2,480 research outputs found

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Multi-headed self-attention mechanism-based Transformer model for predicting bus travel times across multiple bus routes using heterogeneous datasets

    Get PDF
    Bus transit is a crucial component of transportation networks, especially in urban areas. Bus agencies must enhance the quality of their real-time bus travel information service to serve their passengers better and attract more travelers. Various models have recently been developed for estimating bus travel times to increase the quality of real-time information service. However, most are concentrated on smaller road networks due to their generally subpar performance in densely populated urban regions on a vast network and failure to produce good results with long-range dependencies. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database and the vehicle probe data. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. This study developed a multi-headed self-attention mechanism-based Univariate Transformer neural network to predict the mean vehicle travel times for different hours of the day for multiple stations across multiple routes. In addition, we developed Multivariate GRU and LSTM neural network models for our research to compare the prediction accuracy and comprehend the robustness of the Transformer model. To validate the Transformer Model's performance more in comparison to the GRU and LSTM models, we employed the Historical Average Model and XGBoost model as benchmark models. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. Only the historical average bus travel time was used as the input parameter for the Transformer model. Other features, including spatial and temporal information, volatility measures (e.g., the standard deviation and variance of travel time), dwell time, expected travel time, jam factors, hours of a day, etc., were captured from our dataset. These parameters were employed to develop the Multivariate GRU and LSTM models. The model's performance was evaluated based on a performance metric called Mean Absolute Percentage Error (MAPE). The results showed that the Transformer model outperformed other models for one-hour ahead prediction having minimum and mean MAPE values of 4.32 percent and 8.29 percent, respectively. We also investigated that the Transformer model performed the best during different traffic conditions (e.g., peak and off-peak hours). Furthermore, we also displayed the model computation time for the prediction; XGBoost was found to be the quickest, with a prediction time of 6.28 seconds, while the Transformer model had a prediction time of 7.42 seconds. The study's findings demonstrate that the Transformer model showed its applicability for real-time travel time prediction and guaranteed the high quality of the predictions produced by the model in the context of a complicated extensive transportation network in high-density urban areas and capturing long-range dependencies.Includes bibliographical references

    Predicting Bus Travel Time with Hybrid Incomplete Data – A Deep Learning Approach

    Get PDF
    The application of predicting bus travel time with real-time information, including Global Positioning System (GPS) and Electronic Smart Card (ESC) data is effective to advance the level of service by reducing wait time and improving schedule adherence. However, missing information in the data stream is inevitable for various reasons, which may seriously affect prediction accuracy. To address this problem, this research proposes a Long Short-Term Memory (LSTM) model to predict bus travel time, considering incomplete data. To improve the model performance in terms of accuracy and efficiency, a Genetic Algorithm (GA) is developed and applied to optimise hyperparameters of the LSTM model. The model performance is assessed by simulation and real-world data. The results suggest that the proposed approach with hybrid data outperforms the approaches with ESC and GPS data individually. With GA, the proposed model outperforms the traditional one in terms of lower Root Mean Square Error (RMSE). The prediction accuracy with various combinations of ESC and GPS data is assessed. The results can serve as a guideline for transit agencies to deploy GPS devices in a bus fleet considering the market penetration of ESC

    Machine learning for early detection of traffic congestion using public transport traffic data

    Get PDF
    The purpose of this project is to provide better knowledge of how the bus travel times is affected by congestion and other problems in the urban traffic environment. The main source of data for this study is second-level measurements coming from all buses in the Linköping region showing the location of each vehicle.The main goal of this thesis is to propose, implement, test and optimize a machine learning algorithm based on data collected from regional buses from Sweden so that it is able to perform predictions on the future state of the urban traffic.El objetivo principal de este proyecto es proponer, implementar, probar y optimizar un algoritmo de aprendizaje automåtico basado en datos recopilados de autobuses regionales de Suecia para que poder realizar predicciones sobre el estado futuro del tråfico urbano.L'objectiu principal d'aquest projecte és proposar, implementar, provar i optimitzar un algoritme de machine learning basat en dades recollides a partir d'autobusos regionals de SuÚcia de manera per poder realitzar prediccions sobre l'estat futur del trànsit urbà

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Link Travel Time Prediction Based on O-D Matrix and Neural Networks

    Get PDF
    Ühistranspordi kasutajad on tihtipeale huvitatud tĂ€psest reisiajast seetĂ”ttu, et tĂ”husalt aega planeerida. Kuid ebaregulaarsete reisiaegade tĂ”ttu on seda ĂŒsna keeruline teha. Reisiaegade muutused vĂ”ivad olla pĂ”hjustatud nĂ€iteks ilmastikuoludest, liiklusĂ”nnetustest ja liiklusnĂ”udlusest. Intelligentse transpordisĂŒsteemi kaasamisega ĂŒhistranspordi sĂŒsteemi muutus hĂ”lpsamaks bussireisi andmete kogumine, sealhulgas ka reisiaegade kogumine. Kogutud andmeid on vĂ”imalik kasutada tulevaste reiside prognoosimiseks, rakendades erinevaid teaduslikke meetodeid, nĂ€iteks Kalmani filtrit, masinĂ”pet ja tehisnĂ€rvivĂ”rke. Antud lĂ”putöö eesmĂ€rgiks on luua tehisnĂ€rvivĂ”rgu mudel, mis ennustab tiheda liiklusega teekonna reisiaega. Selleks kasutatakse algpunkt-sihtpunkt maatriksit, mis on koostatud sama teekonna kohta kogutud GPS informatsioonist. EnnustustĂ€psuse arvutamiseks kasutati antud lĂ”putöös ruutkeskmist viga (RMSE). Tulemuste analĂŒĂŒs nĂ€itas, et antud mudel on piisav tegemaks tulevaste reisiaegade ennustusi.In public transportation system, commuters are often interested in getting accurate travel time information regarding trips in the future in order to plan their future schedules effectively. However, this information is often difficult to predict due to the irregularities in travel time which are caused by factors like future weather conditions, road accidents and fluctuations in traffic demand. With the introduction of Intelligent Transportation System into public transport system, it has been easy to collect data regarding bus trips such as travel times data. The data collected can be used to make predictions regarding trips in the future by applying scientific methods like Kalman filter, machine learning, and deep learning neural network. The goal of this thesis is to develop a neural network model for predicting travel time information of a busy route using Origin-Destination matrix derived from a historical GPS dataset of the same route. The prediction accuracy of the NN model developed in this thesis was measured using Root Mean Square Error (RMSE). Analysis of the result showed that the model is sufficient for making predictions of travel time for trips in the future

    Improving the imperfect passenger flow at Eindhoven Airport

    Get PDF

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • 

    corecore