67,065 research outputs found

    Local Distance Preserving Auto-encoders using Continuous k-Nearest Neighbours Graphs

    Full text link
    Auto-encoder models that preserve similarities in the data are a popular tool in representation learning. In this paper we introduce several auto-encoder models that preserve local distances when mapping from the data space to the latent space. We use a local distance preserving loss that is based on the continuous k-nearest neighbours graph which is known to capture topological features at all scales simultaneously. To improve training performance, we formulate learning as a constraint optimisation problem with local distance preservation as the main objective and reconstruction accuracy as a constraint. We generalise this approach to hierarchical variational auto-encoders thus learning generative models with geometrically consistent latent and data spaces. Our method provides state-of-the-art performance across several standard datasets and evaluation metrics

    Learning a Hierarchical Latent-Variable Model of 3D Shapes

    Full text link
    We propose the Variational Shape Learner (VSL), a generative model that learns the underlying structure of voxelized 3D shapes in an unsupervised fashion. Through the use of skip-connections, our model can successfully learn and infer a latent, hierarchical representation of objects. Furthermore, realistic 3D objects can be easily generated by sampling the VSL's latent probabilistic manifold. We show that our generative model can be trained end-to-end from 2D images to perform single image 3D model retrieval. Experiments show, both quantitatively and qualitatively, the improved generalization of our proposed model over a range of tasks, performing better or comparable to various state-of-the-art alternatives.Comment: Accepted as oral presentation at International Conference on 3D Vision (3DV), 201

    Hierarchically Clustered Representation Learning

    Full text link
    The joint optimization of representation learning and clustering in the embedding space has experienced a breakthrough in recent years. In spite of the advance, clustering with representation learning has been limited to flat-level categories, which often involves cohesive clustering with a focus on instance relations. To overcome the limitations of flat clustering, we introduce hierarchically-clustered representation learning (HCRL), which simultaneously optimizes representation learning and hierarchical clustering in the embedding space. Compared with a few prior works, HCRL firstly attempts to consider a generation of deep embeddings from every component of the hierarchy, not just leaf components. In addition to obtaining hierarchically clustered embeddings, we can reconstruct data by the various abstraction levels, infer the intrinsic hierarchical structure, and learn the level-proportion features. We conducted evaluations with image and text domains, and our quantitative analyses showed competent likelihoods and the best accuracies compared with the baselines.Comment: 10 pages, 7 figures, Under review as a conference pape

    Decontextualized learning for interpretable hierarchical representations of visual patterns

    Full text link
    Apart from discriminative models for classification and object detection tasks, the application of deep convolutional neural networks to basic research utilizing natural imaging data has been somewhat limited; particularly in cases where a set of interpretable features for downstream analysis is needed, a key requirement for many scientific investigations. We present an algorithm and training paradigm designed specifically to address this: decontextualized hierarchical representation learning (DHRL). By combining a generative model chaining procedure with a ladder network architecture and latent space regularization for inference, DHRL address the limitations of small datasets and encourages a disentangled set of hierarchically organized features. In addition to providing a tractable path for analyzing complex hierarchal patterns using variation inference, this approach is generative and can be directly combined with empirical and theoretical approaches. To highlight the extensibility and usefulness of DHRL, we demonstrate this method in application to a question from evolutionary biology

    A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model

    Full text link
    A graph theoretic approach is proposed for object shape representation in a hierarchical compositional architecture called Compositional Hierarchy of Parts (CHOP). In the proposed approach, vocabulary learning is performed using a hybrid generative-descriptive model. First, statistical relationships between parts are learned using a Minimum Conditional Entropy Clustering algorithm. Then, selection of descriptive parts is defined as a frequent subgraph discovery problem, and solved using a Minimum Description Length (MDL) principle. Finally, part compositions are constructed by compressing the internal data representation with discovered substructures. Shape representation and computational complexity properties of the proposed approach and algorithms are examined using six benchmark two-dimensional shape image datasets. Experiments show that CHOP can employ part shareability and indexing mechanisms for fast inference of part compositions using learned shape vocabularies. Additionally, CHOP provides better shape retrieval performance than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp 566-581. Supplementary material can be downloaded from http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd
    • …
    corecore