399 research outputs found

    Efficient Jacobian-Based Inverse Kinematics With Sim-to-Real Transfer of Soft Robots by Learning

    Get PDF
    This paper presents an efficient learning-based method to solve the inverse kinematic (IK) problem on soft robots with highly non-linear deformation. The major challenge of efficiently computing IK for such robots is due to the lack of analytical formulation for either forward or inverse kinematics. To address this challenge, we employ neural networks to learn both the mapping function of forward kinematics and also the Jacobian of this function. As a result, Jacobian-based iteration can be applied to solve the IK problem. A sim-to-real training transfer strategy is conducted to make this approach more practical. We first generate a large number of samples in a simulation environment for learning both the kinematic and the Jacobian networks of a soft robot design. Thereafter, a sim-to-real layer of differentiable neurons is employed to map the results of simulation to the physical hardware, where this sim-to-real layer can be learned from a very limited number of training samples generated on the hardware. The effectiveness of our approach has been verified on pneumatic-driven soft robots for path following and interactive positioning

    Modeling, Control and Estimation of Reconfigurable Cable Driven Parallel Robots

    Get PDF
    The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature. This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while further introducing specific challenges and drawbacks presented by cable driven actuators. It further re-contextualizes well-known performance indices such as manipulability, wrench closure quality, and the available wrench set for application with reconfigurable CDPRs. The existence of both internal redundancy and static redundancy in the joint space offers a large subspace of valid solutions that can be condensed through the selection of appropriate objective priorities, constraints or cost functions. Traditional approaches to such redundancy resolution necessitate computationally expensive numerical optimization. The control of both kinematic and actuation redundancies requires cascaded control frameworks that cannot easily be applied towards real-time control. The selected cost functions for numerical optimization of rCDPRs can be globally (and sometimes locally) non-convex. In this work we present two applied examples of redundancy resolution control that are unique to rCDPRs. In the first example, we maximize the directional wrench ability at the end-effector while minimizing the joint torque requirement by utilizing the fitness of the available wrench set as a constraint over wrench feasibility. The second example focuses on directional stiffness maximization at the end-effector through a variable stiffness module (VSM) that partially decouples the tension and stiffness. The VSM introduces an additional degrees of freedom to the system in order to manipulate both reconfigurability and cable stiffness independently. The controllers in the above examples were designed with kinematic models, but most CDPRs are highly dynamic systems which can require challenging feedback control frameworks. An approach to real-time dynamic control was implemented in this thesis by incorporating a learning-based frameworks through deep reinforcement learning. Three approaches to rCDPR training were attempted utilizing model-free TD3 networks. Robustness and safety are critical features for robot development. One of the main causes of robot failure in CDPRs is due to cable breakage. This not only causes dangerous dynamic oscillations in the workspace, but also leads to total robot failure if the controllability (due to lack of cables) is lost. Fortunately, rCDPRs can be utilized towards failure tolerant control for task recovery. The kinematically redundant joints can be utilized to help recover the lost degrees of freedom due to cable failure. This work applies a Multi-Model Adaptive Estimation (MMAE) framework to enable online and automatic objective reprioritization and actuator retasking. The likelihood of cable failure(s) from the estimator informs the mixing of the control inputs from a bank of feedforward controllers. In traditional rigid body robots, safety procedures generally involve a standard emergency stop procedure such as actuator locking. Due to the flexibility of cable links, the dynamic oscillations of the end-effector due to cable failure must be actively dampened. This work incorporates a Linear Quadratic Regulator (LQR) based feedback stabilizer into the failure tolerant control framework that works to stabilize the non-linear system and dampen out these oscillations. This research contributes to a growing, but hitherto niche body of work in reconfigurable cable driven parallel manipulators. Some outcomes of the multiple engineering design, control and estimation challenges addressed in this research warrant further exploration and study that are beyond the scope of this thesis. This thesis concludes with a thorough discussion of the advantages and limitations of the presented work and avenues for further research that may be of interest to continuing scholars in the community

    A Learnt Approach for the Design of Magnetically Actuated Shape Forming Soft Tentacle Robots

    Get PDF
    Soft continuum robots have the potential to revolutionize minimally invasive surgery. The challenges for such robots are ubiquitous; functioning within sensitive, unstructured and convoluted environments which are inconsistent between patients. As such, there exists an open design problem for robots of this genre. Research currently exists relating to the design considerations of on-board actuated soft robots such as fluid and tendon driven manipulators. Magnetically reactive robots, however, exhibit off-board actuation and consequently demonstrate far greater potential for miniaturization and dexterity. In this letter we present a soft, magnetically actuated, slender, shape forming ‘tentacle-like’ robot. To overcome the associated design challenges we also propose a novel design methodology based on a Neural Network trained using Finite Element Simulations. We demonstrate how our design approach generates static, two-dimensional tentacle profiles under homogeneous actuation based on predefined, desired deformations. To demonstrate our learnt approach, we fabricate and actuate candidate tentacles of 2 mm diameter and 42 mm length producing shape profiles within 8% mean absolute percentage error of desired shapes. With this proof of concept, we make the first step towards showing how tentacles with bespoke magnetic profiles may be designed and manufactured to suit specific anatomical constraints

    Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation.

    Get PDF
    Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Model Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges

    Full text link
    Continuum soft robots are mechanical systems entirely made of continuously deformable elements. This design solution aims to bring robots closer to invertebrate animals and soft appendices of vertebrate animals (e.g., an elephant's trunk, a monkey's tail). This work aims to introduce the control theorist perspective to this novel development in robotics. We aim to remove the barriers to entry into this field by presenting existing results and future challenges using a unified language and within a coherent framework. Indeed, the main difficulty in entering this field is the wide variability of terminology and scientific backgrounds, making it quite hard to acquire a comprehensive view on the topic. Another limiting factor is that it is not obvious where to draw a clear line between the limitations imposed by the technology not being mature yet and the challenges intrinsic to this class of robots. In this work, we argue that the intrinsic effects are the continuum or multi-body dynamics, the presence of a non-negligible elastic potential field, and the variability in sensing and actuation strategies.Comment: 69 pages, 13 figure

    Data-efficient Non-parametric Modelling and Control of an Extensible Soft Manipulator

    Get PDF
    Data-driven approaches have shown promising results in modeling and controlling robots, specifically soft and flexible robots where developing physics-based models are more challenging. However, these methods often require a large number of real data, and gathering such data is time-consuming and can damage the robot as well. This paper proposed a novel data-efficient and non-parametric approach to develop a continuous model using a small dataset of real robot demonstrations (only 25 points). To the best of our knowledge, the proposed approach is the most sample-efficient method for soft continuum robot. Furthermore, we employed this model to develop a controller to track arbitrary trajectories in the feasible kinematic space. To show the performance of the proposed approach, a set of trajectory-tracking experiments has been conducted. The results showed that the robot was able to track the references precisely even in presence of external loads (up to 25 grams). Moreover, fine object manipulation experiments were performed to demonstrate the effectiveness of the proposed method in real-world tasks. Finally, we compared its performance with common data-driven approaches in seen/useen-before trajectory tracking scenarios. The results validated that the proposed approach significantly outperformed the existing approaches in unseen-before scenarios and offered similar performance in seen-before scenarios
    • …
    corecore