2,525 research outputs found

    Learning relational models with human interaction for planning in robotics

    Get PDF
    Automated planning has proven to be useful to solve problems where an agent has to maximize a reward function by executing actions. As planners have been improved to salve more expressive and difficult problems, there is an increasing interest in using planning to improve efficiency in robotic tasks. However, planners rely on a domain model, which has to be either handcrafted or learned. Although learning domain models can be very costly, recent approaches provide generalization capabilities and integrate human feedback to reduce the amount of experiences required to learn. In this thesis we propase new methods that allow an agent with no previous knowledge to solve certain problems more efficiently by using task planning. First, we show how to apply probabilistic planning to improve robot performance in manipulation tasks (such as cleaning the dirt or clearing the tableware on a table). Planners obtain sequences of actions that get the best result in the long term, beating reactive strategies. Second, we introduce new reinforcement learning algorithms where the agent can actively request demonstrations from a teacher to learn new actions and speed up the learning process. In particular, we propase an algorithm that allows the user to set the mínimum quality to be achieved, where a better quality also implies that a larger number of demonstrations will be requested . Moreover, the learned model is analyzed to extract the unlearned or problematic parts of the model. This information allow the agent to provide guidance to the teacher when a demonstration is requested, and to avoid irrecoverable errors. Finally, a new domain model learner is introduced that, in addition to relational probabilistic action models, can also learn exogenous effects. This learner can be integrated with existing planners and reinforcement learning algorithms to salve a wide range of problems. In summary, we improve the use of learning and task planning to salve unknown tasks. The improvements allow an agent to obtain a larger benefit from planners, learn faster, balance the number of action executions and teacher demonstrations, avoid irrecoverable errors, interact with a teacher to solve difficult problems, and adapt to the behavior of other agents by learning their dynamics. All the proposed methods were compared with state-of-the-art approaches, and were also demonstrated in different scenarios, including challenging robotic tasks.La planificación automática ha probado ser de gran utilidad para resolver problemas en los que un agente tiene que ejecutar acciones para maximizar una función de recompensa. A medida que los planificadores han sido capaces de resolver problemas cada vez más complejos, ha habido un creciente interés por utilizar dichos planificadores para mejorar la eficiencia de tareas robóticas. Sin embargo, los planificadores requieren un modelo del dominio, el cual puede ser creado a mano o aprendido. Aunque aprender modelos automáticamente puede ser costoso, recientemente han aparecido métodos que permiten la interacción persona-máquina y generalizan el conocimiento para reducir la cantidad de experiencias requeridas para aprender. En esta tesis proponemos nuevos métodos que permiten a un agente sin conocimiento previo de la tarea resolver problemas de forma más eficiente mediante el uso de planificación automática. Comenzaremos mostrando cómo aplicar planificación probabilística para mejorar la eficiencia de robots en tareas de manipulación (como limpiar suciedad o recoger una mesa). Los planificadores son capaces de obtener las secuencias de acciones que producen los mejores resultados a largo plazo, superando a las estrategias reactivas. Por otro lado, presentamos nuevos algoritmos de aprendizaje por refuerzo en los que el agente puede solicitar demostraciones a un profesor. Dichas demostraciones permiten al agente acelerar el aprendizaje o aprender nuevas acciones. En particular, proponemos un algoritmo que permite al usuario establecer la mínima suma de recompensas que es aceptable obtener, donde una recompensa más alta implica que se requerirán más demostraciones. Además, el modelo aprendido será analizado para identificar qué partes están incompletas o son problemáticas. Esta información permitirá al agente evitar errores irrecuperables y también guiar al profesor cuando se solicite una demostración. Finalmente, se ha introducido un nuevo método de aprendizaje para modelos de dominios que, además de obtener modelos relacionales de acciones probabilísticas, también puede aprender efectos exógenos. Mostraremos cómo integrar este método en algoritmos de aprendizaje por refuerzo para poder abordar una mayor cantidad de problemas. En resumen, hemos mejorado el uso de técnicas de aprendizaje y planificación para resolver tareas desconocidas a priori. Estas mejoras permiten a un agente aprovechar mejor los planificadores, aprender más rápido, elegir entre reducir el número de acciones ejecutadas o el número de demostraciones solicitadas, evitar errores irrecuperables, interactuar con un profesor para resolver problemas complejos, y adaptarse al comportamiento de otros agentes aprendiendo sus dinámicas. Todos los métodos propuestos han sido comparados con trabajos del estado del arte, y han sido evaluados en distintos escenarios, incluyendo tareas robóticas

    Learning a Motion Policy to Navigate Environments with Structured Uncertainty

    Get PDF
    Navigating in uncertain environments is a fundamental ability that robots must have in many applications such as moving goods in a warehouse or transporting materials in a hospital. While much work has been done on navigation that reacts to unexpected obstacles, there is a lack of research in learning to predict where obstacles may appear based on historical data and utilizing those predictions to form better plans for navigation. This may increase the efficiency of a robot that has been working in the same environment for a long period of time. This thesis first introduces the Learned Reactive Planning Problem (LRPP) that formalizes the above problem and then proposes a method to capture past obstacle information and their correlations. We introduce an algorithm that uses this information to make predictions about the environment and forms a plan for future navigation. The plan balances exploiting obstacle correlations (ie. observing obstacle A is present means obstacle B is present as well) and moving towards the goal. Our experiments in an idealized simulation show promising results of the robot outperforming a commonly used optimistic algorithm. Second, we introduce the Learn a Motion Policy (LAMP) framework that can be added to navigation stacks on real robots. This framework aims to move the problem of predicting and navigating through uncertainties from idealized simulations to realistic settings. Our simulation results in Gazebo and experiments on a real robot show that the LAMP framework has potential to improve upon existing navigation stacks as it confirms the results from the idealized simulation, while also highlighting challenges that still need to be addressed

    Enabling Motion Planning and Execution for Tasks Involving Deformation and Uncertainty

    Get PDF
    A number of outstanding problems in robotic motion and manipulation involve tasks where degrees of freedom (DoF), be they part of the robot, an object being manipulated, or the surrounding environment, cannot be accurately controlled by the actuators of the robot alone. Rather, they are also controlled by physical properties or interactions - contact, robot dynamics, actuator behavior - that are influenced by the actuators of the robot. In particular, we focus on two important areas of poorly controlled robotic manipulation: motion planning for deformable objects and in deformable environments; and manipulation with uncertainty. Many everyday tasks we wish robots to perform, such as cooking and cleaning, require the robot to manipulate deformable objects. The limitations of real robotic actuators and sensors result in uncertainty that we must address to reliably perform fine manipulation. Notably, both areas share a common principle: contact, which is usually prohibited in motion planners, is not only sometimes unavoidable, but often necessary to accurately complete the task at hand. We make four contributions that enable robot manipulation in these poorly controlled tasks: First, an efficient discretized representation of elastic deformable objects and cost function that assess a ``cost of deformation\u27 for a specific configuration of a deformable object that enables deformable object manipulation tasks to be performed without physical simulation. Second, a method using active learning and inverse-optimal control to build these discretized representations from expert demonstrations. Third, a motion planner and policy-based execution approach to manipulation with uncertainty which incorporates contact with the environment and compliance of the robot to generate motion policies which are then adapted during execution to reflect actual robot behavior. Fourth, work towards the development of an efficient path quality metric for paths executed with actuation uncertainty that can be used inside a motion planner or trajectory optimizer

    Policy-Based Planning for Robust Robot Navigation

    Full text link
    This thesis proposes techniques for constructing and implementing an extensible navigation framework suitable for operating alongside or in place of traditional navigation systems. Robot navigation is only possible when many subsystems work in tandem such as localization and mapping, motion planning, control, and object tracking. Errors in any one of these subsystems can result in the robot failing to accomplish its task, oftentimes requiring human interventions that diminish the benefits theoretically provided by autonomous robotic systems. Our first contribution is Direction Approximation through Random Trials (DART), a method for generating human-followable navigation instructions optimized for followability instead of traditional metrics such as path length. We show how this strategy can be extended to robot navigation planning, allowing the robot to compute the sequence of control policies and switching conditions maximizing the likelihood with which the robot will reach its goal. This technique allows robots to select plans based on reliability in addition to efficiency, avoiding error-prone actions or areas of the environment. We also show how DART can be used to build compact, topological maps of its environments, offering opportunities to scale to larger environments. DART depends on the existence of a set of behaviors and switching conditions describing ways the robot can move through an environment. In the remainder of this thesis, we present methods for learning these behaviors and conditions in indoor environments. To support landmark-based navigation, we show how to train a Convolutional Neural Network (CNN) to distinguish between semantically labeled 2D occupancy grids generated from LIDAR data. By providing the robot the ability to recognize specific classes of places based on human labels, not only do we support transitioning between control laws, but also provide hooks for human-aided instruction and direction. Additionally, we suggest a subset of behaviors that provide DART with a sufficient set of actions to navigate in most indoor environments and introduce a method to learn these behaviors from teleloperated demonstrations. Our method learns a cost function suitable for integration into gradient-based control schemes. This enables the robot to execute behaviors in the absence of global knowledge. We present results demonstrating these behaviors working in several environments with varied structure, indicating that they generalize well to new environments. This work was motivated by the weaknesses and brittleness of many state-of-the-art navigation systems. Reliable navigation is the foundation of any mobile robotic system. It provides access to larger work spaces and enables a wide variety of tasks. Even though navigation systems have continued to improve, catastrophic failures can still occur (e.g. due to an incorrect loop closure) that limit their reliability. Furthermore, as work areas approach the scale of kilometers, constructing and operating on precise localization maps becomes expensive. These limitations prevent large scale deployments of robots outside of controlled settings and laboratory environments. The work presented in this thesis is intended to augment or replace traditional navigation systems to mitigate concerns about scalability and reliability by considering the effects of navigation failures for particular actions. By considering these effects when evaluating the actions to take, our framework can adapt navigation strategies to best take advantage of the capabilities of the robot in a given environment. A natural output of our framework is a topological network of actions and switching conditions, providing compact representations of work areas suitable for fast, scalable planning.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144073/1/rgoeddel_1.pd
    • …
    corecore