the
number of observations on the prediction error

We subsequently investigated the effect of the number of measurements m on the

prediction accuracy. Fig 5.1b shows the prediction error as a function of the number

of observations for a network of size p = 100. The estimation error seems to be

constant up to 50 measurements then decreases rapidly as the number of observations

increase to 100. But even for a small number of observations (10% of the network

size), the estimation error is fairly small (less than 18 %). This is an important

result because in real-world applications the number of available observations is very

limited. We believe that the reason the error stays about constant for a small number
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(a) Time-varying true network evolving over five time points, with seven observations avail-
able per time point.
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(b) Estimated time-varying network using the weighted l1 Kalman filter
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(c) Estimated time-varying network using the classical Kalman filter.

Figure 5.2: Tracking of a 10-gene network evolving over five time points, with seven
observations or measurements available at each time point.

of measurements (up to 50) is due to the good initial condition that is adopted in

these simulations. For randomly chosen initial conditions, the weighted l1 Kalman

filter takes a longer time, and thus requires more observations, to converge.

Figure 5.2 shows a ten-gene directed time-varying network over five time points

(5.2(a)). For each time point, we assume that seven observations are available. The

thickness of the edge indicates the strength of the interaction. Blue edges indicate

stimulative interactions, whereas red edges indicate repressive or inhibitive interac-
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tions. In order to show the importance of the weighted l1 formulation , we track the

network using the classical Kalman filter (5.2(c)) and the weighted l1 Kalman filter

(5.2(b)). It can be seen that the weighted l1 constraint is essential in imposing the

sparsity of the network, hence significantly reducing the false positive rate.

In order to obtain a more meaningful statistical evaluation of the proposed weighted

l1 Kalman, we randomly generated 1000 sparse ten-gene networks evolving over five

time points. The true positive (TP), true negative (TN), false positive (FP), false

negative (FN) rates as well as the sensitivity, specificity, accuracy and precision are

shown in Table 5.1. The results reported in Table 5.1 do not take into account the

sign or strength of the interactions, but consider only the presence or absence of an

interaction between two genes. Observe that the TP rate of the classical Kalman filter

is high because the Kalman filter is very dense and contains many spurious connec-

tions. This leads to an “artificially” high sensitivity (97% ability to detect edges) but

a very low specificity (50% ability to detect the absence of an interaction or sparsity)

for the Kalman filter. The weighted l1 Kalman filter achieves a good balance between

sensitivity (95%) and specificity (72%).

TP TN FP FN sensitivity specificity
Classical Kalman 71.06% 13.60% 13.11 % 2.22% 0.97 0.50
Compressive-Kalman 80.21% 11.527% 4.32% 3.93% 0.95 0.72

Table 5.1: Performance analysis of the Compressive-Kalman filter and the classical
Kalman filter.

5.2 Time-Varying Gene Networks in Drosophila melanogaster
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(a) Evolution of degree distribution

(b) Evolution of clustering coefficient

Figure 5.3: Temporal network characteristics: (a) Evolution of the degree distribution
using its power law exponent; (b) Evolution of the clustering coefficientsfor each
snapshort of the temporal network.
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Figure 5.4: Gene degree connec-
tivity ordered by onset of their
first increase. Each row repre-
sents data for one gene, and each
column is a developmental time
point; blue indicates low degrees
and red indicates high degrees.

A genome-wide microarray profiling of the life cy-

cle of the Drosphila melanogaster revealed the

evolving nature of the gene expression patterns

during the time course of its development [3]. In

this study, cDNA microarrays were used to an-

alyze the RNA expression levels of 4028 genes

in wild-type flies examined during 66 sequential

time periods beginning at fertilization and span-

ning embryonic, larval, pupal and the first 30

days of adulthood. Since early embryos change

rapidly, overlapping 1-hour periods were sampled;

adults were sampled at multiday intervals [3].

The time points span the embryonic (samples 1-

30; time E01h till E2324h ), larval (samples 31-40;

time L24h till L105h), pupal (samples 41-58; M0h till M96h) and adulthood (samples

59-66; A024h till A30d) periods of the organism.

Costello et al. [10] normalized the Arbeitman et al. raw data [3] using the op-

timized local intensity-dependent normalization (OLIN) algorithm [22]. Details of

the normalization protocol can be found at http://www.sciencemag.org/content/

suppl/2002/09/26/297.5590.2270.DC1/ArbeitmanSOM.pdf. In their procedure, a

gene may be flagged for several reasons: the corresponding transcript not being ex-

pressed under the considered condition, the amplification of the printed cDNA was

reported as “failed” in the original data, or the data is missing for technical reasons.
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A statistical test was also conducted to determine if the expression of a labeled sample

is significantly above the distribution of background values. Spots with a corrected

p-value greater than 0.01 were considered absent (or within the distribution of back-

ground noise). In this study, we downloaded the Costello et al. dataset [10] and

considered the unflagged genes only, which amount to a total of 1863 genes.

The weighted l1 Kalman filter was used to estimate 21 dynamic gene networks,

one per 3 time points, during the life cycle of Drosophila melanogaster. Figure 5.5

shows the estimated networks, where edges with absolute strength less than 10−3

were set to zero. The networks were visualized in Cytoscape using a force-directed

layout [48]. Markov clustering [13] was used to identify clusters within each network.

Clusters containing more than thirty gene were tested for functional enrichment using

the BiNGO plugin for Cytoscape [34]. The Gene Ontology term with the highest

enrichment in a particular cluster was used to label the cluster on the network. The

changing connectivity patterns are an evident indication of the evolution of gene

connectivity over time.

Figure 5.4 shows the evolution of the degree connectivity of each gene as a function

of time. This plot helps visualize the hubs (high degree nodes) at each time point;

and shows which genes are active during the phases of the organism’s development.

It is clear that certain genes are mainly active during specific developmental phases

(transient genes), whereas others seem to play a role during the entire developmental

process (permanent genes).

We quantified the structural properties of the temporal network by its degree

distribution and clustering coefficient. We found that the degree distribution of each
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snapshot network follows a power law distribution, which indicates that the networks

self-organize into a scale-free state (a global property). The power law exponents of

the snapshot networks are plotted in Fig. 5.3(a). The clustering coefficient, shown in

Fig. 5.3(b), measures the cliquishness of a typical neighborhood (a local property) or

the degree of coherence inside potential functional modules. Interestingly, the trends

(maximums and minimums) of the degree distribution and the clustering coefficients

over time corroborate the results in [1], except for the clustering coefficient during

early embryonic period. The Compressive-Kalman filter found a small clustering

coefficient in early embryonic stage, whereas the model-based Tesla algorithm in [1]

reported a high clustering coefficient for that phase.

To show the advantages of dynamic networks over a static network, we compared

the recovered interactions against a list of known undirected gene interactions hosted

in Flybase. The Compressive-Kalman algorithm was able to recover 1065 gene in-

teractions (ignoring all interactions smaller or equal than 10−3). The static network,

computed as one network across all time periods using the algorithm in [44], recovers

248 interactions. Using the segmentation approach, we also computed four networks,

where each network uses the number of samples in each developmental phase of the or-

ganism (embryonic, larval, pupal and adulthood). The embryonic-stage network uses

the 30 time points sampled during the embryonic phase, and recovers 121 interactions.

The larval-stage network uses the 9 time points available for the larval phase, and re-

covers 28 known interactions. The pupal-stage network uses 18 time points collected

during the pupal period, and recovers 125 interactions. The adult-stage network uti-

lizes 8 time points sampled during adulthood, and recovers 41 interactions. Hence, in
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total, the segmentation approach recovers 315 interactions. The dynamic networks

of Tesla [1] were able to recover 96 known interactions. We mention that, in [1], the

network size was 4028 genes, whereas we considered a subset of 1863 unflagged genes.

Thus, Tesla’s recovery rate is 2.4%, whereas Compressive-Kalman filter’s recovery

rate is 57.2%. The low recovery rate of Tesla in [1] may be due to the presence of

spurious samples since flagged genes were included in the networks.

The proposed algorithm and the constraint was first tested in MATLAB ®for

testing and validation of the algorithm. Once the accuracy and effectiveness of the

algorithm was ascertained, an HPC based implementation of the algorithm was de-

veloped so that it could be scaled to the levels of modern HPC magnitude, this

enabled us to actually examine a large number of genes. The parallel formulation

of the problem helped us in realizing a highly scalable version of the process. Thus

each HPC core runs code to calculate each gene at a time, while the communica-

tion between these individual processes is coordinated by the Open Message Passing

Interface (Open MPI). Due to the mathematical complexity of the problem, the com-

putation of very large matrices (e.g. for a p gene network, the Kalman filter requires

a p × p covariance matrix ), both the Intel(R) C Compiler and the Intel(R) Math

Kernel Library (Intel(R) MKL) were used on a Linux based platform for maximum

performance. This approach enabled an implementation that is highly efficient, in-

herently parallel ( for matrix multiplications etc.) and has built in support for the

HPC architecture. The implementation starts by the main MPI process spawning the

child processes, each child process is assigned an individual gene which it computes

based on the gene expression data that is made available to it using the file system.
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The child process returns the computed result to the main process, which assigns

it the next gene and in this way the process continues till the last gene. Finally

the master process puts together the computed results in a contagious matrix. To

minimize the memory requirements of the system, the sequential nature of the large

covariance matrices is exploited to ease the burden of memory management on the

Linux Kernel. To run this implementation, the Razor II HPC system at Univ of

Arkansas at Fayetteville was used. It has sixteen cores per node, with 32 Giga Bytes

of memory, each node interconnected using a 40Gbps QLogic quad-data rate QDR

InfiniBand. 40 such nodes were employed at a given time, though the computing

system at University of Arkansas at Fayetteville has 112 total nodes. This implemen-

tation also supports increasing the number of genes and is thus completely scalable

for future investigations.
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(a) t1 − t3 (embryonic) (b) t4 − t6 (embryonic)

(c) t7 − t9 (embryonic) (d) t10 − t12 (embryonic)

(e) t13 − t15 (embryonic) (f) t16 − t18 (embryonic)
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(g) t19 − t21 (embryonic) (h) t22 − t24 (embryonic)

(i) t25 − t27 (embryonic) (j) t28 − t30 (embryonic)

(k) t31 − t33 (larval) (l) t34 − t36 (larval)
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(m) t37 − t39 (larval) (n) t40 − t42 (pupal)

(o) t43 − t45 (pupal) (p) t46 − t48 (pupal)

(q) t49 − t51 (pupal) (r) t52 − t54 (pupal)
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(s) t55 − t57 (pupal) (t) t58 − t60 (adult)

(u) t61 − t63 (adult)

Figure 5.5: Snapshots of the time-varying networks at 21 time epochs (3 time points
for every network) depicting the connectivity patterns between the 1863 genes of
the Drosophila melanogaster during its development cycle. Genes are represented as
nodes and interactions as edges. Colored nodes are sets of genes enriched for Gene
Ontology summarized by the indicated terms. The nodes were distributed using a
force-directed layout in Cytoscape.
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Conclusion

Due to the dynamic nature of biological processes, biological networks undergo sys-

tematic rewiring in response to cellular requirements and environmental changes.

These changes in network topology are imperceptible when estimating a static “av-

erage” network for all time points. The dynamic view of genetic regulatory networks

reveals the temporal information about the onset and duration of genetic interactions;

in particular showing that few genes are permanent players in the cellular function

while others act transiently during certain phases or “regimes” of the biological pro-

cess. It is, therefore, essential to develop methods that capture the temporal evolution

of genetic networks, and allow the study of phase-specific genetic regulation and the

prediction of network structures under given cellular and environmental conditions.

In this Thesis, we formulated the reverse-engineering of time-varying networks,

from a limited number of observations, as a tracking problem in a compressed do-

main. Under the assumption of linear dynamics, we derived the stable weighted l1

Kalman filter, which provides the optimal minimum mean-square sparse estimate of

the connectivity structure. The estimated networks reveal that genetic interactions

undergo significant rewiring during the developmental process of an organism such as

the Drosophila Melanogaster. We anticipate that these topological changes and phase-
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specific interactions apply to other genetic networks underlying dynamic biological

processes, such as cancer progression, therapeutic treatment and development.

Finally, we anticipate that the rapid breakthroughs in genomic technologies for

measurement and data collection will make the static representation of biological

networks obsolete and establish instead the dynamic perspective of biological interac-

tions. The code and relevant data for this work is available at http://users.rowan.

edu/~bouaynaya/EURASIP2014.html.
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