
Learning a Motion Policy to
Navigate Environments With

Structured Uncertainty

by

Florence Tsang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

c© Florence Tsang 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Florence Tsang was the sole author for Chapters 1, 2, 3, 5, and 6 which were written under
the supervision of Dr. Stephen Smith and were not written for publication.

The research presented in chapter 4 was conducted by Florence Tsang and Ryan A. Mac-
donald under the supervision of Dr. Stephen Smith. Ryan A. Macdonald wrote the problem
setup (Section 4.2). Florence Tsang revised the solution approach (Section 4.3) and wrote
the remainder of the chapter. Florence Tsang also did the coding, data collection, and
data analysis.

Chapter 4 was written for publication.

Citations:

c©2019 IEEE. Reprinted, with permission, from Florence Tsang, Ryan A. MacDonald, and
Stephen L. Smith. Learning Motion Planning Policies in Uncertain Environments through
Repeated Task Executions. IEEE Conference on Robotics and Automation, pages 8-14,
2019

iii

Abstract

Navigating in uncertain environments is a fundamental ability that robots must have
in many applications such as moving goods in a warehouse or transporting materials in
a hospital. While much work has been done on navigation that reacts to unexpected
obstacles, there is a lack of research in learning to predict where obstacles may appear
based on historical data and utilizing those predictions to form better plans for navigation.
This may increase the efficiency of a robot that has been working in the same environment
for a long period of time.

This thesis first introduces the Learned Reactive Planning Problem (LRPP) that for-
malizes the above problem and then proposes a method to capture past obstacle infor-
mation and their correlations. We introduce an algorithm that uses this information to
make predictions about the environment and forms a plan for future navigation. The plan
balances exploiting obstacle correlations (ie. observing obstacle A is present means obsta-
cle B is present as well) and moving towards the goal. Our experiments in an idealized
simulation show promising results of the robot outperforming a commonly used optimistic
algorithm.

Second, we introduce the Learn a Motion Policy (LAMP) framework that can be added
to navigation stacks on real robots. This framework aims to move the problem of predict-
ing and navigating through uncertainties from idealized simulations to realistic settings.
Our simulation results in Gazebo and experiments on a real robot show that the LAMP
framework has potential to improve upon existing navigation stacks as it confirms the re-
sults from the idealized simulation, while also highlighting challenges that still need to be
addressed.

iv

Acknowledgements

I would like to thank my supervisor, Stephen Smith for his patience and guidance during
my time as a Master’s student at the University of Waterloo. His insight and advice was
invaluable to my growth in knowledge in the field of robotics and to the research that went
into this thesis.

I would also like to thank everyone in the Smith Autonomy Lab for their support
and help for the last two years. In particular, I would like to thank Tristan Walker, a
fellow Master’s student, for all his assistance in the implementation of my experiments and
brainstorming with me on how to adapt the initial algorithm to realistic scenarios. As
well as a big thank you to Olzhas Adiyatov and Jean-Luc Bastarache for spending a whole
Saturday with me to aid in my experiment with the Jackal.

I am grateful to Alex Werner and Brandon J. DeHart, for without them, testing my
algorithm on a real robot would have still just been a far away dream.

I would like to thank all my friends and family for their love and encouragement. I
am especially thankful to Emily Leung, Dennis Tsang, Enoch Tsang, Geoffrey Mah, Sarah
Ng, and Jenny Martin for being with me in the highs and lows of this journey.

Finally, I would like to acknowledge my Creator, whose divine inspiration and strength
sustained my spirit from the beginning to the end.

v

Dedication

This is dedicated to my younger brother Enoch Tsang. His passion in everything he
does inspired me to challenge my own limitations and grow from the experience.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Outline . 4

2 Literature Review 5

2.1 Navigation Without Uncertainty . 5

2.2 Navigation with Uncertainty . 6

2.3 Reinforcement Learning . 7

3 Background 9

3.1 Basic Notation . 9

3.2 Problem Complexity . 9

3.3 Stochastic Canadian Traveller’s Problem 10

3.4 Reactive Planning Problem (RPP) . 11

3.5 Vertex Clique Cover Problem . 13

3.6 Map Representations . 14

4 Learning Motion Planning Policies in Uncertain Environments through
Repeated Task Executions 16

4.1 Introduction . 16

4.1.1 Chapter Contributions . 17

4.2 Problem Setup . 17

4.2.1 Environment Model . 17

4.2.2 Robot Model . 18

vii

4.2.3 Complete Policy . 18

4.2.4 Learned Reactive Planning Problem (LRPP) 19

4.3 Solution Approach . 20

4.3.1 Map Memory Filter . 20

4.3.2 Switching to the Optimistic Policy 22

4.3.3 Policy Structure . 23

4.3.4 Build Policy . 23

4.3.5 Policy Update . 24

4.4 Simulation . 24

4.4.1 Test Environment . 25

4.4.2 Results . 26

4.5 Summary . 27

5 The Learn a Motion Policy (LAMP) Framework 28

5.1 Introduction . 28

5.1.1 Chapter Contributions . 29

5.1.2 Chapter Organization . 29

5.2 Map Framework . 29

5.2.1 Map Agreement . 29

5.2.2 Navigation Graph . 32

5.2.3 Edge Cost Update . 34

5.3 Resolving Edges . 34

5.3.1 Direct Inference . 35

5.3.2 Indirect Inference . 38

5.4 Robot Actions . 39

5.5 Policy Construction . 40

5.5.1 Optimistic Policy . 40

5.5.2 Offline RPP Policy . 41

5.5.3 Online RPP Policy . 41

5.6 LAMP Framework . 45

5.6.1 Task Execution with Offline Policy Construction 46

5.6.2 Task Execution with Online Policy Construction 47

5.7 Results . 49

5.7.1 Simulation . 49

viii

5.7.2 Physical Robot Experiments . 53

5.8 Discussion . 55

5.9 Portal Extension . 56

5.10 Summary . 59

6 Conclusion 60

6.1 Future Work . 61

6.1.1 RPP Based Policies . 61

6.1.2 Edge Observer . 61

6.1.3 LAMP Framework . 62

References 63

ix

List of Tables

5.1 Existing algorithms were used in the navigation stack for the experiments. 49

5.2 Probabilities of obstacles appearing in the simulation. 50

5.3 Probabilities of obstacles appearing in the environment. 53

5.4 Results from experiment on real robot. 55

x

List of Figures

1.1 Example of overall thesis problem . 3

3.1 Example of environment and corresponding policy 12

3.2 Example of VCC to Graph Coloring . 14

3.3 Examples of occupancy grid and costmap 14

3.4 Example of topological map . 15

3.5 Example of topometric map . 15

4.1 Example of map agreement . 20

4.2 Integrating switching to the optimistic policy λ with our overall approach. 22

4.3 Overview of the policy update. 23

4.4 Example showing why policy should assume unknown cells are unblocked . 24

4.5 Base map and obstacle distribution of LRPP simulation 25

4.6 Average cost savings compared to following only the optimistic policy. . . . 26

4.7 Paths taken in the same realization at t1 = 5 and t2 = 8 27

5.1 Occupancy grid agreement example. 30

5.2 Why image similarity techniques fail to satisfy map agreement 31

5.3 PRM agreement example . 32

5.4 Example of occupancy grid decomposition (left) and the resulting navigation
graph (right). 33

5.5 Example of a decomposition that could form a multigraph. 34

5.6 a) Example of unblocked edge; b) blocked edge; c) unknown edge 35

5.7 Example of how known map Mk is formed. 39

5.8 Example of offline policy performing poorly 42

5.9 Aid for explaining modified distance score in Online policy 44

5.10 Overall LAMP architecture . 45

5.11 Structure of High Level Planner with offline policy construction. 46

xi

5.12 Online flow . 48

5.13 Clearpath Jackal that was used in both the simulation and real world ex-
periment. 49

5.14 LAMP simulation test environment . 50

5.15 Cost savings of optimistic, offline, and online policy normalized to the simple
policy. 51

5.16 Plots of number of super maps and ratio of switches to the optimistic policy
in LAMP simulation . 52

5.17 Examples of map agreement in LAMP simulation 53

5.18 LAMP real robot test environment . 54

5.19 Depiction of weakness in direct inference algorithm 57

xii

Chapter 1

Introduction

Motion planning is a long standing problem in the robotics research community, as it is
an essential part of what it means for a robot to be autonomous. Although much progress
has been made in the past few decades, motion planning covers a very wide breadth of
topics, and as the most recent disasters with self-driving vehicles would inform us, there
is still room for great improvement. On the most basic, but by no means trivial, level,
there is the matter of computing an appropriate trajectory for reaching a specific point in
space. This can be extended to path following, where a series of trajectories are computed
to follow an arbitrary path. On a higher level, there has been work on generating these
paths to reach some objective, which is captured by a cost or a value function.

There are many different objectives a robot could have, with many areas of research for
specific problems. For example, some robots are used for exploring unknown areas, in which
case their objectives would be to maximize new map information while minimizing time or
effort [5,60]. Others might be patrolling a certain area [42], or collecting measurements at
specific locations [64, 68] under time or fuel constraints. There are many more, but what
they all have in common is the basic aim to move from one location to another.

We will refer to the task of moving from a start location to a goal location as navigation.
While navigation seems to be a simple task in comparison to the ones mentioned earlier,
determining optimal paths remains a challenge. If the environment is fully known (i.e.
all the obstacle information is known beforehand) then there are multitudes of efficient
solutions that use sampling (e.g. PRM [28], RRT [40]). However, even this case has its
challenges when noise in the sensors and controls are considered. As a result, algorithms like
the one in [51] have been proposed to be more robust to this type of internal noise. But for
robots to really become ubiquitous in our homes, hospitals, restaurants, and workplaces,
they must also be able to handle uncertainties in these dynamic environments that are
beyond just sensor noise.

Uncertainties in an environment can be divided into the following types: dynamic and
semi-static. Dynamic uncertainties refer to obstacles that are currently in motion, this can
be other humans, animals, vehicles, etc. Semi-static uncertainties refer to obstacles such
as doors, beds, or boxes that are generally not in motion when the robot passes by, but
could be moved the next time the robot passes the same area. These kind of uncertainties
can block areas that were previously traversable and free areas that were not. Uncertainty
in this work will refer to semi-static uncertainties, unless otherwise stated. For completion,

1

static obstacles refer to obstacles that are in a floor plan such as walls. In this work, these
obstacles are not expected to be uncertain, and could also be referred to as permanent
obstacles.

A navigation system must have two capabilities,

• the ability to locate itself and its target in a model of the environment, commonly
known as localization, and

• the ability to plan a route to its goal.

The robot will first need a model of the environment before it can navigate. There are
different methods of processing sensor data before it is given to the planner. If the robot has
a Light Detection and Ranging (LiDAR) sensor which measures the distance from the robot
to obstacles via laser pulses, this sensor data can be fed directly into a neural network [26,65]
which then outputs trajectories, alternatively the LiDAR data can be processed into a 2D
or 3D occupancy grid [22,73]. A more advanced version of an occupancy grid is a costmap,
which assigns different costs to cells (as opposed to a probability) based on the distance
from obstacles and other factors. The most abstract representations compress the data
into a graph with varying levels of geometrical interpretation (imagine how the accuracy
in scale of hand-drawn maps can be varied, but can still be interpreted) [7, 35, 70]. The
vertices can represent an area (for example, a room), and edges indicate if there exists
a path between two vertices. There may be other constraints to decide whether an edge
exists or not depending on the algorithm used to define the graph. In this thesis, the term
map refers to an occupancy grid or a graph used to model an environment.

There are two ways to obtain a map, it could be given to the robot, or a more common
approach is for the robot to generate its own map. The heavily researched simultaneous
localization and mapping (SLAM) problem addresses the issue of generating and localizing
in that same map. Surprisingly, there is not much work in translating a not-to-scale map
into a model the robot can use. Brunner [9] did some work on learning to read maps viewed
by a camera, while Kakuma [24] looked into extracting semantic information from floor
plans. The most straight-forward method is providing a to-scale occupancy grid (either
manually curated or generated by a SLAM algorithm) that can be used to localize the
robot. While the map format is important in the latter half of this thesis, the specifics of
map generation are not the focus, but the above information is useful to keep in mind.

Only once the robot has a map of the environment, and has localized itself, can any
meaningful planning be done. When navigating without uncertainties, a planner can simply
output a single path for the robot to follow to reach its goal. However, this is an insufficient
plan in the presence of uncertainties, since there could exist a shorter path or the path
cannot be fully executed because an unexpected obstacle is blocking the way. Therefore,
what is needed is a plan on how to react in different circumstances. Plans that define how
a robot should behave during navigation are referred to as policies.

A common approach to dealing with uncertainties while navigating is to plan a shortest
path given the current map, if the path is blocked, then update the map and replan the
shortest path with the updated map with algorithms such as D*Lite [30] or Anytime
Dynamic A* [43]. These are known as optimistic policies. These policies are suitable for
situations where the robot is not expected to operate in the same environment for a long

2

period of time (e.g. search and rescue missions, exploration missions). However, from a
long-term operation perspective (e.g. deployment in a mall or warehouse), this is not ideal
for two reasons. The first reason is that there could be significant distortion of the map due
to noise, however, this can be avoided by using a layered costmap [48] that differentiates
between dynamic, semi-static, and static obstacles. Updates to the map can be made to the
dynamic and/or semi-static layer, while maintaining and localizing to the static obstacle
positions, avoiding distortion.

The second reason is that this approach only considers the given static obstacles and
other obstacles within its immediate sensor range when forming its initial strategy, which
could result in consistently ‘bad’ routes to the goal. Figure 1.1 illustrates an example of
this.

(a) (b)

Figure 1.1: In (a), the robot takes the green path, which is the shortest path. This is
also the map that the robot has to plan with. In (b), there is a semi-static obstacle which
blocks the original shortest path, so the robot replans once it sees the obstacle, resulting
in a longer path (green) than the optimal (blue).

Consider the case where the environment is as shown in figure 1.1b most of the time
(say 99%) and only occasionally as shown in figure 1.1a (say 1%). Then the optimistic
approach will continually attempt the green path when it executes the same navigation
task, rather than considering that overall, it’s better to take the blue path. One could say
to use the map in figure 1.1b instead, but what if the probabilities were reversed? Then
the robot will take the blue path when the green path (a) is frequently available. This
raises two questions, how to learn these uncertainties, assuming there is some structure to
them (i.e. they can be predicted), and how to compute a policy that minimizes the cost
over a period of time by exploiting these learned uncertainties. From a high level, this is
the problem that this thesis attempts to address.

1.1 Thesis Contributions

The following are the key contributions from this thesis:

3

• Chapter 4 proposes a method of learning the environment uncertainties given no
prior uncertainty information and an algorithm for exploiting that information that
minimizes the expected navigation cost over a given number of task executions. This
work was published in [71].

• Chapter 5 investigates the challenges of implementing the system from chapter 4
onto a robot and proposes a modular framework that could be used for comparing
different policies on robot hardware.

1.2 Outline

The remainder of this thesis is organized as follows:

Chapter 2 covers related work on learning in general and in navigation, navigating in
uncertainties, and some more details on the different mapping representations.

Chapter 3 provides the general notation used throughout this thesis and information
on previously researched problems that the reader should be aware of before continuing
onto chapters 4 and 5.

Chapter 4 first proposes the learned reactive planning problem (LRPP), then proposes
a method to capture environmental uncertainties when only given a base map with static
obstacles (such as a floor plan), assuming the robot must execute navigation tasks in the
same environment multiple times. Next, an algorithm is proposed to solve the LRPP using
the previous method to learn the uncertainties and exploit them to minimize the expected
cost for a specific navigation task, iteratively improving the policy over time. Finally,
simulation results are presented to show the effectiveness of the algorithm.

Chapter 5 first highlights and addresses the challenges of implementing the algorithm
on an actual robot operating in a real environment instead of operating in a graph, which is
the setting in which most of the literature covering this problem operates in. This chapter
then proposes a modular framework for integrating the algorithm and uses its policy to
navigate in a realistic environment. The modularity allows for easy substitution of different
algorithms for a trajectory planner, map representations, and even a different policy than
the one proposed in chapter 4. Preliminary experimental results are provided to confirm
the findings from chapter 4 and observations resulting in new challenges for the robotics
community from the attempt to implement a smarter navigation system are discussed.

Chapter 6 summarizes the algorithms and findings from the previous two chapters and
presents directions for future research on improving and extending the LRPP solution,
improvements to the framework introduced in chapter 5, and how it can be used to further
research on different policies for navigating uncertain environments.

4

Chapter 2

Literature Review

As mentioned in the introduction, a robot must have two key abilities to be able to navi-
gate: 1) localization, and 2) planning how to reach the goal. This chapter will first review
the literature on navigation without uncertainty, covering the research that has been done
in localization and path planning. Next we will review navigation with uncertainty, mo-
tivating the main contributions of this thesis. Finally, we relate how this work fits with
the broader reinforcement learning literature and why this particular navigation problem
requires special treatment.

2.1 Navigation Without Uncertainty

In this section, we will first review the literature in path planning, before reviewing local-
ization. Path planning is an important initial building block of forming a plan to get to
the goal, but as was mentioned in the introduction, a path and a policy are different.

The primary objective of any path planner is to find a path from a start position to
a goal position. Given a map of the environment where the free space and the occupied
space is specified, there have been two main approaches to this problem, one can plan a
path directly on this map, or discretize it before running a graph-based path planner such
as A* or Dijkstra’s algorithm. Rapidly-exploring Random Trees (RRT) [40] and many of
its variants (RRT-connect [38], parallel RRT [12], etc) are based on the former, building a
graph from a given starting point, incrementally adding vertices and edges until a complete
path to the goal is found. Approaches based on first discretizing the environment can take
a random approach to selecting vertices in the free space such as the probabilistic roadmap
(PRM) [28], using a set of motion primitives to form a lattice [66], or discretizing the
environment into a grid [11].

Initially, the main objective of path planners was to find the shortest possible path in a
given environment. However, with the presence of noise in both sensor data and controls, it
was also important to consider how likely the robot may collide with obstacles, giving rise to
variations of path planners that take this into consideration such as the Rapidly-exploring
Random Belief Trees (RBT) [10] algorithm or sampling probabilistic maps [51].

Localization is also a key requirement for navigation. In the absence of a precise
positioning system like GPS (which is a common occurrence in indoor environments),

5

alternative approaches are needed. One approach is to add specialized markers like April
tags [61] or ARTag [16], known as fiducial markers to the environment, which can inform
the robot of its current position.

However, it is desirable to be able to localize without needing to modify the environment
prior to robot deployment. One of the most prevalent algorithms for localization is the
Augmented Monte Carlo Localization (AMCL) [13] algorithm which uses a particle filter
to determine the most likely position the robot is in given a map. This approach and
many other approaches assumes the robot is equipped with LiDAR or sonar to sense the
distance it is from obstacles. Visual Teach and Repeat (VT&R) [18] uses stereo camera
images to localize and follow a taught path. Other SLAM algorithms uses landmarks to
recognize previously visited areas (a problem known as loop closure), like ORB-SLAM [56]
and FASTSLAM [54].

The main point is that both path planning and localization are heavily researched
areas, with many algorithms and their results available. Therefore, the remainder of this
thesis will assume that the robots considered are reasonably adept at localization and path
planning. It is important to note that all of the aforementioned path planning algorithms
assume that the environment does not change.

2.2 Navigation with Uncertainty

In the presence of uncertainties, the optimistic policy has been the most prevalent choice
because of its simplicity to implement. There have been many algorithms developed to
improve computational efficiency that are based on the path planning algorithms in Sec-
tion 2.1 and essentially replanning when the original path is blocked. Examples of this
include D*Lite [30], LPA* [32], etc.

For uncertainties that result in small discrepancies in the original path, this is a rea-
sonable approach. Imagine moving around a chair or box that was not in the original map.
However, the problem becomes more apparent when more effort is expended because of an
unexpected obstacle that is not in the map used for planning, like in figure 1.1 where a
door to a hallway is closed (assuming the robot is not capable of opening the door), which
may result in a long detour that could have been avoided depending on the situation.

A well known problem that can capture this scenario is the Canadian Traveller’s Prob-
lem (CTP), Section 3.3 provides details on the problem definition. Informally, the CTP
states that given a graph, find the optimal path for an agent to take from start to goal.
However, some of the edges are blocked (the robot cannot traverse that edge), and these
edges are only revealed as being blocked to the agent when it reaches an endpoint of the
edge.

A common variant of this problem is the stochastic CTP, where each edge has a known
probability of being blocked. For brevity, when we refer to CTP, we will mean the stochastic
CTP for the remainder of this thesis. The original problem was defined by Papadimitriou et
al. [62], and from it many other variations have been suggested. Bnaya et al. [8] introduced
CTP with remote sensing, where for a known cost, the robot can sense the state of any
edge. Lim et al. [45] introduced the Bayesian CTP where instead of treating each edge
independently, a probability is assigned to different configurations of the graph, which is

6

similar to our approach of modeling the environment. Guo and Barfoot [21] introduced
the robust CTP, where the variability of the policy cost is also part of evaluating policies,
reducing the worst-case cost. We show that the problem we introduce in chapter 4, the
Learned Reactive Planning Problem (LRPP), can be reduced to the CTP.

Optimal policies for the CTP can be calculated using AO* based algorithms. The most
notable being CAO* [1] which guarantees optimality with an impressive runtime compared
to other optimal algorithms such as value iteration and the original AO*. However, they
limit the number of observations the robot is allowed to make in their results. Some
algorithms for the CTP, such as UCT-CTP [15], optimize a policy by sampling policies and
estimating their expected cost by running the sampled policy over a series of environments
based on the edge probabilities. These runs are known as rollouts. The more rollouts that
are performed, the more accurate the cost estimate will be, and generally the better the
resulting policy. As expected, their runtimes are quite high as a result of these rollouts.
Other algorithms use a heuristic to approximate the next step in a policy, like the Hedged
Shortest Path under Determinization (HSPD) algorithm proposed in [45] or the algorithm
proposed for the Reactive Planning Problem [49]. Both assume there is structure to the
environment certainties that can be exploited to find a minimum cost policy.

There has been very little work on two fronts, the first being the CTP and all of
its variations (and subsequently, their solutions) assume the probability of an edge being
blocked is known, but in practice this information is generally not known. Only the work
by Nardi and Stachniss [57] addresses the problem of capturing this information from the
environment. They employ factor graphs, which can approximate the correlation of edge
traversability between two edges. In contrast, we propose a solution in chapter 4 that can
capture the correlation of edge traversability between many edges.

The second shortcoming of the existing literature is that there is little, if any, work that
combines these CTP algorithms with existing navigation systems to form a pipeline that
can be implemented on a real robot, which is what chapter 5 attempts to address.

2.3 Reinforcement Learning

Aksakalli et al. [1] showed that the stochastic CTP can be modelled as a Markov De-
cision Process (MDP) and a deterministic Partially Observable Markov Decision Process
(POMDP), both of which are formulations frequently used in reinforcement learning. How-
ever, generic POMDP solvers cannot be used to find optimal policies for the CTP in
practical applications because the state space for the stochastic CTP is exponential.

There have been advances to utilize neural networks to approximate value functions
for MDPs with large state and action spaces. This combination of neural networks and
traditional reinforcement learning is coined Deep Reinforcement Learning (DRL). Mnih et
al. [53] introduced the Deep Q Network (DQN) that is the first success at DRL to learn
how to play Atari games from pixels. There have been many robotic applications for DRL,
from improving exploration [74], navigating towards a visual target [75], to learning to
read maps [9]. Kanezaki et al. [26] proposed a path planning algorithm based on DRL
that performs well in the presence of many unexpected obstacles, but the behaviour is
that of an optimistic algorithm. Furthermore, Lillicrap and Hunt et al. [44] introduced the

7

deep deterministic policy gradient (DDPG), an algorithm to solve reinforcement learning
problems with continuous action spaces (for example, balancing a quadroped, running,
arm manipulation, etc). The drawback from using these techniques for navigation is the
need for training before the algorithm can be used in practice. The difficulty with training
navigation with uncertainty, and in particular the solutions for the CTP, is that unlike
tasks such as learning to play a specific video game or learning how to walk, the state
space can vary significantly with each new environment. For example, imagine navigating
an unfamiliar university campus, knowing your own university really well does not translate
into knowing how to navigate the new campus. Even knowing all other campuses on the
planet may not help with navigating this particular one. This implies that if the deployment
environment is different from the training data, the algorithm may perform poorly and
have to be retrained. Obtaining data for training navigation with uncertainties is also a
challenge. In contrast, our solution does not require any training, and can be deployed
with minimal setup.

The UCT-CTP approximation algorithm introduced by Eyerich et al. in [15] is based
on the Upper Confidence Tree (UCT) algorithm that has been successfully applied to many
MDP and POMDP problems. It takes advantage of an easily computable upper bound on
the optimal cost of a policy. But both Nardi et al. [57] and Lim et al. [45] show that the
cost of the policies their algorithms provided are less than the policies returned by UCT-
CTP, suggesting that specially-designed approximation algorithms may be better suited
to finding policies for environments with correlated edge traversabilities. In addition, [15]
reported a runtime of approximately 5 minutes for a graph with 100 vertices and 280
edges for UCT-CTP, whereas in chapter 4, we show that a policy can be computed by our
approximation algorithm in a few seconds for a graph with 400 vertices and 1654 edges.

8

Chapter 3

Background

This chapter provides an introduction to the notation that will be used throughout this
thesis and it also details existing problems that have been previously researched, but are
essential to understanding the following chapters. The final section summarizes the current
types of maps that a robot can use to navigate.

3.1 Basic Notation

A weighted undirected graph G is defined by the pair G = (V,E) with the cost c : E → R≥0

for traversing each edge e ∈ E. A path P in a graph is defined by a sequence of vertices
v1, . . . , vk that satisfies (vi, vi+1) ∈ E for all i ∈ Nk−1 with cost of traversal defined by
c(P) =

∑k−1
i=1 c(vi, vi+1). With some abuse of notation for v, u ∈ V , we let c(v, u) denote

the minimum cost of a path from v to u. An edge e = (v, u) ∈ E is said to be incident
with vertices v and u.

There are m = 2|E| edge subsets of E. Let the complete set of subgraphs of G be
denoted by G = {G1, . . . , Gm}, where Gi = (V,Ei) and Ei ⊆ E.

This thesis frequently uses the `2 norm or the euclidean distance, commonly denoted
as ||x, y||2 which is the euclidean distance between x ∈ R2 and y ∈ R2.

3.2 Problem Complexity

When developing algorithms, common measures of how ‘good’ a solution is compared to
other solutions is how much time it takes to compute a solution and how much space in
memory is required, known as time complexity and space complexity respectively. While
giving empirical measurements of time or space can be valuable, values can fluctuate de-
pending on the hardware the algorithm was run on, and in addition, algorithms commonly
scale to how large the input to the algorithm is. For example, suppose the problem is to
count the number of times the letter a appears in a given word, and the solution is to check
each letter in the list starting from the beginning. A bigger word means it will take longer
for the solution to finish counting all the a’s.

9

The field of computer science has standard notation when referring to these relative
complexities, the only one that we are concerned with in this work is the big O notation, or
O(.), which indicates the worst relative complexity by a constant factor. Using the previous
example, its worst time complexity would be O(n) where n is the number of letters in the
word, because you have to check each letter once. If there was a solution that required
every letter in the word to be checked at least twice, the worst case time complexity would
still be O(n) because 2 is a constant.

It is useful to classify problems by this relative complexity to get a sense of how difficult
the problem is to solve. For example, if it is proven for a solution to a problem requires
at most polynomial space to solve, or O(nx) x ∈ Z+, then the problem is in the class of
PSPACE-complete. PSPACE-hard would indicate that at best, the solution would require
polynomial space to solve the problem. There are many complexity classes for time and
space, while we only provide a very brief introduction to the concept of complexity classes,
there are many resources that explain the specifics of different classes and how problems
are classified. This thesis will classify the formally introduced problems, but they will not
be the focus or a main result.

3.3 Stochastic Canadian Traveller’s Problem

The Canadian Traveller’s Problem (CTP) captures the problem of executing a navigation
task where the roads are known, but their conditions are unknown a priori. Similar to
travelling in Canada during the winter, some roads may be blocked because of adverse
weather conditions. The roads are given as an undirected weighted graph G where some of
the edges are blocked, but the robot is unaware of which edges are blocked. This is a well
known problem in robot navigation as it models the case where only partial information
is known about the environment the robot is operating in, but it is desirable for the robot
to navigate in a way to minimize its travel cost or some other cost (such as fuel).

The stochastic CTP is a variation of the original CTP where the robot is aware of
the probability of each edge being blocked. Formally, an instance of the CTP can be
represented as a tuple I = (G, p, c, vs, vg) where

• G = (V,E) defines the connected, undirected graph,

• p : E → [0, 1] defines the blocking probability of an edge,

• c : E → R≥0 defines the cost of traversing each edge, and

• vs, vg ∈ V are the start and goal vertices.

A weather is a subset of E that contains all of the unblocked edges in a particular task
execution. As the robot is executing the task, its belief state can be represented by three
sets: the unblocked edges, blocked edges, and the unknown edges. It only knows the state
of an edge if it has visited one of the endpoints. It is important to note that the state of
an edge does not change during a task execution. Thus a solution would be a policy that
maps the belief state to an action. The goal is to compute a good policy that minimizes the
expected cost to navigate from vs to vg, given that the robot does not know the weather.

10

Computing an optimal policy is difficult, and this problem was shown to be PSPACE-
hard in [17]. Typically, heuristics are used to calculate the policy. The simplest approach
is the optimistic algorithm, which assumes all of the edges are unblocked, unless proven
otherwise while traversing its given environment. More sophisticated solutions yield policies
with smaller expected costs using sampling methods like UCT-CTP [15], while in more
recent work, approximations [45] and graph search methods [1] were employed.

3.4 Reactive Planning Problem (RPP)

Suppose a robot must repetitively execute the same start-to-goal task (for example, moving
items from a truck to a warehouse), and suppose it is aware of the different configurations
the environment could be in and their probabilities. The configuration could change with
each task execution. How should the robot navigate to minimize the average cost to
execute this task? This problem was formally posed by MacDonald [49] as the Reactive
Planning Problem (RPP). A solution to the RPP allows the robot to go to edges to observe
whether they are blocked or unblocked to draw conclusions about the current environment
configuration. This problem assumes the robot is much more likely to operate in certain
environment configurations than others, thus its observations may inform the robot which
environment it is in.

Definition 3.4.1 (Reactive Planning Problem (RPP)) Given a graph G = (V,E)
and a subset of the subgraph edges in G represented by S = {Ei, Ej, . . .}, start and goal
vertices vs, vg ∈ V , and a corresponding random variable X that has a known pmf over S
and observations Θv ∀v ∈ V , find a complete policy π that minimizes EX(π) for traveling
from vs to vg in the subgraph induced by random draw x from X.

A complete policy π guarantees that the robot will always arrive at the goal if a path
in x exists, otherwise it will correctly assess that such a path does not exist. The expected
value of a policy can be evaluated as

EX(π) =
∑
x∈N|S|

cost(π|X = x)p(X = x) (3.1)

The policy is represented as a decision tree (figure 3.1) and each node is a tuple (Y, v, O)
where

• v ∈ V is the vertex the robot is currently at,

• O ∈ Θv is the observation to be taken at vertex v, and

• Y ⊆ N|S| is the belief of the robot prior to taking observation O.

The leaf and root nodes do not have observations, therefore, at those nodes, O = ∅.
The leaf nodes are terminal states where the robot has either arrived at the goal (g) or
concluded that there is no path to goal (ng) in the current subgraph. Legs are the edges

11

1

2

3

s g

(a) G1

1

2

3

s g

(b) G2

s

1

g ng

Y = {1, 2}

Y = {1, 2}, O = (1, 3)

Y = {1} Y = {2}

(c) Policy example for {G1, G2}

Figure 3.1: Example of environment and corresponding policy

between the nodes of the policy, and they represent the path the robot will take to travel
from one node to another. The leg that the robot takes depends on the outcome of the
observation taken at the parent node.

Building the policy requires balancing the act of taking observations (known as ex-
ploration) and moving towards the goal (known as exploitation). First, observations are
classified as constructive or not by looking at their possible outcomes. If they have more
than one outcome, then they are constructive and can be considered as potential observa-
tions for the policy in equations 3.2 and 3.4.

For example, consider the environment {G1, G2} in figure 3.1. Edge (1, 2) would not
be considered a constructive observation as it is unblocked in both G1 and G2, but edge
(1, 3) is constructive because it is unblocked in G1 and blocked in G2. The robot would be
able to differentiate its current environment between G1 and G2 by observing (1, 3).

cḠ(v, vg) ≤ cḠ(v, u) + µ(O) + CY (u, vg) (3.2)

Equation 3.2 balances the act of exploration and exploitation. The known graph, Ḡ,
is what the robot knows about its current environment. Going back to the example, if
the robot is at s and has not moved yet, then it knows edges (s, 1), (1, 2) and (2, 3) are
unblocked, but it would be unsure of (1, 3) and (3, g). Then cḠ(v, vg) is the cost of traveling
from vertex v to vg in the known graph; if cḠ(v, vg) = inf, this implies there is no certain
path that the robot can take to go to vg. The right side of equation 3.2 is the sum of the
cost to travel from v to the observation location u, the cost of taking observation O, and
the expected cost of traveling from u to vg, given the robot’s current belief (calculated
using equation 3.3). To summarize, the robot will only consider taking an observation if
the overall cost of the observation is less than the known cost to go to the goal. If all of
the constructive observations that can be taken from the current vertex v with the belief
Y satisfy equation 3.2, then the robot should go straight to vg from v.

CY (u, vg) =
∑
i∈Y

p(XY = i)cGi
(u, vg) (3.3)

Otherwise, we select the observation that satisfies equation 3.4 to be the next observa-
tion. The set of constructive observations that do not satisfy equation 3.2 are denoted by

12

Rv. To score each observation in Rv, we use the same overall cost as in equation 3.2 and
multiply it by E[H(XY |O)], the expected entropy of taking the observation O. Simply put,
the entropy is a numerical measurement for how uniform a pmf is. If all the subgraphs
are equally likely, then the entropy is high, but if one subgraph is more likely than all the
others, then the entropy is low. For a more detailed explanation of the entropy term, the
reader can refer to [49].

Omin = argmin
(O,u)∈Rv

[
(cḠ(v, u) + µ(O) + CY (u, vg))E[H(XY |O)]

]
(3.4)

A dynamic programming approach is used to implement the heuristics and to determine
the observations that should be taken at every level of the decision tree. Algorithm 1
outlines the procedure explained above.

Algorithm 1: RPP Policy Builder

Input: Graph G, edge subsets S, probabilities p, vertices vs & vg
Output: policy π

1 Compute cGi
(v, vg) for all v ∈ V and i ∈ N|S|;

2 Let Q contain only (N|S|, s);
3 while Q not empty do
4 Remove (Y, v) from Q;
5 if cGi

(v, g) = inf ∀i ∈ Y then
6 Mark π at v for Y , no goal terminal state;

7 else
8 Compute (Rv, Dv) = PossibleObservations(G,S, (Y, v));
9 Remove elements of Rv that satisfy (3.2);

10 if |Rv| = 0 then
11 Add leg from v to vg, mark π as goal terminal state;

12 else
13 Let (O, u) ∈ Rv be the minimum of (3.4);
14 Add leg from v to u and node (Y,O) to π;
15 Add (Ynew, u) to Q for each outcome of O;

16 Return π

3.5 Vertex Clique Cover Problem

Given an undirected graph, a clique is a subset of vertices where every vertex has an edge
to every other vertex in the subset.

The Vertex Clique Cover (VCC) Problem is defined as finding the minimum k cliques
to cover every vertex in an undirected graph. It has been shown that the VCC problem
is equivalent to the graph coloring problem [27], which is defined as given an undirected
graph, find the minimum k colours such that no two adjacent vertices share the same
colour.

13

(a) VCC (b) Graph color-
ing

Figure 3.2: Example of VCC to Graph Coloring

3.6 Map Representations

Occupancy grids are a very common type of map that discretizes the environment into a
grid, and each cell is a square. The most basic variant is where each cell is marked as either
occupied, free, or unknown. The resolution of an occupancy grid indicates how much area
each cell covers. For example, if an occupancy grid has a resolution of 5cm, then each cell
has a side length of 5cm, covering an area of 25cm2. In probabilistic occupancy grids, each
cell is given a probability of being blocked or is marked as unknown. It is important to
note that a probability of 0.5 is not equivalent to unknown; unknown indicates that no
information is available about the occupancy of the cell. Depending on the application,
path planners may or may not be permitted to plan a path through unknown areas. Also,
the probabilistic occupancy grid may be thresholded into the trinary values of occupied,
free, or unknown by thresholding the probability. In this case, unknown cells will remain
unknown rather than being set as occupied or free.

(a) (b)

Figure 3.3: (a) Example of a probabilistic occupancy grid, white indicates a free cell while
the darker cells indicate a higher probability of the cell being occupied. The pure black
cells indicate unknown space. (b) Example of a cost map of the same environment as (a).
Lethal areas are marked with cyan, while the free space has a gradient from red to blue,
with red areas having a higher cost. The magenta areas indicate unknown space.

14

A more advanced occupancy grid would be a costmap, where instead of a probability,
a cost is assigned to each cell. If a cost exceeds an assigned lethal value, the cell would be
considered occupied and a path will not be planned through it. Obviously, occupied cells
will be assigned a lethal value. Free cells are assigned varying values of cost that could
depend on multiple factors. For example, the cost may increase the closer a cell is to an
occupied cell, since there is a higher likelihood of the robot colliding with an obstacle if a
path is planned through that cell. The varying costs can be used to encourage planners
to plan paths that are not too close to obstacles. Again, unknown cells are differentiated
from occupied and free cells.

These grid-based maps are also known as metric maps because precise paths can be
planned on these maps. Alternatively, topological maps can also be used for planning.
Pure topological maps are usually undirected graphs with vertices representing points of
interest, such as in figure 3.4.

1

2 3

4

Figure 3.4: Topological map example. Only transition information between vertices and
their relative positions are known, the exact locations of vertices are not

In the latter half of this thesis, we use a hybrid map that fuses a grid with a graph, also
known as a topological-metric or topometric map. These maps allow for quickly calculating
an approximate path on the environment as a whole, and only calculating a precise path
on the occupancy grid from vertex to vertex. This approach has been shown to perform
faster on large environments [7,34,70] while returning close to optimal paths. An example
of this kind of map is shown in figure 3.5.

Figure 3.5: (a) An example of a 2D metric map of an explored indoors environment, (b)
the respective topological graph and (c) the hybrid topometric map, where each node in
the topological graph is associated with a specific region of the occupancy grid. This figure
was taken from [35].

15

Chapter 4

Learning Motion Planning Policies in
Uncertain Environments through
Repeated Task Executions

4.1 Introduction

As mentioned in chapter 1, environmental uncertainty makes it difficult to harness a single
map to complete repeating point-to-point or navigation tasks; either resulting in the robot
re-mapping during each task execution, or using only the most recent map along with
heuristics to navigate around unexpected obstacles. In [49], the authors proposed an
alternative solution to this problem, calling it the Reactive Planning Problem (RPP). The
idea was to generate a motion policy, that balanced the competing tasks of identifying which
environment configuration (or map) the robot was operating in, and efficiently navigating
to the goal. However, their solution required the robot to be given the full set of possible
configurations of the environment, and their relative likelihoods a priori. In practice this
information is difficult to obtain and likely to be inaccurate. As a result, their proposed
approach lacked robustness in that it cannot adapt to new or unexpected environments.
This chapter builds on the RPP and proposes a new solution in which only one initial map
is required a priori, and instead the robot learns about the environment uncertainties and
iteratively builds a motion policy through repeated executions of a navigation task.

The typical approach to navigation is to encode the environment into a map before
running a planning algorithm to generate trajectories. To this end, there is a plethora of
mapping algorithms for different applications, ranging from complex 3D surroundings [69]
to highly dynamic environments [52]. Given a map along with robot dynamics, the task of
selecting desirable robot actions prior to task execution can be a computationally complex
task [39]. To address this, [37] considers obstacle correlations only between neighboring
regions dependent on the direction from which the robot enters. The computational burden
is further reduced by allowing the robot to re-plan during execution as its map changes.
Algorithms like D∗ Lite [31] and lifelong planning A∗ [32] provide fast re-planning in order
to approach real-time reaction to obstacles. In this work, the mapping objective is to
capture only regions of the environment critical to task completion. We discuss conditions
to encourage the robot to map only regions that may benefit future tasks.

16

The topic of reinforcement learning in robotics, reviewed in [29], presents a method to
iteratively improve performance of difficult tasks. Q-Learning has been used to solve similar
reinforcement learning problems [33, 63]. More recent work has combined these concepts
with deep learning called deep reinforcement learning [9, 41, 75]. For example, [74] uses
a deep reinforcement learning strategy to improve the exploration of office buildings. In
contrast, our work does not require extensive training data.

Our work is focused on minimizing the total cost for a given number of repetitions of
a task (or episodes). For this problem, there is an explicit reward/cost for an action in
the current task, but there is also an implicit reward/cost for an action in the current task
that will influence future tasks. This is further complicated as the interaction between
the current and future tasks may become less important as the robot approaches the final
task. Several works discuss the inverse reinforcement learning problem (IRL), which builds
a model of the reward function [25,36,58]. Much of this work requires expert examples to
learn the underlying reward function [3]. For our work, this is unavailable to the robot.
Instead, we focus on predicting the implicit reward of an action on future tasks.

4.1.1 Chapter Contributions

The contributions of this chapter are the following:

• we introduce the Learned Reactive Planning Problem (LRPP),

• we present an algorithm that condenses past experiences into what we call super
maps in order to generate and update a motion policy between tasks, and

• we present simulation results showing the strengths and weaknesses of using this
approach.

4.2 Problem Setup

Consider a single robot that must repeatedly navigate from a start to a goal location
in a partially known static environment. It must perform this task T ≥ 1 times, and
obstacles may be added or removed from the environment in between tasks. Our goal is to
minimize the total cost to complete these T tasks. In the following subsections we define
the environment, robot model, and its motion policy before formalizing the problem.

4.2.1 Environment Model

The robot functions within a graph drawn from the full set of subgraphs of G labelled
G = {G1, . . . , Gm}, with a probability mass function (pmf) capturing the likelihood a given
graph will be drawn. Contrary to the RPP [49], the robot does not know the pmf over G.
The robot experiences a sequence of T random graphs GX1 , . . . , GXT

, where X1, . . . , XT

are independent and identically distributed (i.i.d) random variables according to the pmf
over Nr (i.e., P(Xt = i) = pi for i ∈ Nm and t ∈ NT where p1, . . . , pm is the pmf). We drop

17

the index when referring to the underlying pmf and use random variable X. The robot
executes task t in the realization Gxt of GXt without knowing Gxt .

We are interested in applications where a small (cardinality much less than r) subset of
G dominates the pmf. Thus graphs in this subset are much more likely to be drawn. For
cases where each graph is equally likely, namely pi = 1

r
for any i ∈ Nm, our approach will

operate similarly to an optimistic policy. From a practical point of view, we are interested
in structured environments (even though that structure is unknown at first), and for which
that structure has occasional unexpected modifications. This captures environments where
certain areas are often blocked or unblocked (e.g., a doorway) but others are expected to
be in a given state (e.g., it is unlikely a wall will suddenly be absent). Our work still reacts
to the unexpected case, but we wish to speed up reaction time for the most probable cases.

4.2.2 Robot Model

Suppose for some task t the robot functions within the realization Gxt = (V,Ext). If
the robot occupies v ∈ V , it may sense an edge (v, u) ∈ E to check if it is blocked and
thus not traversable. Formally, the sensing action is defined by the mapping γv : Iv →
{blocked, unblocked} where γv(e) = unblocked for e ∈ Ext and γv(e) = blocked otherwise,
this is the edge’s state. If the robot, positioned at v ∈ V , wishes to traverse e = (v, u) ∈ E,
it first senses the edge e. If γv(e) = unblocked, then the robot will proceed to traverse e
and arrive at u, incurring the transition cost c(e). For simplicity, we assume there is no
cost to sense the state of e and that the robot is capable of sensing whether e is blocked
or not. Although we assume no sensing cost, it can be added without significant changes
to the problem or solution.

After the robot performs n actions within the environment, let Et,n ⊆ E denote the
set of edges for which the robot knows the state. We define the robot’s understanding, or
map, of Gxt , after its nth action, as the tuple Mt,n = (Eb

t,n, E
u
t,n) for known blocked edges

Eb
t,n = {e ∈ Et,n|e 6∈ Ext} and known unblocked Eu

t,n = {e ∈ Et,n|e ∈ Ext}. Note that Eb
t,n

and Eu
t,n form a partition of Et,n. When the task is finished, the robot stores the map in the

list Mt = [M1, . . . ,Mt] for t ∈ NT , where n is removed to indicate the task is completed.

4.2.3 Complete Policy

Consider a single task t ∈ NT , and to reduce notational complexity in what follows, we
drop the index t. The robot state space is defined as V × 2E × 2E where v ∈ V is the
robot’s position, Eb ∈ 2E is the set of known blocked edges and Eu ∈ 2E is the set of known
unblocked edges. At a given state (v, Eb, Eu), the robot selects an action defined by an
outgoing edge e ∈ Iv, and a command from the set C. The most primitive commands being
{move, terminate}, but in later sections we add an observe and switch policy command.
Formally, a policy maps the robot state space to the set of actions, π : V ×2E×2E → IV ×C.
The move command updates Eu if e ∈ Ex and modifies v since the robot has moved or it
only updates the set of blocked edges Eb if e /∈ Ex. The terminate command ends task
execution and should only be used when the robot is in a terminal state. Given a start
and a goal vs, vg ∈ V , a state (v, Eb, Eu) is said to be terminal if v = vg or the optimistic
graph Go = (V,E \ Eb) has no path from vs to vg. We now define a complete policy.

18

Definition 4.2.1 (Complete Policy) A policy π is complete for a graph G if it produces
a finite sequence of actions that ends in a terminal state for any subgraph in the set
G = {G1, . . . , Gr}.

Given a graph Gj with j ∈ Nr, consider the sequence of actions AGj
= a1, . . . , az

produced by π for some z ∈ N. Each action a has a cost, which is the sum of all edges
travelled during the action; we denote this set of edges as Ea. The total cost of AGj

would
be given by cost(AGj

) =
∑z

i=1

∑
e∈Ea

c(e). Therefore, the expected cost to complete a task
is

EX [cost(π)] =
∑
j∈Nm

p(X = j)cost(AGj
) . (4.1)

For a complete policy to exist it is sufficient that the component containing vs is strongly
connected for each graph in G that has non-zero probability. This holds as long as the
robot can exit each region that it can enter.

4.2.4 Learned Reactive Planning Problem (LRPP)

We consider a sequence of T tasks where the robot wishes to minimize the summed cost
of completing each task. When considering a sequence of T tasks, note that all prior tasks
affect the way in which the robot completes the current task. Therefore, the policy for
task t may use the information collected during all prior tasks. Formally, we define this as
the Learned Reactive Planning Problem.

Problem 1 (Learned Reactive Planning Problem (LRPP)) Given a graph G with
unknown pmf over all subgraphs G, a start and goal vs, vg ∈ V and number of tasks T , find

a sequence of T complete policies, π1, . . . , πT , that minimizes
∑T

t=1 EXt(cost(πt)), where πt
may depend on the observations made in tasks 1, . . . , t− 1.

We now characterize the complexity of this problem for the special case when the pmf over
subgraphs is completely known, which occurs as T →∞.

Proposition 1 Even if the pmf over subgraphs G is known, the Learned Reactive Planning
Problem is PSPACE-hard.

Proof: Consider an instance of the stochastic Canadian Travelers problem (CTP). This
consists of a graph GCTP = (V,E), a cost on each edge cCTP : E → R>0, and a probability
for each edge p : E → [0, 1], giving the probability p(e) that the edge e ∈ E is unblocked.
The goal is to find a policy that minimizes the expected cost from start to goal. To reduce
this problem to LRPP with a known pmf, we create the following instance of the LRPP:
We set G = GCTP , c = cCTP, and for each subgraph Gi = (V,Ei) ∈ G, we define its
probability P(Xt = i) = pi as

pi =
∏
e∈Ei

p(e)
∏

e∈E\Ei

(
1− p(e)

)
.

An optimal policy for this instance of LRPP then minimizes the expected cost of completing
a task. This policy then is also optimal for the CTP. Since the CTP is PSPACE-hard [17],
the LRPP with a known pmf is also PSPACE-hard.

19

Remark 1 Notice that in the first task t = 1, the pmf is completely unknown, and thus
minimizing the expected cost with an unknown distribution is equivalent to minimizing the
worst-case cost. Thus, the first task is an instance of the non-stochastic version of the
Canadian Travelers problem [62]. In this problem, the goal is to compute a policy that
minimizes the competitive ratio, defined as the worst-case ratio over all subgraphs between
the cost to navigate from start to goal using the policy, and the cost of the optimal path from
start to goal in the subgraph. This problem is also known to be PSPACE-complete [62].

4.3 Solution Approach

There are three key challenges to address when considering the approach in [49] to solve
the LRPP. First, the subgraph set G and its pmf is unavailable to the robot for planning.
We propose a Map Memory Filter in Section 4.3.1 to estimate G and its pmf by efficiently
storing the robot’s map Mt,n for every task t into Mt. Second, we need a method for the
robot to reach the goal when it encounters an environment it has not experienced before.
In Section 4.3.2 we introduce the idea of switching to an optimistic policy to handle such
environments, and adding this command to the set C that can be used in a policy. Third,
the robot needs to be able to update its navigation strategy from vs to vg as its estimate of
G and its pmf changes between task executions. In Section 4.3.5 we explain how the policy
generating algorithm proposed by [49] can be utilized to generate and update a complete
policy π that can react to all the realizations it has experienced before. This approach also
introduces the command observe to set C.

4.3.1 Map Memory Filter

After the nth action during task t, the robot’s knowledge is defined by the tuple (Rt,n,Mt−1)
where Rt,n = (vt,n, E

b
t,n, E

u
t,n) is the robot state after the nth action. The robot would only

need to store map Mt,n = (Eb
t,n, E

u
t,n) if it did not agree with a map stored from a previous

task. This is known as map agreement.

Definition 4.3.1 (Map Agreement) Given maps M1 and M2, we say M2 agrees with
M1 if Eb

2 ∩ Eu
1 = ∅ and Eu

2 ∩ Eb
1 = ∅.

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

Figure 4.1: Example of map agreement

Consider the graph examples in Fig. 4.1 where the solid lines are unblocked edges,
dashed lines are unknown edges, and the lack of a line indicates a blocked edge. Map (a)

20

agrees with map (c), but not map (b) because edge (1,2) is missing. Note that the robot
does not need to know all of the environment to accomplish its task and can leave regions
unmapped, which may result in different realizations that seem identical to the robot.

Thus, the robot only needs to keep track of one map which we call a super map, formally
defined below.

Definition 4.3.2 (Super Maps) A map Mj with j ∈ Nt is a super map if all Mi for
j 6= i ∈ Nt that agree with Mj satisfy Eb

i ⊆ Eb
j and Eu

i ⊆ Eu
j .

Then, to reduce storage and search space, we redefine Mt as the set of super maps at
the end of task t. The problem of computing a minimal set of supermaps can be formalized
as follows.

Problem 2 (Map Merging Problem) Given a set of collected maps from each task,
MT = [M1,M2, . . . ,MT], find a minimum partition of MT such that every map in each
subset agree with each other.

Note that merging the maps in a subset forms a super map, and thus the solution
to the Map Merging Problem provides a compressed representation of the robot’s past
experiences. We can show that the Map Merging Problem is NP-Hard through a reduction
from the vertex clique cover (VCC) problem to the Map Merging Problem. Consider an
instance of the VCC problem: Given a graph G, find the minimum number of cliques to
cover every vertex. Given an instance of map merging, let each map Mt be a vertex, and
let there be an edge between every two maps that agree with each other. This graph is
called an agreement graph. Set G to be the agreement graph, and then the VCC of G
provides a minimal partition of the maps in MT .

The agreement graph is built over time as the robot completes each task, so map merg-
ing is a form of online VCC. The VCC of a graph is equivalent to the minimum graph
coloring of the complement of the graph [20]. The map merging method proposed in Algo-
rithm 2 is a greedy approach that immediately adds a map to a subset via merging (lines
3 and 4) if it agrees with an existing super map. It is analogous to the First Fit approach
to the online graph coloring problem, which, while not an approximation algorithm [72],
provides good performance in practice.

Using this method of storage, we can simplify the expected cost estimate (4.1) to,

EX [cost(πt)] =
∑

Mj∈Mt

(
nj
t

)
costπt(Mj) , (4.2)

where nj is the number of maps the robot has experienced by task t that agree with
super map Mj and costπt(Mj) is the cost of executing policy πt in super map Mj. Thus

the estimated probability of encountering Mj in the next task is p̂Mj
= nj/t. Let P̂ =

[p̂M0 , p̂M1 , . . . , p̂Mt] where Mj ∈ Mt, forming our estimate of the pmf of G. Note that
M0 = {(∅, E)} and initialize n0 = 1, leading to the robot’s initial assumption of p̂e =
1 ∀e ∈ E, i.e., all edges in G are unblocked.

21

Algorithm 2: mapFilter

Input: Mt, Mt−1

Output: Mt

1 for each (Eb
j , E

u
j) ∈Mt−1 do

2 if Eu
t ⊆ Eu

j AND Eb
t ⊆ Eb

j then
3 return Mt−1;

4 if Eu
t ∩ Eb

j = ∅ AND Eb
t ∩ Eu

j = ∅ then
5 Update Mj = (Eu

j ∪ Eu
t , E

b
j ∪ Eb

t);

6 return Mt−1;

7 return Mt−1 ∪Mt;

Start
Policy
πt

λ End

switch

Figure 4.2: Integrating switching to the optimistic policy λ with our overall approach.

4.3.2 Switching to the Optimistic Policy

Consider the composite approach displayed in Fig. 4.2 for executing task t. The number
of possible realizations for GXt may be exponential in the number of edges; therefore, our
approach is to plan paths for only a subset of environments and use the optimistic policy
λ for the remaining, adding a switch command to C.

Definition 4.3.3 (Optimistic Policy λ) An optimistic policy λ computes online a se-
quence of move commands to lead the robot to a terminal state. Such a policy must guar-
antee that it can find a path from vs to vg if one exists.

The optimistic policy λ allows the robot to handle unexpected environments as they are
encountered. Meaning the robot will always enter a terminal state (in some finite number
of moves) after it switches policies.

For a given task t, the robot starts by following the preplanned paths in the policy πt
until either 1) an obstacle prevents the robot from continuing (in which case the robot is
in a new map) or 2) all super maps that are consistent with the robots observations have
no path to the goal vg. In either case, the robot switches to λ to finish the task. This
satisfies the complete policy requirement, and the policy is updated each time a new task
is completed. The preplanned paths are expected to be more efficient at reaching vg than
λ, and as such we wish to minimize the probability of the robot switching to λ.

Remark 2 The dashed edge in Fig. 4.2 is not considered within this work as returning
from λ may result in a large number of states that the policy must map to actions.

22

4.3.3 Policy Structure

A policy for task t can be efficiently encoded into a binary tree π = (N,L). The nodes
N of the tree are given by tuples (Y, v, e) for belief Y = {i ∈ Mt−1|Mi agrees with Mt,n}
at vertex v ∈ V . The edge e is an observation at vertex v. For each node, L contains
a path from the parent node to the current node. There are two possible outcomes for
each observation, one corresponding to e ∈ Ext and the other e 6∈ Ext . If e = ∅, then
either v = vg or there is no path to goal in any of the agreeing super maps and the
robot must switch to the optimistic policy. To match our robot model and to facilitate
understanding, we will limit e ∈ Iv. Then in this work, we can now define the full command
set C = {move, observe, switch, terminate}.

4.3.4 Build Policy

Policy
Update

Policy πt

Map Memory

Policy
πt+1

Figure 4.3: Overview of the policy update.

The key step in our approach is the update shown in Fig. 4.3 that occurs between tasks
and builds a policy as more tasks are completed. After completing task t, we have our
estimate of the set of subgraphsMt and the pmf P̂ based on all prior experience. We can
solve the RPP problem from [49] using these estimates as the inputs (refer to algorithm 1 in
Section 3.4 for details), resulting in a policy π which has the structure from Section 4.3.3.
Note that the switch command must be explicitly added to every node that has no path
to goal.

To use Mt as an input to algorithm 1, it first needs to be converted into a set of edge
subsets, where each subset represents the passable edges in each super map. Since each
super map in Mt may only be a partial representation of a realization, it is necessary to
make some assumptions to fill in missing information. If the state of an edge in super map
Mj is unknown (i.e., e /∈ Eb

j and e /∈ Eu
j), we assume it to be unblocked. Formally, the edge

subset for Mj will be Eu
j ∪ (E \ (Eu

j ∪ Eb
j)). This choice encourages the robot to explore,

as it will attempt to traverse an unknown edge if it is beneficial.

For example, consider the scenario in Fig. 4.4. Assuming the robot only has an empty
grid for M0 inMt, it attempts to execute the task in (a) using the green path. However, it
must switch to the optimistic policy, and at the end of the task, the robot stores the map
in (a) as M1 (b), the state of the grey squares are unknown. When building the policy, an
observation for the edge ((1,1),(2,2)) will be selected, and in the case this edge is blocked,
a path will be calculated from s to g in M1 since no other maps exist. If only the partial
map M1 was available, the blue shaded path would be used in the policy. However, since
we are assuming the grey squares are unblocked, the algorithm will select the green path
in (b). Even if that assumption was proven wrong during task execution, it will result in
more knowledge of the realization, and the next time the policy is built, the algorithm will
not repeat the same path for that particular super map.

23

(a) (b)

Figure 4.4: (a) shows a realization for task t, and (b) is the collected Mt. The green line
in (a) is the path determined by the policy πt, in (b) by the policy πt+1. The blue squares
are the path that the robot actually took, the grey squares are unknown.

The edge subset only needs to be computed when the super map is initially added to
the set of super maps, and when the super map is updated from a merge (line 5 in the
mapFilter algorithm).

4.3.5 Policy Update

Finally, we present our entire solution in Algorithm 3, which covers task execution and
policy building. In Line 1, we initialize the set of super maps Mt with E as a set of un-
blocked edges. In other words, the robot is aware of all edges that it could potentially move
across. Such information could come from a floor plan of the environment, containing all
permanent obstacles. The robot initially assumes that p̂e = 1 ∀e ∈ E. This assumption
ensures that the optimistic policy λ will always initially attempt the shortest possible path
to vg. In line 3, the policy πt is constructed by the RPP algorithm using the set of super

maps Mt, which contains the edge subsets, and the estimated pmf P̂ . In lines 5-9, the
robot executes the task by following the policy πt constructed by the RPP algorithm until
it reaches a terminal state, updating its set of super maps, along with the estimated pmf
and edge subsets, in lines 11 and 12 before executing the task again.

4.4 Simulation

In this section, we describe the simulations we conducted with Algorithm 3 and compare
the results with following only the optimistic policy. Of particular interest is the average
cost of the path taken across all tasks given T . The optimistic policy used in our simulation
calls A∗ to replan when it encounters an unexpected obstacle.

24

Algorithm 3: Sequential Task Completion

Input: G = (V,E),vs,vg
1 M0 = [(E, ∅)];
2 for t = 1, . . . , T do

3 πt =buildRPPpolicy(G,Mt−1, P̂t−1,vs,vg);
4 Initialize state Rt,n = (vs, ∅, ∅) for n = 0;
5 do
6 Execute πt(Rt,n); // if switched policies, wait until λ terminates

7 Update Rt,n;
8 Increment n;

9 while Rt,n not terminal;
10 Mt = (Eb

t,n, E
u
t,n) from Rt,n;

11 Mt = mapFilter(Mt,Mt−1);

12 Update P̂t;

4.4.1 Test Environment

Our tests were conducted on the environment in Fig. 4.5. A floor plan with the black
obstacles is given to the robot. The red square is the goal and the green squares are
possible starting locations. The grey and striped obstacles are unknown to the robot, and
the probability of them being present in a given task t is as shown in the table in Fig. 4.5.
This information is hidden from the robot, but it can observe an adjacent single cell in
each direction as it executes the policy. Each letter corresponds to the grey obstacles in
that area, except for A which includes the closest striped obstacle to the right, and F is
every striped obstacle in the environment. This map is given as a 20× 20 8-direction grid,
resulting in a graph with 400 vertices, 1654 edges, and 64 realizations.

Obstacle Probability
A 0.5
B 0.4
C 0.6
D 0.8
E 0.5
F 0.2

Figure 4.5: Base map and obstacle distribution of the environment. The green and red
squares are starting and ending points respectively.

25

Figure 4.6: Average cost savings compared to following only the optimistic policy.

4.4.2 Results

Fig. 4.6 shows the average cost savings over t task executions using the online policy update
(LRPP) and the policy generated by using the hidden environment data (RPP) compared
to following only the optimistic policy. The data points are an average over 10 trials. The
savings are generally greater than 20%, and none of the averages were greater than A∗.
Simulations for the blue lines were run on the map in Fig. 4.5, with location 1 as the start.
Simulations for the red lines were run on the same map, with location 2 as the start where
there is a probability of 20% for the robot to be in a realization with no possible path to
the goal. The larger gap in performance between LRPP and RPP is because in LRPP, the
robots switches to the optimistic policy when it thinks there is no path to goal, since it is
always possible that the robot is in a new environment. On the other hand, RPP knows
all possible maps, and depending on the pmf, it may be able to determine no path to goal
exists without exhaustively searching the environment. Notice that in both cases, there is
an overall logarithmic increase in savings as T increases. This was a surprising result for
the LRPP-20% no goal trials due to how expensive the exhaustive search can be.

Fig. 4.7 shows the robot navigating the same map at task t1 and t2, where t1 < t2, and
you can see the updated policy is able to avoid unnecessary backtracking and dead ends
after just a few task executions. Fig. 4.6 shows that these savings can be quite significant.

Since the order of the realizations encountered affects the LRPP policy, it is possible
for the robot to not take a shorter route if the estimated likelihood of backtracking and its
cost is too high, which is a reason why the percent savings of LRPP does not converge to
RPP, even in the 0% no goal case. This is a trade-off of not having a priori knowledge of
the subgraphs and their pmf.

The runtime between tasks to update the policy did not change much as the number of
super maps stored by the algorithm increased. In the experiments, the runtime for both 1
super map and 20 super maps was roughly 1s. For T = 100, the average number of super

26

(a) task 5: LRPP policy (b) task 5: Reactive Planner

(c) task 8: LRPP policy (d) task 5 and 8: RPP policy

Figure 4.7: Paths taken in the same realization at t1 = 5 and t2 = 8

maps was 8.3 and 16.9 for the 0% no goal and 20% no goal trials respectively, while there
are 64 different realizations of the environment.

4.5 Summary

This chapter introduced the Learned Reactive Planning Problem (LRPP) as a way of
modeling the problem of minimizing travel cost in uncertain environments and showed
it to be PSPACE-Hard. We then proposed a two-part solution to the LRPP. First, we
introduced an algorithm that filters collected past task execution experiences into super
maps. Second, these super maps are exploited by the RPP solver to generate a policy that
minimizes the expected cost of navigating environments the robot has already experienced.
New experiences are handled by the optimistic policy. This solution is repeated for every
task, which is shown by our simulation results to reduce the average cost of the task
execution as the robot repeats the task.

27

Chapter 5

The Learn a Motion Policy (LAMP)
Framework

5.1 Introduction

In this chapter, we discuss a method to implement the LRPP solver from chapter 4 on a
robotic platform and the challenges that arose from this. Previously, we assumed that the
robot was perfectly localized and there was no noise in the occupancy grid. In practice,
localization provides an estimate of where the robot is and occupancy grids are quite
noisy. We propose a hierarchical scheme where we convert the occupancy grid into regions
and extract a navigation graph from the regions. The LRPP solver plans a policy on the
navigation graph that guides which regions the robot should travel to, while a path planner
plans the exact path for the robot in each region. Instead of observing whether an edge
between two cells in the occupancy grid is blocked, we observe if a path exists between
regions, which is more robust to noise in the robot’s estimated pose and occupancy grid.
Although there has been much work on converting occupancy grids into graphs [7, 46,70],
their navigation schemes do not consider the possibility that an edge could be blocked.

However, in this approach, we can no longer guarantee that the state of an edge can
be observed from one of the endpoints, which was one of our assumptions in developing
the LRPP solver. To address that, we propose a direct inference algorithm that uses the
occupancy grid for resolving an edge (i.e. determining whether it is blocked or unblocked)
under uncertainties. We also propose an indirect inference algorithm for making assump-
tions about an edge state based on the observations made so far. Afterwards, we introduce
three different policies that utilize direct and indirect inference to determine how the robot
should navigate. The first is a version of the optimistic policy that only uses direct in-
ference, the second is a modified version of the LRPP solver introduced in the previous
chapter, and the third is an online version of the LRPP solver that can react to unexpected
information about the environment.

In order to navigate a real environment, a robot has multiple functions running in
parallel. Often there are multiple sensors such as odometry and laser scanners that provides
data streams for a mapping and/or a localization algorithm; a path planner that computes
a path for the robot to follow; a path follower for generating trajectories to follow the
path; and a controller that sets the motor outputs to attain the desired trajectory. This

28

set of programs that work together, also known as a navigation stack, enables the robot
to navigate the world around it. Later in the chapter, we demonstrate integrating our
system with the navigation stack in the Robot Operating System (ROS) — an ubiquitous
open-source framework for controlling robots.

5.1.1 Chapter Contributions

This chapter has the following contributions:

• a map framework that converts an occupancy grid into a hybrid map,

• direct and indirect inference algorithms for resolving edges in the hybrid map,

• an algorithm based on the LRPP solver to compute a RPP policy online,

• the LAMP framework for integrating our work into an existing navigation stack, and

• results from simulation and hardware experiments to show the functionality of the
LAMP framework.

5.1.2 Chapter Organization

This chapter is organized as follows, in Section 5.2 we discuss the motivation behind a
hybrid map and how to construct it from an occupancy grid. In Section 5.3, we propose
the direct and indirect inference algorithms for resolving edges. Section 5.5 introduces the
aforementioned algorithms for constructing the different policies. Section 5.6 shows how
our system can be integrated into an existing navigation stack, and Section 5.7 presents
our experiment results with the full system from simulation and on a real robot. Finally,
in Section 5.9, we present a theoretical extension to our algorithm for direct inference to
be more robust.

5.2 Map Framework

To use the LRPP solver, we require an appropriate map format to store experiences and
to compare them to each other in the map filter (see Section 4.3.5). This section discusses
the challenges of using practical map representations such as an occupancy grid and how
those will be addressed.

5.2.1 Map Agreement

A key concept in learning the environment structure was map agreement, introduced in
Section 4.3.1. The robot compares its map of the environment in its current task execution
with past super maps to determine if it has previously encountered this same environment.
Thus it is important to be able to decide if two maps, collected during two different task
executions, agree or disagree with each other.

29

In the simulation results in chapter 4, the robot operated in an occupancy grid with
perfect localization and observations, where each grid cell of the robot’s map was either
blocked, unblocked, or unknown. Two maps were in agreement with each other if none of
the corresponding grid cells had conflicting states, otherwise they were in disagreement.
This appears to be a smooth transition to using an occupancy grid generated by the
multitudes of SLAM algorithms available, but reality is not so kind.

The issues with using a similar measure of agreement becomes apparent with figure
5.1. The robot starts at the same location (bottom right) and moves to the specified goal
point using the same path during two separate executions. The robot is equipped with
a single SICK LMS111 LiDAR and the occupancy grid is generated by the Cartographer
algorithm [22]. During each execution a new occupancy grid would be generated. To human
eyes, figures (a) and (b) would agree, but using the measure that was just described, the
two maps would disagree. It is clear that there are regions that are unblocked (white) in
one map but blocked (black) in the other, even if (b) were rotated and scaled to align with
(a).

(a) (b)

(c)

Figure 5.1: Occupancy grid agreement example.

One option is to coarsen the generated occupancy grid, but this could unintentionally
block narrow corridors due to displacement errors. There have been multiple techniques
developed by the computer vision community for measuring image similarity such as his-
togram comparison [67] or feature matching [4, 47] that are commonly used in robotics.

30

(a) (b)

(c)

Figure 5.2: In (a), the small obstacles obstructs passage to the upper room, while it does
not in (b). Image similarity techniques would say that both (a) and (b) either agrees or
disagrees with (c). The desired outcome is for (a) to disagree with (c) and for (b) to agree
with (c).

Alternatively, some work has also been done for merging multiple occupancy grids col-
lected by a team of robots into one occupancy grid, which involves finding regions of
similarity [2, 6]. Unfortunately, while these techniques may improve map agreement if we
relax the thresholds, that proves detrimental when the maps actually disagree. Take figure
5.2 as an example, where there is a narrow corridor at the top that is blocked by small
obstacles like cage bars. In an occupancy grid with a resolution of 5 cm, these obstacles
may only take up one cell each, equivalent to one pixel in an image. And while it clearly
prevents the robot from reaching the room (assuming the robot is wider than the cage
bars), the above techniques may claim that the occupancy grids agree. This highlights
that map agreement is not the same as image similarity. Instead of comparing if two maps
look like each other, the goal of map agreement is to decide if the paths a robot can take
in an environment are similar.

Since our original algorithm operated on graphs, perhaps we can use sampling to create
a graph, and compare the edges. The probabilistic road map (PRM) [28] is a technique
that randomly samples the free space of an environment to generate a graph. There are
multiple variations [19,51] to account for noise or difficult environment configurations like
narrow gaps.

Figure 5.3 shows an attempt at creating a graph of the same environment as in figure
5.1. Halton sampling [39] was used to generate vertices, removing samples that were on or
too close to obstacles. An edge between two vertices were added if their euclidean distance
was less than a threshold, and if all of the cells in a rectangular swathe along the edge
were free. This graph was generated on the left map, while it was superimposed on the
right map. Collision checking for the edges would be re-run on the superimposed graph,
removing edges if their swathe contained occupied cells in the underlying occupancy grid.
The two maps are in agreement if the resulting graphs are identical.

It can be seen in Figure 5.3 that even for such a simple environment, the two graphs

31

do not agree. Conflicting edge states are prevalent when samples are close to obstacles
(top right quadrant). Of course, agreement could be reached if we decreased the number
of samples or used a better sampling algorithm. However, in the event of unexpected
obstacles appearing, the former would reduce the flexibility of the robot to navigate and
the latter would not account for the unexpected obstacles when selecting better sampling
locations.

Figure 5.3: PRM agreement example

Even if the graphs in figure 5.3 did agree, what if one of the obstacles were moved one
meter to the right? Should the maps be in agreement then? For maps to be in agreement,
the paths the robot can take in the environment must be similar enough, but does not
need to be exactly identical.

5.2.2 Navigation Graph

In this section, we propose our solution for map agreement using occupancy grids generated
by robots. Because we are concerned with road blockages that may significantly alter the
route the robot may take, we propose converting a base occupancy grid (such as a scaled
floor plan where only permanent obstacles are marked) into a hybrid topological-metric
map. A hybrid map combines a topological graph and an occupancy grid. The topological
graph is different from a PRM generated graph because the vertices represent points of
interest like rooms or hallways, while the edges may not be exact representations of the
path the robot will follow. Constructing a topological graph from an occupancy grid is not
a new idea, algorithms have been proposed by Thrun [70] and by Liu et al. [46]. Blöchliger
et al. [7] proposed an algorithm to construct a topological graph from a 3D map. While we
will not be proposing a new algorithm for decomposing an occupancy grid, we will briefly
cover the process and borrow some terminology from [7].

The base occupancy grid is decomposed into convex regions of free space, which we
will refer to as submaps. Using the aforementioned algorithms may result in rooms or

32

hallways being divided into multiple convex regions, but that is not a problem. In Fig
5.4, these submaps are represented by different coloured areas. The submap boundaries
where the robot can cross from one region to another are referred to as portals (or critical
lines in [46, 70]), represented by the white rectangles in Fig 5.4. The topological graph
is referred to as a navigation graph in this work. The navigation graph is a weighted,
undirected graph and is defined by G = (V,E) with a cost on each edge c : E → R≥0. The
vertices and edges are defined by the following:

• Vertices are the center points of each portal. Thus, each v ∈ V represents a point
v ∈ R2.
Additional vertices that represent an area of interest (ex. start, goal) can be added
to the graph.

• Edges are abstract representations of the connectivity between vertices. If there
exists a path from one portal to another in the base occupancy grid without crossing
any other portals, then we add an edge between the two portals. We initialize the
cost with the minimum distance between the two vertices.

(a)

1

2

3

4

s

g

(b)

Figure 5.4: Example of occupancy grid decomposition (left) and the resulting navigation
graph (right).

Localization is performed using existing algorithms such as AMCL [13] on the base
occupancy grid. These algorithms are robust and can still localize reasonably well in the
presence of unexpected obstacles. However, perfect localization is not required as edges are
an abstract concept and Section 5.9 will allow for flexibility in vertex definitions, expanding
it from a single point. The set of super maps will contain copies of the navigation graph
with modified edge information. Therefore, the robot will only store the base occupancy
grid, submap divisions, and disagreeing copies of the navigation graph instead of storing
multiple copies of the occupancy grid. Another advantage of this approach is that small
changes to the environment (like an additional chair being added to a room) that do not
significantly alter the path a robot would take to reach the goal are not stored in memory.

One concern is the possibility of creating a multigraph where multiple edges share the
same endpoints, such as in figure 5.5. While this scenario does not need to be avoided, if
an implementation allows for the construction of a navigation multigraph, then each edge
will need an explicit label instead of representing it with the endpoints (u, v) u, v ∈ V ,
as is done traditionally. This enables the robot to differentiate the edges during planning
and traversal.

33

(a)

1 2

(b)

Figure 5.5: Example of a decomposition that could form a multigraph.

5.2.3 Edge Cost Update

The cost of edge (u, v) of the navigation graph is initialized with the Euclidean distance
between u and v. This underestimates the true distance travelled by the robot, especially if
the robot needs to turn or if the submap is cluttered. However, during every task execution,
a moving average length of a valid path between u and v in S(u, v) is maintained, resulting
in the average path length for that particular task environment. At the end of the task,
the averaged cost is input into another moving average over all the tasks executed thus far.
Blocked edges are given a weight of infinity and are not included in the moving average.
Edges that were not observed to be unblocked during the task execution are also not
updated. The averages are updated using

c̄new(u, v) = α|P̄ (u, v)|+ (1− α)c̄old(u, v) where 0 ≤ α < 1 (5.1)

where c̄(u, v) is the average, P̄ (u, v) is the average path length of edge (u, v) in the
recently finished task, and α is the filter constant. This approach is commonly known as an
exponential moving average (EMA) [55] because the weight on older data is exponentially
decreasing.

EMA was selected because of its simplicity and because it does not require storing any
previous values aside from the current average. We chose to maintain a single weight for
each edge instead of keeping a weight for each super map for the following reasons:

• Not all the edges of an environment will be observed by the robot during a single
task execution and a weight is only updated if the edge state is unblocked by the end
of the task execution. Therefore, for any given task, only a subset of edge weights
will be known.

• We assume that if an edge is unblocked, its weight will stay relatively constant with
small fluctuations for all the super maps.

5.3 Resolving Edges

In each task execution, the robot requires a method to determine if an edge is blocked
or unblocked, i.e., to resolve the edge. Resolving an edge can be done via two different
mechanisms: direct inference or indirect inference.

34

There is not much literature for verifying existing edge states. In papers that focus
on constructing topological graphs, once a graph is constructed, the planner will assume
the edges are unblocked. In papers that propose solutions for the CTP, it is assumed that
the edge state can be determined at an edge endpoint. While this may be a reasonable
assumption for driving (usually barriers are erected at an intersection if a road is impass-
able), this may not frequently be true while navigating indoors. For example, the robot
may not realize a door on the side of a hallway is closed or locked until it gets closer to
the door.

5.3.1 Direct Inference

Figure 5.6: a) Example of unblocked edge; b) blocked edge; c) unknown edge

Direct inference uses the current costmap and the current location of the robot to
update the state of the edges of the navigation graph during a task execution. It is
continuously run at a user-specified rate. An edge can have one of three possible states:
blocked, unblocked, or unknown. Resolving an edge means to set the state to be blocked
or unblocked. The edges of the navigation graph are set to unknown at the beginning of
every task.

While the robot is guaranteed to resolve an edge when it has traversed the entire
length of the edge, a few properties of a 2D environment can be exploited to resolve the
edge without traversing the entire edge.

Let the true free space be denoted by C where C ⊆ R2. This is the area of the
environment the robot can occupy without colliding with an obstacle. We assume a disc-
shaped robot along with a disc-shaped safety region so that orientation does not have to

35

be considered. We also assume C does not change throughout the task execution. Finally,
keep in mind that C is hidden from the robot.

Let the known free space be denoted by Ck where Ck ⊆ C. This is the area of the
environment the robot has observed to be free space since the beginning of the task.

Let the unknown space be denoted by Cu where Cu ⊆ R2. This is the area of the
environment that the robot has not observed yet, but is marked as free space by the base
occupancy grid. Note that Cu ∩ Ck = ∅.

Let the optimistic free space be denoted by Co where Co = Ck ∪ Cu. This is the area
of the environment the robot believes it can occupy, assuming unknown space is also free.
We will also assume that C ⊆ Co, which means obstacles in the base occupancy grid will
be assumed to always be there.

Remark 3 (Implementation of Ck and Cu) In practice, Ck and Cu can be obtained by
using a layered costmap [48]. A costmap is an advanced occupancy grid where instead of
each cell being either occupied, free, or unknown, a cost is assigned to each cell instead.
Cells with a cost above a threshold are considered occupied. The cost can be affected by the
distance a cell is from an occupied cell, therefore the costmap can set narrow spaces that
the robot cannot fit through as occupied. With a layered costmap, it is possible to separate
Ck and Cu into different layers.

Let S denote a submap, then C(S), Ck(S), Cu(S), Co(S) is the true free space, known
free space, unknown space, and the optimistic free space respectively, in submap S.

Let xR ∈ R2 be the current location of the robot. Now a formal definition of an
unblocked and blocked edge can be given:

Definition 5.3.1 (Unblocked and Blocked Edges) Given an edge (u, v) ∈ E where
u, v ∈ V , and S(u, v) ⊂ R2 is the submap associated with edge (u, v), the edge is unblocked
if and only if there exists a path, P ⊆ C(S) from u to v. Otherwise the edge is blocked.

Lemma 1 An edge (u, v) is unblocked if there exists a path from u to v in Ck(S).

Proof: Let P (u, v) denote the path in Ck(S). Since Ck(S) ⊆ C(S), then it follows that
P (u, v) ⊆ C(S).

Lemma 2 An edge (u, v) is blocked if there does not exist a path from u to v in Co(S(u, v)).

Proof: By the definition of an unblocked edge, suppose there is a path P (u, v) ⊆ C(S(u, v))
but there does not exist a path from u to v in Co(S(u, v)). This implies there exists
x ∈ C(S(u, v)) where x /∈ Co(S(u, v)). But that is a contradiction since C(S) ⊆ Co(S).
Therefore, P (u, v) ⊆ Co(S(u, v)).

36

Algorithm 4 exploits these properties to resolve edge states. This algorithm is con-
tinuously run at a user-specified rate because Ck(S), Cu(S) and Co(S) are dependent on
the time passed since the beginning of the task. In practice, the maximum rate of the
algorithm depends on the computation time of the algorithm used to find a path in lines
7 and 9.

To avoid checking edges that are not immediately relevant to the robot, an edge has to
meet at least one of the following conditions to be observed (line 4):

1. The edge is in the same submap that the robot is currently positioned in.

2. At least one of the endpoints of the edge are within the maximum observation range
of the robot at xR.

The maximum observation range of the robot is a circle with a radius of rmax, which
is based on sensor parameters and limitations of the obstacle detection. The motivation
behind the dual conditions is to address the issues of having big submaps or small submaps.

Condition 1 forces the algorithm to check the edge states of all the edges in the current
submap. If this condition was not in place, the robot would not resolve edges in submaps
that were larger than the maximum observation range. If the submap is smaller than the
maximum observation range, then only checking edges in that submap would be rather
short-sighted if the robot is capable of resolving edges in other submaps that are close by.
Condition 2 takes advantage of the robot’s maximum observation range if possible.

Algorithm 4: directInference

Input: Ck, Cu, rmax, xR

1 Co = Ck ∪ Cu;
2 Scurr = currSubmap(xR);
3 for each (u, v) ∈ E do
4 if ||xR − u||2 ≤ r OR ||xR − v||2 ≤ r OR S(u, v) = Scurr then
5 if u or v /∈ Co(S(u, v)) then
6 Set (u, v) as blocked;

7 else if there exists P (u, v) ⊆ Ck(S(u, v)) then
8 Set (u, v) as unblocked;

9 else if there does not exist P (u, v) ⊆ Co(S(u, v)) then
10 Set (u, v) as blocked;

Line 5 checks if either of the endpoints of edge (u, v) are in an obstacle, if they are in
an obstacle, then the edge is marked as blocked. In Section 5.9, we present an extension
of direct inference to be more robust by considering the entire length of the portal instead
of just the center point.

Line 7 exploits Lemma 1 to set (u, v) as unblocked. In line 9, a path planner is run on
Co(S(u, v)) to find a path from u to v. If no path is found, then the edge is blocked. When
selecting a path planner, it only needs to return if a path exists or not, thus optimality

37

is not a concern. Minimizing the computation speed should be the primary objective.
Planners that use heuristics (like A*) to speed up computation are good options.

If a path is found, but u and v do not satisfy the conditions in lines 5 or 7, this implies
the robot still does not know whether the edge is blocked or unblocked, since the path
could be blocked by an unseen obstacle, as illustrated by (c) in Fig 5.6. Then edge (u, v)
cannot be resolved and direct inference moves on to the next edge to be checked.

Edges resolved by direct inference during task t are used to update the current map
Mt = (Eb

t , E
u
t) where Eb

t , E
u
t ⊆ E and Eb

t ∩Eu
t = ∅, which will be tested for map agreement

and stored as a super map (recall that Eb
t is the set of edges that are blocked, while Eu

t

is the set of edges that are unblocked. Refer to Section 4.2.2 for the formal definition of
a map). Computationally fast path planning is crucial to running direct inference at the
desired rate. If the path finder (lines 7 and 9) is slow, the robot may resolve very few edges
because during each for loop, the robot only resolves edges that satisfies either condition 1
or 2 at its current location, possibly resulting in missed edges because the robot has moved
far away by the time direct inference is called again. Also large submaps may slow down
the the rate of direct inference as most path finders will take longer to run on large maps.

Remark 4 For ease of explanation, we have represented M as the tuple (Eb, Eu). How-
ever, in practice M is stored as an adjacency table representing a graph with edges marked
as blocked, unblocked, or unknown. Therefore, we will also use M to represent the naviga-
tion graph induced by (Eb, Eu).

5.3.2 Indirect Inference

Indirect inference makes assumptions about edge states that have not been resolved by
direct inference. It infers an edge state based on historical information about the envi-
ronment from previous task executions and the information that it has collected about
the current environment. Since edge states are only assumed from historical data instead
of inferred from data about the present environment, edges resolved by indirect inference
do not update the current map, but the assumed edge state may affect how the robot
navigates.

Indirect inference updates the belief the robot has about its environment. It is run at
the same rate as direct inference is resolving edges. At the beginning of task t, the belief Y
is set to all the super maps the robot has collected since the first task,Mt−1. As the robot
executes the task, it uses direct inference to resolve edge states and saves it in Mt. As Mt

is updated, it is compared with the other super maps in Mt−1. If super map Mi ∈ Mt−1

disagrees with Mt (formal definition in Section 4.3.1), then i is removed from Y . Formally,

Y = {i : Mi agrees with Mt,Mi ∈Mt−1}. (5.2)

Let Mk = (Eb
k, E

u
k) denote the known map, which stores all the edges that the robot

believes it knows the state of in the current task t. The known map contains the edges
that the robot has resolved with direct inference since it started executing task t, and all
the edges that have a consistent state across all the maps in Y .

38

For example, in Figure 5.7, Y = {1, 2}, and all the relevant maps are provided. A few
of the edges in Mk are set according to the following:

• Edges (2,3) and (1,4) are either unblocked or unknown in Mt, M1, and M2, therefore
it is unblocked in Mk.

• Edge (1,3) is unknown in Mt, while it is unblocked in M1 and blocked in M2, therefore
the edge is unknown in Mk.

• Edge (2,4) is blocked in Mt, so while it is unknown in both M1 and M2, the edge is
also blocked in Mk.

1

2 3

4

(a) Mt

1

2 3

4

(b) M1

1

2 3

4

(c) M2

1

2 3

4

(d) Mk

Figure 5.7: Example of how known map Mk is formed.

Formally,

Eb
k = Eb

t ∪
(⋂
i∈Y

Eb
i

)
, (5.3)

Eu
k = Eu

t ∪
(⋂
i∈Y

Eu
i

)
, . (5.4)

The current map Mt and the known map Mk differ in that the current map only has
the edge states that the robot has ‘seen’ with its sensors in the current task, with all other
edges being unknown (thus direct inference), while the known map also contains state
information about edges that the robot has not yet seen but should be true based on the
belief (indirect inference).

5.4 Robot Actions

Here we formally define the actions that the robot can take when navigating. Resolving
edges is not considered an action because it is being constantly performed through di-
rect and indirect inference. The following are actions that the robot will decide to take
depending on the results of direct and indirect inference.

The robot can move from vertex v to vertex u if (v, u) ∈ E and the state of the edge is
unblocked or unknown. A path planner such as A* with smoothing will compute a detailed
path from v to u in the corresponding optimistic free space of the submap for the robot to
follow. Suppose the robot is moving from v to u, then a move is complete if ||xR−u||2 ≤ ε
for some predefined threshold ε ∈ R. It is possible for the robot to be unable to complete a

39

move because an unknown edge turns out to be blocked. In that case the policy will decide
where it will go next. A leg is a sequence of vertices that defines the moves the robot will
make when following the policy.

Definition 5.4.1 (Leg) A sequence of vertices v1, v2, v3, . . . , vn that represents the se-
quence of moves v1 to v2, then v2 to v3, etc, up to vn−1 to vn where n is the number
of vertices in the leg.

The robot can observe an edge (v, u) by resolving it via direct inference. This is a
combination of intentionally following a leg to one of the end points of the edge, say
vn = v, then moving from v to u until the edge has been resolved. An observation is not
complete until (v, u) has been set as blocked or unblocked.

Definition 5.4.2 (Observation O = (e, v)) A tuple where e = (v, u) ∈ E is the edge to
be resolved by direct inference. The robot will move to v, then move from v to u until the
edge has been resolved.

The robot can terminate, or end the task. It will only do so when it reaches its goal.
Thus, the robot can choose to do one of the following three actions at any given moment
during a task execution: move, observe, and terminate.

5.5 Policy Construction

In this section, we will discuss three different motion policies for navigating to a goal:
optimistic, offline, and online. These methods will be compared through experiments in
Section 5.7.

5.5.1 Optimistic Policy

The optimistic policy is one of the most prevalent policies in the literature for navigating
uncertain environments (see Section 2.2). In the context of this chapter, the optimistic
policy does not use the observe action. Informally, it uses a shortest path algorithm such
as A* or Dijkstra to compute the shortest path from its current location to the goal on
the navigation graph. If the move cannot be completed because of an unexpected blocked
edge, then it recomputes and follows the shortest path in the updated map.

When the robot discovers a blocked edge, we insert a vertex vR containing the robot’s
current position xR into the navigation graph, and run the shortest path algorithm with
vR as the starting vertex. Let v be the last vertex the robot was at. Then for every vertex
u corresponding to a portal in the submap the robot is currently in, if (v, u) is not blocked,
an edge is added from vR to u. An edge is also added to v. The cost of each edge is
||xR, u||2.

Similar to the previous chapter, the optimistic policy is also a contingency plan for
the following two policies that will be introduced. If the robot encounters an unexpected
obstacle in the environment, it will switch to the optimistic policy to reach the goal.
Therefore, the robot is guaranteed to terminate at the goal.

40

5.5.2 Offline RPP Policy

The offline RPP policy is constructed by calling the Reactive Planning Problem (RPP)
solver (Algorithm 1) before every task execution, like the policy builder in the chapter 4.
As a reminder, it accepts the set of super maps and the estimated pmf as input and outputs
a policy for the robot to follow. The policy is encoded as a binary tree that guides the
robot on what actions it should take based on observations it has made since the beginning
of the task execution. If an edge is unexpectedly blocked (i.e. move cannot be completed),
the robot will switch to the optimistic policy. This policy is considered offline because it is
pre-computed before the task begins. It predicts how the known map Mk will change and
pre-determines actions accordingly.

Since Algorithm 1 was designed to compute a policy for graphs with the assumption
that the robot can resolve an edge at an endpoint, the following minor modification needs
to be made. Given an observation (e, v) where e = (u, v), u needs to be appended to the
leg to v. The robot does not need complete the move on e, it merely needs to resolve e
with direct inference to complete the observation, but u needs to be appended to guarantee
that the observation will indeed be completed.

5.5.3 Online RPP Policy

A weakness of the offline policy is the need to make assumptions about where edges can be
resolved to predict not only the next best action, but subsequent actions after. Since the
offline policy assumes edges can be resolved at an endpoint when planning observations, it
may lead to some poor decisions as illustrated in figure 5.8.

In panel 1, the robot observes edge (1,6) as unblocked. However, in panel 2, the next
observation the offline policy selects is (2,7) because the policy assumed the robot would
be at portal 1 when it completes its observation, but in reality the robot was more than
halfway to portal 6. It completes observing (2,7) in panel 4, and in panel 5 the policy
chooses to observe (2,3) (in this environment portal 3 is always blocked at the same time
as portal 12). Again it assumed the robot would be at portal 2 when the observation is
completed. The robot finally makes its way to the goal at panel 6, after observing (2,3).

The robot ended up observing edges (1,6), (2,7), and (2,3), but it did not complete the
observation until it was at least half way to the next vertex for all of them. This resulted
in a significantly worse travel distance than even the optimistic policy.

Another weakness is that the offline policy is not flexible if the belief changes in a way
it did not expect. The robot will rigidly follow the policy until it either reaches the goal
or a move fails and it switches to the optimistic policy.

Instead of pre-calculating the full policy, an alternative approach is to decide the next
best action based on the current position of the robot, the current knowledge of the en-
vironment configuration, and the belief. The next-best action is re-calculated only when
the belief over the super maps changes. As a reminder of how actions are selected by
Algorithm 1, assuming the robot starts the task at v, it first decides between exploration
and exploitation by evaluating the following expression for all vertices u,

cMk
(v, g) ≤ cMk

(v, u) + CY (u, g), (5.5)

41

Figure 5.8: This is a sequence of actions the robot took in 19th task of one of the simulation
trials following the offline policy. The robot starts at the green square and the goal is the
red square. The yellow triangles indicate the current leg the robot is following.

where Mk is the known map and CY (u, g) is the expected cost from u to g given the
current belief Y . If every u satisfies (5.5), then exploitation is chosen, meaning the next
best action is to move to the goal. Otherwise exploration is chosen, meaning the next best
action is an observation. Let O contain all the (e, u) pairs that do not satisfy (5.5). The
best observation is selected by evaluating the following:

Omin = argmin
(e,u)∈O

[
(cMk

(v, u) + CY (u, g))E[H(XY |e)]
]
. (5.6)

42

The expected entropy after observing e is denoted by E[H(XY |e)]. For every observa-
tion, two actions must be selected, one action for when the observed edge is blocked, and
a different action if the observed edge is unblocked. This is repeated until every branch in
the policy tree terminates at the goal. For details, please refer to the background chapter,
Section 3.4.

In the online policy, we modify Algorithm 1

• to only return the next best action instead of the full policy,

• to temporarily add a new vertex encoded with the robot’s current position in the
belief’s super maps, and

• to modify the distance score (cMk
(v, u)+CY (u, g)) of the observation e to better reflect

the new reality that the edge state may not be resolved at an endpoint without first
traversing the edge.

Algorithm 5 below reflects the first two modifications. We extract the inside of the
for loop that generates each child of the policy tree in Algorithm 1 to only calculate the
next best action (lines 8-14). In lines 1-7, the new vertex encoded with the robot’s current
position is added to each super map in the belief and Mt, in the same way when a new
vertex is added to Mt in the optimistic policy. Line 8 finds the (e, u) pairs whose distance
score D(e, u) < cMk

(vR, g), resulting in a list of (e, u) pairs O and their corresponding
distance scores in D. If no observations are in O, the robot will proceed to the goal. Line
13 then multiplies each distance score by the expected entropy of their respective edge e,
selecting the next observation to be the (e, u) pair that has the minimum product.

Algorithm 5: onlineRPP

Input: current map Mt, super maps Mt, robot location xR, last vertex v, belief Y ,
estimated probabilities P̂

Output: Observation O, Leg L
1 Scurr = currSubmap(xR);
2 vR = vertex with position xR;
3 Add vR to Mt and (vR, u) for each portal u in Scurr;
4 for i in Y do
5 Add vR to Mi ∈Mt;
6 Add edge (vR, u) if (v, u) is an unblocked edge and u is a portal in Scurr;
7 Compute cMi

(vR, g);

8 Compute (O, D) =PossibleObservations(Y,Mt,Mt, P̂);
9 if |O| = ∅ then

10 O = ∅;
11 L = shortestPath(vR,g);

12 else
13 O = argmin(e,u)∈OD((e, u))E[H(XY |e)];
14 L = [shortestPath(vR, u1),u2];

15 return O, L;

43

Figure 5.9: Illustration to help explain the modified distance score. The maximum obser-
vation range is specified by rmax, while the red rectangle represents a submap.

To modify the distance score, we first look at Figure 5.9. Consider the following sce-
nario: Suppose the robot is considering the observation ((1,4),1). The distance score of
this observation would be

D((1, 4), 1) = cMk
(vR, 1) + CY (1, g). (5.7)

However, this score fails to account for the distance the robot may have to travel to
complete the observation and the distance it will have to travel from there to the next
vertex, which could be significant if the submap is large. The expected cost

CY (1, g) =
∑
i∈Y

p(XY = i)cMi
(1, g) (5.8)

only calculates the shortest path from 1 to g in each super map of the belief. The probability
of the robot being in map i given the belief is denoted by p(XY = i). We propose an
alternative score that predicts where an observation will be completed to better estimate
the expected cost the robot will have to travel after completing an observation. Assuming
the robot can complete an observation at 1 is the best case scenario, however, the expected
case can be divided into two cases:

A. If (1,4) is unblocked, the robot must be at least rmax away from 4 to resolve the edge
as unblocked, so the expected location would be at α, rmax/2 away from 4.

B. If (1,4) is blocked, the robot could resolve the edge as blocked from anywhere between
1 and 4, so the expected location would be in the middle, at β.

Combining these two cases and generalizing to any observation (e, u), the new distance
score is

D(e, v) = cMk
(vR, v) +

p(e ∈ Eu|Y)(||v, α||2 + CY u(α, g)) +

p(e ∈ Eb|Y)(||v, β||2 + CY b(β, g)),

(5.9)

where p(e ∈ Eu|Y) and p(e ∈ Eb|Y) are the conditional probabilities of e being unblocked
and blocked respectively given Y . In equation 5.9, Y u is the partition of the belief where

44

e is unblocked and Y b is the partition of the belief where e is blocked. The expected costs
CY u(µ, g) and CY b(β, g) can be calculated using

CY ′(x, g) = min
{
||x, v′||2 + CY ′(v′, g)

}
∀v′ ∈ V (S(e)) (5.10)

where V (S(e)) are all the vertices of the submap associated with e. Equation 5.10 finds
the portal, or the vertex v′ that has the minimum expected cost from x ∈ S(e) and returns
the expected cost if the robot were to move from x to v′ to g.

Remark 5 The accuracy of the updated distance score depends on the assumption that the
submaps are convex. While a distance score will still be calculated if the submaps are not
convex, it may not be able to accurately reflect the real costs of taking the observation.

5.6 LAMP Framework

Standard Navigation Stack
LAMP Framework

High Level
Planner

Edge
Observer

Path
Planner

Path
Follower

Occupancy
Grid

to
Costmap

Map

Sensors,
Odometry

Localization

Figure 5.10: Overall LAMP architecture

The architecture of the LAMP framework is shown in figure 5.10. The blue arrows
represent the flow of data between the nodes. The framework is meant to be added to a
standard navigation stack. Although the components in the navigation stack in figure 5.10
are based on the ROS navigation stack [50], others have a similar structure [23].

The edge observer takes the costmap and the estimated robot’s pose from the localiza-
tion system to resolve edge states via direct inference. The edge states are given to the
high level planner, which uses it to build maps of the environment. The high level planner
implements the policies mentioned in Section 5.5 and instructs the path planner on which
vertex to go to next.

The path planner is responsible for planning a smooth path from the robot’s current
position to the next vertex dictated by the high level planner. The path must be within
the submap the robot is located in. If no such path is found, the high level planner will

45

set the current edge state to blocked. In our implementation, we integrate our algorithm
with the ROS navigation stack, which only uses laser range data and odometry. However,
other navigation stacks may be able to incorporate other data such as camera feeds to
aid localization. The provided map is expected to be an occupancy grid. The occupancy
grid to costmap component takes the provided map and combines it with sensor data to
generate a costmap. The ROS navigation stack uses a layered costmap so permanent and
semi-static obstacles can be differentiated, in addition, semi-static obstacles from previous
task executions in the costmap are cleared at the beginning of each new task. To minimize
computation, one could limit the output of the costmap to the submap that the edge
observer and path planner currently need instead of passing the full costmap.

The remainder of this section will detail how the policies detailed in Section 5.5 are
executed in the high level planner.

5.6.1 Task Execution with Offline Policy Construction

LRPP Solver

Start
task

Follow
policy

Reached
goal?

Switch to
optimistic

policy

End
task

Filter
Maps

Build
Policy

No

Yes

Figure 5.11: Structure of High Level Planner with offline policy construction.

The task execution is the same as the Sequential Task Completion algorithm in chapter
4, which is summarized in figure 5.11. The black arrows represent the order which processes

46

are executed. The high level planner maintains a filtered archive of maps of previous task
executions, and creates a motion policy based on past runs that minimizes the expected
travel cost. A map of the environment, Mt, is collected at the end of each task execution
with edge states set as blocked, unblocked, or unknown. These edges are resolved by the
edge observer. This map is then compared with previously saved super maps by the map
filter (see Section 4.3.1) and updates the set of super maps and their estimated probabilities
of being encountered in the next task execution. The policy builder (see Section 4.3.5)
accepts the set of super maps as input and outputs a policy for the robot to follow in
the next task execution. If an edge in a leg of the policy is observed to be blocked, the
robot will switch to the optimistic policy. The belief of the robot only changes when an
intentional observation (planned by the policy) is made, other observations are ignored.

However, in this new environment model, two changes need to be made in how the
robot executes the policy. First, given an observation (e, v), the policy assumes the robot
will be located at v when it completes the observation, so the next leg will begin with v.
Suppose the leg is [v, v2, v3, . . . , vn]. If the robot is in the same submap as (v, v2), then the
robot will backtrack to v before going to v2, which is undesirable. On the other hand, the
robot cannot always skip v and move to v2 because there is the possibility that (v, v2) is in
a different submap than the robot is currently operating in. In that situation, the correct
move is to proceed to v first, then move to v2. Thus before following a leg, the robot must
first compare the submap it is in with the submap of (v, v2), if they are the same then
move to v2, otherwise move to v.

Second, given the observation (e, v), the robot must follow the leg to v before it can
begin execution of the next action in the policy. The reason for this additional rule is
because it is now possible for direct inference to resolve edges that are not incident to
the robot’s current vertex. Since the offline policy assumes the robot will complete the
observation at v, we enforce this rule so that executing the next step in the policy is simple.

Remark 6 (Using other CTP policies) It is straightforward to modify the Build Pol-
icy node to construct different policies other than the RPP policy. The collected maps can
be used to create a probabilistic graph, and other CTP policies can be constructed using the
graph as an input. No other nodes will need to be modified since most other CTP policies
also assume that edge states can be observed from their endpoints.

5.6.2 Task Execution with Online Policy Construction

Figure 5.12 summarizes the procedure in the high level planner if it is using an online
policy. Similar to the offline execution, at the end of every task execution, the current
map is used to update the set of super maps that onlineRPP will use to help determine
the next best action. In the online policy, the belief is updated as the current map is
updated, and if the belief changes, then onlineRPP is called. As with the offline policy, if
the current experience does not agree with any of the super maps, the robot will switch to
the optimistic policy. Unlike the offline policy, the online policy can react to unexpected
information that does not affect its current plan, but changes the belief (such as an edge
that was expected to be blocked but is unblocked). Also unlike the offline policy, no special
treatment needs to be given to the legs that the onlineRPP outputs, the robot can follow
them as is, ignoring the first vertex which is always the robot’s current location.

47

Start
task

New
experience?

Switch to
optimistic

policy

Call
online
RPP

Move to
next vertex
according
to plan

Update
map

Belief
changed?

Reached
goal?

End
task

Filter
Maps

YesNo

Yes

No

No

Yes

Figure 5.12: Online flow

48

5.7 Results

Two experiments were run to test the LAMP framework. The first was a simulation in an
environment that has similar structure to an office or a small warehouse. The second was
an experiment on a real robot that was run in a maze-like environment constructed indoors.
In both cases the navigation graph was not a multigraph and in each task execution there
existed a path to the goal.

All of the code for the high level planner and edge observer is in Python 2.7, which
is integrated as a package for ROS Kinetic. The LAMP framework was built on top of
the ROS navigation stack, which already includes all the components in the standard
navigation stack in figure 5.10. In the ROS navigation stack, the path planner is referred
to as the global planner and the path follower as the local planner. Table 5.1 outlines
which ROS packages and therefore which algorithms were used for each component of the
navigation stack in our implementation. Our high level planner uses the move base action
library to interact with the ROS navigation stack.

Component ROS Package Algorithm
Path Planner global planner A*
Path Follower base local planner Dynamic Window Approach [14]
Localization amcl Augmented Monte Carlo Localization [13]
Costmap costmap 2d Layered costmap [48]

Table 5.1: Existing algorithms were used in the navigation stack for the experiments.

The Visilibity library [59] was used to estimate the known free space for the edge
observer. Converting the occupancy grid into a hybrid map were done manually for each
experiment.

5.7.1 Simulation

Figure 5.13: Clearpath Jackal that was used in both the simulation and real world experi-
ment.

The simulations were run on a PC with a 4.2 GHz Intel Core i7 processor with 32 GB
memory and a GeForce GTX 1060 GPU with 6 GB of VRAM, using the ROS Gazebo

49

(a) (b)

Figure 5.14: (a) Base occupancy grid of the Gazebo test environment (20 m × 20 m)
showing submap decomposition, labelled portals, and a potential obstacle i. The start
and goal vertices are labelled as s and g respectively. (b) Example of Gazebo environment
configuration with obstacles. In this example, obstacles appeared in 2, 6, 7, 8, 9, and i,
along with some random debris.

Obstacles Probability
1 0.1

3,10,12 0.6
2,6 0.5

7,8,9 0.4
i 0.9

Table 5.2: Probabilities of obstacles appearing in the simulation.

simulator. The robot platform is a Clearpath Jackal, a small differential drive unmanned
ground vehicle (0.5m × 0.5m footprint) that has been equipped with a SICK LMS111
LiDAR. Figure 5.14 depicts a top-down view of the environment the robot operated in
and table 5.2 shows the probability of edge blocking obstacles appearing. If an obstacle
appears on a portal, a white barrier blocks the portal like in figure 5.14b. If the region i
is to have an obstacle appear, then two rectangular obstacles can appear anywhere in the
submap, but in the same orientation as in (b). In addition, to simulate scattered debris,
up to 10 blue cylinders will spawn in random locations throughout the environment.

The occupancy grid was converted into a graph with 16 vertices and 33 edges. The
uncertainties in table 5.2 resulted in 32 possible configurations for the test environment,
not accounting for all the different configurations the blue cylinders could be in.

The robot is tasked with repeatedly going from s to g. We ran 10 trials with 100 task
executions each. The environment configuration for each execution was randomly selected
according to the probabilities in table 5.2. We tested the following four policies for each
trial: Simple, Optimistic, Offline, and Online. The latter three policies were explained
in section 5.5. The Simple policy does not use the navigation graph, we simply send the

50

goal position g to the navigation stack and the path planner guides the robot to the goal.
This is the baseline we compare our policies to. The reasoning is that this is available
out-of-the-box by ROS and presumably many robots will use this method of navigation.

Figure 5.15 compares the average distance travelled by each policy after performing
a certain number of task executions, normalized by the average distance travelled by the
simple policy. All the data is shown except for an outlier by the Optimistic policy that
resulted in −21% after 5 tasks, most likely due to an incorrect edge resolution resulting in
a unnecessarily long path.

Figure 5.15: Cost savings of optimistic, offline, and online policy normalized to the simple
policy.

Both the Online and Offline policies performed 10-20% better than the Optimistic pol-
icy, and 20-30% better than the Simple policy. The savings stabilize at 25% and 30%
respectively, astonishingly similar to the performance of the solution in chapter 4. Un-
fortunately, the Online policy did not perform as well as the Offline policy, which was
unexpected. From inspecting the paths the robot took, scenarios like the one in figure 5.8
did occur and the Online policy had better paths in those. One possible reason is because
the Online policy reacts to changes in all edge states, rather than just the next assigned
observation, there were instances when it was better to continue with the original plan.
Yet the Online policy switched to the Optimistic policy because the environment no longer
agreed with any of the super maps. However, this still does not explain why the Online
policy does not eventually overtake the Offline policy since it should perform worse only
at the beginning of the trial.

Another plausible explanation is that the edge observer sometimes incorrectly resolves
an edge state because of error in the obstacle detection of the costmap. Particularly when
the robot is positioned at an acute angle to the portal, the costmap sometimes reports no
obstacles, resulting in the Online policy re-planning prematurely, possibly switching to the

51

Optimistic policy. The edge observer corrects itself later on, but the robot cannot switch
back to the Online policy afterwards. Figure 5.16b seems to suggest that this does happen,
since the Online policy consistently switches to the Optimistic policy more frequently than
the Offline policy, even after 100 tasks despite the number of super maps being similar in
both policies. As a side note, for both policies the rate of calls to the Optimistic policy
decreases exponentially as the number of completed task executions increase, which is the
desired behavior.

Although figure 5.15 shows the Optimistic policy outperforming the Simple policy, in
the case of this test, it was by chance. The Simple algorithm always initially plans a path
along the leg [s, 2, 7, 12, g] (one smooth path from s to g, but it goes through those sequence
of portals), whereas the Optimistic policy always sets the initial leg to be [s, 1, 6, 12, g].
This difference is due to the navigation graph edge costs being initialized to the euclidean
distance between portal centers, not accounting for the robot’s turn radius, while the path
planner actually computes a smooth path in the cost map. Notice that in table 5.2, the
barriers on portal 2 and 6 are correlated, but 7 is not. When portal 6 is not blocked,
neither is portal 2, but portal 7 may be blocked. By going to 6 first, the Optimistic policy
can view whether 7, 9, or 12 is blocked, but the Simple policy may have to backtrack from
edge (2,7) to portal 6 before learning this information. All this to say, if the edge costs
were initialized with a more accurate value, the Optimistic policy’s average travel distance
compared to that of the Simple policy’s should be close to 0%.

The map filter is performing as expected, figure 5.16a shows the number of super maps
plateauing as the number of completed task executions increases. Out of all the trials, the
maximum number of super maps that were stored after 100 tasks was 20. Figure 5.17 con-
tains two examples of different environments but their maps were in agreement, resulting
in considerably fewer maps being stored than if we were to compare the occupancy grids
directly.

(a) (b)

Figure 5.16: (a) Average number of super maps stored compared to the number of tasks
that have been executed.(b) Percentage of executed tasks where the high level planner
switched to the optimistic policy.

Although minimizing computation time is not the focus of this work, it should be noted
that during the simulations, the edge observer was operating at a rate of roughly 3 Hz, or
observing 3 edges per second. While this was slower than desired (resulting in some edges
remaining unknown when they should have been resolved), the Offline and Online policies
still performed better than the Simple policy. However, there is room for optimization in

52

(a) (b)

(c) (d)

Figure 5.17: Two examples of different environment configurations that satisfy map agree-
ment. The top environments agree because in task 15, the robot did not see the barriers
in the center along its route (light blue). The bottom environments agree despite the blue
cylinders being in different locations.

the direct inference algorithm and employing a faster path finder than A* would likely
increase the edge observation rate.

5.7.2 Physical Robot Experiments

Obstacles Probability
dark blue 0.6

purple 0.3
pink 0.9

i 1.0

Table 5.3: Probabilities of obstacles appearing in the environment.

Similar to the simulation, a Clearpath Jackal was used, this was equipped with a

53

(a) (b)

Figure 5.18: (a) Base occupancy grid of real environment (20 m × 10 m) with submap
decomposition, labelled portals, and potential obstacle locations. The start and goal ver-
tices are labelled as s and g respectively. (b) Example of environment configuration with
obstacles. In this example, i, the dark blue, and pink obstacles exist, along with some
debris in the yellow submap.

Velodyne Puck, a 360◦LiDAR. The environment that the robot operated in is shown in
figure 5.18 and the probability of obstacles appearing in table 5.3. The occupancy grid
provided to the robot in (a) was generated by running the Cartographer SLAM algorithm
[22] in the empty area with the robot, and the permanent obstacles were later added with
a drawing program.

This test environment has 14 vertices with 35 edges and 8 different configurations. We
ran 2 trials with 10 task executions each, comparing only the Simple and Offline policies.
Again, the environment configuration for each task execution was randomly selected ac-
cording to the probabilities in table 5.3. However, because of time constraints, the simple
policy was not run in the second trial. Instead, we averaged the distance travelled in iden-
tical configurations in trial 1 and used that value for the distance travelled in the same
configurations in trial 2.

In trial 1, the average expected cost of the Offline policy was 5.06% less than the
Simple policy, and in trial 2 it was 10.42%. While the results are positive for only 10 task
executions, they are not conclusive of the potential of using the Offline policy. It can be
seen that the Offline policy performed comparably or better in most of the task executions,
but its gains were offset by a few very poor runs (tasks 3,6,9 in trial 1 and task 8 in trial 2).
Its performance was severely hampered by errors in the edge observer, resulting in super
maps with configurations that were impossible and wrong decisions being made. While
these errors did happen in the simulation, it was rare and did not make much of a difference.

54

Here, although there were only 8 possible configurations for the environment, trial 1 had
9 super maps after 10 task executions, and 5 of the super maps were impossible (at least
one of the following edges were resolved as blocked: (8,12),(8,g),(8,10),(10,g),(1,5)). In
addition, in task 6 of trial 1, the offline policy observed edge (3,2) to be blocked when it
was in fact, unblocked, as a result it also assumed edge (11,g) was blocked, leading it to
take a much longer path to g.

The majority of these mistaken observations were due to the localization error exceeding
1 m. Since the vertex location is the center of the portal, if that pixel is occupied then the
edge observer resolves any edges that are incident to that vertex as blocked. Although the
portals were a minimum of 3 m wide, many edges were incorrectly observed as blocked.
This highlights that only considering the center of a portal is not sufficient for accurate
edge observations, and the importance of accurate localization when using the LAMP
framework.

Trial Task Simple [m] Offline [m] Number of super maps Switched?
1 1 74.54 60.41 2 Yes

2 70.24 39.24 3 No
3 10.28 32.83 4 Yes
4 59.67 53.52 5 No
5 60.77 52.99 5 No
6 10.08 45.39 5 No
7 23.80 13.39 6 No
8 75.08 57.32 7 No
9 22.15 42.84 8 No
10 59.92 45.00 9 Yes

Average 46.65 44.29 0.3
2 1 10.18 10.75 2 No

2 74.54 67.40 3 Yes
3 65.14 57.64 4 Yes
4 10.18 10.79 4 No
5 65.14 31.92 5 No
6 10.18 11.36 5 No
7 10.18 10.90 5 No
8 65.14 87.77 6 Yes
9 10.18 10.83 7 No
10 74.54 54.82 8 Yes

Average 39.54 35.42 0.4

Table 5.4: Results from experiment on real robot.

5.8 Discussion

The results show the potential the LAMP framework has to decrease the expected cost
of a navigation task over time if there are any savings to be had. The test environments
that the experiments were run in both had at least one key indicator of whether or not

55

there was a dead end later on. In the simulation, if portal 2 was blocked, it meant portal
6 would also be blocked. In the experiment with a real robot, if portal 3 was blocked, it
meant edge (11,g) would also be blocked. The RPP-based policies (Offline and Online)
were able to learn these correlations and exploit them to decrease the cost to goal. They
were also able to avoid routes with a large possibility of being blocked, such as edge (5,8)
in the simulation.

This suggests that perhaps the savings from exploiting these correlations can be pre-
dicted and measured, given the correlation of edges and the distance saved from observing
these indicators rather than only turning around when the path forward is blocked. How-
ever, the exact relationship is still unclear, and it would be beneficial to test the policies
with more varied environments to better understand this. The difficulty in designing envi-
ronments to test the potential of these policies is what motivates this part of the discussion.
A different scenario, or even different probabilities for the obstacles may produce a different
savings result. However, the design and construction of each scenario costs considerable
effort, which is why we have only tested on two. Perhaps there is another scenario that
better reflects the savings that the policies provide. We believe the Online policy may per-
form better in other environments, it’s possible assuming that edges can be viewed from
their endpoints just happened to be the better assumption for the simulation environment.

Although the submaps were all rectangular, this was intentional to keep the implemen-
tation simple. The only constraint is that the submaps should be as convex as possible
for the observation scoring in the Online policy to be representative of the real value of
an observation. Modeling the environment as a hybrid map combined with the map filter
resulted in the robot remembering only major blockades, while relying on the path plan-
ner and path follower to navigate around smaller obstacles as it encounters them. It is
important to note that the size of the submaps will affect the performance of the LAMP
framework. Increasing the submap size can decrease the size of the resulting navigation
graph and reduce the sensitivity of the learning to changes in the environment. But do-
ing so would increase the robot’s reliance on the path planning component to navigate,
and it would increase the computation time of the edge observer. Conversely, decreasing
the submap size can reduce the computation time of the edge observer to find a path be-
tween vertices, but it increases the robot’s sensitivity to small changes in the environment,
causing it to remember more super maps.

5.9 Portal Extension

As mentioned in Section 5.3.1, a weakness of our edge observation approach (direct infer-
ence) is that the midpoint of a portal is a vertex. If an obstacle blocks only the middle
of the portal like in figure 5.19, direct inference will conclude the edge is blocked, yet the
robot can clearly still move to the next submap.

A potential solution to this issue is to consider the length of the entire portal when
checking for a path from one portal to another in the submap. However, to reduce the
computation cost, Algorithm 6 is proposed to reduce the number of calls to the path
finding algorithm. The data structure for the vertices needs modification to accommodate
considering the full length of the portal instead of only the center. We let the vertex have

56

Figure 5.19: Example where direct inference will observe that edge (u,v) is blocked, but
the robot can still pass through the portal on either side of the obstacle.

three attributes: name, portal, and position. The name is just an arbitrary label assigned
to each vertex, the portal is a vector of cell locations of the portal in the full costmap,
and the position is the coordinate we are using to represent the vertex for the path finder.
Recall that the submap is just a portion of the full costmap, which is a type of occupancy
grid. Therefore, the submap is an array of grid cells and the portals are a line from that
submap. The vertex position can be modified depending on what portion of the portal
is obstructed. It is initialized as the center of the portal at the beginning of every task
execution. FindFreeSegments (Algorithm 7) finds the free segments of a portal and returns
a list of cells, F , selected from each segment, prioritized by the following:

priority = length of segment− (cell cost + distance from midpoint of portal). (5.11)

The cell cost is a number assigned to the cell by the costmap that usually depends on
proximity to an obstacle, but it depends on the costmap configuration (see [48]). The cell
with the highest priorities are checked first in lines 9 and 10 of Algorithm 6. Calculating
the priority in this way dictates that the robot will prefer heading towards the middle of
the portal, while balancing distance from obstacles and how much space there is for the
robot to pass through. If the entire portal is blocked by an obstacle and the robot cannot
pass, then line 7 will set the edge as blocked.

The advantage of the augmented direct inference is that instead of running the path
finder for every combination of free cells in each portal, we only run it for each combination
of free segments (lines 10 and 11). If we were to check for a path between each combination
of cells in v and u until one was found, then the worst case is where both u and v are
completely free, but there is no path between them. Suppose the portals for v and u
had the same number of cells, n, then we have O(n2(O(pathFinder))) for this worst case
scenario. For the augmented direct inference, the theoretical worst case would be if every
alternating cell was free, but there is no path between u and v, which will result in a
time complexity of O(n

2
2O(pathFinder)) + 2n). Although this does not appear to be much

of an improvement, consider that the first worst case would happen frequently as we are
expecting edges to be blocked, while the worst case for augmented direct inference is near
impossible in practice. Even if there were obstacles that were perfectly aligned with the
costmap, the robot would have to be smaller than the resolution of the costmap such that it
can fit between those obstacles. In practice, the number of free segments would be several
magnitudes lower than the number of cells in a portal.

57

Algorithm 6: AugmentedDirectInference

Input: Ck, Cu, rmax, xR

1 Co = Ck ∪ Cu;
2 Scurr = currSubmap(xR);
3 for each (u, v) ∈ E do
4 if ||xR − u.pos||2 ≤ r OR ||xR − v.pos||2 ≤ r OR S(u, v) = Scurr then
5 Fu = FindFreeSegments(u.portal);
6 Fv = FindFreeSegments(v.portal);
7 if Fv or Fu is empty then
8 Set (u, v) as blocked;

9 else
10 for each vF in Fv do
11 for each uF in Fu do
12 v.pos = vF ;
13 u.pos = uF ;
14 if there exists P (u, v) ⊆ Ck(S(u, v)) then
15 Set (u, v) as unblocked;
16 Break, move to next edge in first for loop;

17 else if there exists P (u, v) ⊆ Co(S(u, v)) then
18 Break, move to next edge in first for loop;

19 Set (u, v) as blocked;

58

Algorithm 7: FindFreeSegments

Input: pv vector of cells in the portal
Output: F priority queue of selected cell in each free segment

1 F = ∅;
2 inSegment = False;
3 for each cell in pv do
4 if inSegment = False AND cell is free then
5 start = cell;
6 inSegment = True;
7 priority = cell cost +||c− mdpt(pv)||2;
8 chosenOne = cell;

9 else if inSegment = True AND cell is free then
10 priority = cell cost +||c− mdpt(pv)||2;
11 if cellpriority < priority then
12 priority = cellpriority;
13 chosenOne = cell;

14 else if inSegment = True AND cell is occupied then
15 end = previous cell;
16 priority = ||end− start||2 - priority;
17 Add chosenOne to F in order of priority;
18 inSegment = False;

5.10 Summary

This chapter first introduced and justified using a hybrid map as the environment model
for real robots to plan with when utilizing past experience to improve navigation. We
then proposed the direct and indirect inference mechanisms to resolve edges on the hybrid
map so the robot can navigate to the goal using the hybrid map. We reviewed how the
Optimistic and Offline RPP policies were constructed before introducing the Online RPP
policy and its construction method. Finally, we put all the pieces together into the LAMP
framework which can be easily integrated with existing navigation stacks to allow the
robot to learn and improve its navigation from its past experiences navigating in the same
uncertain environment. The potential of the LAMP framework to improve navigation
was supported by our experiment results, which showed that with the added support to
construct better policies, navigation stacks with the LAMP framework can reduce the
average travel cost over time, even with imperfect localization and observations. Lastly,
we proposed an extension to direct inference to more accurately resolve edges if obstacles
partially obstruct the center of a portal.

59

Chapter 6

Conclusion

The goal of this thesis was to investigate the possibility of implementing a smarter naviga-
tion system to improve navigation in environments with structured uncertainties over time,
that is, learning to predict these uncertainties and plan accordingly. In the first half, we
presented the Learned Reactive Planning Problem (LRPP) which captured this problem
in a theoretical manner. We then proposed a map filter algorithm to capture and store
information, or super maps, about the environment after a completed task execution. We
exploit these super maps to construct a policy using the RPP algorithm that minimizes the
expected travel distance for a given navigation task over time. This policy is updated after
every task execution. Furthermore, our simulation results verified that as the robot accu-
mulates data about its past task executions, following the constructed policy reduced the
average travel distance of the navigation task by around 30%. However, the experiments
were done in an ideal world with perfect localization, control, and observations.

In the second half of this thesis, we consider using the same solution in a more realistic
setting, where occupancy grids of the same area are noisy and the robot has imperfect
localization. We proposed the LAMP framework which has two parts, an edge observer
and a high level planner. Both use a hybrid map to model the environment. The edge
observer uses direct inference to resolve edge states in the current task execution. The
high level planner has several functions. First, it uses the results from the edge observer
to update its map of the environment and at the end of a task execution it updates its set
of super maps using the map filter from the first half of the thesis. Second, it uses indirect
inference (which takes the results from the edge observer and past task executions) to form
a belief about the environment. Third, it constructs a policy based on its set of super
maps and guides the robot during task execution with the policy. We also introduce an
algorithm that computes the policy during task execution which we call the Online policy.

We show how the LAMP framework can be integrated with existing navigation stacks,
and present results from simulations and experiments on a real robot. Using the LAMP
framework, we showed that following the Offline RPP and Online RPP policies reduced the
expected travel distance by 20-30% as it collected more experience compared to just using
the default ROS solution. In conclusion, the LAMP framework is a promising approach
for smarter navigation systems that learn how to better navigate an environment the robot
has experienced many times.

60

6.1 Future Work

Although the results were positive, this section highlights several limitations which present
themselves as future directions of research for improving the algorithms and frameworks
proposed in this thesis.

6.1.1 RPP Based Policies

While this thesis focused on utilizing the RPP algorithm to solve the LRPP problem in
idealistic and realistic scenarios, the LRPP is closely related to the stochastic CTP, which
has multiple solutions in the literature [1, 15]. It would be interesting to compare the
performance of the RPP policy with the policies from these other solutions on various
CTP instances. Furthermore, their performances in real world settings can now be tested
by implementing these policies in the high level planner of the LAMP framework, using
the same edge observer and mapping approach.

A challenge that was encountered while designing the experiments for this thesis was
how to benchmark the performance of the policies we proposed. Our work and several
others [45, 57] claimed that our policies perform better than the optimistic policy if the
probabilities of edges being blocked were known or learned, but each author used different
environments that may favor their own policy. Moreover, the benefits of using these policies
over the other stochastic CTP policies depend on state correlations existing between edges
instead of assuming they are independent. This raises several questions for the research
community: How correlated are the environments that robots operate in? Do the savings
outweigh the added complexity to implement such navigation policies?

Additionally, observing edges to draw conclusions about the rest of the environment
has limited usefulness. A major improvement to the current solution would be to draw
conclusions about the environment based on more general observations, such as identifying
signs, specific objects, or even sounds that could indicate edge traversability. A difficulty
that would arise is how to filter and remember only potentially useful information, similar
to what we did in section 5.2 (i.e. compressing cost maps into edges states). The difference
is that in our work, the robot knows that it needs to remember the edge states, yet not all of
these edge states will aid the policy construction. Whereas in a general observation scheme,
what constitutes as ‘potentially useful’ information and therefore should be remembered,
is not so clear.

6.1.2 Edge Observer

As we mentioned in chapter 5, little work has been done to address the problem of resolving
edges given a topological map (i.e. a graph) when we no longer assume that edges are
unblocked. Our edge observer that used direct inference was functional, but it was still
fairly sensitive to errors in the cost map. We introduced a theoretical extension to direct
inference, called the augmented direct inference, to consider the entire length of the portals
when searching for a possible path between two portals, instead of just the center pixel.
Experiments should be done with this extension implemented to verify that it does improve
the accuracy of the edge observer without adding significant computation time.

61

Another improvement to the edge observer is to measure its confidence in a reported
edge state. Obstacle information in the costmap can be cleared by mistake if the robot is at
an acute angle to the surface of the obstacle. This angle could be calculated and factored
into the confidence measurement. Alternatively, the high level planner could consider
multiple measurements of the edge state before setting the state in its current map.

6.1.3 LAMP Framework

Although the Online policy performed worse than the Offline policy in our experiments, it
may have been due to inaccuracies in the reported edge state from the edge observer or the
structure of the occupancy grid of the test environment. The performance of the Online
policy needs further investigation by testing it with different environments, including ones
that are intentionally designed to attempt to showcase its advantages over the Offline
policy.

Furthermore, while the LAMP framework is currently implemented to run with the
ROS navigation stack, it would be beneficial to test it with a simpler simulator to decouple
the strengths and weaknesses of the policies from shortcomings in the navigation stack.
We already noted that there can be errors in the resulting costmap, but some other issues
that arose were the robot getting stuck because of poor choices made by the path follower
algorithm, and the sheer amount of time required to collect data. The vast majority of the
runtime of the experiments was spent on the robot moving from one vertex to the next.
Running only one trial with 100 task executions in a 20 m x 20 m environment took close
to 12 hours to complete. To bypass the need for localization and path following, the LAMP
framework could be tested on large, game-like grid environments, similar to the simulation
in chapter 4, where movement is constrained to 8 directions. Aside from reducing the
time to execute policies, using these environments may help to better understand the
performance of the Online policy and it would allow for testing on environments that
do not guarantee a path to the goal, without including the possibility of the cost map
incorrectly indicating that there is no path to goal because a route is blocked due to
localization error.

Lastly, to improve the usability of the LAMP framework, we could add a component
for automatically decomposing maps and testing the performance of the policies with
submaps generated by existing 2D map decomposition algorithms [46, 70]. Quantifying
the relationship between the submap size, the number of super maps recorded, and the
computation time of direct inference may be of interest to the robotics community.

62

References

[1] Vural Aksakalli, O. Furkan Sahin, and Ibrahim Ari. An AO* based exact algorithm
for the Canadian traveler problem. INFORMS Journal on Computing, 28(1):96–111,
2016.

[2] Y. Alnounou, M.J. Paulik, M. Krishnan, G. Hudas, and J. Overholt. Occupancy Grid
Map Merging using Feature Maps. In IASTED Technology Conference on Robotics
and Applications, 2010.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of
robot learning from demonstration. Robotics and autonomous systems, 57(5):469–483,
2009.

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer vision and image understanding, 110(3):346–359, 2008.

[5] Jonathan Binney and Gaurav S. Sukhatme. Branch and bound for informative path
planning. Proceedings - IEEE International Conference on Robotics and Automation,
pages 2147–2154, 2012.

[6] Andreas Birk and Stefano Carpin. Merging occupancy grids from Multiple Robots.
Proceedings of the IEEE, 94(7), 2006.

[7] F. Blochliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart. Topomap:
Topological mapping and navigation based on visual slam maps. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1–9, May 2018.

[8] Zahy Bnaya, Ariel Felner, and Solomon Eyal Shimony. Canadian traveler problem
with remote sensing. IJCAI International Joint Conference on Artificial Intelligence,
pages 437–442, 2009.

[9] Gino Brunner, Oliver Richter, Yuyi Wang, and Roger Wattenhofer. Teaching a Ma-
chine to Read Maps with Deep Reinforcement Learning. 32nd AAAI Conference on
Artificial Intelligence, abs/1711.07479, 2017.

[10] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion plan-
ning under uncertainty. In 2011 IEEE international conference on robotics and au-
tomation, pages 723–730. IEEE, 2011.

[11] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*: Any-angle path
planning on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

63

[12] Didier Devaurs, Thierry Siméon, and Juan Cortés. Parallelizing rrt on distributed-
memory architectures. In 2011 IEEE International Conference on Robotics and Au-
tomation, pages 2261–2266. IEEE, 2011.

[13] Fox Dieter, Sebastian Thrun, and Wolfram Burgard. Probabilistic Robotics. MIT
Press, 2005.

[14] Fox Dieter, Burgard Wolfram, and Thrun Sebastian. The Dynamic Window Approach
to Collision Avoidance. pages 137–146, 1997.

[15] Patrick Eyerich, Thomas Keller, and Malte Helmert. High-quality policies for the
Canadian traveler’s problem (extended abstract). Proceedings of the 3rd Annual Sym-
posium on Combinatorial Search, SoCS 2010, pages 147–148, 2010.

[16] Mark Fiala. Artag, a fiducial marker system using digital techniques. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 2, pages 590–596. IEEE, 2005.

[17] Dror Fried, Solomon Eyal Shimony, Amit Benbassat, and Cenny Wenner. Complexity
of Canadian traveler problem variants. Theoretical Computer Science, 487:1–16, 2013.

[18] Paul Furgale and Timothy D. Barfoot. Visual Teach and Repeat for Long-Range
Rover Autonomy. Journal of Field Robotics, 27(5):534–560, 2010.

[19] Roland Geraerts and Mark H. Overmars. A comparative study of probabilistic
roadmap planners. In Springer Tracts in Advanced Robotics, volume 7, pages 43–
57. 2004.

[20] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and
exact algorithms for clique cover. Journal of Experimental Algorithmics, 13:2.2, 2009.

[21] Hengwei Guo and Timothy D Barfoot. The Robust Canadian Traveler Problem Ap-
plied to Robot Routing. IEEE International Conference on Robotics and Automation,
pages 5523–5529, 2019.

[22] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-Time Loop
Closure in 2D LIDAR SLAM. In IEEE Conference on Robotics and Automation,
pages 1271–1278, 2016.

[23] Goran Huskić, Sebastian Buck, and Andreas Zell. GeRoNa: Generic Robot Naviga-
tion: A Modular Framework for Robot Navigation and Control. Journal of Intelligent
and Robotic Systems: Theory and Applications, 95(2):419–442, 2019.

[24] Daisuke Kakuma, Satoki Tsuichihara, Gustavo Alfonso Garcia Ricardez, Jun Taka-
matsu, and Tsukasa Ogasawara. Alignment of Occupancy Grid and Floor Maps Us-
ing Graph Matching. Proceedings - IEEE 11th International Conference on Semantic
Computing, ICSC 2017, pages 57–60, 2017.

[25] Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti, and Stefan Schaal. Learning
objective functions for manipulation. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 1331–1336. IEEE, 2013.

64

[26] A. Kanezaki, J. Nitta, and Y. Sasaki. Goselo: Goal-directed obstacle and self-location
map for robot navigation using reactive neural networks. IEEE Robotics and Automa-
tion Letters, 3(2):696–703, April 2018.

[27] Richard M. Karp. Reducibility Among Combinatorial Problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[28] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE transac-
tions on Robotics and Automation, 12(4):566–580, 1996.

[29] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[30] Sven Koenig and Maxim Likhachev. D*Lite. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 15, pages 476–483, 2002.

[31] Sven Koenig and Maxim Likhachev. Fast replanning for navigation in unknown ter-
rain. IEEE Transactions on Robotics, 21(3):354–363, 2005.

[32] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong planning A*. Artificial
Intelligence, 155(1-2):93–146, 2004.

[33] Amit Konar, Indrani Goswami Chakraborty, Sapam Jitu Singh, Lakhmi C Jain, and
Atulya K Nagar. A deterministic improved q-learning for path planning of a mobile
robot. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(5):1141–
1153, 2013.

[34] Kurt Konolige, Eitan Marder-Eppstein, and Bhaskara Marthi. Navigation in hybrid
metric-topological maps. Proceedings - IEEE International Conference on Robotics
and Automation, pages 3041–3047, 2011.

[35] Ioannis Kostavelis and Antonios Gasteratos. Semantic mapping for mobile robotics
tasks: A survey. Robotics and Autonomous Systems, 66:86–103, 2015.

[36] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard. Socially
compliant mobile robot navigation via inverse reinforcement learning. The Interna-
tional Journal of Robotics Research, 35(11):1289–1307, 2016.

[37] Tomasz Kucner, Jari Saarinen, Martin Magnusson, and Achim J Lilienthal. Condi-
tional transition maps: Learning motion patterns in dynamic environments. In In-
telligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on,
pages 1196–1201. IEEE, 2013.

[38] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE In-
ternational Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), volume 2, pages 995–1001. IEEE, 2000.

[39] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

65

[40] Steven M LaValle and James J Kuffner Jr. Rapidly-exploring random trees: Progress
and prospects. 2000.

[41] T. Lei and L. Ming. A robot exploration strategy based on Q-learning network. In
2016 IEEE International Conference on Real-time Computing and Robotics (RCAR),
pages 57–62, June 2016.

[42] Wenqi Li, Dehua Chen, and Jiajin Le. Robot patrol path planning based on com-
bined deep reinforcement learning. In 2018 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Ubiquitous Computing & Communications, Big Data &
Cloud Computing, Social Computing & Networking, Sustainable Computing & Com-
munications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages 659–666. IEEE,
2018.

[43] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian
Thrun. Anytime Dynamic A *: An Anytime , Replanning Algorithm. Science, pages
262–271, 2005.

[44] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[45] Zhan Wei Lim, David Hsu, and Wee Sun Lee. Shortest path under uncertainty:
Exploration versus exploitation. In Uncertainty in Artificial Intelligence - Proceedings
of the 33rd Conference, UAI 2017, 2017.

[46] Ming Liu, Francis Colas, Luc Oth, and Roland Siegwart. Incremental topological
segmentation for semi-structured environments using discretized GVG. Autonomous
Robots, 38(2):143–160, 2014.

[47] David G Lowe et al. Object recognition from local scale-invariant features. In iccv,
volume 99, pages 1150–1157, 1999.

[48] David V. Lu, Dave Hershberger, and William D. Smart. Layered costmaps for context-
sensitive navigation. IEEE International Conference on Intelligent Robots and Sys-
tems, pages 709–715, 2014.

[49] Ryan A MacDonald and Stephen L Smith. Active sensing for motion planning in
uncertain environments via mutual information policies. The International Journal of
Robotics Research, 38(2-3):146–161, 2019.

[50] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Konolige.
The office marathon: Robust navigation in an indoor office environment. Proceedings
- IEEE International Conference on Robotics and Automation, pages 300–307, 2010.

[51] Patrycja E. Missiuro and Nicholas Roy. Adapting probabilistic roadmaps to han-
dle uncertain maps. Proceedings - IEEE International Conference on Robotics and
Automation, 2006(May):1261–1267, 2006.

[52] Nikos C Mitsou and Costas S Tzafestas. Temporal occupancy grid for mobile robot
dynamic environment mapping. In Control & Automation, 2007. MED’07. Mediter-
ranean Conference on, pages 1–8. IEEE, 2007.

66

[53] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[54] Michael Montemerlo and Sebastian Thrun. Simultaneous localization and mapping
with unknown data association using fastslam. In 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), volume 2, pages 1985–1991.
IEEE, 2003.

[55] Douglas C Montgomery, Cheryl L Jennings, and Murat Kulahci. Introduction to time
series analysis and forecasting. John Wiley & Sons, 2015.

[56] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versa-
tile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–
1163, 2015.

[57] Lorenzo Nardi and Cyrill Stachniss. Long-term robot navigation in indoor environ-
ments estimating patterns in traversability changes. arXiv preprint arXiv:1909.12733,
2019.

[58] Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse reinforce-
ment learning and gradient methods. In Proceedings of the Twenty-Third Conference
on Uncertainty in Artificial Intelligence, pages 295–302, 2007.

[59] K. J. Obermeyer and Contributors. VisiLibity: A c++ library for visibility computa-
tions in planar polygonal environments. http://www.VisiLibity.org, 2008. R-1.

[60] Stefan Obwald, Maren Bennewitz, Wolfram Burgard, and Cyrill Stachniss. Speeding-
Up Robot Exploration by Exploiting Background Information. IEEE Robotics and
Automation Letters, 1(2):716–723, 2016.

[61] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE
International Conference on Robotics and Automation, pages 3400–3407. IEEE, 2011.

[62] Christos H Papadimitriou and Mihalis Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84(1):127–150, 1991.

[63] Jung-Jun Park, Ji-Hun Kim, and Jae-Bok Song. Path planning for a robot manipulator
based on probabilistic roadmap and reinforcement learning. International Journal of
Control, Automation, and Systems, 5(6):674–680, 2007.

[64] James Parker, Alessandro Farinelli, and Maria Gini. Lazy max-sum for allocation of
tasks with growing costs. Robotics and Autonomous Systems, 110:44–56, 2018.

[65] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena.
From perception to decision: A data-driven approach to end-to-end motion plan-
ning for autonomous ground robots. Proceedings - IEEE International Conference on
Robotics and Automation, pages 1527–1533, 2017.

67

[66] Mihail Pivtoraiko and Alonzo Kelly. Efficient constrained path planning via search
in state lattices. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space, pages 1–7, 2005.

[67] J. Puzicha, J. M. Buhmann, Y. Rubner, and C. Tomasi. Empirical evaluation of
dissimilarity measures for color and texture. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, volume 2, pages 1165–1172 vol.2, Sep.
1999.

[68] Brent Schlotfeldt, Vasileios Tzoumas, Dinesh Thakur, and George J Pappas. Resilient
Active Information Gathering with Mobile Robots. arXiv preprint arXiv:1803.09730,
2018.

[69] Anderson Souza and Luiz M. G. Goncalves. Occupancy-elevation grid: an alternative
approach for robotic mapping and navigation. Robotica, 34:2592–2609, 2016.

[70] Sebastian Thrun. Artificial Intelligence Learning metric-topological maps for indoor
mobile robot navigation. Artificial Intelligence, 99(1):21–71, 1998.

[71] Florence Tsang, Ryan A. Macdonald, and Stephen L. Smith. Learning Motion Plan-
ning Policies in Uncertain Environments through Repeated Task Executions. IEEE
Conference on Robotics and Automation, pages 8–14, 2019. c©2019 IEEE. Reprinted,
with permission from authors.

[72] Sundar Vishwanathan. Randomized Online Graph Coloring. Journal of Algorithms,
669:464–469, 1992.

[73] K M Wurm, a Hornung, M Bennewitz, C Stachniss, and W Burgard. OctoMap: A
probabilistic, flexible, and compact 3D map representation for robotic systems. Proc
of the ICRA 2010 workshop on best practice in 3D perception and modeling for mobile
manipulation, 16(3):403–412, 2010.

[74] Delong Zhu, Tingguang Li, Danny Ho, Chaoqun Wang, and Max Q Meng. Deep
Reinforcement Learning Supervised Autonomous Exploration in Office Environments.
Proceedings of the 2018 IEEE Conference on Robotics and Automation (ICRA), pages
7548–7555, 2018.

[75] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
3357–3364, May 2017.

68

	List of Tables
	List of Figures
	Introduction
	Thesis Contributions
	Outline

	Literature Review
	Navigation Without Uncertainty
	Navigation with Uncertainty
	Reinforcement Learning

	Background
	Basic Notation
	Problem Complexity
	Stochastic Canadian Traveller's Problem
	Reactive Planning Problem (RPP)
	Vertex Clique Cover Problem
	Map Representations

	Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions
	Introduction
	Chapter Contributions

	Problem Setup
	Environment Model
	Robot Model
	Complete Policy
	Learned Reactive Planning Problem (LRPP)

	Solution Approach
	Map Memory Filter
	Switching to the Optimistic Policy
	Policy Structure
	Build Policy
	Policy Update

	Simulation
	Test Environment
	Results

	Summary

	The Learn a Motion Policy (LAMP) Framework
	Introduction
	Chapter Contributions
	Chapter Organization

	Map Framework
	Map Agreement
	Navigation Graph
	Edge Cost Update

	Resolving Edges
	 Direct Inference
	Indirect Inference

	Robot Actions
	Policy Construction
	Optimistic Policy
	Offline RPP Policy
	Online RPP Policy

	LAMP Framework
	Task Execution with Offline Policy Construction
	Task Execution with Online Policy Construction

	Results
	Simulation
	Physical Robot Experiments

	Discussion
	Portal Extension
	Summary

	Conclusion
	Future Work
	RPP Based Policies
	Edge Observer
	LAMP Framework

	References

