1,345 research outputs found

    Rigorous engineering of collective adaptive systems: special section

    Get PDF

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit präsentiert Ansätze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlässlicher und klarer verständlich zu machen. Zuerst werden zwei Algorithmen für heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte für Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte für Kosten und beschränkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprünglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und Optimalitätsbeweise für die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfähig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen Zustandsräumen sogar übertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) für die Qualitätsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingeführt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die Komplexität der NN-Analyse in Kombination mit dem State Space Explosion Problem bewältigt

    EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment

    No full text
    Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time

    Cross Pixel Optical Flow Similarity for Self-Supervised Learning

    Full text link
    We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks

    Introduction to Symbolic Execution of Neural Networks - Towards Faithful and Explainable Surrogate Models

    Get PDF
    Neural Networks are inherently opaque machine learning models and suffer from uncontrollable errors that are often hard to find during testing. Yet no other model can attain their performance in current ML tasks. Thus, methods are needed to explain, understand, or even gain trust in neural networks and their Decisions. However, many existing explainability methods are abstractions of the true model, thus not providing reliable guarantees. For safety critical tasks, both rigorous explanations and state-of-the-art predictive performance are required. For neural networks with piece-wise linear activation functions (like ReLU), it is possible to distill the network into a surrogate model that is both interpretable and faithful using decompositional rule-extraction. We present a simple-to-follow introduction to this topic building on a well-known technique from traditional program verification: symbolic execution. This is done in two steps: First, we reformulate a neural network into an intermediate imperative program that consist of only if-then-else branches, assignments, and linear arithmetic. Then, we apply symbolic execution to this program to achieve the decomposition. Finally, we reintroduce a decision-tree like data structure called Typed Affine Decision Structure (TADS) that is specifically designed to efficiently represent the symbolic execution of neural networks. Further, we extend TADS to cover partial symbolic execution settings, which mitigates the path explosion problem that is a common bottleneck in practice. The paper contains many examples and illustrations generated with our tool
    • …
    corecore