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ABSTRACT 11 
Bio-inspired robotic structures composed of soft actuation units have attracted increasing research 12 

interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external 13 
environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical 14 
application. However, previous model-based control approaches often require simplified geometric 15 
assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled 16 
external interaction forces. In this study, we propose a generic control framework based on nonparametric, 17 
online, as well as local training, in order to learn the inverse model directly, without prior knowledge of the 18 
robot’s structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with 19 
control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced 20 
element formulation of finite element analysis (FEA) is employed to initialize the control policy, hence 21 
eliminating the need for random exploration in the robot’s workspace. The proposed control framework 22 
enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external 23 
disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic 24 
navigation in complex and changing environments. 25 
 26 
Keywords: Endoscopic navigation, finite element analysis (FEA), inverse transition model, soft robot control. 27 

I. INTRODUCTION 28 
Design of nature-inspired manipulators actuated based on soft material properties has become one of the 29 

most engaged research areas in robotics [1]. Soft robots embedded with delicate chambers can be driven by 30 
fluidic input [1-4], resulting in functional deformations such as bending and elongation/shortening [5]. 31 
Accredited to the limber robotic structure, its manipulation assures high compliance within a confined 32 
region, facilitating versatile interaction with surrounding objects [6, 7]. These features introduce a potential 33 
impact to many robotic applications demanding for safe interaction within a dynamic environment, such as 34 
soft tissue in minimally invasive surgery (MIS) [8, 9]. Therefore, endoscopy is one of the timely applications. 35 
Conventional endoscopes predominately comprise of metallic skeleton driven by steel cables, governing the 36 
kinematics of a series of bending mechanisms. It inevitably induces high friction and is susceptible to fatigue 37 
failure upon prolonged duration of service. These metallic structures also come with a high rigidity at the 38 
scope tip, which may increase the risk of causing trauma or even perforation when the scope is forcefully 39 
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pushed against the wall of a confined lumen or cavity [10]. This has motivated the development of soft 1 
robotic instruments for surgical interventions [11-14] which can also be disposable to ensure zero risk of 2 
endoscopy-related infection transmission. Endotics [11, 12] was the first system developed for the purpose 3 
of pain-free colonoscopy. Its novel locomotion scheme attempted to prevent the formation of complicated 4 
looping at the sigmoid/descending colon. As result, its single-segment bending is capable of omni-directional 5 
endoscopic exploration along the colon. Aer-O-Scope [13] was another commercial colonoscope relying on 6 
a simple approach making use of single-segment bending which is combined with effective locomotion. The 7 
STIFF-FLOP soft robot [9, 14] was another milestone in keyhole surgery to offer intra-cavitary exploration 8 
using a soft-material robot, validated in a cadaveric trial for the first time.  9 

Soft robotic endoscopes have brought a few branches of research directions in the limelight. Various 10 
control approaches have also been developed to master the dexterity of such manipulators, giving rise to 11 
agile and responsive tele-manipulation. Paramount to surgical safety, having a decent control performance in 12 
the presence of a confined and dynamic environment is also essential. Therefore, much research effort [15-13 
18] has been paid for deriving analytical models with the aim to describe or predict the robot 14 
kinematic/dynamic behavior [19], akin to controlling conventional rigid-link robots. However, these 15 
analytical models are complex due to the intrinsic non-linear hyper-elastic property of the soft elastomeric 16 
materials, which constitute the robot body. Any additional control dimensionality of the soft robot would 17 
further exacerbate the complexity of such kinematic equations [16].   18 

To simplify the modeling process, the piecewise constant curvature (PCC) assumption is one of the 19 
widely-used techniques [15, 16, 18, 20] to obtain close-formed solutions [21, 22]. This enables real-time 20 
kinematic control of curvature discrepancy to attain the desired pose [23] and to perform dynamic motion 21 
primitives [24] for fluidically-driven soft continuum robots. The parameters that govern the analytical 22 
models can also be estimated online [25]. Other model-based methods have been proposed without taking 23 
the PCC assumption, such as approximation of trunk-like structures to infinite degree-of-freedom (DoF) 24 
system [26], and modeling spring-mass modeling techniques [27, 28] which can be incorporated in a 25 
hierarchical controller for generating stereotyped motions of an octopus-like manipulator [27].  Recently, the 26 
Cosserat theory [29] of elasticity has been used to predict underwater motion of a cable-driven, octopus-like 27 
soft robot [30] by deducing its geometrically exact formulations. Yet, external disturbance to the robot, such 28 
as gravity, payload and external interaction, can promptly invalidate those assumptions. These over-29 
simplified assumptions would substantially degrade the model’s reliability in real applications. Moreover, 30 
structural parameters in the kinematics have to be determined prior to the modeling process. The search for 31 
these invariant coefficients is heuristic in nature. This might induce further complications when mapping the 32 
robot motion analytically. In addition, such invariant can only hold upon slight modification of the robot, as 33 
they possess strong correlation with the robot’s mechanical structure. Inevitably, the analytical model has to 34 
be revisited after any major change to the robot structure, further diminishing the effectiveness of such an 35 
approach.  36 
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With the foreseen difficulty of developing the analytical/kinematic model, research attempts were made 1 
to control the soft, pliable robot using non-parametric, learning-based approaches. The idea is to obtain 2 
forward/inverse mappings for kinematics/dynamics robot control based on measurement data only. Model-3 
free control methods can also be developed based on direct modeling architecture [31], where the inverse 4 
mapping is directly obtained. This mapping depicts the inverse transition model of the robot, which could be 5 
a changing function due to the contact between the robot and the environments, such as soft tissue. The use 6 
of Neural Networks (NNs) has been proposed to globally approximate the inverse mapping between end-7 
effector and robot actuation [32, 33]. Such an approach can compensate for uncertainties in robot dynamics 8 
[32], and has been demonstrated to yield even more reliable solutions when compared to using an analytical 9 
model of a cable-driven soft robot [33]. Previous studies of NNs mostly consider simplified scenarios, such 10 
as a non-redundant manipulator and contact-free situation [32, 33].   Although redundantly actuated robotic 11 
systems can be controlled in lower dimensionality in a hierarchical manner, it may require pre-defined 12 
movement patterns (primitives) for specific task goals [27]. Moreover, there has been a great demand on 13 
using machine learning approaches to address the change in inverse mapping of the hyper-elastic robot upon 14 
contact [1]. A Jacobian-based model-free controller has shown its capabilities to manipulate a planar cable-15 
driven continuum robot in an environment with static constraints [34]. However, there are still no example 16 
that demonstrates manipulation of redundantly-actuated soft continuum robot in three-dimensional space, 17 
and is adaptive to unknown external disturbance. 18 

In this paper, we propose a control framework based on nonparametric local learning technique. 19 
Nonparametric local learning methods, such as [35, 36], possess the ability to learn the high dimensional 20 
inverse transition of rigid-link robots. The essence of nonparametric local methods is to construct a batch of 21 
locally weighted models that collectively approximate the inverse mapping. Each of these models is 22 
spawned and updated in an independent manner, such that the overall architecture can be rapidly 23 
transformed to accommodate new input data. Meanwhile, the weighted global approximation can be 24 
optimized on the fly, and consistent with the desired control behavior [36]. Such nonparametric local 25 
learning approach can thus facilitate fast online correction of the learning model [37]. Therefore, the 26 
proposed framework is suitable for providing a rapid response to soft robot manipulation within constrained 27 
environments. Workspace exploration is a prerequisite to collect pre-training data for learning the proposed 28 
controller. It is desirable to have accurate enough kinematic data to initialize the controller offline, since it is 29 
impractical to carry out robot exploration in the confined trans-luminal workspace. We propose to use finite 30 
element analysis (FEA) to sample the kinematic data for the offline learning process. FEA has been widely 31 
used in the design optimization and miniaturization of soft robots [13]. Not only can the FEA accurately 32 
predict the highly deformable behaviors, but it can also provide data for characterization of inverse 33 
kinematic relations for control [38]. However, the application of FEA to robotic control has only been 34 
minimally investigated in continuum structure with small deformation [38, 39]. The major contributions of 35 
this work are: 36 
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• The first attempt to exploit online nonparametric local learning technique with the aim to directly 1 
approximate the inverse kinematics of a redundantly-actuated, fluid-driven endoscope prototype for soft 2 
robot control in 3-D space (Section II); 3 

• Novel integration of FEA into the online learning method is implemented to initialize a reliable 4 
inverse model offline before deployment of the proposed controller in practical scenarios. (Section III); 5 

• Experimental validation of the control performance and adaptability is conducted to demonstrate 6 
3D trajectory tracking (mean error < 2.49º) of soft continuum robot even under dynamic external 7 
disturbance (Section III). 8 

II. METHODS 9 
A. Design of Soft Endoscope Prototype  10 
A generic, fluidic-driven soft continuum robot made of RTV (Room Temperature Vulcanization) silicone 11 

rubber (Ecoflex 0050, Smooth-on Inc.) is designed and fabricated to evaluate the proposed framework for 12 
endoscopic navigation (Fig. 1a). The soft robot comprises of three cylindrical inflatable chambers, each 13 
covered by a helical Kevlar string layer with a pitch of 1mm. This fiber constrained structure is first 14 
proposed by Suzumori et al. [4, 40], in which the helical constraint layer enforces axial anisotropic 15 
expansion of inflatable chambers, so as to generate an effective bending moment when subject to pressure 16 
input. To enable effective endoscopic navigation, the three air chambers can be individually actuated by air 17 
or other fluid, facilitating a large panoramic workspace with a bending angle >150˚. The slender robot 18 
configuration with 13-mm outer diameter and 93-mm length are also compatible with conventional 19 
endoscopes, which is of importance to dexterous manipulation inside a confined trans-luminal workspace. 20 
Fabrication of the robot involves three major phases: i) Three cylindrical air chambers are cast with RTV 21 
silicone in inner molds; ii) Kevlar strings are wrapped densely in a single helical structure along each soft 22 
chamber; iii) Additional layers of silicone are cast to house the three inflatable chambers into one. This could 23 
fix the strings against dislocation, even after numerous bending actions. 24 

 25 
B. Characterization of Robot Motion Transition 26 
Gradual, smooth regulation of the fluidic flow rate allows steady bending of the presented soft 27 

manipulator. It also allows rapid reaching of fluid pressure equilibrium, minimizing the residual motion 28 
generated during such fluidic actuation. During endoscopic navigation within small and confined spaces (e.g. 29 
duodenum), such quasi-static motion characteristic [41] can facilitate effective, precise targeting of the 30 
endoscopic camera or interventional tools (e.g., biopsy forceps or brush cytology) at the surgical regions of 31 
interest, thereby avoiding inadvertent damage to delicate tissue and potential discomfort to the patient.  32 

To mathematically describe the motion transition of the soft robot, let k U∈u  be the fluid pressure (at 33 

equilibrium) in the actuation chambers at time step k  where U denotes the control space. Let kθ  be the 34 

state of the robot when the chambers are filled with the pressure of ku  at equilibrium. This state corresponds 35 

to the distal tip position 3∈ℜp  and orientation normal 3∈ℜn  in the Cartesian space (Fig. 2), which are 36 
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collectively represented by 6[ , ]T
k = ∈ℜx p n . The forward transition model of the soft robot can be 1 

described by the following equation system: 2 

 1 ( , )
( )

k k k

k k

f
h

+ = ∆
 =

θ θ u
x θ

 (1) 3 

where 1k k k+∆ = −u u u  is the difference of the fluid pressure. The motion transition function f is a 4 

continuous mapping that depends on the current state of the robot kθ . Compared to rigid-link robots where 5 

the robot state can be well-defined by joint kinematics, it is difficult to describe the exact state of the soft 6 
robot. For example, model-based approaches approximate this robot state based on PCC [15, 16, 18, 20-25] 7 

and non-PCC [26-30] constraints. The nonlinear function h  transforms robot state kθ  to Cartesian 8 

representation kx .   9 

Typical endoscopic navigation requires delicate articulation of the distal tip so as to provide accurate 10 
positioning and easy access to the soft tissue lesion. A micro-camera at the soft robot tip provides forward 11 
vision. Therefore, the operator can aim the distal tip at a lesion target on the luminal wall so as to guide the 12 
interventional instruments to deploy from the tip via the biopsy channel. This tele-manipulated endoscopic 13 

navigation gives rise to a robot task space coordinate ks  defined by its viewing direction (i.e., pitch and yaw 14 

angle). The system equation in Eq. (1) can hence be extended to an actuation to task space mapping fs  as 15 

follow: 16 

 1 ( , )k k kf+ = ∆ss θ u    (2) 17 

where 1k k k+ = + ∆s s s  is the task space coordinate at time step 1k +  after the change in fluid pressure k∆u  18 

is applied.  19 
C. Inverse Problem for Online Learning of Task Space Control 20 
Our control objective is to enable the operator to control the displacement of the robot directly in the task 21 

space coordinate *
k∆s  (i.e., the desired change in the robot tip orientation) with the use of a motion input 22 

device. The superscript ‘*’ denotes the desired motion specified by the users or other reference input. Thus, 23 

the controller is designed to approximate the inverse of the motion transition fs  in (2), i.e. *( , )k k k∆ =Φ ∆u s θ%24 

, in order to estimate the required change in control input k∆u  (as seen in Fig. 5). The inverse motion 25 

transition model Φ%  heavily depends on the current robot state. However, the exact state kθ cannot be 26 

directly measured due to its hyper-flexibility and the interactions with enclosed workspace inside a patient’s 27 
cavity. We sought to adopt the task space coordinates s  which would offer the updated clues about the 28 

current robot state. This approach is also of practical interest because these measurements are readily 29 
available in our control system. The task space coordinate s  can be tracked using advanced positional 30 

tracking systems. For example, electromagnetic tracking systems are commonly used in medical application 31 

to provide sub-millimetre-level tracking [42, 43]. Together with the actuators input ku , these online 32 
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acquired data are presented to the learning algorithms to update the inverse mappingΦ during robot run-1 
time.  2 

 *( , , )k k k k∆ = Φ ∆u s s u   (3) 3 

Note that Φ is the approximation of the true inverse mappingΦ% . If the dimensionality of the task space is 4 

smaller than that of the control space, theoretically there exists an infinite number of solutions of k∆u  that 5 

result in the same task space displacement *
k∆s . This leads to the ill-posed problem in learning the inverse 6 

mappingΦ .  7 
D. Inverse model learning with multiple local controllers   8 
Nonparametric local learning techniques have been applied to learn the ill-posed inverse problem, aiming 9 

to control redundantly actuated robots [31, 44, 45]. Referring to Peters et al. [36], the inverse model of a 10 
rigid link robot can be learnt using spatially localized nonparametric learning techniques, given that the robot 11 

state is well-defined by the joint kinematics. Here, the spatial localization refers to the robot state kθ . Such 12 

localization scheme is motivated by the hypothesis that the inverse problem would be well-defined locally 13 
[36]. It is because nonparametric learning techniques essentially average out the sampled data. Model 14 
learning based on nonconvex training datasets would give invalid solutions [36]. However, in the vicinity of 15 

( , )s u , the average of ∆u  would be consistent with the average of the task space displacement ∆s  (Fig. 2). 16 

Therefore, in a local region of a given ( , )s u , the training dataset { }, , ,∆ ∆u s s u  would become a convex set. 17 

This enables learning of the inverse mapping in the vicinity of ( , )s u (Fig. 2). We approximate the local 18 

inverse mapping from the desired task space displacement to the actuation command as follows:  19 

 * * T( , , ) [ ]i i
k k k k k β∆ = Φ ∆ = ∆u s s u s  (4) 20 

where iβ  is the parameter of the local inverse model. Each mapping serves as a local controller. Compared 21 

to [36], we do not include an intercept/bias term, since the change of actuation command ∆u should have 22 

zero mean. The computation of iβ will be explained in the later context. 23 

 24 
E. Online Learning of the Global Controller 25 
To approximate the global inverse mapping, we employ a linear combination of the locally learned 26 

mapping [46]: 27 
* * T

1 1

1 1

( , ) ( , , ) ( , )[ ]

( , ) ( , )

n ni i i i
k k k k k k k ki i

k n ni i
k k k ki i

w w

w w

β
= =

= =

Φ ∆ ∆
∆ = =∑ ∑

∑ ∑
s u s s u s u s

u
s u s u

.  (5) 28 

This controller architecture allows straightforward, one-iteration computation in each time step, in contrast to 29 

indirect modeling approaches [34]. The number of local models n  and the weight ( , )i
k kw s u , as well as the 30 

local controllers *( , , )i
k k kΦ ∆s s u can be obtained in an online manner.  31 
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For this purpose, the local forward model is “learnt” using Locally Weighted Projection Regression 1 
(LWPR) [37] which offers piecewise linear function approximation, while simultaneously determines the 2 
appropriate local region of each linear model. Each local forward model performs a linear mapping as: 3 

 T ˆ( , , ) [ ]i i
k k k k kf β∆ = ∆ = ∆ss s u u u  (6) 4 

where ˆ iβ denotes the corresponding parameter. Each local region, namely the receptive field (RF), is shaped 5 

based on the membership function: 6 

 
T

( , ) exp 0.5 k ki i i i
k k

k k

w c c
        = − − −              

s s
s u D

u u
 (7) 7 

centered at ic , where Di is the distance metric. Each membership function weights the corresponding locally 8 

learned inverse model in the controller (6). One advantage of LWPR is that it can automatically spawn new 9 
linear models and the corresponding RF when new data laid outside all existing RF is presented. Meanwhile, 10 

the center ic  of RF is determined by the input space of new data through the incremental learning, so as the 11 

total number of local regions n  (Fig. 3). Each newly spawned RF is initialized with a diagonal distance 12 

metric Di value. This Di value will be updated throughout the incremental learning process to improve the 13 
overall regression accuracy and convergence rate. To prevent overfitting and allocation of too many numbers 14 
of RFs n , a smaller initial Di value is preferred (i.e. larger receptive fields). Cross-validation is also 15 

employed in determining the initial Di, which is of important to ensure that the forward model can be 16 
accurately reflected by the piece-wise linear regression.  17 

Despite the fact that each RF could fulfill the local convexity requirement, due to the redundancy in the 18 
robotic system, the solutions of the local controllers (4) could be inconsistent with the desired solutions [36]. 19 
Although this problem could be resolved by pre-processing the training data such that it only produce one 20 
particular solution, it lacks the generality and is difficult to apply in high dimensional systems [31]. 21 
Therefore, we employ another approach that reshape the local inverse models using constrained 22 
optimization, where the local controllers are enforced to provide consistent solutions from infinite 23 
possibilities in the null space of the control space. We then define the optimization problem as: 24 

 T
0, 0,min ( ) ( ) ( )k k k k k kC

∆
∆ = ∆ −∆ ∆ −∆

u
u u u N u u  (8) 25 

subject to *( , , )k k k k∆ = Φ ∆u s s u   26 

where the cost function kC  represents the user-defined optimality scaled by a diagonal matrix N. 27 

0, ( , )k k kυ∆ =u s u  is the user-defined null space behavior. One example of null space behavior could be 28 

minimizing the elongation of the robot, which results in smaller bending radius to facilitate dexterous motion 29 

inside enclosed cavity. Finally, the optimization constraint *( , , )k k k k∆ = Φ ∆u s s u  ensures the correctness of 30 

the inverse solution. 31 
The constrained optimization problem can be solved by introducing a reward function (9) and a cost 32 

function (10): 33 
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 2( ) exp( 0.5 )k i i kr Cσ σ= −u   (9) 1 

 T 2

1
( ) ( , )( [ ] )

N
i i

i k k k k k
k

E r w
=

= ∆ − ∆∑ u s u u s β   (10) 2 

The reward function ( )kr u  is scaled by the mean cost iσ  to improve the learning efficiency [36]: 3 

 2
1 1

( , ) / ( , )k ki i
i h h h h hh h

w C wσ
= =

=∑ ∑s u s u   (11) 4 

The cost function is then minimized by means of reward-weighted regression, where each local model 5 
needed to be updated: 6 

 T 1 T
1 ( )i i i

k
−

+ =β X W X X W Y   (12) 7 

where 1 1( ( ) , , ( ) )i i i
k kdiag r w r w=W u uK , *[ ]k= ∆X s  and [ ]k= ∆Y u  are the training datasets. The overall 8 

procedures of the learning-based controller are summarized in Algorithm 1. 9 

III. EXPERIMENTS, RESULTS & DISCUSSION 10 
The proposed control framework is implemented on a custom-made soft robot to investigate its 11 

performance and behavior under external dynamic constraints. We have also attempted to utilize FEA to 12 
simulate robot motion data for pre-training of an initial control policy. This can avoid the need for random 13 
exploration of its robot workspace to initialize online learning functions. Such exploration is usually time-14 
consuming, and may not be practical, particularly for single-use purposes in surgical applications. Accuracy 15 
and stability of the proposed controller are examined via path following under various constrained 16 
environments. The interaction force with the external constraint is also measured throughout the 17 
experiments. The control block diagram of the overall robotic system, including the processing core and 18 
actuation system, is illustrated in Fig. 6. 19 
 20 

A. Initialization of Online Learning by FEA-based model 21 
Proper initialization of pre-training data is essential to many online learning techniques. These preceding 22 

data are dedicated to pre-training an initial control policy before the online learning begins. It is usually 23 
acquired by driving the robot with random input. Instead, we proposed to incorporate FEA, by which the 24 
robot deformation can be simulated with a hyper-elastic computation model. This simulation can generate 25 
comprehensive pre-training samples that cover the entire robot workspace at a high resolution, facilitating 26 
offline pre-training of the learning-based controller (Fig. 5). 27 

The FEA model of the robot is constructed using ABAQUS [47] to predict the robot kinematics and 28 
workspace. The RTV silicone rubber is considered as incompressible hyper-elastic material formulated by 29 
Odgen material model [48]. It exhibits negligible volume change under hydrostatic compression and has a 30 
Poisson’s ratio close to 0.5. Due to the incompressibility of silicone rubber and the large deformation nature 31 
of the simulation, the element formulation and the mesh quality pose a compelling effect on both the 32 
accuracy and convergence of the simulation. Therefore, hexahedral element (C3D8RH, Fig. 1c) based on u-p 33 
hybrid formulation with hourglass control [47] is chosen over the commonly used quadratic tetrahedral 34 
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elements (Fig. 1d) in the FEA of our soft robotic manipulators. The C3D8RH element possesses eight 1 
displacement nodes and one interior pressure node. The combination of these displacement and pressure 2 
nodes are often close to optimal [49]. Such integration scheme improves, not only the element efficiency, but 3 
also the element accuracy under bending load. However, compared to tetrahedrons, automatic mesh 4 
generation of hexahedrons is relatively in effective, resulting in poor tessellation quality. To this end, the 5 
presented meshing has to be obtained by custom-designed protrusions, and all elements are right prisms 6 
initially. By restoring the mesh quality, the assemblage contains far fewer elements and is much more robust 7 
in convergence.  8 

The presented manipulator model is tessellated with 12k linear hexahedral elements (C3D8RH, Fig. 1c). 9 
There are also 2,214 linear truss elements (T3D2) being placed along each actuation chamber in a layer-by-10 
layer arrangement (Fig. 1b). Truss elements are used to model the helical strain-wrapping constraints that 11 
ensure the anisotropic expansion of the chambers upon a pressure actuation. Actuation and gravity loads are 12 
applied to the presented FEA model. The gradual change of the stress input, which is distributed across the 13 
surface mesh along the inner chamber surface, guarantees reliable convergence, giving rise to an equilibrium 14 
solution throughout all the time steps during the FEA. Quasi-static motion with negligible hysteresis can be 15 
achieved when the real robot prototype is manipulated while delicately regulating the inflation pressure into 16 
the chamber at high-resolution steps. It is worth noting that deformation/bending of both the FEA-modelled 17 
manipulator and the actual one are very similar corresponding to the same levels of inflation pressure 18 

simulated, as shown in Fig. 4. Over 1,000 simulated motion samples { }, , ,∆ ∆u s s u  have been obtained using 19 

the FEA, covering the entire robot workspace (Fig 5). These simulated data are adopted to pre-train the 20 
online learning controller as described in the following sections. 21 

 22 
B. Experimental Setup 23 
To evaluate the proposed control performance, three motorized pneumatic units are employed to actuate 24 

the presented soft manipulator incorporated with our close-loop control testing platform (Fig. 6). Each unit 25 
consists of a pneumatic cylinder coupled to a precise stepper motor through a leadscrew transmission. This 26 
facilitates accurate regulation of the air flow. Our soft robotic manipulator can be fully articulated in a dome-27 
shaped workspace with a maximum curve angle of >150˚ in all directions. 28 

An electromagnetic (EM) tracking system (NDI Medical Aurora) is employed to close the robot control 29 
loop by the continuous positional data feedback (Fig. 7a). This tracking system is commonly available in 30 
many image-guided intervention systems. It can track of the position and orientation of tiny EM coils in real 31 
time with RMS accuracy of 0.7mm and 0.2° at 40Hz. A tiny tracking coil is embedded at the robot distal tip. 32 

Online updating (at 20Hz) of the inverse mapping estimation *( , , )k k k k∆ = Φ ∆u s s u  by the local learning 33 

algorithm is achieved, where ks  is measured tip direction. The positional data is also recorded throughout the 34 

robot task so as to evaluate the overall control performance. The entire control framework is implemented in 35 
the MATLAB environment. The open source library of LWPR [50] is employed to incrementally learn the 36 
robot forward model, which determines the valid linearization of each local controllers. 37 
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A series of path following tasks is performed under various constraints scenarios to investigate how the 1 
online learning control approach reacts to such unknown interactions. At the beginning, the robot is allowed 2 
to move freely in its workspace without any interference. This serves as the control experiment to establish 3 
the baseline of controller performance. Subsequently, the robot is gently pushed by a plastic rod in order to 4 
simulate an unknown, dynamic interaction with the robot manipulation (Fig. 7b). The rod is actuated by a 5 
high precision stepping motor to generate repeatable contact with the robot body; meanwhile, the contact 6 
force is monitored by a force/torque sensor (ATI Industrial Automation: F/T Nano17). The tracking error is 7 

defined as the shortest distance between the robot targeting direction ks  and the desired trajectory. 8 

   9 
C. Evaluation of Online Local Learning Controller 10 
To realize accurate navigation under unknown constraints, the inverse model is adapted in the proposed 11 

learning-based controller, which has to be updated online based on the newly acquired motion data. In this 12 
study, we compared three types of data sources for the inverse models training: i) pre-trained by FEA data 13 
without using online data; ii) Initialized by random exploration with online learning data; and iii) Pre-trained 14 
by the FEA data, and then updated by online data. These online-updated inverse models are evaluated for 15 
resolved motion rate control [51] to track a pre-defined trajectory. Thus, the desired task space displacement 16 

*
k∆s  that tracks the reference input is obtained as follow: 17 

  * ( )ref ref ref
k k p k k∆ = ∆ + −s s K s s    (13)  18 

where ref
k∆s  and ref

ks are the reference task space displacements and coordinates generated from interpolating 19 

a pre-defined trajectory. Note that the reference input can be replaced by manual control in actual endoscopic 20 

navigation scenario. We employed the same proportional–derivative (PD) gain ref
p =K I  for all three settings 21 

to perform tracking along a reference trajectory. Thus, the actuation input k∆u  is estimated by the online 22 

learning inverse model as depicted Eq. (4). 23 
To enforce the consistency of inverse mapping among all localized linear controllers, a standard null 24 

space behavior 0, ( , )k k kυ∆ =u s u  is defined. This gives rise to an immediate reward function ( )kr ∆u  to 25 

weigh the training data that best imitates the desired null space behavior (Eq.  (9)). For the presented soft 26 

robot, we first choose a rest configuration to be [0,0,0]rest =
Tu , which can minimize the overall inflation 27 

pressure as well as the elongation of the manipulator. Then the robot is attracted towards to the rest 28 
configuration with a loose attractor function 0, ( )k p k rest∆ = − −u K u u , where 0.2p =K I . We defined an 29 

identity metric =N I  as all three inflatable actuators of the robot are identical and should contribute the same 30 

in achieving the desired null space behavior. 31 
It is also necessary to normalize the training dataset into the same scale component-wise so that the 32 

LWPR can learn the data variance properly. Min-max normalization is a simple but effective technique 33 
commonly used [52]: 34 
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 min( )ˆ
max( ) min( )

i i
i

i i

q qq
q q
−

=
−

   (14)  1 

However, the statistical max(qi) and min(qi) values would be sensitive to outliers; therefore, we define 2 
the min-max values according to the physical constraints of data, including the typical robot workspace and 3 
the maximum volume of the cylinder unit.  4 

 5 
i) Pre-trained by FEA without using online data: In this setting, both the forward model and control 6 

policy are pre-trained solely by the FEA simulated data (Section-IIIA). The online data was not taken 7 
account in this setting. This acts as a control experiment to depict the actual influence of the external 8 
interactions. In the unconstrained experiment (Fig. 8a), it was observed that the controller could roughly 9 
follow the trajectory with a relatively large tracking error of ±1.79º and a maximum error of ±6.96º with the 10 
use of the feedback controller (Table I). Despite the considerable discrepancy between the FEA-simulated 11 
and the actual configuration, this experiment still demonstrates that the FEA data is capable of pre-training a 12 
reasonable inverse model for rough path following.  13 

In the later constrained experiment (Fig. 9a), the robot maintained tracking of the trajectory with similar 14 
accuracy at the beginning. When the external interaction is engaged at the moment of 25 second, the robot 15 
was pushed further away from the desired trajectory, resulting in an increased mean tracking error ±4.64º 16 
and a maximum error of ±14º (Table II). This indicates that the feedback controller cannot fully compensate 17 
the significant motion bias that is induced by the external disturbance. In the case of a conventional rigid-18 
linked robot, this kind of error due to the interaction with the constraint is often considered as a perturbation. 19 
The error can hence be compensated by increasing the feedback control gain, given that the inverse model is 20 
readily available from the kinematics chain. However, such approach is not directly applicable to a soft robot 21 
due to their mechanical compliance that inevitably induces much larger positioning errors. In addition, the 22 
interaction force may also alter the force equilibrium of the robot and therefore, substantially degrading the 23 
reliability of the predetermined inverse model. The following experiments demonstrate how the proposed 24 
online algorithm can accommodate the influence of constrained environment, which is particularly 25 
demanding for the control of soft robots.  26 

 27 
ii) Initialized by random exploration with online learning: The random exploration of robot workspace is 28 

a typical approach [34] to initialize a data-driven controller before its actual deployment. This kind of 29 
arbitrary movement is necessary to provide preceding data for setting up a learning model. It involves 30 

tracking 50 random input pressure waypoints ku with a PD feedback controller. The deliberately-tuned PD 31 

gains can cause poor tracking of the random waypoints. Such babbling movement (green path in Fig 8b & 32 
9b) can facilitate faster learning rate as the robot sweep throughout a wider neighboring workspace. Pre-33 
training with the exploration data resulted in a forward LWPR model with 110 receptive fields, which define 34 
the linearization for the piecewise linear inverse model in advance to actual deployment of the online 35 
learning.  36 
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Upon exploration, the online learning controller could follow the desired trajectory with an average error 1 
of ±1.13º in the first cycle under the constraint-free environment (Fig. 8b). The error was found to be 2 
significantly lower than the inverse model pre-trained by FEA simulated data. It is reasonable because the 3 
actual robot data was used. After a few cycles, the tracking error further decayed to an average of ±0.87º and 4 
maximum of ±1.92º, as having the online learning controller adapted with the trajectory.  5 

Next, the feasibility of online inverse model adaptation was validated by engaging external force 6 
interactions (Fig. 9b). The online learning controller can compensate the bias, and hence minimize the error 7 
down to an average of ±2.35º within 5 seconds upon contact with the constraint. The external constraint is 8 
moved away after 30 seconds of contact. It is also worth noting that the controller could quickly update the 9 
inverse mapping online and follow the trajectory will high accuracy. No control instability is observed 10 
throughout the experiment. The pure online learning approach achieves the highest average accuracy among 11 
all settings, both for constrained and unconstrained scenarios (Table I & II). However, the need for 12 
initialization by “babbling motion” (green path in Fig. 8b and 9b) should be avoided in clinical scenarios to 13 
prevent unnecessary interactions with patient anatomy. 14 

 15 
iii) Pre-trained by FEA data, then updated by online data: To alleviate the need for random exploration, 16 

we attempted to pre-train the controller with FEA data and then update the inverse model by online learning. 17 
This approach combines the advantages of the both aforementioned settings, in which the inverse model can 18 
be initialized with FEA data. The robot can immediately begin navigation using this pre-trained model, 19 
without the need of the initialization through undesired babbling movement. The subsequent manipulation 20 
data are also acquired to incrementally train a more precise inverse model, so as to adapt to external 21 
interactions. This feature is demonstrated in Fig.  8c, in which the robot is allowed to move freely.  22 

Although the robot begins with a relatively large tracking error of average ±2.21º and maximum of 23 
±7.49º in the first cycle, the error is quickly compensated by the online learning and converged to an average 24 
of ±0.90º and maximum of ±2.80º. This tracking result is compared with the other two approaches in Table 25 
I. In the first cycle, the combined approach exhibit tracking error close to pre-training with FEM only (Avg. 26 
±2.21º vs ±1.79º), because both inverse models are initialized with less accurate FEM data. The learning 27 
technique then correct the inverse model with online data, so that the tracking error decrease rapidly and 28 
become comparable with the pure online approach (Avg. ±0.90º vs ±0.87º). This shows that the combined 29 
approach can initialize a reasonable learning-based controller with less accurate FEM data, then further 30 
refine the inverse model while performing the tracking task. Note that the combined approach does not 31 
required random exploration (green path in Fig. 8b and 9b) to obtain pre-training data, which is difficult to 32 
cover the entire robot workspace with sufficient density. 33 

This combined approach is also capable of adapting to the unknown external interaction (Fig. 9c). The 34 
inverse model can quickly adapt the inverse mapping upon contact with the external interaction at 36s. It 35 
continues to follow the trajectory with a small mean absolute error of ±2.49º. The controller also remains 36 
stable and re-adapts after the removal of the constraints. Readers could also refer to the attached video for 37 
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extra details about the robot behavior and the characteristics of constraint. Referring to Section II-C, we 1 

presented the challenge in learning an inverse model spatially localized by the unmeasurable robot state kθ , 2 

as well as how this robot state can be retrieved indirectly from sensory measurements. These trajectory 3 
tracking experiments have shown that the inverse model could be successfully learnt by continuous updates 4 

of both the task space coordinate ks  and control input ku . Both are set as the localization parameters 5 

required in the inverse model. Therefore, the robot state kθ could be estimated sustainably by the learning 6 

algorithm. These 3-6D positional data updates are clinically practical. The comparable position tracking 7 
techniques designed for image-guided interventions are also under active research [53], one of which would 8 
be MRI-guided endoscopic retrograde cholangio-pancreatography (ERCP). 9 
 10 

IV. CONCLUSION AND FUTURE WORK 11 
We have proposed a model-free control framework which adopts an online nonparametric local learning 12 

technique for manipulation of a redundantly-actuated, fluid-driven soft continuum robot in the presence of a 13 
dynamic external disturbance. Nonparametric techniques are capable of constructing highly nonlinear 14 
functions by measurement data solely, which is particularly suitable for characterization of hyper-elastic 15 
robot structure. To accommodate the flexibility of soft robot body, we approximate the global inverse 16 
kinematics by a linear combination of many locally learnt inverse kinematic models. Our model-free 17 
controller employs this global approximation, where the behavior of the redundant actuator can be optimized 18 
by a user-defined criterion, and simultaneously fulfilling the control objective defined in task space 19 
coordinates. In addition, the controller is adaptive to changes in the environment, where each local model 20 
can be updated online independently according to newly acquired data. This equips the robot with the ability 21 
to maintain control accuracy under external dynamic disturbance. Our work is the first attempt of 22 
implementing such direct inverse modeling using online nonparametric learning technique to control a 23 
redundantly-actuated soft continuum robot. 24 

We have also incorporated FEA into the learning control framework for proper initialization of the robot 25 
inverse model. It enables precise prediction of the hyper-elastic robot deformation under various actuation 26 
pressure, without the need for the over-simplified analytical model. It can also offer adequate sample data 27 
covering the entire workspace at high resolution. This avoids the need of time-consuming random 28 
exploration to initialize the learning model, which may not be practical in many surgical applications. The 29 
proposed controller can hence be initialized offline using FEA simulated data, ready for endoscopic 30 
navigation procedure. 31 

The proposed novel control framework has been experimentally validated. In the constrained experiment, 32 
after FEA-based initialization of the controller, the endoscope prototype could follow a 3-D trajectory with 33 
an accuracy of mean ±2.21º and max. ±7.49º, and attained the almost the same tracking accuracy (mean 34 
±2.49º and max. ±11.03º) after 5 seconds upon the addition/removal of external disturbance (max. 1N). This 35 
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is also the first demonstration of realizing model-free close-loop control of a fluid-driven soft continuum in 1 
3-D task space even under dynamic external disturbance. 2 

The current form of our learning-based control method is first designed for a single segment manipulator. 3 
In our future work, we intend to extend the framework to address soft manipulation with multi-segments 4 
[54]. As a cascade of multiple actuation modules, it provides enhanced manipulation flexibility for 5 
interventional tools, facilitating more complicated operations in confined space. In this case, a generic 6 
optimization function will be developed to resolve the null-space control of hyper-redundant robot [55]. 7 
Further characterization of such multi-segment soft manipulators will be investigated. To address its hyper-8 
redundancy, it will also require additional sensory systems or algorithms to parameterize the possible motion 9 
transition of robot configuration, thus estimating the inverse model for the higher DoF robot. 10 

 11 
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