
Electronic Communications of the EASST
Volume 82 (2022)

11th International Symposium
on Leveraging Applications of Formal Methods, Verification

and Validation
-

Doctoral Symposium, 2022

Introduction to Symbolic Execution of Neural Networks—
Towards Faithful and Explainable Surrogate Models

Maximilian Schlüter, Gerrit Nolte

27 pages

Guest Editors: Sven Jörges, Salim Saay, Steven Smyth
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Introduction to Symbolic Execution of Neural Networks—
Towards Faithful and Explainable Surrogate Models

Maximilian Schlüter1, Gerrit Nolte1

1 {maximilian.schlueter, gerrit.nolte}@tu-dortmund.de
Department of Computer Science

TU Dortmund University, Germany

Abstract: Neural Networks are inherently opaque machine learning models and
suffer from uncontrollable errors that are often hard to find during testing. Yet no
other model can attain their performance in current ML tasks. Thus, methods are
needed to explain, understand, or even gain trust in neural networks and their De-
cisions. However, many existing explainability methods are abstractions of the true
model, thus not providing reliable guarantees. For safety critical tasks, both rigor-
ous explanations and state-of-the-art predictive performance are required. For neu-
ral networks with piece-wise linear activation functions (like ReLU), it is possible
to distill the network into a surrogate model that is both interpretable and faithful
using decompositional rule-extraction. We present a simple-to-follow introduction
to this topic building on a well-known technique from traditional program verifica-
tion: symbolic execution. This is done in two steps: First, we reformulate a neural
network into an intermediate imperative program that consist of only if-then-else
branches, assignments, and linear arithmetic. Then, we apply symbolic execution to
this program to achieve the decomposition. Finally, we reintroduce a decision-tree
like data structure called Typed Affine Decision Structure (TADS) that is specifically
designed to efficiently represent the symbolic execution of neural networks. Further,
we extend TADS to cover partial symbolic execution settings, which mitigates the
path explosion problem that is a common bottleneck in practice. The paper contains
many examples and illustrations generated with our tool.

Keywords: Symbolic Execution, Neural Networks, Explainable AI (XAI), Decision
Trees, Preimage Partition, Linear Region Decomposition, Model Distillation, Rule
Extraction, White Box Model

1 Introduction and Motivation

Over the past decade, deep learning and its neural network models have not only brought ma-
chine learning to the forefront of computer science research, but also attracted increasing atten-
tion from practical applications. Today, neural networks are a staple technology in computer
vision [TKT18] and have rapidly advanced the state of the art in natural language processing
[VSP+17, BCE+23], being able to generate text that is almost indistinguishable from text written
by humans. In addition, neural networks have enabled machine learning systems to achieve top
to superhuman levels of performance in several complex, well-studied board and video games

1 / 27 Volume 82 (2022)

mailto:\{maximilian.schlueter, gerrit.nolte\}@tu-dortmund.de


Introduction to Symbolic Execution of Neural Networks

[VBC+19, SSS+17]. When data and computing resources are plentiful, neural networks can
solve even difficult problems with minimal human guidance.

The Issue of Opacity. At the same time, neural networks suffer from one fundamental prob-
lem: Opacity [Bur16]. Because neural networks are trained from data rather than built by hand,
their behaviour is difficult to control directly. Moreover, the structure of neural networks makes
them almost impossible for humans to understand, and errors introduced by the training process
are difficult to detect [BH21]. This is a significant barrier to the practical use of neural networks:
At best, users are faced with a technology they do not fully understand and distrust; at worst,
unpredictable failures of neural networks can endanger human lives in safety-critical domains
[Rud19]. Researchers from multiple disciplines join forces to tackle this problem in explainable
AI (XAI).

Attribution. The attribution problem is concerned with finding which elements of an input
vector were “important” for the output of a neural network. Attribution methods like LIME
[RSG16], SHAP [LL17] or LRP [MBL+19, BBM+15] are hallmark methods in the field of
explainable AI, but are limited in their rigidity: The results of these methods tend to be very
understandable but not particularly closely linked to the actual behavior of the neural network.
For example, LIME provides a linear surrogate model of the true model that resembles it in a
local neighborhood. Therefore it can neither capture non-linear behavior nor the global nature
of the true model.

Adversarial Examples. Adversarial examples are perhaps one of the most infamous examples
of neural network unreliability. As shown by [GSS14, SZS+14, AEIK18], neural network pre-
dictions can in many cases be arbitrarily manipulated. Concretely, even slight perturbations of
the neural networks’ input, often imperceptible to humans, can drastically change the networks’
prediction.

Symbolic execution can be used to find adversarial examples within the same linear region as
the given input [GWZ+18, CHH+18, UNP+21]. This yields adversarial examples that are much
more similar to the original input than the adversarial examples found by other methods.

Symbolic Execution. Symbolic execution is a technique from the field of automated program
verification that aims to explore the different execution paths that a program can take [Kin76,
BEL75]. Conceptually, it is based on the symbolic representation of input variables: Instead of
concrete values, each input is assigned a symbolic variable and, as the program is evaluated, each
assignment to a variable is done symbolically and each branching statement is fully explored.

A key characteristic of symbolic execution is its holistic exploration. As symbolic execution
covers every single program path, it can be used to find even obscure and rare bugs that a simple
testing approach would miss. On the flipside, symbolic execution of neural networks can become
quite expensive as the number of potential paths explodes exponentially. This is called the state-
space or path-explosion problem [Val05].

ISoLA DS 2022 2 / 27



ECEASST

Symbolic Execution of Neural Networks. As mentioned before, the chaotic behavior of neu-
ral networks poses critical hurdles for their adoption into practical use cases. Rare errors are
especially problematic as neural network behavior can vary so drastically that even large-scale
testing approaches might miss some obscure errors.

Symbolic execution promises a natural fix for this. By its nature, symbolic execution exhaus-
tively finds all execution paths that a program can take and therefore gives a complete, precise
and easy-to-handle view on the program. Of course, symbolic execution is not applicable to
any neural network. In the general case, repeated applications of complex non-linear functions
makes symbolic execution impossible.

Special Properties of ReLU Neural Networks. However, there exists a class of neural net-
works that lends itself well to symbolic execution: piece-wise linear neural networks. In piece-
wise linear neural networks, the non-linear activation functions are piece-wise linear, i.e., their
input space can be partitioned such that they behave linearly on each part of that partition. The
most important instance of this class are neural networks using the ReLU activation function
[JKRL09, NH10, GBB11], which is regarded as the default choice for activation functions in
most tasks [GBC16].

In fact, piece-wise linear neural networks are an extremely benign use case for symbolic exe-
cution: Symbolic execution of ReLU neural networks is loop-free, can be efficiently represented
and yields a precise, polyhedral partition of the input set into a set of regions, each of which
corresponds to precisely one program path.

Linear Regions. By performing symbolic execution on piece-wise linear neural networks, one
essentially decomposes the network into its linear regions. To our knowledge, the first papers
that extensively considered the piece-wise linear nature of ReLU neural networks were the works
of [PMB13, MPCB14]. These are concerned with bounding the total number of linear regions
of a ReLU neural network. After that, more publications bounded and counted the number of
linear regions [RPK+17, ABMM18, STR18], and examined their properties [HR19a, ZW20].
In [HR19b, Hin21] the authors studied how linear regions are characterized by the state of all
ReLUs in a neural network (also know as activation patterns or ReLU configurations), essentially
providing a global decomposition.

Contribution and Outline. In this paper, we give an overview of symbolic execution in the
context of piece-wise linear neural networks, summarizing the works of [GWZ+18, UNP+21,
SNMS23]. We will recall the essential results of these papers with the goal of accessibility, i.e.,
providing more detailed descriptions accompanied by examples and illustrations. In Section 3 we
give a brief summary of the relevant properties of neural networks. Then, we state a translation
of neural networks into WHILE programs (Section 4). After these foundational works, we give
an introduction to symbolic execution and discuss the domain-specific properties of symbolic ex-
ecution when applied to neural networks (Section 5). Moreover, we discuss TADS, as introduced
in [SNMS23], as a data structure that is specifically designed to exploit these unique properties
of neural networks to achieve scalable symbolic execution. We also give an overview of existing
work on (partial) symbolic execution of neural networks (Section 6) and discuss measures that

3 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

are commonly taken to tackle the path explosion problem. Lastly, we introduce the notion of
partial TADS, an extension of TADS that allows for partial symbolic executions (Section 7).

2 Related Work

In this section, we give an overview of related work, with a focus on applications and use cases
of symbolic execution of neural networks. Besides the foundational works that are mentioned in
Section 1 the following works are directly related to this paper.

Symbolic Execution. Symbolic execution of piece-wise linear neural networks was already
performed in [GWZ+18, SWR+18, UNP+21, SNMS23]. Gopinath et. al. [GWZ+18] present
a translation of a neural network into an imperative program. Then they analyse the resulting
program of a CNN using a variant of symbolic execution, called concolic execution, to identify
adversarial attacks and important pixels. Usman et. al. [UNP+21] follow a similar approach.
They translate a neural network into Java code and then apply symbolic execution to perform
coverage based testing and finding adversarial examples. By emitting Java code, they can apply
existing verification and analysis tools. The translation processes of both works [GWZ+18,
UNP+21] are conceptually identical to the one presented here. Similar translations are also used
in practice to train neural networks (e.g. PyTorch [PGM+19], Tensorflow [AAB+16]).

Linear Regions. We will recall and extend a domain specific data structure, called Typed
Affine Decision Structures (TADS), to organize the results of the symbolic execution of neu-
ral networks. Central to the this structure is a decomposition of a neural network into its linear
region [SNMS23]. Similar decompositional approaches proved useful in robustness verifica-
tion [GMD+18, KHI+19, TMM+19, Bak21, ZWX+22] (cf. Section 6), and post-hoc model-
distillation for explainable AI [CHH+18, SKS+20]. A specific subfield of explainable AI is inter-
ested in distilling decision trees out of neural networks, termed decompositional rule-extraction.
The resulting trees of [BB20, NKA20, LJ20, Ayt22] are syntactically similar to TADS. However,
TADS also leverage the algebraic properties of neural networks [SNMS23].

3 Background: Piece-wise Linear Neural Networks

This section provides a brief introduction into (piece-wise linear) neural networks. For additional
information the books [GBC16, DFO20] are recommended. Neural networks are perhaps one
of todays most important machine learning models. Neural networks consist of a set of nodes
called neurons which are organized into multiple layers. Neurons are connected by weighted
edges to neurons in the previous layer and store an activation value. If every neuron is connected
to every neuron in the previous layer, the network is called fully connected.

Defining Neural Networks. To evaluate a neural network, an input vector is assigned to the
input layer of the neural network. Iteratively, the neurons from the next layer obtain a weighted
sum of the activation values from their respective previous layer. Then, a non-linear activation

ISoLA DS 2022 4 / 27



ECEASST

Input Layer ℝ⁸ Hidden Layer ℝ¹² Hidden Layer ℝ¹² Output Layer ℝ³

Figure 1: Example of a simple feed-forward fully-connected neural network. One can see the typical
layer structure. In this case, the network has one input, and one output layer, and two hidden
layers. Edges with larger associated weights are drawn thicker. Edges with positives weights
are marked blue, those with negative weights red. Bias values are excluded in this depiction.
Made with NN-SVG [LeN19].

function is applied and the activations are propagated forward once more until the output layer
is reached (feed forward). The activation values of the output neurons are then designated as the
output of the neural network (c.f. Figure 1).

Mathematically, a neural network can be concisely described as an alternating sequence of
linear functions (denoted as α) and non-linear activation functions (denoted as σ ) [GBC16]:

N = αl ◦σ ◦ · · · ◦σ ◦α1 (1)

Weights and Edges. In traditional machine learning applications, the edge weights and there-
fore the concrete linear functions αi (1≤ i≤ l) would result from an optimization process, called
training, where the neural network is iteratively adjusted to (accurately) predict desired outputs
on a given dataset (supervised learning). Training is usually based on gradient descent-like op-
timization techniques [GBC16]. In this paper, we consider only pre-trained neural networks and
assume that the functions αi are fixed and known.

The Activation Function. The activation function σ is an architectural design choice made a-
priori by the user. The primary purpose of the activation function is to introduce “non-linearity”
into the neural network, thereby drastically increasing the amount of functions that can be ap-
proximated. In principle, almost any non-linear, monotonous function can be chosen as an acti-
vation function and a wide variety of established choices exist [GBC16, ADIP21].

5 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

10 5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
Step

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0
Hard Hyperbolic Tangent

10 5 0 5 10
0

2

4

6

8

10
ReLU

10 5 0 5 10

0

2

4

6

8

10
Leaky ReLU

Figure 2: Common piece-wise linear activation functions [ADIP21].

ReLU. The most commonly used activation function at present is the ReLU function defined
by φ = max(0,x) (c.f., Figure 2). As an activation function, the ReLU function has proven
successful in practical applications, combining convenient properties of linear functions with
a sufficient degree of non-linearity, and is prominently recommended as the default choice of
activation function for fully connected neural networks [GBC16]. The ReLU activation function
comes with nice mathematical properties: It induces sparsity in the hidden units, is easy to
compute and has a simple derivative.

Piece-Wise Linearity. Moreover, the ReLU function is a piece-wise linear function. That
is, it behaves linearly on the intervals (−∞,0) and (0,+∞) respectively. As piece-wise linear
functions are closed under composition, neural networks that use exclusively the ReLU activation
function (or any other piece-wise linear function for that matter) also represent piece-wise linear
functions. Due to this piece-wise linear structure, neural networks with ReLU activations lend
themselves well to formal analysis and are typically considered in verification tasks [KBD+17,
BLJ21]. For the remainder of this work, we use the ReLU function as a running example but
note that all constructions immediately extend to other piece-wise linear activation functions.

Example 1 Consider the following neural network:

1

1

1
1

1

1

-1

3

3

1

2

1

-2

-1

-2

-1

2

+0

+0

+0

+0

-2

-6

-6

+0

This ReLU neural network represents a piece-wise linear function R2→ R that is visualized in
Figure 3b. Using mathematical notation, we can write its layer structure as:

N = α3 ◦φ ◦α2 ◦φ ◦α1 .

ISoLA DS 2022 6 / 27



ECEASST

4 2 0 2 4
3

2

1

0

1

2

3

4

5

(a) Preimage partition.

4 2 0 2 4 3
2
1
0
1
2
3
4
5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(b) Image.

Figure 3: Example of a piece-wise linear function. Within each polygon the function is linear. Colors are
based on the gradient of the linear function.

1

1

1
1

1

1

-1

3

3

1

2

1

-2

-1

-2

-1

2

Figure 4: Contribution of each neuron to the linear regions. Illustration inspired by [HR19a].

Its weights and biases can be expressed as linear functions:

α1(⃗x) =


1 2
1 −2
−1 −2
−1 2

 x⃗+


0
0
0
0

 α2(⃗x) =

1 1 1 1
1 0 0 0
0 0 0 1

 x⃗+

−2
−6
−6


α3(⃗x) =

(
−1 3 3

)
x⃗+

(
0
)

Like any piece-wise linear function, it separates the input space into multiple linear regions
on which it each behaves linearly. The regions are shown in Figure 3a. Figure 4 illustrates how
each layer contributes to the linear regions.

4 Neural Networks to Imperative Programs

Motivation. Symbolic execution can be applied to piece-wise linear neural networks resulting
in an acyclic control flow graph (CFG). At first neural networks seem incompatible with symbolic
execution since they do not exhibit a typical program structure. However, by just following
the mathematical (operational) semantics of networks, one can quickly derive a simple set of
rules for symbolic execution. To illustrate this process, we first translate a neural network into a

7 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

(WHILE) program. The CFG of the network can then be derived by applying (standard) symbolic
execution to this program (cf. Section 5).

Composition. Decomposing a neural network along its layer structure results in a set of well-
understood piece-wise linear functions. A piece-wise linear neural network is a sequence of
linear functions (denoted as α) and piece-wise linear activation functions (denoted as σ ):

N (⃗x) =
(
αl ◦σ ◦ · · · ◦σ ◦α1

)
(⃗x)

were each block σ ◦αi constitutes a layer. Each component of the output of a layer is imagined as
the activation of a neuron. Layers may have different widths, i.e., the input and output dimension
of αi : Rni → Rni+1 can vary between layers. This structure can easily be traced on the program
level, as function composition translates well to sequential juxtaposition of code blocks.

γ-rule (Composition Rule)

1: function N (⃗x)
2: x⃗← α1(⃗x)
3: x⃗← σ (⃗x)

4:
...

5: x⃗← σ (⃗x)
6: x⃗← αl (⃗x)
7: return x⃗

Note that we make use of the concept of variable shadowing to improve readability, that is, the
type (i.e., the dimension) of x⃗ may change with each assignment. Based on this decomposition,
it is now possible to translate α and σ locally, i.e., independently of previous layers.

Linear Functions. Linear functions lend themselves well for symbolic execution as they are
compatible with many operations. For an input vector x⃗ = (x1, . . .xn)

⊤, the effect of α on x⃗ can
be described as a weighted sum (linear combination):

α (⃗x) = (wi,1x1 + · · ·+wi,nxn +bi)1≤i≤n

For brevity, we express these sums compactly using matrix multiplication:

(wi,1x1 + · · ·+wi,nxn +bi)1≤i≤n = (⟨Wi,•, x⃗⟩+bi)1≤i≤n =WWW · x⃗+ b⃗ (2)

Thus, for each xi we get an update rule based on the previous value of x⃗.

α-rule (Linear Rule)

1: function α (⃗x) : Rn→ Rm

2: return WWW · x⃗+ b⃗

ISoLA DS 2022 8 / 27



ECEASST

Piece-wise Linear Functions. For piece-wise linear activation functions symbolic execution
proceeds by a case discrimination of its linear regions. Let σ : Rn→ Rn be a piece-wise linear
activation function with k linear regions Q1, . . . ,Qk ⊆ Rn. Then one can decompose σ into its
linear components using case discrimination [GZB94]:

σ (⃗x) =


ℓ1(⃗x) if x⃗ ∈ Q1
...
ℓk(⃗x) if x⃗ ∈ Qk

where ℓi : Rn → Rn is the linear function of region Qi (1 ≤ i ≤ k). The linear functions ℓi are
handled as in the first rule. Case discrimination can be encoded using if-then-else constructs:

1: if x⃗ ∈ Q1 then
2: x⃗← ℓ1(⃗x)

3:
...

4: else if x⃗ ∈ Qn then
5: x⃗← ℓk(⃗x)
In order to ensure that the definition is well-defined, the linear regions Q1, . . . ,Qk ⊆ Rn must

form a partition of Rn. Additionally, the regions of the partition Qi must be convex polytopes
(which is the case for all considered activation functions). Therefore, the linear regions form
a so-called polyhedral partition of Rn [GZB94]. That is, they obey the following laws (for all
1≤ i, j ≤ k):

1. the regions Qi are convex polytopes
2. the regions are pairwise disjoint, i.e., Qi∩Q j = /0 ⇐⇒ i ̸= j
3. the whole input space is covered, i.e.,

⋃
1≤i≤k Qi = Rn

Note that by the second property, each x⃗ ∈Rn satisfies exactly one branch in the above program.
Improving on that, conditions over X⃗ can be simplified since linear regions are always convex.

There are many definitions of convexivity, but the following is most useful in this context: A
polytope Q ⊆ Rn is convex iff there exists a matrix AAA and a vector b⃗ such that all points v⃗ ∈ Q
satisfy the inequality:

q(⃗v)≤ 0 where q(⃗v) := AAA⃗v+ b⃗. (3)

Thus, we can rewrite the conditions using linear functions, a fact that will allow significant
simplifications later. Predicates of the form Equation (3) will be called linear predicate from
now on. Let q1, . . . ,qk be the linear functions that are derived from the convex regions Q1, . . . ,Qk
according to Equation (3), then we can improve our program code as follows:

9 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

σ -rule (Piece-wise Linear Update Rule)

1: function σ (⃗x) : Rn→ Rn

2: if q1(⃗x)≤ 0⃗ then
3: x⃗← ℓ1(⃗x)
4: else if q2(⃗x)≤ 0⃗ then
5: x⃗← ℓ2(⃗x)

6:
...

7: else if qn(⃗x)≤ 0⃗ then
8: x⃗← ℓk(⃗x)
9: return x⃗

Partial Activation Functions. Activation functions σ are generally applied component-wise
to the output.

σ (⃗x) = (ς(x1), . . . ,ς(xn))
⊤

Here ς : R→ R is a real valued function. For example, the multi-valued ReLU function is a
component-wise application of the maximum(

φ (⃗x)
)

i = max{0,xi}

To emphasize this behavior, one can also decompose the activation function into a set of partial
activation functions that act only on one specified neuron and leave the others unchanged:

σ = σn ◦ · · · ◦σ1(
σ j (⃗x)

)
i =

{
ς(xi) if i = j
xi if i ̸= j

Resulting in the final decomposition

N (⃗x) =
(
αl ◦ (σnl ◦ · · · ◦σ1)◦ · · · ◦ (σn2 ◦ · · · ◦σ1)◦α1

)
(⃗x)

This has the benefit that then each neuron can be treated independently from others. For exam-
ple, defining the multi-valued ReLU function φ : Rn → Rn as previously presented using case
discrimination requires 2n mutually exclusive branches:

φ (⃗x) =


...

(x1,0,0, . . . ,xn) if x1 ≥ 0∧ x2 < 0∧ x3 < 0∧·· ·∧ xn ≥ 0
...

However, an equivalent definition using partial ReLUs only requires the composition of n
partial ReLUs, each with 2 cases:

φi(⃗x) =

{
(x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

⊤ if xi ≥ 0
(x1, . . . ,xi−1,0 ,xi+1, . . . ,xn)

⊤ otherwise

ISoLA DS 2022 10 / 27



ECEASST

Thus, the corresponding program also consists of exponentially less branches, while the number
of program paths through those branches is unaffected.

Final Program. Combing the γ , α and σ -rule results in a complete translation of a piece-wise
linear neural network into a WHILE program. To summarize, every program that is generated in
this fashion from a neural network consists of just two types of program statements:

Linear Branches are if statements over linear predicates q(⃗v) ≤ 0⃗. These can test whether the
input x⃗ lies in a specific (convex) linear region of the activation function.

Linear Updates are assignments based on linear functions αi. These encode the network’s
manipulation of the input x⃗ introduced by the trained weights and biases of each layer.

Example 2 Consider the neural network given in Example 1. Its WHILE program can be de-
rived by a systematic application of the above rules. By using the partial ReLU function, the
program code is reduced in size. Notice that each if corresponds to one partial ReLU. Techni-
cally, the partial ReLU function has two regions. However, the second region corresponds to the
identity function and has therefore no effect. For readability, these branches are omitted in the
following code.

1: function N (x1,x2)
2: x⃗← (x1 +2x2 , x1−2x2 , −x1−2x2 , −x1 +2x2)

⊤

3: if x1 ≤ 0 then
4: x1← 0
5: if x2 ≤ 0 then
6: x2← 0
7: if x3 ≤ 0 then
8: x3← 0
9: if x4 ≤ 0 then

10: x4← 0
11: x⃗← (x1 + x2 + x3 + x4−2 , x1−6 , x4−6)⊤

12: if x1 ≤ 0 then
13: x1← 0
14: if x2 ≤ 0 then
15: x2← 0
16: if x3 ≤ 0 then
17: x3← 0
18: return −x1 +3x2 +3x3

5 Symbolic Execution of Neural Networks

The structure of a neural network is simple: each layer receives an input vector, manipulates
it based on piece-wise linear functions, and then passes on the result to the next layer. The
simplicity of this structure was highlighted by the translation into a WHILE program in Section 4.

11 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

The syntactic simplicity stands however in hard conflict with the complex semantics of neural
networks.

Model Complexity. Actually, this is—in part—a driving force for the success of modern deep
learning. Scalable training techniques require fast evaluation and adjustments of machine learn-
ing models. Yet, at the same time, complex use cases require correspondingly potent semantics
of ML models to express suitable solutions. Neural networks overcome this gap as their seman-
tic complexity grows exponentially with their training parameters θ with respect to a variety
of complexity measures [BS14, FRH+19, MPCB14]. Additionally, as neural networks exhibit
almost no control flow and many independent calculations, they can be executed utilizing the
capacity of modern GPUs for parallelization, vectorization, and throughput.

On the other hand, this comes at the price of comprehensibility. Neural networks are consid-
ered opaque “black-box” models. Their data flow is chaotic (i.e., sensitive to small changes),
non-linear, and parallelized (therefore intractable for humans).

Through symbolic execution, we decompose (“isolate”) the data flow into a set of program
paths such that each path is neither chaotic nor parallelized. In fact, each path will behave
linearly on the inputs of the considered neural network. Linear correlation can intuitively be
handled by humans. To achieve this decomposition, the control flow is completely unrolled and
unmerged.

5.1 Applying Symbolic Execution

Symbolic execution is a holistic and abstract (i.e., symbolic) interpretation of a program. Control
flow is branched explicitly resulting in a (theoretically) complete unrolling of the program. This
results in a decomposition of the program into a set of independent executions, called program
paths. Thereby each such path has neither incoming nor outgoing control flow and thus a fixed
variable valuation. Thus it can serve as a model for analyses and optimizations.

On the other hand, the unrolling results in an exponential blow up (state-space-explosion).
Therefore one reduces the number of branches through multiple techniques: (i) removing infea-
sible paths, (ii) merging paths where variable valuations are identical from that point onwards,
(iii) using complex mathematical terms to express the values of variables.

The result of symbolic execution is represented as a tree, called control flow graph (CFG).
Each path of the tree corresponds to exactly one program path. If-statements are converted to
labeled branches, each label describing the condition that has to hold to take this path. As the
variable valuations can be tracked for each path, conditions can be simplified by substituting in
the variables.

Symbolic Rules. The concrete rules for symbolic execution are straightforward given the sim-
ple structure of the WHILE programs derived in Section 4. These programs have two types of
statements: linear updates and linear branches. The following two rules present how the effect of
each statement can be handled. Let β denote a variable valuation, X the symbolic input variable,
and f an arbitrary function. Then program assignment and branching can be expressed as:

ISoLA DS 2022 12 / 27



ECEASST

if  then 
 

 
if  then 

Notice that all rules produce acyclic graphs.

Example 3 Consider the following short WHILE program of some neural network α2 ◦σ ◦α1.
1: x⃗← α1(⃗x)
2: if q1(⃗x)≤ 0⃗ then
3: x⃗← ℓ1(⃗x)
4: else if q2(⃗x)≤ 0⃗ then
5: x⃗← ℓ2(⃗x)
6: x⃗← α2(⃗x)

Applying the above rules for symbolic execution results in the tree structure presented in Fig-
ure 5. This symbolic CFG encodes the following two program paths with corresponding variable
valuation.

(q1 ◦α1)(X⃗))≤ 0⃗ 7→ (α2 ◦ ℓ1 ◦α1)(X⃗)))

(q2 ◦α1)(X⃗))≤ 0⃗ 7→ (α2 ◦ ℓ2 ◦α1)(X⃗)))

Branching. Whenever an if statement is encountered, all possible executions are explored.
Each branch of the if statement is associated with a condition that has to hold. In our case these
conditions have a simple form (1≤ i≤ k):

qi(⃗x)≤ 0⃗ .

Substituting the current value of X⃗ into the condition gives the actual constraint imposed by the
if statement. The value of X⃗ is given by the current variable valuation. In its most general form
it can be stated as β = {X⃗ 7→ f} for some linear function f . Then the path conditions are

ψi = (qi ◦ f )(X⃗)≤ 0⃗

for each qi. Each constraint ψi is associated with one branch. The body of this branch is added
as a new node. The edge leading to this new node is labeled with the path constraint ψi.

13 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

if  then 
 

if  then 

Figure 5: Full CFG for the WHILE program of Example 3.

Variable Domain. For each path in the program, symbolic execution proceeds by collecting
updates that are applied to the program variables. By the structure of the two symbolic rules
variable valuations β have the form:

β = {X⃗ 7→ fl ◦ · · · ◦ f1} .

In either case, the update functions fi are linear. This is a key difference when applying symbolic
execution to neural networks in contrast to applying it to regular programs. It allows substantial
simplifications using well-known identities from linear algebra.

A sequence of updates to X⃗ can be simplified by using associativity and completeness of linear
functions with respect to composition:

f2( f1(X⃗)) = ( f2 ◦ f1︸ ︷︷ ︸
linear

)(X⃗)

Calculating the composition of two linear functions just involves matrix multiplication which
can be performed efficiently:

( f2 ◦ f1)(X⃗) = (WWW 222WWW 111)︸ ︷︷ ︸
=W ′

X⃗ +(WWW 222b⃗1 + b⃗2)︸ ︷︷ ︸
=b′

(4)

Notice that the concrete value of X⃗ is not needed to simplify according to this equation. In
practice, one would always simplify the term of X⃗ whenever a new linear function is collected.
Thus, in all steps of the symbolic execution X⃗ can be stored using only a matrix and a bias vector:

β = {X⃗ 7→ (WWW ,⃗b)} .

ISoLA DS 2022 14 / 27



ECEASST

Graph Rewriting. Finally, we may omit nodes in the graph that add no useful information. In
most cases, the intermediate values of a neural network are not of interest. Therefore, we omit
any variable valuation β but the last. Additionally, we no longer need the details of the WHILE
program. The program is only used to aid in the symbolic execution. Thus the resulting tree
is significantly reduced: It consists of labeled branches (ψi) and variable valuations (β ) in its
leaves.

TADS

TADS are a symbolic representation of a pice-wise linear neural network based on its
acyclic CFG. They collect the path constraints from symbolic execution and arrange them
in a decision tree. Each path of that decision tree corresponds to one linear region of the
network. The terminals of paths store the respective linear function of the region as given
by symbolic execution.

The following definition (cf. [SNMS23]) is the direct consequence of the given rules when
considering the ReLU activation function. For piece-wise linear activation functions with more
than two regions additional rewriting steps are needed to encode these regions using only binary
splits. Although this process is well-understood, it is beyond the scope of this paper.

Definition 1 (Typed Affine Decision Structures) A TADS T = (N,→,ζ ) is a labeled binary
tree with root ζ . Its nodes N and transitions →⊆ N×{0,1}×N induce a decision structure
consisting of the following two node types:

Decisions are linear inequalities q(X⃗) = ⟨w⃗, X⃗⟩+ b ≤ 0. Decision nodes have two successors,
one if the conditions is satisfied and one if not.

Terminals are linear functions α(X⃗) = WWWX⃗ + b⃗. Eponymously, they have no outgoing transi-
tions.

All linear functions α and q in a TADS have the same input space Rn. All terminals α also have
the same output space Rm. Both spaces are determined by the considered neural network. For
given input dimension n and output dimension m we define the set of all TADS as Θn→m.

TADS are sequentially evaluated like a decision tree [SNMS23].

Definition 2 (TADS Evaluation) The semantic function of TADS

J · KΘ : Θ
n→m→ (Rn→ Rm)

is inductively defined as

JqKΘ(⃗x) := JpKΘ(⃗x) if q(⃗x)< 0 where p is uniquely defined by q 0−→ p

JqKΘ(⃗x) := JpKΘ(⃗x) if q(⃗x)≥ 0 where p is uniquely defined by q 1−→ p

JαKΘ(⃗x) := α (⃗x) if α ̸→

for a TADS T =(N,→,ζ ), with q, p,α ∈N. For convenience we introduce the shorthand T (⃗x) :=
Jζ KΘ(⃗x).

15 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

1a+  2b >= 0

1a−  2b >= 0

1

1a−  2b >= 0

0

2a+  0b−  2 >= 0

1

0a+  4b−  2 >= 0

0

0a−  4b−  2 >= 0

1

−2a+  0b−  2 >= 0

0

1a+  2b−  6 >= 0

1

0

0

1a+  2b−  6 >= 0

1

0

0

0a+  4b+  2

1

0

0

−1a+  2b−  6 >= 0

1

0

0

1a+  6b− 16

1

−2a+  0b+  2

0

−1a+  2b−  6 >= 0

1

−1a+  2b−  6 >= 0

0

0a+  8b− 34

1

3a+  2b− 16

0

−3a+  2b− 16

1

0a−  4b+  2

0

−1a+  6b− 16

1

2a+  0b+  2

0

Figure 6: TADS of the neural network given in Example 1. For readability, this TADS was optimized
using infeasible path elimination.

Example 4 The TADS for the running example (c.f. Example 1) is shown in Figure 6. To
gain further intuition for the structure, it is helpful to visualize the regions and function values
encoded abstractly in a TADS using the matrix representation. For that, Figure 7 shows instead
the linear region with the corresponding function values in the terminals.

A direct consequence of the symbolic execution is the soundness and completeness of TADS.
Both are summarized in the following theorem [SNMS23]:

Theorem 1 Let T ∈ Θn→m be the TADS derived from the piece-wise linear neural network
N : Rn→ Rm by symbolic execution. Then for all inputs x⃗ ∈ Rn the following holds:

N (⃗x) = T (⃗x)

5.2 Interpreting the Resulting Structure

Paths and Regions A path in the CFG of symbolic execution always corresponds to a concrete
run of the program. For neural networks, a run is the evaluation of a concrete input point.
However, multiple inputs can take exactly the same path. When grouping possible inputs by this
property, a partition of the preimage space is formed. In this function a TADS is similar to binary
space partition trees (BSP trees) [TN87].

Neural Networks and TADS A TADS is a faithful, complete (global), and systematic surro-
gate model for the semantics of a piece-wise linear neural network. TADS are centered around
the simplicity of linear functions and make use of their efficient matrix representation. Further,
TADS are the result of a straightforward decomposition of a neural network along its linear
functions. This decomposition can easily be achieved by applying symbolic execution. One can

ISoLA DS 2022 16 / 27



ECEASST

1a+  2b >= 0

1a−  2b >= 0

1

1a−  2b >= 0

0

2a+  0b−  2 >= 0

1

0a+  4b−  2 >= 0

0

0a−  4b−  2 >= 0

1

−2a+  0b−  2 >= 0

0

1a+  2b−  6 >= 0

1 0

1a+  2b−  6 >= 0

1 0 1 0

−1a+  2b−  6 >= 0

1 0

1 0

−1a+  2b−  6 >= 0

1

−1a+  2b−  6 >= 0

0

1 0 1 0

1 0

Figure 7: TADS of Figure 6 where the terminals show the linear region with the associated function value.

therefore suggest that TADS are a natural representation of piece-wise linear neural network’s
semantics.

Although the systematic and complete aspect of TADS was only recently considered [Ayt22,
SNMS23], the decomposition of a neural network into its linear regions was studied in many
publications (see Section 2).

The completeness of TADS also comes with disadvantages: As each neuron induces a bi-
nary split of each linear region, the number of linear regions (and therefore TADS leaves) can
reach an upper bound of 2n. Although optimization techniques exists (infeasible path elimination
[MBN+23], linear preprocessing [NSMS23]), scalability of full TADS will probably always be
a problem.

For most neural networks, especially when one considers a restricted input region, this worst-
case bound is not reached. Nevertheless, theoretical and practical results still indicate an ex-
ponential growth of linear regions [PMB13, MPCB14, ZW20, HR19a, STR18]. Furthermore,
it is folklore in deep learning that more neurons in a neural network (usually) lead to an im-
provement in performance [RT18, GBC16]. Therefore, most models of interest have at least
n≥ 100 neurons, with much higher values being more common. Any representation of a neural
networks semantics that precisely describes each linear region is therefore (currently) infeasibly
large. This problem is known in program verification as state-space-explosion.

6 Related Work: Use Cases obey (Partial) Symbolic Execution

A special challenge that is implicitly tackled in all related approaches is the path explosion prob-
lem: For most neural networks that are of practical interest, the aforementioned path explosion

17 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

leads to prohibitively complex problems. As a result, an exhaustive symbolic execution is al-
most always infeasible. As a consequence, most approaches using symbolic execution for neural
networks in practice drastically limit the parts of the symbolic execution tree that they consider.
They perform only a partial symbolic execution of the neural network, i.e., they either consider
only a subset of possible paths or they do not symbolically execute paths to their terminal state.

In the following we present a practical use case where partial symbolic execution is applied to
neural networks: neural network verification. After this motivation, we will present an extension
of TADS to partial symbolic execution in Section 7. The resulting structure can be applied to the
following use cases.

Neural Network Verification. Neural network verification entails the task of proving that a
given neural network satisfies some given property, usually of the form [LAL+21]:

∀⃗x
(

pre(⃗x) =⇒ post(N (⃗x))
)
.

The problem of neural network verification subsumes the problem of adversarial examples as the
absence of adversarial examples can be posed as a property of a neural network.

Symbolic execution lays an ideal groundwork for verification which has, in the context of
neural networks, been utilized by [GWZ+18, CHH+18, UNP+21] for specific local tasks like
attribution and finding adversarial examples. In these cases, the path explosion problem can be
avoided by considering only local properties. Concretely, the authors consider only preconditions
pre(⃗x) that fix many of the input variables to concrete values, limiting the number of paths to
explore.

In more general verification settings, the number of paths may be much higher. In these cases,
other methods are required to limit path explosion. One such method is abstract interpretation.
Abstract interpretation can be leveraged to decide whether certain subtrees of a symbolic execu-
tion graph can be deemed safe and therefore pruned from the search for a counterexample. This
technique proved successful in recent years as a bounding heuristic in neural network verification
[WZX+21, Bak21].

7 Partial Symbolic Execution of Neural Networks using TADS

As demonstrated in the previous section, partial symbolic execution has been successfully ap-
plied to numerous problems in the context of neural networks. However, the concrete implemen-
tations and methodologies used in these works are often task specific and do not generalize well
to new problems. In this section, we introduce partial TADS to that end. A partial TADS can be
seen as an intermediate version of a full TADS which only partially reflects the behavior of the
considered neural network. It can be generated by a straightforward adaptation of the previously
introduced rules for symbolic execution. Partial TADS allow users to iteratively explore any pro-
gram path of interest of a neural network without ever actually computing the full TADS. This
enables task-driven construction of partial TADS such that only the required subset of paths is
actually explored.

ISoLA DS 2022 18 / 27



ECEASST

if  then 
 

if  then 

Figure 8: Example for a partial symbolic Execution. In contrast to Figure 5 the right branch is not ex-
plored to its end.

Partial Symbolic Execution. Whereas symbolic execution is characterized by its holistic ex-
ploration of programs paths, partial symbolic execution may choose to not explore all branches.
This has two direct consequences:

1. Not every program path is explored.
2. Some program paths are not explored to their end.

Example 5 Considering again the short WHILE program (c.f. Example 3):
1: x⃗← α1(⃗x)
2: if q1(⃗x)≤ 0⃗ then
3: x⃗← ℓ1(⃗x)
4: else if q2(⃗x)≤ 0⃗ then
5: x⃗← ℓ2(⃗x)
6: x⃗← α2(⃗x)

The full symbolic execution of this program was already presented in Figure 5. As described,
partial symbolic execution may choose to not explore all branches. Since this program has only
two branches, there are four possible explorations: (i) explore all branches, (ii) explore only
the left or right branch, (iii) explore no branch. The first case corresponds to the full symbolic
execution, the latter three to partial symbolic execution. An example where only the left branch
is explored is given in Figure 8.

Partial TADS. We introduce partial TADS to match this behavior. Partial TADS are similar to
full TADS. They are also derived from a neural network using symbolic execution. Therefore
they also decompose the network into regions. However, in their case the symbolic rules given
on page 12 are not applied holistically. Therefore, partial TADS are a subgraph of full TADS
before the graph rewriting is applied. After omitting all but the last variable valuation β partial
and full TADS differ as they explore program paths to different depths. As a result, partial TADS

19 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

1a+  2b >= 0

1a−  2b >= 0

0

1a+  2b
1a−  2b
−1a−  2b
−1a+  2b

1

−1a−  2b >= 0

1

0a+  0b
0a+  0b
−1a− 2b
−1a+  2b

0

0a+  0b
1a−  2b
−1a−  2b
−1a+  2b

1

0a+  0b
1a−  2b
0a+  0b
−1a+  2b

0

Figure 9: A partial TADS for the two layer neural network of Example 1 aligned with its corresponding
program code (cf. Example 2). Colored lines indicate the statement up to which the respective
leaf was progressed.

can have leaves that only reflect the neural network to a certain depth. Further, this depth can
vary between leaves.

Definition 3 (Partial TADS) A partial TADS T = (N,→,ζ ) is a TADS with a relaxed con-
straint: Terminals α must not all have the same output space.

This relaxation allows that the leaves of partial TADS can represent the network to different
depths, that is, they describe the output of different (hidden) layers. This is essential to store the
variable valuations derived from partial symbolic execution as previously explained.

Evaluating a partial TADS. The evaluation of partial TADS coincides with full TADS. How-
ever, its results have a different interpretation. Standard TADS evaluation always corresponds to
the output of the underlying neural network

∀⃗x.T (⃗x) = N (⃗x)

The evaluation of partial TADS P yields

∀⃗x∃r.P(⃗x) = Nr (⃗x).

where Nr is the neural network that consists only of the first r statements of N. In practice, one
would want to include the last linear function, i.e., only consider odd values of r:

N = αl ◦ · · · ◦σ ◦ α0.5(r+1) ◦σ ◦ · · · ◦σ ◦α1︸ ︷︷ ︸
Nr

Thus, each path induces a division of the network into two parts: One part of the network
(the statements up to r) are evaluated by the partial TADS in a white-box fashion, whereas the
remaining part of the network (all statements after r) remains opaque.

ISoLA DS 2022 20 / 27



ECEASST

Iterative Exploration. In practice, partial TADS are used to iteratively explore the linear re-
gions of a considered neural network. Examples for this were given in Section 6. To enable an
iterative exploration, one must be able to associate each terminal node of a partial TADS with
a queue of pending operations. Fortunately, the simple program structure allows to do this effi-
ciently. The next operation of a terminal corresponds to one of the two rules on page 12. Which
rule is applicable is uniquely defined by the next program statement (either linear update or lin-
ear branch). Thus, for each terminal one only needs to store the next statements. And, as the
program is fixed for all terminals, one can just provide pointers to the respective statement in one
centrally stored version of the program.

To implement these pointers, we enumerate all statements of the program. This index can then
be used to uniquely identify each statement. We call this index statement numbers. As each
statement corresponds to one step of symbolic execution, the statement number of a terminal
corresponds exactly to the number of symbolic execution steps applied. An example is given in
Figure 9.

The full TADS can be seen as an upper bound of all partial TADS.

Exploring a path further. Any path in a partial TADS can be explored further by incremen-
tally evaluating the next remaining statement of the network. We call this progressing a path.
Progressing a path with terminal node α is done as follows:

1. Look up the the statement number n = r(t) of α .
2. Find the n-th statement f of the underlying neural network N.
3. Perform the transformation corresponding to f on α .
4. Associate each new leaf of α with statement number n+1.

In essence, this involves applying the transformation (equivalent to the transformations used in
full TADS) corresponding to the next statement of the neural network to α .

We say that a partial TADS is complete if all paths have been progressed to the end of the
neural network. A complete partial TADS is by construction fully equivalent to the standard
TADS and, by extension, also fully equivalent to the neural network N.

By incrementally progressing partial TADS, paths in the full TADS can be explored without
being fully evaluated, saving time and memory. Of course, this comes at the cost of complete-
ness: The core challenge of partial symbolic execution entails dealing with its inherent incom-
pleteness. In the following section, we will give an overview over some use cases in related work
that have used partial symbolic execution and discuss how they mitigate this issue of complete-
ness and how their approach would be reflected in a partial TADS.

8 Conclusion and Outlook

In this paper, we gave an introduction to the concept of symbolic execution in the context of
(piece-wise linear) neural networks, presenting a range of existing results from a traditional
symbolic execution perspective.

As we showed, neural networks possess a variety of desirable properties with respect to sym-
bolic execution, specifically: They are loop-free, side-effect-free and contain only linear con-

21 / 27 Volume 82 (2022)



Introduction to Symbolic Execution of Neural Networks

ditions and assignments. As a consequence, symbolic execution of neural networks can be
done completely, precisely and be represented efficiently. We also presented a new introduc-
tion to Typed Affine Decision Structures (TADS) as a domain specific data structure specifically
designed to exploit these properties and act as a minimal, efficient representation of a neural
networks symbolic execution graph.

Despite the beneficial properties of TADS, exhaustive symbolic execution of neural networks
is still almost always infeasible. As a survey of related work showed, most prominent approaches
leverage partial symbolic execution instead.

Partial symbolic execution of neural networks has shown promising results in related work,
spanning from verification problems to adversarial attacks and explainability tasks. To this end,
we introduced partial TADS, which serve as a novel, task specific extension of TADS to the
problem of partial symbolic execution. We believe that (partial) TADS can serve as a unifying
framework for future symbolic execution approaches and that they can serve as a basis for an
efficient, general implementation.

In the future, we are keen to build upon (partial) TADS and explore a variety of use cases for
symbolic execution in the context of neural networks.

Bibliography

[AAB+16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[ABMM18] R. Arora, A. Basu, P. Mianjy, A. Mukherjee. Understanding Deep Neural Networks
with Rectified Linear Units. In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018.
https://openreview.net/forum?id=B1J rgWRW

[ADIP21] A. Apicella, F. Donnarumma, F. Isgrò, R. Prevete. A survey on modern trainable
activation functions. Neural Networks 138:14–32, 2021.
doi:10.1016/j.neunet.2021.01.026

[AEIK18] A. Athalye, L. Engstrom, A. Ilyas, K. Kwok. Synthesizing robust adversarial exam-
ples. In International conference on machine learning. Pp. 284–293. 2018.

[Ayt22] C. Aytekin. Neural Networks are Decision Trees. arXiv preprint arXiv:2210.05189,
2022.

[Bak21] S. Bak. nnenum: Verification of relu neural networks with optimized abstraction
refinement. In NASA Formal Methods: 13th International Symposium, NFM 2021,
Virtual Event, May 24–28, 2021, Proceedings. Pp. 19–36. 2021.

[BB20] R. Balestriero, R. G. Baraniuk. Mad max: Affine spline insights into deep learning.
Proceedings of the IEEE 109(5):704–727, 2020.

ISoLA DS 2022 22 / 27

https://openreview.net/forum?id=B1J_rgWRW
http://dx.doi.org/10.1016/j.neunet.2021.01.026


ECEASST

[BBM+15] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek. On pixel-
wise explanations for non-linear classifier decisions by layer-wise relevance propa-
gation. PloS one 10(7):e0130140, 2015.

[BCE+23] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee,
Y. T. Lee, Y. Li, S. Lundberg et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[BEL75] R. S. Boyer, B. Elspas, K. N. Levitt. SELECT—a formal system for testing and
debugging programs by symbolic execution. ACM SigPlan Notices 10(6):234–245,
1975.

[BH21] N. Burkart, M. F. Huber. A survey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Research 70:245–317, 2021.

[BLJ21] S. Bak, C. Liu, T. Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498, 2021.

[BS14] M. Bianchini, F. Scarselli. On the complexity of neural network classifiers: A com-
parison between shallow and deep architectures. IEEE transactions on neural net-
works and learning systems 25(8):1553–1565, 2014.

[Bur16] J. Burrell. How the machine ‘thinks’: Understanding opacity in machine learning
algorithms. Big data & society 3(1):2053951715622512, 2016.

[CHH+18] L. Chu, X. Hu, J. Hu, L. Wang, J. Pei. Exact and consistent interpretation for piece-
wise linear neural networks: A closed form solution. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Pp. 1244–1253. 2018.

[DFO20] M. P. Deisenroth, A. A. Faisal, C. S. Ong. Mathematics for machine learning. Cam-
bridge University Press, 2020.

[FRH+19] M. Fazlyab, A. Robey, H. Hassani, M. Morari, G. Pappas. Efficient and accurate
estimation of lipschitz constants for deep neural networks. Advances in Neural In-
formation Processing Systems 32, 2019.

[GBB11] X. Glorot, A. Bordes, Y. Bengio. Deep sparse rectifier neural networks. In Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. Pp. 315–323. 2011.

[GBC16] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[GMD+18] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, M. Vechev.
Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE symposium on security and privacy (SP). Pp. 3–18. 2018.

23 / 27 Volume 82 (2022)

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Introduction to Symbolic Execution of Neural Networks

[GSS14] I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and harnessing adversarial ex-
amples. arXiv preprint arXiv:1412.6572, 2014.

[GWZ+18] D. Gopinath, K. Wang, M. Zhang, C. S. Pasareanu, S. Khurshid. Symbolic execu-
tion for deep neural networks. arXiv preprint arXiv:1807.10439, 2018.

[GZB94] V. V. Gorokhovik, O. I. Zorko, G. Birkhoff. Piecewise affine functions and polyhe-
dral sets. Optimization 31(3):209–221, 1994.

[Hin21] P. Hinz. Using activation histograms to bound the number of affine regions in ReLU
feed-forward neural networks. ArXiv abs/2103.17174, 2021.

[HR19a] B. Hanin, D. Rolnick. Complexity of Linear Regions in Deep Networks. In Chaud-
huri and Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning. Proceedings of Machine Learning Research 97, pp. 2596–2604.
PMLR, 09–15 Jun 2019.
https://proceedings.mlr.press/v97/hanin19a.html

[HR19b] B. Hanin, D. Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems 32, 2019.

[JKRL09] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun. What is the best multi-stage
architecture for object recognition? In 2009 IEEE 12th international conference on
computer vision. Pp. 2146–2153. 2009.

[KBD+17] G. Katz, C. Barrett, D. L. Dill, K. Julian, M. J. Kochenderfer. Reluplex: An effi-
cient SMT solver for verifying deep neural networks. In International conference
on computer aided verification. Pp. 97–117. 2017.

[KHI+19] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, C. W. Barrett. The
Marabou Framework for Verification and Analysis of Deep Neural Networks. In
Dillig and Tasiran (eds.), Computer Aided Verification - 31st International Confer-
ence, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I.
Lecture Notes in Computer Science 11561, pp. 443–452. Springer, 2019.
doi:10.1007/978-3-030-25540-4 26

[Kin76] J. C. King. Symbolic execution and program testing. Communications of the ACM
19(7):385–394, 1976.

[LAL+21] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer et al. Algo-
rithms for verifying deep neural networks. Foundations and Trends® in Optimiza-
tion 4(3-4):244–404, 2021.

[LeN19] A. LeNail. NN-SVG: Publication-Ready Neural Network Architecture Schematics.
J. Open Source Softw. 4(33):747, 2019.

ISoLA DS 2022 24 / 27

https://proceedings.mlr.press/v97/hanin19a.html
http://dx.doi.org/10.1007/978-3-030-25540-4_26


ECEASST

[LJ20] G.-H. Lee, T. S. Jaakkola. Oblique Decision Trees from Derivatives of ReLU Net-
works. In International Conference on Learning Representations. 2020.
https://openreview.net/forum?id=Bke8UR4FPB

[LL17] S. M. Lundberg, S.-I. Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems 30, 2017.

[MBL+19] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, K.-R. Müller. Layer-wise rele-
vance propagation: an overview. Explainable AI: interpreting, explaining and visu-
alizing deep learning, pp. 193–209, 2019.

[MBN+23] A. Murtovi, A. Bainczyk, G. Nolte, M. Schlüter, B. Steffen. Forest GUMP: a tool
for verification and explanation. International Journal on Software Tools for Tech-
nology Transfer, 2023.
doi:10.1007/s10009-023-00702-5

[MPCB14] G. F. Montufar, R. Pascanu, K. Cho, Y. Bengio. On the number of linear regions of
deep neural networks. Advances in neural information processing systems 27, 2014.

[NH10] V. Nair, G. E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-
10). Pp. 807–814. 2010.

[NKA20] T. D. Nguyen, K. E. Kasmarik, H. A. Abbass. An exact transformation from
deep neural networks to multi-class multivariate decision trees. arXiv preprint
arXiv:2003.04675, 2020.

[NSMS23] G. Nolte, M. Schlüter, A. Murtovi, B. Steffen. The Power of Typed Affine Decision
Structures: A Case Study. International Journal on Software Tools for Technology
Transfer, 2023.
doi:10.1007/s10009-023-00701-6

[PGM+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32. Pp. 8024–8035. Curran Associates, Inc., 2019.
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[PMB13] R. Pascanu, G. Montufar, Y. Bengio. On the number of response regions of
deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098, 2013.

[RPK+17] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, J. Sohl-Dickstein. On the expressive
power of deep neural networks. In international conference on machine learning.
Pp. 2847–2854. 2017.

25 / 27 Volume 82 (2022)

https://openreview.net/forum?id=Bke8UR4FPB
http://dx.doi.org/10.1007/s10009-023-00702-5
http://dx.doi.org/10.1007/s10009-023-00701-6
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Introduction to Symbolic Execution of Neural Networks

[RSG16] M. T. Ribeiro, S. Singh, C. Guestrin. ” Why should i trust you?” Explaining the pre-
dictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining. Pp. 1135–1144. 2016.

[RT18] D. Rolnick, M. Tegmark. The power of deeper networks for expressing natural func-
tions. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.
https://openreview.net/forum?id=SyProzZAW

[Rud19] C. Rudin. Stop explaining black box machine learning models for high stakes deci-
sions and use interpretable models instead. Nature machine intelligence 1(5):206–
215, 2019.

[SKS+20] A. Sudjianto, W. Knauth, R. Singh, Z. Yang, A. Zhang. Unwrapping The Black Box
of Deep ReLU Networks: Interpretability, Diagnostics, and Simplification. ArXiv
abs/2011.04041, 2020.

[SNMS23] M. Schlüter, G. Nolte, A. Murtovi, B. Steffen. Towards rigorous understanding of
neural networks via semantics-preserving transformations. International Journal on
Software Tools for Technology Transfer, 2023.
doi:10.1007/s10009-023-00700-7

[SSS+17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton et al. Mastering the game of go without human
knowledge. nature 550(7676):354–359, 2017.

[STR18] T. Serra, C. Tjandraatmadja, S. Ramalingam. Bounding and counting linear re-
gions of deep neural networks. In International Conference on Machine Learning.
Pp. 4558–4566. 2018.

[SWR+18] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, D. Kroening. Concolic test-
ing for deep neural networks. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. Pp. 109–119. 2018.

[SZS+14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fer-
gus. Intriguing properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR 2014. 2014.

[TKT18] B. B. Traore, B. Kamsu-Foguem, F. Tangara. Deep convolution neural network for
image recognition. Ecological informatics 48:257–268, 2018.

[TMM+19] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen, W. Xiang, T. T.
Johnson. Star-based reachability analysis of deep neural networks. In International
symposium on formal methods. Pp. 670–686. 2019.

[TN87] W. C. Thibault, B. F. Naylor. Set operations on polyhedra using binary space parti-
tioning trees. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. Pp. 153–162. 1987.

ISoLA DS 2022 26 / 27

https://openreview.net/forum?id=SyProzZAW
http://dx.doi.org/10.1007/s10009-023-00700-7


ECEASST

[UNP+21] M. Usman, Y. Noller, C. S. Păsăreanu, Y. Sun, D. Gopinath. NEUROSPF: A tool
for the Symbolic Analysis of Neural Networks. In 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). Pp. 25–28. 2021.

[Val05] A. Valmari. The state explosion problem. Lectures on Petri Nets I: Basic Models:
Advances in Petri Nets, pp. 429–528, 2005.

[VBC+19] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al. Grandmaster level in StarCraft
II using multi-agent reinforcement learning. Nature 575(7782):350–354, 2019.

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin. Attention is all you need. Advances in neural information processing
systems 30, 2017.

[WZX+21] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, J. Z. Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for neural net-
work robustness verification. Advances in Neural Information Processing Systems
34:29909–29921, 2021.

[ZW20] X. Zhang, D. Wu. Empirical Studies on the Properties of Linear Regions in Deep
Neural Networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
https://openreview.net/forum?id=SkeFl1HKwr

[ZWX+22] H. Zhang, S. Wang, K. Xu, Y. Wang, S. Jana, C.-J. Hsieh, Z. Kolter. A Branch and
Bound Framework for Stronger Adversarial Attacks of ReLU Networks. In Pro-
ceedings of the 39th International Conference on Machine Learning. Volume 162,
pp. 26591–26604. 2022.

27 / 27 Volume 82 (2022)

https://openreview.net/forum?id=SkeFl1HKwr

	Introduction and Motivation
	Related Work
	Background: Piece-wise Linear Neural Networks
	Neural Networks to Imperative Programs
	Symbolic Execution of Neural Networks
	Applying Symbolic Execution
	Interpreting the Resulting Structure

	Related Work: Use Cases obey (Partial) Symbolic Execution
	Partial Symbolic Execution of Neural Networks using TADS
	Conclusion and Outlook

