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Localised Online Learning-Based Control of a Soft Redundant 

Manipulator Under Variable Loading 

Soft robots are inherently compliant and manoeuvrable manipulators that can 

passively adapt to their environment. However, in order to fully make use of their 

unique properties, accurate control should still be maintained when affected by 

external loading. Commonly used model-based approaches often have low 

tolerance to unmodelled loading, resulting in significant error when acted on by 

them. Therefore, in this study we employ a nonparametric learning-based method 

that can approximate and update the inverse model of a redundant two-segment 

soft robot in an online manner. The primary contribution of this work is the 

application and evaluation of the proposed framework on a redundant soft robot. 

With the addition of redundancy, a constrained optimisation approach is taken to 

consistently resolve null-space behaviour. Through this control framework, the 

controller can continuously adapt to unknown external disturbances during runtime 

and maintain end-effector accuracy. The performance of the control framework 

was evaluated by tracking of a 3D trajectory with a static tip load, and a variable 

weight tip load. The results indicate that the proposed controller could effectively 

adapt to the disturbances and continue to track the desired trajectory accurately. 

 Keywords: soft robotics; modelling; compliance; machine learning; 

1. Introduction 

The introduction of robots constructed from hyper-elastic materials and embedded with 

fluidically driven chambers have given rise to a new class of robots [1, 2]. These soft 

robots are inherently compliant, manoeuvrable and are able to passively adapt to dynamic 

and unstructured environments. As a result, their prevalence in specialised applications 

like surgical intervention [3-6] has grown, and has drawn interest from other fields such 

as underwater manipulation [7] and search and rescue [8, 9]. 

Subsequently, the growth of soft robotics field has sparked research focused on 

modelling the behaviour of soft continuum robots [9-13]. Analytical models capable of 

offering the forward mapping from robot actuation to its task space generally provide the 
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basis for accurate and dexterous control of conventional, rigid robots. However, the 

analogue for modelling soft continuum robots can be prohibitively complex due to the 

non-linear elasticity, compliance and fluidic actuation of the robot body.  

Approximations like the piecewise constant curvature (PCC) approach is 

commonly used to approximate the kinematic mapping of soft robots [9, 10, 14, 15]. The 

PCC assumption provides a simplified representation of serial-link continuum robots by 

assuming their segments are smoothly connected with circular bending profiles. Although 

the use of PCC still remains predominant due to its obtainable and closed-form solutions 

[16, 17], any loading to the robot that results in non-circular bending invalidates the PCC 

assumption, resulting in significant inaccuracies. 

 

In contrast, other modelling techniques, including those based on the Cosserat rod 

theory, can take into account external loading such as gravity [18] as well as buoyancy 

Figure 1. Labeled illustration of the robot motion transition for a two-segment soft robot.   

Pictured is the transition from state (𝑝𝑘 , 𝑢𝑘) → (𝑝𝑘+1, 𝑢𝑘+1). Inflation of the fluidic chambers 

of the first and second segments are labeled 𝑢𝑘,1 and 𝑢𝑘,2, respectively.  
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and drag loading due to movement in water [19]. However, these approaches are still too 

computationally complex to apply in real-time robot control. Fully utilising the 

conformability and manoeuvrability of soft continuum robots while also maintaining end-

effector accuracy is still technically challenging. 

A stepping stone towards this goal is through learning-based approaches [11], 

which have gained popularity in soft robotics because of their ability to bypass the 

difficulties in modelling uncertain internal and external dynamics. Model-free learning 

approaches that are adaptive to dynamics present in the robot itself can avoid determining 

the material and geometrical specifications of the controlled soft robot, as they can be 

made implicit in the obtained data they learn from. Not only does this allow greater 

freedom in modifying the robot’s structure, but it also provides leeway during 

construction of the robot, as material inconsistencies within segments and joints can affect 

bending symmetry and further introduce unmodelled dynamics.  

Previously, machine learning-based methods have been used with conventional 

rigid-link robots, and have been able to approximate their inverse models [20-22], 

producing results comparable to analytical model-based solutions [23, 24]. Relating to 

soft continuum robots, a neural network (NN) was applied in [25] to control a 1-DOF 

planar soft robotic manipulator, with the study outlining the adaptability of machine-

learning approaches to mechanical discrepancies that analytical approaches do not 

possess. The study provided a useful preliminary application of machine-learning for soft 

robots, however the adaptability of the algorithm to external loading was not addressed. 

Another NN-based control was applied to the Festo Robotino® XT hyper-redundant 

robot [26], with kinematic redundancies taken into account by considering both of the 

robot’s section trajectories. In that study, two NNs were used in tandem to adapt to 

hysteresis and other modelling uncertainties. However, the kinematic control was 
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computationally intensive, making useful real-time control unfeasible at that stage. A 

number of other NN-based approaches have been used to learn the inverse kinematics of 

soft continuum robots [27-29], however the presence of external disturbances were not 

accounted for in these studies.  

Recently, Lee et al. [30] proposed a generic control framework based on [23, 31] 

that is able to directly learn the inverse model of a soft continuum robot for task-space 

control in an online manner, without knowing the robot’s geometric parameters. The 

study applied locally-weighted models in order to estimate the inverse kinematics and 

control the tip orientation (pitch and yaw) of a single-segment soft manipulator, and was 

able to maintain tip orientation accuracy even in the presence of unknown loading on the 

robot body. In contrast to NN methods, where the model structure is typically determined 

before the training process, nonparametric regression allows for the optimal model 

structure to be determined from the training data. Furthermore, the use of such an online 

learning algorithm allows for rapid updating of the individual local inverse models, which 

in turn enables adaptation to any change in external loading.  

In this paper, we extend the control framework in [30] to a multi-segment soft 

continuum robot, also addressing the over-actuated and redundant nature of multiple 

bending segments. In contrast to the previous study where only the orientation of a single 

segment actuator was controlled, this study applies 3D positional control to a two-

segment actuator. This extension presents the opportunity for more dexterous soft robot 

tasks, e.g. intraluminal endoscopy, where views behind or around soft-tissue bodies may 

be otherwise impaired with single segment robots. Workspace exploration is required to 

train the learning algorithm, with the collection of generated offline pre-training data 

necessary to learn the proposed controller. Validation of the learned controller is 
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performed through 3D positional trajectory tracking of the soft robot. The primary 

contributions of this work are as follows: 

 Design and implementation of a general learning-based framework, which 

enables robust control of a multi-segment soft continuum robot by adapting to 

unmodelled loading via online learning. 

 Consistent resolution of null-space behaviour, which can resist variable 

distributions of sampled learning data. 

 Experimental validation of the proposed controller, which evaluates how a six-

chamber continuum robot performs a task of 3-D trajectory following with the 

addition of an unmodeled, variable weight tip load.  

2. Methods 

2.1. Design of two-segment soft manipulator 

The soft robot used in this study is constructed from moulded RTV (Room Temperature 

Vulcanization) silicone rubber (Dragon Skin 10, Smooth-on Inc.) segments and 3D 

printed joining components. Each segment comprises of three cylindrical fluidic 

chambers spaced 120° apart around the section perimeter, with a total of six chambers. 

Each chamber is constrained radially by a helically wound fibre in order to limit the 

chamber expansion to only the axial direction. This facilitates omnidirectional bending 

of the robot segments when different inflation pressures are provided to each chamber. 

Each segment can achieve a maximum bending angle of approximately 100° in any 

direction. Two segments were connected in series by a 3D printed (Stereolithographic) 

coupling, which enables each air tube of the distal (relative to the robot base) segment to 

feed to the centre cavity of the proximal segment. By using a two-segment soft robot, we 
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have a system with greater dexterity which allows for improved 3D positional control of 

the tip and presents an opportunity to employ the null-space behaviour to meet a 

secondary goal. A 3D printed tip is attached to the top of the distal segment to allow 

mounting of the positional tracking sensor. The bottom of the robot is fixed to a 3D 

printed base that remains stationary. The outer diameter of the robot is 27 mm and has a 

total length of 155 mm. An overview of the soft robot is shown in Figure 2(d).  

 

2.2. Robot parameter definition 

To mathematically describe the motion of the robot, we let 𝑢𝑘  ϵ 𝑈 be the chamber 

volumes at time step 𝑘 where 𝑈 denotes the control space. The distal tip position of the 

Figure 2. (a) Plug-in tip allows easy switching to other tip types for experimental validation: 

(b) 14.2 g weighted tip, (c) fluid tip weighing 14 g when empty, with maximum weight of 

32 g when full of water. (d) Soft robotic continuum robot with SLA 3D printed coupling and 

mounts. 
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soft robot at equilibrium of the fluidic chambers is represented by the task space 

coordinate 𝑝𝑘 ϵ R3. The discrete time transition between robot tip states and chamber 

volumes within the time step 𝑘 to 𝑘 + 1 is 𝑝𝑘+1 = 𝑝𝑘 + Δ𝑝𝑘 and 𝑢𝑘+1 = 𝑢𝑘 + Δ𝑢𝑘, 

respectively. Figure 1 is an illustration of this motion transition between two robot 

configurations. To describe the new robot tip position after a change of chamber volume 

from the previous tip position, a forward transition model of the soft robot can be defined 

as: 

 𝑝𝑘+1 = 𝑓(𝑝𝑘, Δ𝑢𝑘) (1) 

The inverse transition model we aim to estimate determines the required change 

in chamber volume for a movement of the robot tip Δ𝑝𝑘: 

 Δ𝑢𝑘 = 𝜙(Δ𝑝𝑘, 𝑢𝑘) (2) 

Note that due to the redundancy of the system, the mapping between the forward 

and inverse model is not one-to-one, which makes it challenging to find a consistent 

inverse transition model. 

2.3. Overview of online learning algorithm 

The objective is to control the soft robot accurately in the task space motion transition 

coordinate Δ𝑠𝑘, while under unknown loading. For this reason, an online learning 

algorithm based on the work found in [23] is adapted for usage on our redundant two-

segment soft continuum robot. The underlying goal of the algorithm is to estimate the 

global inverse mapping of the soft robot by combining a large set of localized linear 

controllers. This technique is based on the key idea that in a localized region of robot 

configuration, a valid inverse solution can be obtained because the inverse kinematics 

mapping forms a convex function with respect to the variables {𝛥𝑝, 𝑝, 𝛥𝑢, 𝑢}. 
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The proposed control framework is split into two main phases: 1) incremental 

learning of the local forward models, followed by 2) batch learning of the linear inverse 

controllers that are only valid within a local region.  

The first phase aims to acquire an appropriate local linearization of the forward 

motion mapping (𝑝𝑘 , Δ𝑢𝑘, 𝑢𝑘) → Δ𝑝𝑘, which is nonlinear in general. Such local 

linearization can determine how many linear models are required to approximate the 

motion mapping, as well as the valid region of each linear model. Thus, a localized 

regression method, namely Locally Weighted Projection Regression (LWPR) [32], is 

employed to learn the forward motion mapping. LWPR provides a piecewise linear 

function approximation of the nonlinear mapping and automatically determines the valid 

local regions that each models should affect. The learnt piecewise linear models are in 

the form: 

 Δ𝑝𝑘 = [𝑝𝑘, Δ𝑢𝑘, 𝑢𝑘]β̂𝐹𝐾
𝑖  (3) 

where β̂𝐹𝐾
𝑖  are the linear parameters of the local forward models.  

For a non-redundant robotic system, direct usage of the locally learnt forward 

models is possible due to the one-to-one mapping between the configuration space and 

operation space, meaning that linear combinations of the locally learnt models will be 

consistently resolved. However, for a redundant system, invalid solutions would arise 

from non-convex training data, which brings the need to consider the spatial localisations 

of the learnt models. Therefore, for each piecewise linear model in the LWPR forward 

model, we assign a linear controller to approximate the global inverse mapping, using the 

same local valid regions. We wish to determine the local inverse transition models also 

positioned in 𝑝𝑘 and 𝑢𝑘 space; this can be described by the following linear controller: 

 Δu𝑘 = [Δp𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾
𝑖  (4) 
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where β𝐼𝐾
𝑖  is the parameter of the local inverse model, for which its calculation will be 

described in further detail in the following sections. 

2.4. Algorithm implementation 

2.4.1. Combining the local controllers 

To construct a global controller, such that the required actuator transition Δ𝑢𝑘 can be 

found for a desired tip transition 𝛥𝑝𝑟𝑒𝑓,𝑘, a weighted linear combination of the local 

inverse transition models is solved in the form: 

 Δ𝑢𝑘 =
∑ 𝑤𝑖(𝑝𝑘, 𝑢𝑘)[𝛥𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾

𝑖𝑛
𝑖=1

∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)𝑛
𝑖=1

 (5) 

In the first step of the proposed control framework, the local forward models are 

learnt through LWPR, which determines an appropriate number of models as well as their 

locally valid region. Each local model and its region, also known as a receptive field (RF), 

is governed by a Gaussian kernel, and is weighted to each training data point based on 

the robot configuration variables 𝑝𝑘 and 𝑢𝑘, calculated by the following equation: 

 
𝑤𝑖(𝑝𝑘, 𝑢𝑘) = exp {

1

2
([

𝑝𝑘

𝑢𝑘

] − 𝑐𝑖)

𝑇

𝐷𝑖 ([
𝑝𝑘

𝑢𝑘

] − 𝑐𝑖)} (6) 

where 𝑖 denotes the RF being weighed against, 𝑐𝑖 is the RF’s center in 𝑝𝑘 and 𝑢𝑘 space, 

and 𝐷𝑖 is the distance matrix which governs the shape of the RF. Besides the weighted 

mean of Δ𝑢𝑘, the weighting 𝑤i(𝑝𝑘, 𝑢𝑘) is also employed to determine relative influence 

of each data point to the RFs when calculating the global inverse solution. 

2.4.2. Selecting null-space behaviour with constrained optimization  

When solving for a global controller, there is no guarantee that a consistent inverse 

solution is found among different local controllers due to the infinite possible solutions 
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in a redundant system. In [23], two particular methods are outlined to overcome the 

redundancy problem: the first is by biasing the original training data to only allow a single 

inverse solution, and the second is to introduce a reward/cost function to draw the system 

to a desired solution. Although the first approach can be useful for simplified tasks, the 

benefits of using a redundant actuator are mostly lost when restricted to a single solution 

and can result in the task not being accomplished properly.  

Therefore, to ensure consistent null-space behaviour through the second approach, 

the task is formulated as a constrained optimization problem, where we aimed to 

minimize the cost function below: 

 𝐶𝑘(Δ𝑢𝑘) = (Δ𝑢𝑘 − Δ𝑢0,𝑘)
𝑇

𝑁(Δ𝑢𝑘 − Δ𝑢0,𝑘) (7) 

where Δ𝑢0,𝑘 = 𝜐(𝑝𝑘, 𝑢𝑘) is the actuator-space attractor that draws the robot to a desired 

configuration, and 𝑁 > 0 is a positive definite weighting matrix. The cost function in (7) 

assigns cost to each incoming training data point. It assigns higher cost for incoming Δ𝑢𝑘 

values that are further away from the desired pose, as defined in the function 𝜐(𝑝𝑘, 𝑢𝑘). 

This enables systematic resolution of the redundancy problem, while allowing a flexible 

definition of the user-desired null-space behaviour. A secondary control objective can 

hence be achieved by associating the null-space attractor  Δ𝑢0,𝑘 to the robot 

characteristics or the task’s requirement. One typical example of the null-space behaviour 

is to attract the robot configuration towards a rest pose 𝑢0, as defined in (8). For a fluid-

driven robot, a reasonable choice of rest position is to minimize the overall inflated 

chamber pressures: 

 Δ𝑢0,𝑘 = 𝐾𝑎(𝑢𝑘 − 𝑢0) (8) 

where 𝐾𝑎 is the attractor gain. Thus, all the training data is given a cost that is based on 
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the configuration space variables 𝑢𝑘, 𝑝𝑘, and Δ𝑢𝑘, with the result that all robot 

configurations will converge to a consistent solution.  

To solve the constrained optimization problem in (7), we first define: 

min
Δ𝑢𝑘

 𝐶𝑘(Δ𝑢𝑘) (9) 

subject to Δ𝑢𝑘 = [Δ𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾
𝑖   

The constrained optimization problem can be solved by converting the cost 

function into an immediate reward: 

 𝑟(𝑢𝑘) = 𝜎𝑖exp[−0.5𝜎𝑖
2𝐶𝑘(Δ𝑢𝑘)] (10) 

where 𝜎𝑖
2 is the mean cost for a particular local model, used to increase learning speed: 

𝜎𝑖
2 = ∑ 𝑤𝑖(𝑝𝑘, 𝑢𝑘)𝐶𝑘

𝑛

𝑘=1

∑ 𝑤𝑖(𝑝𝑘, 𝑢𝑘)

𝑛

𝑘=1

⁄  (11) 

where n is the total number of training samples. By changing to an immediate reward, we 

can find a solution which minimizes the following sum: 

∑ 𝑟(𝑢𝑘)𝑤𝑖(𝑝𝑘, 𝑢𝑘)(Δ𝑢𝑘 − [𝛥𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘]β𝐼𝐾
𝑖 ) 

𝑛

𝑘=1

 (12) 

The local model parameter in (4) is found by the reward-weighted regression 

formula, for each local controller model, 𝑖: 

 β𝐼𝐾
𝑖 = (𝑋𝑇𝑊𝑖𝑋)

−1
𝑋𝑇𝑊𝑖𝑌 (13) 

where 𝑋𝑘 = [Δ𝑝𝑟𝑒𝑓,𝑘, 𝑝𝑘, 𝑢𝑘] and 𝑌𝑘 = [Δ𝑢𝑘] are rows of the training datasets 𝑋 and 𝑌, 

respectively, and 𝑊𝑖 = diag(𝑟(𝑢1)𝑤1
𝑖 , … , 𝑟(𝑢𝑛)𝑤𝑛

𝑖 ). The weighting coefficient matrix, 

𝑊𝑖, is a diagonal matrix that applies weighting between each local controller, 𝑖, to each 
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training sample. For each local controller, the corresponding weighting coefficient matrix 

is determined by multiplying the reward of each training data point by the weighting of 

that point relative to the local controller. The reward as shown in (10) regulates the 

redundancy of the system by giving more importance to training data that exhibits the 

desired null-space behaviour as defined in (8). The weighting function defined in (6) more 

strongly considers the weights of training points closer in 𝑝𝑘, 𝑢𝑘 space to the local 

controller. Finally, a consistent global controller is derived from the weighted average of 

all the learnt local inverse models as in (5). The pseudo-code for the online learning 

process of the controller is detailed in Algorithm 1. 

 

 

 

 

 

 

 

 

3. Experiments, results & discussion 

3.1. Experimental platform 

The two-segment robot was actuated pneumatically by a set of stepper-motor driven 

Algorithm 1: Algorithm for online learning of consistent inverse 

motion mapping. 
1 For each new training sample [Δ𝑝𝑟𝑒𝑓,𝑘 , 𝑝𝑘 , Δ𝑢𝑘 , 𝑢𝑘] 

2  Add (𝑝𝑘 , Δ𝑢𝑘 , 𝑢𝑘) → Δ𝑝𝑟𝑒𝑓,𝑘 to the forward model through LWPR 

3     Update no. of forward models m and their local weightings 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)  

4 Evaluate actuator-space attractor: 
 Δ𝑢0,𝑘 = 𝐾𝑎(𝑢𝑘 − 𝑢0) 

5 Compute cost: 

 𝐶𝑘(Δ𝑢𝑘) = (Δ𝑢𝑘 − Δ𝑢0,𝑘)
𝑇

𝑁(Δ𝑢𝑘 − Δ𝑢0,𝑘) 

6      For each model 𝑖 = 1,2,3, … , 𝑚 

7           Calculate mean cost: 

  𝜎𝑖
2 = ∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)𝐶𝑘

𝑛
𝑘=1 / ∑ 𝑤𝑖(𝑝𝑘 , 𝑢𝑘)𝑛

𝑘=1  

8           Calculate reward of each data point: 

 𝑟(𝑢𝑘) = 𝜎𝑖exp (−0.5𝜎𝑖
2𝐶𝑘(𝑢𝑘)) 

9           Solve the following weighted regression problem with steps 10-14: 

 ∑ 𝑟(𝑢𝑘)𝑤𝑖(𝑝𝑘 , 𝑢𝑘) (Δ𝑢𝑘 − [𝛥𝑝𝑟𝑒𝑓,𝑘 , 𝑝𝑘 , 𝑢𝑘]
𝑇

β𝐼𝐾
𝑖 ) 𝑛

𝑘=1  

10           Add sample point to weighted regression so that: 

  𝑋𝑘 = [𝛥𝑝𝑟𝑒𝑓,𝑘 , 𝑝𝑘, 𝑢𝑘] 

11    𝑌𝑘 = [Δ𝑢𝑘] 

12   𝑊𝑖 = diag(𝑟(𝑢1)𝑤1
𝑖 , … , 𝑟(𝑢𝑛)𝑤𝑛

𝑖 ) 

13            Update inverse mapping parameter by reward-weighted regression: 

   β𝐼𝐾
𝑖 = (𝑋𝑇𝑊𝑖𝑋)

−1
𝑋𝑇𝑊𝑖𝑌 

14      end 

15 end 
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linear actuators. Each linear actuator consisted of a stepper motor coupled to a leadscrew, 

which controlled the stroke of a pneumatic cylinder. The robot has 6 input degrees-of-

freedom (DOFs), with each of the 6 chambers of the soft robot paired with a single linear 

actuator. 

The soft robot was actuated volumetrically, with the stepper motor positions used 

as a proxy for the actual cylinder volume. Each chamber was pre-pressurised to 0.040 

MPa to improve the bending response of the soft robot to input pressure change. An 

omnidirectional bending angle of up to 100° was attainable by each segment of the soft 

robot. The tip position of the robot was tracked by an electromagnetic (EM) tracking 

system (NDI Medical Aurora Tabletop Field Generator). Two 6-DOF tethered sensor (0.8 

mm diameter x 9 mm length) were attached to the robot: one at the robot tip, and another 

at the base of the robot as illustrated in Figure 3. The EM tracking system provides a 

tracking accuracy of 0.80 mm for position, and 0.70° for orientation at an update rate of 

40 Hz. It provides the necessary positional data for feedback control and also online 

learning of the controller. The local online learning algorithm was implemented in the 

Matlab environment, and applied the open-source library for LWPR [33].  
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3.2. Training data acquisition and model pre-training 

In order to effectively generate a functional global controller, pre-training data that 

sufficiently characterizes the robot’s workspace and possible configurations should be 

obtained.  

 Learning of the forward models was first performed offline with uniformly 

distributed random waypoints in actuator-space that were generated and connected by 

straight line trajectories. This formed the pre-training exploration data. For the purpose 

of this study, 80 random waypoints were sufficient to provide a large enough selection of 

forward mappings so that consistent inverse controllers could be learnt. An alternative 

controller initialization can be achieved by motor babbling, where small, random 

movements of the robot are used to learn the controller online. However, offline pre-

Figure 3. EM positional tracking coils mounted at the robot 

tip and base. The 6-DoF coil at the base offers a static frame 

of reference for all the measured tracking data in real time. 
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training was favoured in this study to better evaluate the null-space behaviour of the 

controller. Additionally, if purely online learning is used, redundant configurations are 

less likely to be observed, limiting the manoeuvrability of the robot and generality of the 

system. In this study, the tip position, 𝑝𝑘, is a 3x1 vector of the x-y-z Cartesian tip position 

tracked by the tip EM coil as in Figure 3. The chamber volumes, 𝑢𝑘, are a 6x1 vector 

which describes the current inflation state of each chamber of the robot (3 chambers per 

robot segment). 

Validation of the learned forward models was performed by splitting the obtained 

training data into a training and test set, at 80% and 20%, respectively. The root-mean-

square error (RMSE) of the predicted forward model outputs, Δp, versus the number of 

training iterations (epochs) for the training data, test data, and combined data is shown in 

Figure 4. A total of 15 training iterations were processed, resulting in 139 receptive fields 

generated for each output dimension. The RMSE of all three types of data was lowest at 

11 epochs, with the testing set converging to approximately 1 mm. To further validate the 

pre-trained model, the predicted outputs of the global inverse model was compared 

against the learned forward model using the combined test set. The resulting regression 

plots and histograms for each task space dimension are shown in Figure 5. The error 

bounds for each dimension of the learned inverse model were under 0.5 mm.  

  



17 

 

 

Figure 4. Validation of the forward model that was trained through LWPR. The error reached 

the lowest value at the 11th epoch. The training and testing data was split 80% and 20%, 

respectively, of the original data set. The root-mean-square error is with respect to the forward 

model output, Δ𝑝. The error of all three sets of data was lowest at 11 epochs, indicated by the 

vertical grey line. 
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3.3. Controller implementation 

Evaluation of the proposed control framework is performed on a two-segment soft 

continuum robot. Two tracking exercises are presented to assess the accuracy of the learnt 

Figure 5. Regression plots (Left) and histograms (Right) for the tip transition variable 

Δ𝑝 in each coordinate axis (x, y, z).  
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inverse kinematics as well as its ability to adapt to an unknown disturbance. The trajectory 

following is achieved through resolved motion rate control [34], and the desired task 

space displacement Δ𝑠𝑘 is defined by the proportional feedback controller: 

 Δ𝑝𝑘 = 𝐾𝑃(𝑝𝑘
𝑟𝑒𝑓

− 𝑝𝑘) (14) 

where 𝐾𝑃 is the proportional gain, 𝑝𝑘
𝑟𝑒𝑓

 is the desired tip position, 𝑝𝑘 is the 3D tip position 

at the current time-step. This desired task space displacement is the input to the learned 

global controller, which outputs the estimated stepper motor commands Δ𝑢. For the 

accuracy evaluation, the tracking error is calculated by the Euclidean distance between 

the desired tip position and the achieved tip position at each time step. The block diagram 

of the implemented control loop is shown in Figure 6.  

 

   

3.4. Trajectory tracking experiments –static tip load 

A comparison between the online-updating controller and the offline-learned controller 

was performed by trajectory tracking of a 3D path under two scenarios:  1) only using the 

pre-trained model with no online learning (‘offline’), 2) online learning while an 

unknown tip mass is added to the robot. 

Figure 6. Schematic showing the proposed control system architecture that facilitates online 

updating of the learned controller. The controller is constantly updated with incoming real-

time data provided by the EM position tracker.  



20 

 

The goal of these two experiments is to evaluate the effects of updating the pre-

trained model in an online manner and providing a comparison to only using the pre-

trained model. The test trajectory is a rectangular shape of sides 25 mm x 100 mm 

projected to the 3D workspace of the robot, which was approximated from the pre-

training data.  In each test scenario, the controller was run for 3 complete cycles, which 

had a total runtime of 400 s. Initially in each test, the robot was allowed to track to the 

first point of the desired trajectory until the error converged, at which point data 

acquisition was initiated and the desired trajectory point began to increment. The same 

error-proportional gain and pre-trained model was used for both experiments. In the 

following experimental sections, offline denotes the absence of online learning during 

trajectory tracking, and online denotes that online learning was enabled.  

3.4.1. No tip load - offline 

For the first experiment, only the offline pre-trained model was implemented into the 

robot controller. Online learning was disabled, and robot was free to track the target 

trajectory with no additional external disturbances. The tracking performance of the first 

experiment is presented in Figure 7. The average error was not observed to improve 

between the first and last trajectory cycle, with a mean absolute error of ±4.56 mm, and 

±5.53 mm, respectively. A recurring error pattern could be seen in each cycle, which 

depicts the repeatability of the learned controller. The tracking error could be attributed 

to a lack of densely populated receptive fields in those regions resulting in poorly defined 

inverse solutions. Other controller errors are also expected due to the hysteretic effects of 

the soft robot body which the proportional controller could not compensate for.  
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3.4.2. Static tip load – online learning 

For the second experiment, an additional tip mass was added to the robot tip, as illustrated 

in Figure 2(b). The total additional mass was 14.2 g and was not previously presented to 

the model during pre-training. The same pre-trained model applied in experiment 1 was 

used as a baseline for the online learning in this experiment. When online learning, a fixed 

number of training points are used to weight the influence of the local models. For this 

experiment, a maximum of 425 incoming training points was used in a first-in-first-out 

basis, where the oldest data points were removed first when exceeding the maximum of 

425. For each cycle of trajectory tracking, approximately 400 new training points were 

Figure 7. Experimental results for trajectory tracking with no additional tip loading using 

the pre-trained model with no online learning. (a) The actual tracked trajectory overlaid on 

the desired trajectory. (b) Close-up view of the corner tracking. (c) The Euclidean tip 

tracking error over time. The dotted lines indicate the start and end of each trajectory cycle. 

No tip load, OFFLINE 
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accumulated. The average online update frequency was 23 Hz. With the additional tip 

weight, the starting tracking error increased from approximately 2 mm as seen in the first 

experiment to 5 mm. By the inclusion of online learning in this controller, the real-time 

data obtained from the tracked tip position and actuator volumes could be input to the 

online learning algorithm, enabling incremental improvements to the overall learned 

inverse model. This could be observed in the results presented in Figure 8 and Table 1. 

The mean absolute tracking error of every cycle could be seen to decrease significantly, 

starting at ±4.42 mm in the first cycle and reducing to ±1.63 mm in the third cycle.  

Overall, online learning of the original pre-trained model could be seen to improve 

the tracking performance through continuous online updating of the inverse model, even 

in the presence of a previously unknown external disturbance.  
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Figure 8. Experimental results for trajectory tracking with additional tip loading, using the 

pre-trained model and updated with online learning. The algorithm is able to adapt to the tip 

disturbance in real-time, providing improved tracking performance. (a) The actual tracked 

trajectory overlaid on the desired trajectory. (b) Close-up view of the corner tracking. (c) The 

Euclidean tip tracking error over time. The error can be seen to consistently decrease over 

the 3 cycles.  

Static tip load, ONLINE 

Table 1. Summary of trajectory tracking performance for no tip load (offline) and 

static tip load (online) scenarios. 
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3.5. Trajectory tracking experiments – varying tip load 

To further investigate the control framework’s behaviour, a series of trajectory following 

tasks were performed while a variable fluid tip load as in Figure 2(c) was added to the 

robot tip. The fluid tip has an empty weight of 14 g, and has a maximum weight of 32 g 

when full (corresponding to an internal volume of 18 mL). Three experiments were 

performed for 3D trajectory tracking with the varying tip load: 1) only the empty (0% 

filled) fluid tip container added to the robot tip with no online learning, 2) increasing fluid 

load with no online learning, 3) increasing fluid load with online learning enabled.  

For this set of experiments, the test trajectory is a rectangular shape with sides 40 

mm x 60 mm that was projected on the workspace of the robot. The robot was allowed to 

run for 4 cycles. The same control parameters were used in the three scenarios, with only 

the option of online learning differing between them. The training data used for the pre-

trained model were based on 320 random waypoints, which resulted in 352 receptive 

fields generated. A tabulated summary of the tracking results is shown in Table 2, and 

the actual tracked trajectories and absolute Euclidean tracking errors over time are shown 

in Figure 10.  
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3.5.1. Empty fluid container tip – offline 

In the first scenario, only the pre-trained model was used, with no online updates made 

during the experiment. This ‘offline’ controller setting is akin to implementing a model-

based kinematic model, e.g. PCC, where no online updates are made to the model during 

runtime. The fluid container tip was empty for all four cycles of trajectory tracking, 

weighing approximately 14 g. Overall, the tracking performance for each cycle was seen 

to be relatively periodic as seen in Figure 10(a), with the mean absolute error remaining 

around the 6-7 mm range. No notable improvement could be seen between each cycle, 

however the mean absolute and max absolute error increased between cycle 1 and 2. This 

is likely because the robot was allowed to track to the first point until error converged 

before data acquisition began and the remainder of the trajectory was tracked. The 

primary source of error in the trajectory tracking can be attributed to the additional 

unmodelled tip load due to the empty fluid container tip. The tip load induces unmodelled 

loading to the entire robot body, creating a large disparity between the original pre-trained 

Figure 9. Variable fluid tip load used for experiments. The tip load is varied by injecting water 

at an approximate rate of 0.6 mL/s at the beginning of cycle 3 and 4. The empty fluid tip is 14 

g, and has a maximum weight of 32 g when full. For the trajectory tracking experiments under 

varying tip load, 10 g is added to the tip load in cycle 3, and 6 g is added in cycle 4. 
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kinematic model’s estimation, and the actual robot configuration.  

Unlike the static tip load experiment in Section 3.4.2. where the tracking error 

would reduce over each cycle due to the online learning, we can see a consistent offset of 

the tracked trajectory versus the desired trajectory.  

3.5.2. Increasing fluid load - offline 

For the second scenario, a varying tip load was applied to the robot tip by increasing the 

fluid volume in the fluid tip. To fill the fluid tip, water was injected through the ‘water 

in’ tube labelled in Figure 9 at a rate of approximately 0.6 mL/s. For the first two cycles 

of trajectory tracking, the fluid tip was empty (0% filled), which is the same conditions 

as the first two cycles of the previous experiment in Section 3.5.1. In cycle 3 and 4, the 

fluid levels were increased in accordance to Figure 9: from the beginning of cycle 3, an 

additional 10 g of water was added to the fluid tip at a rate of ~0.6 mL/s, with a total tip 

load of 24 g. This corresponds to 56% of the entire fluid tip cavity filled. At the start of 

cycle 4, an additional 6 g of water was added to the fluid tip, corresponding to a total 

additional tip weight of 30 g, or 89% filled. At 30 g, the fluid tip is an additional 72% of 

the robot body mass (41.71 g), presenting substantial loading to the robot tip. Depicted in 

Figure 9 is the deformation caused by the fluid load when the robot is at the neutral, 

unactuated position. When tracking the trajectory, the moment caused by the load is 

larger due to the robot bending, and induces significant unmodelled deformation.  

In the first two cycles, it can be seen that the tracking error and path taken was 

very similar to the results in Section 3.5.1. This is because the controller setting and tip 

load are the same between the two experiments in the first two cycles. When fluid level 

was increased in the tip load in cycle 3, the errors also increased, eventually leading to 

instability in the 4th cycle which is seen in the left-hand side of the tracked trajectory path 
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in Figure 9(b). A major source of the instability can be attributed to the inability of the 

offline controller to track the desired trajectory due to large corrective overshoot from the 

error induced by the tip load. Also, the fluid tip is only partially filled, leading the centre 

of mass to constantly change as the robot configuration changes, further amplifying any 

instability.  

 

3.5.3. Increasing fluid load – online learning  

In the third scenario, online learning was enabled during trajectory tracking while the 

fluid load was increased in accordance to Figure 9. The same pre-trained model use in 

the previous two scenarios was also used here. For online learning, the maximum number 

of data points was set to 550. For each cycle of trajectory tracking, approximately 300 

new training points were accumulated.  Similar behaviour to the online static tip load 

experiment in Section 3.4.2. can be seen, with the error reducing in each cycle. Over the 

four cycles, the average tracking error reduced from ±4.16 mm to ±0.98 mm. In contrast 

to the independent test in Section 3.5.2. that demonstrates offline tracking with increasing 

fluid load, the online learning controller was able to avoid instability, and even reduce 

the overall tracking error. The tracked trajectory and errors can be seen in Figure 9(c) 

and Figure 10(c), respectively. 

In this third scenario, the update rate was limited to approximately 7 Hz, i.e. each 

online update took ~0.143 s to complete. A notable limitation of the online learning is 

that the update speed is directly tied to the number of stored training data points and local 

models, because the weighting of each data point to each local controller must be made 

at each update, in accordance to the weighting function (6). The online update rate for 

this controller was significantly lower than that in Section 3.4.1. because 352 local 
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controllers were used in the pre-trained model, compared to 139 local controllers. This 

extensive computation time is a bottleneck for the online learning framework, as too many 

local models or stored data points would cause the update rate to slow to impractical 

speeds.  A potential method for easing the computational intensity is through the use of 

training data sparsification. This would involve limiting and selectively processing 

training data obtained online so that only the ‘most important’ training points would be 

used.  

In general, the online learning experiments performed in this study highlight the 

difficulties of using a standard, non-adaptive controller for control of a soft robot under 

external disturbance.  High unmodelled morphological change can cause typical feedback 

controllers utilizing Jacobians to exhibit inaccurate or unstable trajectory tracking 

because they assume low error configurations, which is not true for soft robots under any 

notable levels of loading. However, through online learning the robot configuration error 

can be minimized by effectively updating the Jacobian to adapt to disturbances based on 

real-time tracking data. For more extreme cases of deformation, the controller can 

potentially fail to track the target trajectory. This could be caused by the robot 

configuration lying far outside of the pre-trained local linear models, or due to limitations 

of the robot actuation (e.g. upper pressure limit of the robot chambers).    
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Figure 10. Experimental results for trajectory tracking with different controller and tip load 

conditions. The robot was allowed to follow the trajectory for 4 cycles, as indicated by the 

vertical dotted lines. (a) Offline trajectory tracking with empty fluid container tip weighing 14 

g. A repeating error pattern is observed due to the static load. (b) Offline trajectory tracking 

with fluid tip load increased by 10 g in cycle 3, and 6 g in cycle 4. The tracking error increased 

with fluid load, becoming unstable in the 4th cycle. (c) Trajectory tracking with online learning 

enabled. The fluid tip load was increased by 10 g in cycle 3 and 6 g in cycle 4. Instability was 

avoided and error was also reduced. 
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4. Conclusions & future work 

In this study, we proposed and validated an online learning-based control framework to 

control a hyper-redundant two-segment soft robot in a 3D positional task space. The use 

of an online data-driven learning approach enables high adaptability to unmodelled 

characteristics both internal and external to the soft robot, while resolving consistent 

redundancy behaviour. A pre-trained inverse model was learned for the two-segment soft 

robot and applied in a proportional motion rate controller. For the static tip load case with 

online learning, the robot controller was able to adapt quickly to an unknown static tip 

weight/load, with the average absolute error reducing from ±4.42 mm to ±1.63 mm over 

three cycles of the tested 3D trajectory. A more demanding trajectory tracking task was 

also performed with a varying fluid tip load. Without online learning, the robot became 

unstable and was unable to compensate for the maximum weight by the 4th cycle. 

However, with the addition of online learning the robot was not only able to avoid 

instability, but was also able to reduce the mean absolute tracking error to < 1 mm.  

Our future work includes further extension of the proposed control framework to 

three or more segments of a soft robot and incorporation of a greater number of task space 

Table 2. Summary of trajectory tracking performance for experiments with variable 

fluid tip load. 
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variables to improve the manipulability of the robotic system. In the future experimental 

settings, we would also aim to replace the tethered EM tracking system with a self-

contained sensing modality, such as a camera [35] or a fibre optic system [36] such as 

those based on fiber Bragg gratings [37]. This would allow evaluation of the proposed 

learning algorithm in application-based scenarios. Additionally, secondary objectives can 

be incorporated into the algorithm’s cost calculation, such as obstacle avoidance, and 

could provide customizability for task-specific performance. Improvement to the 

computational speed of the learning framework can also be made, with a possible solution 

being sparsification, which could be used to select training data so that only the most 

relevant data is used.  

In terms of application, soft manipulators are inherently non-ferromagnetic and 

have more easily disposable bodies which present interesting opportunities to be used in 

harsh environments where traditional robots are unable to be used. An example of this is 

under magnetic resonance imaging (MRI), where the strong magnetic field involved 

disallows any traditional robots. Towards MRI-guided robotic interventions [38], the 

integration of the proposed online learning algorithm and a soft robotic manipulator could 

enable safe and adaptive navigation in surgery. 
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