
1

Localised Online Learning-Based Control of a Soft Redundant

Manipulator Under Variable Loading

Justin D.L. Ho1, Kit-Hang Lee1, Wai Lun Tang1, Ka-Ming Hui1, Kaspar

Althoefer2, James Lam1 and Ka-Wai Kwok*1

1Department of Mechanical Engineering, The University of Hong Kong, Hong Kong,

Hong Kong

2Centre for Advanced Robotics @ Queen Mary, School of Engineering and Materials

Science, Queen Mary University of London, London, United Kingdom

* (corresponding author’s phone: +852-3917-2636; e-mail: kwokkw@hku.hk).

mailto:kwokkw@hku.hk

2

Localised Online Learning-Based Control of a Soft Redundant

Manipulator Under Variable Loading

Soft robots are inherently compliant and manoeuvrable manipulators that can

passively adapt to their environment. However, in order to fully make use of their

unique properties, accurate control should still be maintained when affected by

external loading. Commonly used model-based approaches often have low

tolerance to unmodelled loading, resulting in significant error when acted on by

them. Therefore, in this study we employ a nonparametric learning-based method

that can approximate and update the inverse model of a redundant two-segment

soft robot in an online manner. The primary contribution of this work is the

application and evaluation of the proposed framework on a redundant soft robot.

With the addition of redundancy, a constrained optimisation approach is taken to

consistently resolve null-space behaviour. Through this control framework, the

controller can continuously adapt to unknown external disturbances during runtime

and maintain end-effector accuracy. The performance of the control framework

was evaluated by tracking of a 3D trajectory with a static tip load, and a variable

weight tip load. The results indicate that the proposed controller could effectively

adapt to the disturbances and continue to track the desired trajectory accurately.

 Keywords: soft robotics; modelling; compliance; machine learning;

1. Introduction

The introduction of robots constructed from hyper-elastic materials and embedded with

fluidically driven chambers have given rise to a new class of robots [1, 2]. These soft

robots are inherently compliant, manoeuvrable and are able to passively adapt to dynamic

and unstructured environments. As a result, their prevalence in specialised applications

like surgical intervention [3-6] has grown, and has drawn interest from other fields such

as underwater manipulation [7] and search and rescue [8, 9].

Subsequently, the growth of soft robotics field has sparked research focused on

modelling the behaviour of soft continuum robots [9-13]. Analytical models capable of

offering the forward mapping from robot actuation to its task space generally provide the

3

basis for accurate and dexterous control of conventional, rigid robots. However, the

analogue for modelling soft continuum robots can be prohibitively complex due to the

non-linear elasticity, compliance and fluidic actuation of the robot body.

Approximations like the piecewise constant curvature (PCC) approach is

commonly used to approximate the kinematic mapping of soft robots [9, 10, 14, 15]. The

PCC assumption provides a simplified representation of serial-link continuum robots by

assuming their segments are smoothly connected with circular bending profiles. Although

the use of PCC still remains predominant due to its obtainable and closed-form solutions

[16, 17], any loading to the robot that results in non-circular bending invalidates the PCC

assumption, resulting in significant inaccuracies.

In contrast, other modelling techniques, including those based on the Cosserat rod

theory, can take into account external loading such as gravity [18] as well as buoyancy

Figure 1. Labeled illustration of the robot motion transition for a two-segment soft robot.

Pictured is the transition from state (𝑝𝑘 , 𝑢𝑘) → (𝑝𝑘+1, 𝑢𝑘+1). Inflation of the fluidic chambers

of the first and second segments are labeled 𝑢𝑘,1 and 𝑢𝑘,2, respectively.

4

and drag loading due to movement in water [19]. However, these approaches are still too

computationally complex to apply in real-time robot control. Fully utilising the

conformability and manoeuvrability of soft continuum robots while also maintaining end-

effector accuracy is still technically challenging.

A stepping stone towards this goal is through learning-based approaches [11],

which have gained popularity in soft robotics because of their ability to bypass the

difficulties in modelling uncertain internal and external dynamics. Model-free learning

approaches that are adaptive to dynamics present in the robot itself can avoid determining

the material and geometrical specifications of the controlled soft robot, as they can be

made implicit in the obtained data they learn from. Not only does this allow greater

freedom in modifying the robot’s structure, but it also provides leeway during

construction of the robot, as material inconsistencies within segments and joints can affect

bending symmetry and further introduce unmodelled dynamics.

Previously, machine learning-based methods have been used with conventional

rigid-link robots, and have been able to approximate their inverse models [20-22],

producing results comparable to analytical model-based solutions [23, 24]. Relating to

soft continuum robots, a neural network (NN) was applied in [25] to control a 1-DOF

planar soft robotic manipulator, with the study outlining the adaptability of machine-

learning approaches to mechanical discrepancies that analytical approaches do not

possess. The study provided a useful preliminary application of machine-learning for soft

robots, however the adaptability of the algorithm to external loading was not addressed.

Another NN-based control was applied to the Festo Robotino® XT hyper-redundant

robot [26], with kinematic redundancies taken into account by considering both of the

robot’s section trajectories. In that study, two NNs were used in tandem to adapt to

hysteresis and other modelling uncertainties. However, the kinematic control was

5

computationally intensive, making useful real-time control unfeasible at that stage. A

number of other NN-based approaches have been used to learn the inverse kinematics of

soft continuum robots [27-29], however the presence of external disturbances were not

accounted for in these studies.

Recently, Lee et al. [30] proposed a generic control framework based on [23, 31]

that is able to directly learn the inverse model of a soft continuum robot for task-space

control in an online manner, without knowing the robot’s geometric parameters. The

study applied locally-weighted models in order to estimate the inverse kinematics and

control the tip orientation (pitch and yaw) of a single-segment soft manipulator, and was

able to maintain tip orientation accuracy even in the presence of unknown loading on the

robot body. In contrast to NN methods, where the model structure is typically determined

before the training process, nonparametric regression allows for the optimal model

structure to be determined from the training data. Furthermore, the use of such an online

learning algorithm allows for rapid updating of the individual local inverse models, which

in turn enables adaptation to any change in external loading.

In this paper, we extend the control framework in [30] to a multi-segment soft

continuum robot, also addressing the over-actuated and redundant nature of multiple

bending segments. In contrast to the previous study where only the orientation of a single

segment actuator was controlled, this study applies 3D positional control to a two-

segment actuator. This extension presents the opportunity for more dexterous soft robot

tasks, e.g. intraluminal endoscopy, where views behind or around soft-tissue bodies may

be otherwise impaired with single segment robots. Workspace exploration is required to

train the learning algorithm, with the collection of generated offline pre-training data

necessary to learn the proposed controller. Validation of the learned controller is

6

performed through 3D positional trajectory tracking of the soft robot. The primary

contributions of this work are as follows:

 Design and implementation of a general learning-based framework, which

enables robust control of a multi-segment soft continuum robot by adapting to

unmodelled loading via online learning.

 Consistent resolution of null-space behaviour, which can resist variable

distributions of sampled learning data.

 Experimental validation of the proposed controller, which evaluates how a six-

chamber continuum robot performs a task of 3-D trajectory following with the

addition of an unmodeled, variable weight tip load.

2. Methods

2.1. Design of two-segment soft manipulator

The soft robot used in this study is constructed from moulded RTV (Room Temperature

Vulcanization) silicone rubber (Dragon Skin 10, Smooth-on Inc.) segments and 3D

printed joining components. Each segment comprises of three cylindrical fluidic

chambers spaced 120° apart around the section perimeter, with a total of six chambers.

Each chamber is constrained radially by a helically wound fibre in order to limit the

chamber expansion to only the axial direction. This facilitates omnidirectional bending

of the robot segments when different inflation pressures are provided to each chamber.

Each segment can achieve a maximum bending angle of approximately 100° in any

direction. Two segments were connected in series by a 3D printed (Stereolithographic)

coupling, which enables each air tube of the distal (relative to the robot base) segment to

feed to the centre cavity of the proximal segment. By using a two-segment soft robot, we

7

have a system with greater dexterity which allows for improved 3D positional control of

the tip and presents an opportunity to employ the null-space behaviour to meet a

secondary goal. A 3D printed tip is attached to the top of the distal segment to allow

mounting of the positional tracking sensor. The bottom of the robot is fixed to a 3D

printed base that remains stationary. The outer diameter of the robot is 27 mm and has a

total length of 155 mm. An overview of the soft robot is shown in Figure 2(d).

2.2. Robot parameter definition

To mathematically describe the motion of the robot, we let 𝑢𝑘 ϵ 𝑈 be the chamber

volumes at time step 𝑘 where 𝑈 denotes the control space. The distal tip position of the

Figure 2. (a) Plug-in tip allows easy switching to other tip types for experimental validation:

(b) 14.2 g weighted tip, (c) fluid tip weighing 14 g when empty, with maximum weight of

32 g when full of water. (d) Soft robotic continuum robot with SLA 3D printed coupling and

mounts.

8

soft robot at equilibrium of the fluidic chambers is represented by the task space

coordinate 𝑝𝑘 ϵ R3. The discrete time transition between robot tip states and chamber

volumes within the time step 𝑘 to 𝑘 + 1 is 𝑝𝑘+1 = 𝑝𝑘 + Δ𝑝𝑘 and 𝑢𝑘+1 = 𝑢𝑘 + Δ𝑢𝑘,

respectively. Figure 1 is an illustration of this motion transition between two robot

configurations. To describe the new robot tip position after a change of chamber volume

from the previous tip position, a forward transition model of the soft robot can be defined

as:

 𝑝𝑘+1 = 𝑓(𝑝𝑘, Δ𝑢𝑘) (1)

The inverse transition model we aim to estimate determines the required change

in chamber volume for a movement of the robot tip Δ𝑝𝑘:

 Δ𝑢𝑘 = 𝜙(Δ𝑝𝑘, 𝑢𝑘) (2)

Note that due to the redundancy of the system, the mapping between the forward

and inverse model is not one-to-one, which makes it challenging to find a consistent

inverse transition model.

2.3. Overview of online learning algorithm

The objective is to control the soft robot accurately in the task space motion transition

coordinate Δ𝑠𝑘, while under unknown loading. For this reason, an online learning

algorithm based on the work found in [23] is adapted for usage on our redundant two-

segment soft continuum robot. The underlying goal of the algorithm is to estimate the

global inverse mapping of the soft robot by combining a large set of localized linear

controllers. This technique is based on the key idea that in a localized region of robot

configuration, a valid inverse solution can be obtained because the inverse kinematics

mapping forms a convex function with respect to the variables {𝛥𝑝, 𝑝, 𝛥𝑢, 𝑢}.

9

The proposed control framework is split into two main phases: 1) incremental

learning of the local forward models, followed by 2) batch learning of the linear inverse

controllers that are only valid within a local region.

The first phase aims to acquire an appropriate local linearization of the forward

motion mapping (𝑝𝑘 , Δ𝑢𝑘, 𝑢𝑘) → Δ𝑝𝑘, which is nonlinear in general. Such local

linearization can determine how many linear models are required to approximate the

motion mapping, as well as the valid region of each linear model. Thus, a localized

regression method, namely Locally Weighted Projection Regression (LWPR) [32], is

employed to learn the forward motion mapping. LWPR provides a piecewise linear

function approximation of the nonlinear mapping and automatically determines the valid

local regions that each models should affect. The learnt piecewise linear models are in

the form:

 Δ𝑝𝑘 = [𝑝𝑘, Δ𝑢𝑘, 𝑢𝑘]β̂𝐹𝐾
𝑖 (3)

where β̂𝐹𝐾
𝑖 are the linear parameters of the local forward models.

For a non-redundant robotic system, direct usage of the locally learnt forward

models is possible due to the one-to-one mapping between the configuration space and

operation space, meaning that linear combinations of the locally learnt models will be

consistently resolved. However, for a redundant system, invalid solutions would arise

from non-convex training data, which brings the need to consider the spatial localisations

of the learnt models. Therefore, for each piecewise linear model in the LWPR forward

model, we assign a linear controller to approximate the global inverse mapping, using the

same local valid regions. We wish to determine the local inverse transition models also

positioned in 𝑝𝑘 and 𝑢𝑘 space; this can be described by the following linear controller:

 Δu𝑘 = [Δp𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾
𝑖 (4)

10

where β𝐼𝐾
𝑖 is the parameter of the local inverse model, for which its calculation will be

described in further detail in the following sections.

2.4. Algorithm implementation

2.4.1. Combining the local controllers

To construct a global controller, such that the required actuator transition Δ𝑢𝑘 can be

found for a desired tip transition 𝛥𝑝𝑟𝑒𝑓,𝑘, a weighted linear combination of the local

inverse transition models is solved in the form:

 Δ𝑢𝑘 =
∑ 𝑤𝑖(𝑝𝑘, 𝑢𝑘)[𝛥𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾

𝑖𝑛
𝑖=1

∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)𝑛
𝑖=1

 (5)

In the first step of the proposed control framework, the local forward models are

learnt through LWPR, which determines an appropriate number of models as well as their

locally valid region. Each local model and its region, also known as a receptive field (RF),

is governed by a Gaussian kernel, and is weighted to each training data point based on

the robot configuration variables 𝑝𝑘 and 𝑢𝑘, calculated by the following equation:

𝑤𝑖(𝑝𝑘, 𝑢𝑘) = exp {

1

2
([

𝑝𝑘

𝑢𝑘

] − 𝑐𝑖)

𝑇

𝐷𝑖 ([
𝑝𝑘

𝑢𝑘

] − 𝑐𝑖)} (6)

where 𝑖 denotes the RF being weighed against, 𝑐𝑖 is the RF’s center in 𝑝𝑘 and 𝑢𝑘 space,

and 𝐷𝑖 is the distance matrix which governs the shape of the RF. Besides the weighted

mean of Δ𝑢𝑘, the weighting 𝑤i(𝑝𝑘, 𝑢𝑘) is also employed to determine relative influence

of each data point to the RFs when calculating the global inverse solution.

2.4.2. Selecting null-space behaviour with constrained optimization

When solving for a global controller, there is no guarantee that a consistent inverse

solution is found among different local controllers due to the infinite possible solutions

11

in a redundant system. In [23], two particular methods are outlined to overcome the

redundancy problem: the first is by biasing the original training data to only allow a single

inverse solution, and the second is to introduce a reward/cost function to draw the system

to a desired solution. Although the first approach can be useful for simplified tasks, the

benefits of using a redundant actuator are mostly lost when restricted to a single solution

and can result in the task not being accomplished properly.

Therefore, to ensure consistent null-space behaviour through the second approach,

the task is formulated as a constrained optimization problem, where we aimed to

minimize the cost function below:

 𝐶𝑘(Δ𝑢𝑘) = (Δ𝑢𝑘 − Δ𝑢0,𝑘)
𝑇

𝑁(Δ𝑢𝑘 − Δ𝑢0,𝑘) (7)

where Δ𝑢0,𝑘 = 𝜐(𝑝𝑘, 𝑢𝑘) is the actuator-space attractor that draws the robot to a desired

configuration, and 𝑁 > 0 is a positive definite weighting matrix. The cost function in (7)

assigns cost to each incoming training data point. It assigns higher cost for incoming Δ𝑢𝑘

values that are further away from the desired pose, as defined in the function 𝜐(𝑝𝑘, 𝑢𝑘).

This enables systematic resolution of the redundancy problem, while allowing a flexible

definition of the user-desired null-space behaviour. A secondary control objective can

hence be achieved by associating the null-space attractor Δ𝑢0,𝑘 to the robot

characteristics or the task’s requirement. One typical example of the null-space behaviour

is to attract the robot configuration towards a rest pose 𝑢0, as defined in (8). For a fluid-

driven robot, a reasonable choice of rest position is to minimize the overall inflated

chamber pressures:

 Δ𝑢0,𝑘 = 𝐾𝑎(𝑢𝑘 − 𝑢0) (8)

where 𝐾𝑎 is the attractor gain. Thus, all the training data is given a cost that is based on

12

the configuration space variables 𝑢𝑘, 𝑝𝑘, and Δ𝑢𝑘, with the result that all robot

configurations will converge to a consistent solution.

To solve the constrained optimization problem in (7), we first define:

min
Δ𝑢𝑘

 𝐶𝑘(Δ𝑢𝑘) (9)

subject to Δ𝑢𝑘 = [Δ𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾
𝑖

The constrained optimization problem can be solved by converting the cost

function into an immediate reward:

 𝑟(𝑢𝑘) = 𝜎𝑖exp[−0.5𝜎𝑖
2𝐶𝑘(Δ𝑢𝑘)] (10)

where 𝜎𝑖
2 is the mean cost for a particular local model, used to increase learning speed:

𝜎𝑖
2 = ∑ 𝑤𝑖(𝑝𝑘, 𝑢𝑘)𝐶𝑘

𝑛

𝑘=1

∑ 𝑤𝑖(𝑝𝑘, 𝑢𝑘)

𝑛

𝑘=1

⁄ (11)

where n is the total number of training samples. By changing to an immediate reward, we

can find a solution which minimizes the following sum:

∑ 𝑟(𝑢𝑘)𝑤𝑖(𝑝𝑘, 𝑢𝑘)(Δ𝑢𝑘 − [𝛥𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾
𝑖)

𝑛

𝑘=1

 (12)

The local model parameter in (4) is found by the reward-weighted regression

formula, for each local controller model, 𝑖:

 β𝐼𝐾
𝑖 = (𝑋𝑇𝑊𝑖𝑋)

−1
𝑋𝑇𝑊𝑖𝑌 (13)

where 𝑋𝑘 = [Δ𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘] and 𝑌𝑘 = [Δ𝑢𝑘] are rows of the training datasets 𝑋 and 𝑌,

respectively, and 𝑊𝑖 = diag(𝑟(𝑢1)𝑤1
𝑖 , … , 𝑟(𝑢𝑛)𝑤𝑛

𝑖). The weighting coefficient matrix,

𝑊𝑖, is a diagonal matrix that applies weighting between each local controller, 𝑖, to each

13

training sample. For each local controller, the corresponding weighting coefficient matrix

is determined by multiplying the reward of each training data point by the weighting of

that point relative to the local controller. The reward as shown in (10) regulates the

redundancy of the system by giving more importance to training data that exhibits the

desired null-space behaviour as defined in (8). The weighting function defined in (6) more

strongly considers the weights of training points closer in 𝑝𝑘, 𝑢𝑘 space to the local

controller. Finally, a consistent global controller is derived from the weighted average of

all the learnt local inverse models as in (5). The pseudo-code for the online learning

process of the controller is detailed in Algorithm 1.

3. Experiments, results & discussion

3.1. Experimental platform

The two-segment robot was actuated pneumatically by a set of stepper-motor driven

Algorithm 1: Algorithm for online learning of consistent inverse

motion mapping.
1 For each new training sample [Δ𝑝𝑟𝑒𝑓,𝑘 , 𝑝𝑘 , Δ𝑢𝑘 , 𝑢𝑘]

2 Add (𝑝𝑘 , Δ𝑢𝑘 , 𝑢𝑘) → Δ𝑝𝑟𝑒𝑓,𝑘 to the forward model through LWPR

3 Update no. of forward models m and their local weightings 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)

4 Evaluate actuator-space attractor:
 Δ𝑢0,𝑘 = 𝐾𝑎(𝑢𝑘 − 𝑢0)

5 Compute cost:

 𝐶𝑘(Δ𝑢𝑘) = (Δ𝑢𝑘 − Δ𝑢0,𝑘)
𝑇

𝑁(Δ𝑢𝑘 − Δ𝑢0,𝑘)

6 For each model 𝑖 = 1,2,3, … , 𝑚

7 Calculate mean cost:

 𝜎𝑖
2 = ∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)𝐶𝑘

𝑛
𝑘=1 / ∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)𝑛

𝑘=1

8 Calculate reward of each data point:

 𝑟(𝑢𝑘) = 𝜎𝑖exp (−0.5𝜎𝑖
2𝐶𝑘(𝑢𝑘))

9 Solve the following weighted regression problem with steps 10-14:

 ∑ 𝑟(𝑢𝑘)𝑤𝑖(𝑝𝑘 , 𝑢𝑘) (Δ𝑢𝑘 − [𝛥𝑝𝑟𝑒𝑓,𝑘 , 𝑝𝑘 , 𝑢𝑘]
𝑇

β𝐼𝐾
𝑖) 𝑛

𝑘=1

10 Add sample point to weighted regression so that:

 𝑋𝑘 = [𝛥𝑝𝑟𝑒𝑓,𝑘 , 𝑝𝑘, 𝑢𝑘]

11 𝑌𝑘 = [Δ𝑢𝑘]

12 𝑊𝑖 = diag(𝑟(𝑢1)𝑤1
𝑖 , … , 𝑟(𝑢𝑛)𝑤𝑛

𝑖)

13 Update inverse mapping parameter by reward-weighted regression:

 β𝐼𝐾
𝑖 = (𝑋𝑇𝑊𝑖𝑋)

−1
𝑋𝑇𝑊𝑖𝑌

14 end

15 end

14

linear actuators. Each linear actuator consisted of a stepper motor coupled to a leadscrew,

which controlled the stroke of a pneumatic cylinder. The robot has 6 input degrees-of-

freedom (DOFs), with each of the 6 chambers of the soft robot paired with a single linear

actuator.

The soft robot was actuated volumetrically, with the stepper motor positions used

as a proxy for the actual cylinder volume. Each chamber was pre-pressurised to 0.040

MPa to improve the bending response of the soft robot to input pressure change. An

omnidirectional bending angle of up to 100° was attainable by each segment of the soft

robot. The tip position of the robot was tracked by an electromagnetic (EM) tracking

system (NDI Medical Aurora Tabletop Field Generator). Two 6-DOF tethered sensor (0.8

mm diameter x 9 mm length) were attached to the robot: one at the robot tip, and another

at the base of the robot as illustrated in Figure 3. The EM tracking system provides a

tracking accuracy of 0.80 mm for position, and 0.70° for orientation at an update rate of

40 Hz. It provides the necessary positional data for feedback control and also online

learning of the controller. The local online learning algorithm was implemented in the

Matlab environment, and applied the open-source library for LWPR [33].

15

3.2. Training data acquisition and model pre-training

In order to effectively generate a functional global controller, pre-training data that

sufficiently characterizes the robot’s workspace and possible configurations should be

obtained.

 Learning of the forward models was first performed offline with uniformly

distributed random waypoints in actuator-space that were generated and connected by

straight line trajectories. This formed the pre-training exploration data. For the purpose

of this study, 80 random waypoints were sufficient to provide a large enough selection of

forward mappings so that consistent inverse controllers could be learnt. An alternative

controller initialization can be achieved by motor babbling, where small, random

movements of the robot are used to learn the controller online. However, offline pre-

Figure 3. EM positional tracking coils mounted at the robot

tip and base. The 6-DoF coil at the base offers a static frame

of reference for all the measured tracking data in real time.

16

training was favoured in this study to better evaluate the null-space behaviour of the

controller. Additionally, if purely online learning is used, redundant configurations are

less likely to be observed, limiting the manoeuvrability of the robot and generality of the

system. In this study, the tip position, 𝑝𝑘, is a 3x1 vector of the x-y-z Cartesian tip position

tracked by the tip EM coil as in Figure 3. The chamber volumes, 𝑢𝑘, are a 6x1 vector

which describes the current inflation state of each chamber of the robot (3 chambers per

robot segment).

Validation of the learned forward models was performed by splitting the obtained

training data into a training and test set, at 80% and 20%, respectively. The root-mean-

square error (RMSE) of the predicted forward model outputs, Δp, versus the number of

training iterations (epochs) for the training data, test data, and combined data is shown in

Figure 4. A total of 15 training iterations were processed, resulting in 139 receptive fields

generated for each output dimension. The RMSE of all three types of data was lowest at

11 epochs, with the testing set converging to approximately 1 mm. To further validate the

pre-trained model, the predicted outputs of the global inverse model was compared

against the learned forward model using the combined test set. The resulting regression

plots and histograms for each task space dimension are shown in Figure 5. The error

bounds for each dimension of the learned inverse model were under 0.5 mm.

17

Figure 4. Validation of the forward model that was trained through LWPR. The error reached

the lowest value at the 11th epoch. The training and testing data was split 80% and 20%,

respectively, of the original data set. The root-mean-square error is with respect to the forward

model output, Δ𝑝. The error of all three sets of data was lowest at 11 epochs, indicated by the

vertical grey line.

18

3.3. Controller implementation

Evaluation of the proposed control framework is performed on a two-segment soft

continuum robot. Two tracking exercises are presented to assess the accuracy of the learnt

Figure 5. Regression plots (Left) and histograms (Right) for the tip transition variable

Δ𝑝 in each coordinate axis (x, y, z).

19

inverse kinematics as well as its ability to adapt to an unknown disturbance. The trajectory

following is achieved through resolved motion rate control [34], and the desired task

space displacement Δ𝑠𝑘 is defined by the proportional feedback controller:

 Δ𝑝𝑘 = 𝐾𝑃(𝑝𝑘
𝑟𝑒𝑓

− 𝑝𝑘) (14)

where 𝐾𝑃 is the proportional gain, 𝑝𝑘
𝑟𝑒𝑓

 is the desired tip position, 𝑝𝑘 is the 3D tip position

at the current time-step. This desired task space displacement is the input to the learned

global controller, which outputs the estimated stepper motor commands Δ𝑢. For the

accuracy evaluation, the tracking error is calculated by the Euclidean distance between

the desired tip position and the achieved tip position at each time step. The block diagram

of the implemented control loop is shown in Figure 6.

3.4. Trajectory tracking experiments –static tip load

A comparison between the online-updating controller and the offline-learned controller

was performed by trajectory tracking of a 3D path under two scenarios: 1) only using the

pre-trained model with no online learning (‘offline’), 2) online learning while an

unknown tip mass is added to the robot.

Figure 6. Schematic showing the proposed control system architecture that facilitates online

updating of the learned controller. The controller is constantly updated with incoming real-

time data provided by the EM position tracker.

20

The goal of these two experiments is to evaluate the effects of updating the pre-

trained model in an online manner and providing a comparison to only using the pre-

trained model. The test trajectory is a rectangular shape of sides 25 mm x 100 mm

projected to the 3D workspace of the robot, which was approximated from the pre-

training data. In each test scenario, the controller was run for 3 complete cycles, which

had a total runtime of 400 s. Initially in each test, the robot was allowed to track to the

first point of the desired trajectory until the error converged, at which point data

acquisition was initiated and the desired trajectory point began to increment. The same

error-proportional gain and pre-trained model was used for both experiments. In the

following experimental sections, offline denotes the absence of online learning during

trajectory tracking, and online denotes that online learning was enabled.

3.4.1. No tip load - offline

For the first experiment, only the offline pre-trained model was implemented into the

robot controller. Online learning was disabled, and robot was free to track the target

trajectory with no additional external disturbances. The tracking performance of the first

experiment is presented in Figure 7. The average error was not observed to improve

between the first and last trajectory cycle, with a mean absolute error of ±4.56 mm, and

±5.53 mm, respectively. A recurring error pattern could be seen in each cycle, which

depicts the repeatability of the learned controller. The tracking error could be attributed

to a lack of densely populated receptive fields in those regions resulting in poorly defined

inverse solutions. Other controller errors are also expected due to the hysteretic effects of

the soft robot body which the proportional controller could not compensate for.

21

3.4.2. Static tip load – online learning

For the second experiment, an additional tip mass was added to the robot tip, as illustrated

in Figure 2(b). The total additional mass was 14.2 g and was not previously presented to

the model during pre-training. The same pre-trained model applied in experiment 1 was

used as a baseline for the online learning in this experiment. When online learning, a fixed

number of training points are used to weight the influence of the local models. For this

experiment, a maximum of 425 incoming training points was used in a first-in-first-out

basis, where the oldest data points were removed first when exceeding the maximum of

425. For each cycle of trajectory tracking, approximately 400 new training points were

Figure 7. Experimental results for trajectory tracking with no additional tip loading using

the pre-trained model with no online learning. (a) The actual tracked trajectory overlaid on

the desired trajectory. (b) Close-up view of the corner tracking. (c) The Euclidean tip

tracking error over time. The dotted lines indicate the start and end of each trajectory cycle.

No tip load, OFFLINE

22

accumulated. The average online update frequency was 23 Hz. With the additional tip

weight, the starting tracking error increased from approximately 2 mm as seen in the first

experiment to 5 mm. By the inclusion of online learning in this controller, the real-time

data obtained from the tracked tip position and actuator volumes could be input to the

online learning algorithm, enabling incremental improvements to the overall learned

inverse model. This could be observed in the results presented in Figure 8 and Table 1.

The mean absolute tracking error of every cycle could be seen to decrease significantly,

starting at ±4.42 mm in the first cycle and reducing to ±1.63 mm in the third cycle.

Overall, online learning of the original pre-trained model could be seen to improve

the tracking performance through continuous online updating of the inverse model, even

in the presence of a previously unknown external disturbance.

23

Figure 8. Experimental results for trajectory tracking with additional tip loading, using the

pre-trained model and updated with online learning. The algorithm is able to adapt to the tip

disturbance in real-time, providing improved tracking performance. (a) The actual tracked

trajectory overlaid on the desired trajectory. (b) Close-up view of the corner tracking. (c) The

Euclidean tip tracking error over time. The error can be seen to consistently decrease over

the 3 cycles.

Static tip load, ONLINE

Table 1. Summary of trajectory tracking performance for no tip load (offline) and

static tip load (online) scenarios.

24

3.5. Trajectory tracking experiments – varying tip load

To further investigate the control framework’s behaviour, a series of trajectory following

tasks were performed while a variable fluid tip load as in Figure 2(c) was added to the

robot tip. The fluid tip has an empty weight of 14 g, and has a maximum weight of 32 g

when full (corresponding to an internal volume of 18 mL). Three experiments were

performed for 3D trajectory tracking with the varying tip load: 1) only the empty (0%

filled) fluid tip container added to the robot tip with no online learning, 2) increasing fluid

load with no online learning, 3) increasing fluid load with online learning enabled.

For this set of experiments, the test trajectory is a rectangular shape with sides 40

mm x 60 mm that was projected on the workspace of the robot. The robot was allowed to

run for 4 cycles. The same control parameters were used in the three scenarios, with only

the option of online learning differing between them. The training data used for the pre-

trained model were based on 320 random waypoints, which resulted in 352 receptive

fields generated. A tabulated summary of the tracking results is shown in Table 2, and

the actual tracked trajectories and absolute Euclidean tracking errors over time are shown

in Figure 10.

25

3.5.1. Empty fluid container tip – offline

In the first scenario, only the pre-trained model was used, with no online updates made

during the experiment. This ‘offline’ controller setting is akin to implementing a model-

based kinematic model, e.g. PCC, where no online updates are made to the model during

runtime. The fluid container tip was empty for all four cycles of trajectory tracking,

weighing approximately 14 g. Overall, the tracking performance for each cycle was seen

to be relatively periodic as seen in Figure 10(a), with the mean absolute error remaining

around the 6-7 mm range. No notable improvement could be seen between each cycle,

however the mean absolute and max absolute error increased between cycle 1 and 2. This

is likely because the robot was allowed to track to the first point until error converged

before data acquisition began and the remainder of the trajectory was tracked. The

primary source of error in the trajectory tracking can be attributed to the additional

unmodelled tip load due to the empty fluid container tip. The tip load induces unmodelled

loading to the entire robot body, creating a large disparity between the original pre-trained

Figure 9. Variable fluid tip load used for experiments. The tip load is varied by injecting water

at an approximate rate of 0.6 mL/s at the beginning of cycle 3 and 4. The empty fluid tip is 14

g, and has a maximum weight of 32 g when full. For the trajectory tracking experiments under

varying tip load, 10 g is added to the tip load in cycle 3, and 6 g is added in cycle 4.

26

kinematic model’s estimation, and the actual robot configuration.

Unlike the static tip load experiment in Section 3.4.2. where the tracking error

would reduce over each cycle due to the online learning, we can see a consistent offset of

the tracked trajectory versus the desired trajectory.

3.5.2. Increasing fluid load - offline

For the second scenario, a varying tip load was applied to the robot tip by increasing the

fluid volume in the fluid tip. To fill the fluid tip, water was injected through the ‘water

in’ tube labelled in Figure 9 at a rate of approximately 0.6 mL/s. For the first two cycles

of trajectory tracking, the fluid tip was empty (0% filled), which is the same conditions

as the first two cycles of the previous experiment in Section 3.5.1. In cycle 3 and 4, the

fluid levels were increased in accordance to Figure 9: from the beginning of cycle 3, an

additional 10 g of water was added to the fluid tip at a rate of ~0.6 mL/s, with a total tip

load of 24 g. This corresponds to 56% of the entire fluid tip cavity filled. At the start of

cycle 4, an additional 6 g of water was added to the fluid tip, corresponding to a total

additional tip weight of 30 g, or 89% filled. At 30 g, the fluid tip is an additional 72% of

the robot body mass (41.71 g), presenting substantial loading to the robot tip. Depicted in

Figure 9 is the deformation caused by the fluid load when the robot is at the neutral,

unactuated position. When tracking the trajectory, the moment caused by the load is

larger due to the robot bending, and induces significant unmodelled deformation.

In the first two cycles, it can be seen that the tracking error and path taken was

very similar to the results in Section 3.5.1. This is because the controller setting and tip

load are the same between the two experiments in the first two cycles. When fluid level

was increased in the tip load in cycle 3, the errors also increased, eventually leading to

instability in the 4th cycle which is seen in the left-hand side of the tracked trajectory path

27

in Figure 9(b). A major source of the instability can be attributed to the inability of the

offline controller to track the desired trajectory due to large corrective overshoot from the

error induced by the tip load. Also, the fluid tip is only partially filled, leading the centre

of mass to constantly change as the robot configuration changes, further amplifying any

instability.

3.5.3. Increasing fluid load – online learning

In the third scenario, online learning was enabled during trajectory tracking while the

fluid load was increased in accordance to Figure 9. The same pre-trained model use in

the previous two scenarios was also used here. For online learning, the maximum number

of data points was set to 550. For each cycle of trajectory tracking, approximately 300

new training points were accumulated. Similar behaviour to the online static tip load

experiment in Section 3.4.2. can be seen, with the error reducing in each cycle. Over the

four cycles, the average tracking error reduced from ±4.16 mm to ±0.98 mm. In contrast

to the independent test in Section 3.5.2. that demonstrates offline tracking with increasing

fluid load, the online learning controller was able to avoid instability, and even reduce

the overall tracking error. The tracked trajectory and errors can be seen in Figure 9(c)

and Figure 10(c), respectively.

In this third scenario, the update rate was limited to approximately 7 Hz, i.e. each

online update took ~0.143 s to complete. A notable limitation of the online learning is

that the update speed is directly tied to the number of stored training data points and local

models, because the weighting of each data point to each local controller must be made

at each update, in accordance to the weighting function (6). The online update rate for

this controller was significantly lower than that in Section 3.4.1. because 352 local

28

controllers were used in the pre-trained model, compared to 139 local controllers. This

extensive computation time is a bottleneck for the online learning framework, as too many

local models or stored data points would cause the update rate to slow to impractical

speeds. A potential method for easing the computational intensity is through the use of

training data sparsification. This would involve limiting and selectively processing

training data obtained online so that only the ‘most important’ training points would be

used.

In general, the online learning experiments performed in this study highlight the

difficulties of using a standard, non-adaptive controller for control of a soft robot under

external disturbance. High unmodelled morphological change can cause typical feedback

controllers utilizing Jacobians to exhibit inaccurate or unstable trajectory tracking

because they assume low error configurations, which is not true for soft robots under any

notable levels of loading. However, through online learning the robot configuration error

can be minimized by effectively updating the Jacobian to adapt to disturbances based on

real-time tracking data. For more extreme cases of deformation, the controller can

potentially fail to track the target trajectory. This could be caused by the robot

configuration lying far outside of the pre-trained local linear models, or due to limitations

of the robot actuation (e.g. upper pressure limit of the robot chambers).

29

Figure 10. Experimental results for trajectory tracking with different controller and tip load

conditions. The robot was allowed to follow the trajectory for 4 cycles, as indicated by the

vertical dotted lines. (a) Offline trajectory tracking with empty fluid container tip weighing 14

g. A repeating error pattern is observed due to the static load. (b) Offline trajectory tracking

with fluid tip load increased by 10 g in cycle 3, and 6 g in cycle 4. The tracking error increased

with fluid load, becoming unstable in the 4th cycle. (c) Trajectory tracking with online learning

enabled. The fluid tip load was increased by 10 g in cycle 3 and 6 g in cycle 4. Instability was

avoided and error was also reduced.

30

4. Conclusions & future work

In this study, we proposed and validated an online learning-based control framework to

control a hyper-redundant two-segment soft robot in a 3D positional task space. The use

of an online data-driven learning approach enables high adaptability to unmodelled

characteristics both internal and external to the soft robot, while resolving consistent

redundancy behaviour. A pre-trained inverse model was learned for the two-segment soft

robot and applied in a proportional motion rate controller. For the static tip load case with

online learning, the robot controller was able to adapt quickly to an unknown static tip

weight/load, with the average absolute error reducing from ±4.42 mm to ±1.63 mm over

three cycles of the tested 3D trajectory. A more demanding trajectory tracking task was

also performed with a varying fluid tip load. Without online learning, the robot became

unstable and was unable to compensate for the maximum weight by the 4th cycle.

However, with the addition of online learning the robot was not only able to avoid

instability, but was also able to reduce the mean absolute tracking error to < 1 mm.

Our future work includes further extension of the proposed control framework to

three or more segments of a soft robot and incorporation of a greater number of task space

Table 2. Summary of trajectory tracking performance for experiments with variable

fluid tip load.

31

variables to improve the manipulability of the robotic system. In the future experimental

settings, we would also aim to replace the tethered EM tracking system with a self-

contained sensing modality, such as a camera [35] or a fibre optic system [36] such as

those based on fiber Bragg gratings [37]. This would allow evaluation of the proposed

learning algorithm in application-based scenarios. Additionally, secondary objectives can

be incorporated into the algorithm’s cost calculation, such as obstacle avoidance, and

could provide customizability for task-specific performance. Improvement to the

computational speed of the learning framework can also be made, with a possible solution

being sparsification, which could be used to select training data so that only the most

relevant data is used.

In terms of application, soft manipulators are inherently non-ferromagnetic and

have more easily disposable bodies which present interesting opportunities to be used in

harsh environments where traditional robots are unable to be used. An example of this is

under magnetic resonance imaging (MRI), where the strong magnetic field involved

disallows any traditional robots. Towards MRI-guided robotic interventions [38], the

integration of the proposed online learning algorithm and a soft robotic manipulator could

enable safe and adaptive navigation in surgery.

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgments

This work is supported in parts by Signate Life Sciences (Hong Kong) Limited, the

Croucher Foundation, the Research Grants Council (RGC) of Hong Kong (Ref. No.

27209151, No. 17227616, and No. 17202317).

32

References

[1] C. Laschi, B. Mazzolai, and M. Cianchetti, "Soft robotics: Technologies and systems

pushing the boundaries of robot abilities," Science Robotics, vol. 1, no. 1, 2016.

[2] D. Rus and M. T. Tolley, "Design, fabrication and control of soft robots," Nature,

vol. 521, p. 467, 05/27/online 2015.

[3] E. Tumino, "Endotics system vs colonoscopy for the detection of polyps," World

Journal of Gastroenterology, vol. 16, no. 43, 2010.

[4] B. Vucelic et al., "The aer-o-scope: proof of concept of a pneumatic, skill-

independent, self-propelling, self-navigating colonoscope," Gastroenterology, vol. 130,

no. 3, pp. 672-7, Mar 2006.

[5] F. Cosentino, E. Tumino, G. R. Passoni, E. Morandi, and A. Capria, "Functional

evaluation of the endotics system, a new disposable self-propelled robotic colonoscope:

in vitro tests and clinical trial," The International journal of artificial organs, vol. 32,

no. 8, pp. 517-527, 2009.

[6] M. Cianchetti et al., "Soft Robotics Technologies to Address Shortcomings in

Today's Minimally Invasive Surgery: The STIFF-FLOP Approach," Soft Robotics, vol.

1, no. 2, pp. 122-131, 2014.

[7] C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, "Soft

Robot Arm Inspired by the Octopus," Advanced Robotics, vol. 26, no. 7, pp. 709-727,

2012.

[8] M. T. Tolley et al., "A resilient, untethered soft robot," Soft Robotics, vol. 1, no. 3,

pp. 213-223, 2014.

[9] R. J. Webster and B. A. Jones, "Design and Kinematic Modeling of Constant

Curvature Continuum Robots: A Review," The International Journal of Robotics

Research, vol. 29, no. 13, pp. 1661-1683, 2010.

[10] I. D. Walker, "Continuous Backbone “Continuum” Robot Manipulators," ISRN

Robotics, vol. 2013, pp. 1-19, 2013.

[11] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, "Control Strategies for

Soft Robotic Manipulators: A Survey," Soft robotics, 2018.

[12] H. Wang, C. Wang, W. Chen, X. Liang, and Y. Liu, "Three-dimensional dynamics

for cable-driven soft manipulator," IEEE/ASME Transactions on Mechatronics, vol. 22,

no. 1, pp. 18-28, 2017.

[13] P. Qi, C. Liu, A. Ataka, H. K. Lam, and K. Althoefer, "Kinematic Control of

Continuum Manipulators Using a Fuzzy-Model-Based Approach," IEEE Transactions

on Industrial Electronics, vol. 63, no. 8, pp. 5022-5035, 2016.

[14] B. A. Jones and I. D. Walker, "Kinematics for multisection continuum robots,"

IEEE Transactions on Robotics, vol. 22, no. 1, pp. 43-55, 2006.

[15] D. B. Camarillo, C. F. Milne, C. R. Carlson, M. R. Zinn, and J. K. Salisbury,

"Mechanics Modeling of Tendon-Driven Continuum Manipulators," IEEE Transactions

on Robotics, vol. 24, no. 6, pp. 1262-1273, 2008.

[16] R. J. Webster, J. P. Swensen, J. M. Romano, and N. J. Cowan, "Closed-form

differential kinematics for concentric-tube continuum robots with application to visual

servoing," in Experimental Robotics, 2009, pp. 485-494: Springer.

[17] S. Neppalli, M. A. Csencsits, B. A. Jones, and I. D. Walker, "Closed-form inverse

kinematics for continuum manipulators," Advanced Robotics, vol. 23, no. 15, pp. 2077-

2091, 2009.

[18] D. Trivedi, A. Lotfi, and C. D. Rahn, "Geometrically exact dynamic models for

soft robotic manipulators," in Intelligent Robots and Systems, 2007. IROS 2007.

IEEE/RSJ International Conference on, 2007, pp. 1497-1502: IEEE.

33

[19] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi, "Dynamic model

of a multibending soft robot arm driven by cables," IEEE Transactions on Robotics, vol.

30, no. 5, pp. 1109-1122, 2014.

[20] M. Rolf, J. J. Steil, and M. Gienger, "Goal babbling permits direct learning of

inverse kinematics," IEEE Transactions on Autonomous Mental Development, vol. 2,

no. 3, pp. 216-229, 2010.

[21] A. T. Hasan, A. M. S. Hamouda, N. Ismail, and H. Al-Assadi, "An adaptive-

learning algorithm to solve the inverse kinematics problem of a 6 DOF serial robot

manipulator," Advances in Engineering Software, vol. 37, no. 7, pp. 432-438, 2006.

[22] R. Köker, C. Öz, T. Çakar, and H. Ekiz, "A study of neural network based inverse

kinematics solution for a three-joint robot," Robotics and autonomous systems, vol. 49,

no. 3-4, pp. 227-234, 2004.

[23] J. Peters and S. Schaal, "Learning to Control in Operational Space," The

International Journal of Robotics Research, vol. 27, no. 2, pp. 197-212, 2008.

[24] D. Nguyen-Tuong and J. Peters, "Model learning for robot control: a survey," Cogn

Process, vol. 12, no. 4, pp. 319-40, Nov 2011.

[25] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, "Neural

network and jacobian method for solving the inverse statics of a cable-driven soft arm

with nonconstant curvature," IEEE Transactions on Robotics, vol. 31, no. 4, pp. 823-

834, 2015.

[26] A. Melingui, O. Lakhal, B. Daachi, J. B. Mbede, and R. Merzouki, "Adaptive

neural network control of a compact bionic handling arm," IEEE/ASME Transactions

on Mechatronics, vol. 20, no. 6, pp. 2862-2875, 2015.

[27] O. Lakhal, A. Melingui, and R. Merzouki, "Hybrid approach for modeling and

solving of kinematics of a compact bionic handling assistant manipulator," IEEE/ASME

Transactions on Mechatronics, vol. 21, no. 3, pp. 1326-1335, 2016.

[28] T. Thuruthel, E. Falotico, M. Cianchetti, F. Renda, and C. Laschi, "Learning global

inverse statics solution for a redundant soft robot," in Proceedings of the 13th

International Conference on Informatics in Control, Automation and Robotics, 2016,

vol. 2, pp. 303-310.

[29] D. Braganza, D. M. Dawson, I. D. Walker, and N. Nath, "A neural network

controller for continuum robots," IEEE transactions on robotics, vol. 23, no. 6, pp.

1270-1277, 2007.

[30] K. H. Lee et al., "Nonparametric Online Learning Control for Soft Continuum

Robot: An Enabling Technique for Effective Endoscopic Navigation," Soft Robot, vol.

4, no. 4, pp. 324-337, Dec 2017.

[31] A. D'Souza, S. Vijayakumar, and S. Schaal, "Learning inverse kinematics," in

Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International

Conference on, 2001, vol. 1, pp. 298-303: IEEE.

[32] S. Vijayakumar, A. D'souza, and S. Schaal, "Incremental online learning in high

dimensions," Neural computation, vol. 17, no. 12, pp. 2602-2634, 2005.

[33] S. Klanke, S. Vijayakumar, and S. Schaal, "A library for locally weighted

projection regression," Journal of Machine Learning Research, vol. 9, no. Apr, pp. 623-

626, 2008.

[34] D. E. Whitney, "Resolved motion rate control of manipulators and human

prostheses," IEEE Transactions on Man-machine Systems, vol. 10, no. 2, pp. 47-53,

1969.

[35] B. Espiau, F. Chaumette, and P. Rives, "A new approach to visual servoing in

robotics," IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp. 313-326,

1992.

34

[36] S. Sareh, Y. Noh, M. Li, T. Ranzani, H. Liu, and K. Althoefer, "Macrobend optical

sensing for pose measurement in soft robot arms," Smart Materials and Structures, vol.

24, no. 12, p. 125024, 2015.

[37] S. C. Ryu and P. E. Dupont, "FBG-based shape sensing tubes for continuum

robots," in Robotics and Automation (ICRA), 2014 IEEE International Conference on,

2014, pp. 3531-3537: IEEE.

[38] K. H. Lee et al., "MR Safe Robotic Manipulator for MRI-guided Intra-cardiac

Catheterization," IEEE/ASME Transactions on Mechatronics, vol. PP, no. 99, pp. 1-1,

2018.

