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Link Travel Time Prediction Based on O-D Matrix and Neural Net-
works

Abstract:

In public transportation system, commuters are often interested in getting accurate
travel time information regarding trips in the future in order to plan their future schedules
effectively. However, this information is often difficult to predict due to the irregularities
in travel time which are caused by factors like future weather conditions, road accidents
and fluctuations in traffic demand. With the introduction of Intelligent Transportation
System into public transport system, it has been easy to collect data regarding bus trips
such as travel times data. The data collected can be used to make predictions regarding
trips in the future by applying scientific methods like Kalman filter, machine learning
and deep learning neural network.

The goal of this thesis is to develop a neural network model for predicting travel time
information of a busy route using Origin-Destination matrix derived from a historical
GPS dataset of the same route. The prediction accuracy of the NN model developed in
this thesis was measured using Root Mean Square Error (RMSE). Analysis of the result
showed that the model is sufficient for making predictions of travel time for trips in the
future.

Keywords: Public Transit System, Intelligent Transportation System, travel time, Neural
Network, Origin Destination matrix, Kalman filter
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Reisiaegade Ennustamine Kasutades algpunkt-sihtpunkt Maatriksit
ja Tehisnärvivõrke
Lühikokkuvõte:

Ühistranspordi kasutajad on tihtipeale huvitatud täpsest reisiajast seetõttu, et tõhusalt
aega planeerida. Kuid ebaregulaarsete reisiaegade tõttu on seda üsna keeruline teha. Rei-
siaegade muutused võivad olla põhjustatud näiteks ilmastikuoludest, liiklusõnnetustest ja
liiklusnõudlusest. Intelligentse transpordisüsteemi kaasamisega ühistranspordi süsteemi
muutus hõlpsamaks bussireisi andmete kogumine, sealhulgas ka reisiaegade kogumine.
Kogutud andmeid on võimalik kasutada tulevaste reiside prognoosimiseks, rakendades
erinevaid teaduslikke meetodeid, näiteks Kalmani filtrit, masinõpet ja tehisnärvivõrke.
Antud lõputöö eesmärgiks on luua tehisnärvivõrgu mudel, mis ennustab tiheda liiklusega
teekonna reisiaega. Selleks kasutatakse algpunkt-sihtpunkt maatriksit, mis on koostatud
sama teekonna kohta kogutud GPS informatsioonist. Ennustustäpsuse arvutamiseks kasu-
tati antud lõputöös ruutkeskmist viga (RMSE). Tulemuste analüüs näitas, et antud mudel
on piisav tegemaks tulevaste reisiaegade ennustusi.

Võtmesõnad:
ühistransport, intelligentne transpordisüsteem, reisiaeg, tehisnärvivõrk, algpunkt-sihtpunkt
maatriks, Kalmani filter.
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1 Introduction

1.1 General Overview
The birth of public bus transportation system has contributed immensely to the growth
of cities in developed countries like New York in United State of America, Tallinn in
Estonia, Beijing in China and Munich in Germany. It has been used to reduce traffic
congestion, reduce the emission of greenhouse gas that are harmful to the environment,
improve access to opportunities within connected cities, boost economy growth and
lastly, improve quality of life in general. However, most people are still reluctant to
take public bus and thus, prefer to go around with their private vehicles. This is quite
understandable because the system is easily affected by weather, traffic signals, traffic
fluctuations, peak hours and road incidents which often leads to delay in set schedules,
irregularities in journey times and bus arrival times. In some countries, the difference
between the set schedule and actual arrival times could be up to ten minutes or more.
This does not only affect the plans of the commuters but also reflects on the economy
growth. Based on this, there have been increasing demand for scientific techniques to
solve the lingering problems.

1.1.1 Factors Affecting Travel Time

There are a lot of factors that lead to the variation of public bus travel time and some of
these factors are not measurable. Some of the factors also depend on the type of route
being considered. Bargegol et al in [3] identified some factors that do affect travel time
and some of them include passenger boarding time, changes in average speed, pedestrian
walking speed and bus capacity.

Fosgerau et al in [4] defined Travel time as a combination of free traffic flow travel
time and delays which contribute heavily to the variation in travel time. These delays
are then broken down into two types, systematic delay which is the expected delay and
unexplained delay which is regarded as unforeseen delay [4].

Unforeseen delays are unpredictable delays that are non-recurrent. That is, these
delays do not happen every time and there is no available pattern that can be traced or
matched to predict such delays. Type of delays that fall into this category are delays
caused by accident since most accidents are always unexpected. Delays caused by
unannounced on-road workers is also an example of unforeseen delays. This kind of
scenario often happen when road maintenance are announced and the trip schedules does
not reflect such delays to the commuters who regularly ply the affected route. Delays
caused by traffic light are also in this category because throughout the lifetime of a trip,
a bus might arrive at a junction when the traffic light is red on more than one occasion.
In busy cities, a red traffic light might take up to 2-3 minutes before switching to a
green light and this often reflect on the bus travel time. The experience or psychological
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behavior of a driver can also lead to a delay and this cannot be measured. In summary,
unforeseen delays are not part of a trip day to day characteristics and thus, are always
very difficult to measure.

Systematic delays are delays that can be explained by observing the characteristics of
the trip [4]. Delay time of systematic delays can be predicted just by observing patterns
of previous trip along the same route. Example of delays that fall into this category are
delay caused by number of passengers boarding or alighting the bus at bus stops along
the route. High number of passengers boarding or alighting the bus will increase the
dwelling time at that bus stop and will also reflect on the total travel time. Bargegol et al
in [3] mentioned that it is possible to reduce the delay caused by dwelling time at stops
by increasing the number of entry and exit doors on a bus.

In addition, delay caused by traffic congestion along the bus route is also an example
of systematic delay. During peak and non-peak periods, travel time always varies and
that is due to time spent in traffic congestion during rush hours of peak periods which are
not always accounted for in the bus trip schedule. Traffic congestion can be measured by
observing the average speed of a trip. If the average speed is low, we can conclude that
there was a traffic congestion at a point in the trip. Therefore, changes in average speed
will surely contribute to the variation in bus travel time.

Number of stops observed in the life time of a given trip is strongly correlated to the
average travel time [5]. Stops are made by buses only if there are passengers who want
to alight or board the bus from the list of scheduled stops. If there are no passengers at a
stop, the bus continues its journey, however, if there are passengers, the bus has to stop.
These stops can not be predicted, although it can be estimated based on studied pattern.
For example, during peak hours, the number of stops observed are always more than that
of non-peak hours.

Lastly, weather changes can also affect the travel time of a bus. For example, due to
global warming, we might experience sunshine immediately after a rainfall on the same
day and it is expected that public buses maintain specific speed for different weather
conditions. In this case, there will be variation in travel time for any trip within the two
weather conditions.

Although some systematic delays discussed thus far can be measured and used in
making accurate travel time prediction, they can not all be captured due to the type of
data available.
Table 1 gives a summary of all factors that have been discussed so far and the delay
group each belongs to.
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Table 1. Factors affecting bus travel time variability

Factor Delay group
Road accident Unforeseen delay

Change in average speed Systematic delay
Number of observed stops Systematic delay

Driver’s experience/behavior Unforeseen delay
Number of passengers boarding and alighting the bus Systematic delay

Change in weather condition Unforeseen/Systematic delay
Road accident Unforeseen delay

Traffic light at junction traversed Unforeseen delay
Road workers Unforeseen delay

Change of driver Systematic delay
Traffic congestion Systematic delay

1.1.2 ITS influence on Public Transport

Technological advancement has reflected heavily on the effective operation of public
bus transportation system and of notable mention is its enhancement through application
of Intelligent Transportation System (ITS). ITS is defined as the use of state of the art
technologies to improve transportation system of any kind. With ITS, the system has been
made faster, efficient, safer, convenient and understandable to all by providing systems
like Advanced Public Transportation System (APTS). APTS as a system consists of
different subsystems such as Intelligent Traffic System, Advanced Traveler Information
System (ATIS) and Advanced Vehicle Location System (AVLS).

AVLS are used to monitor the current position of buses which is reported by Global
Positioning System (GPS) that are installed inside the buses. The information provided
can then be used to report any significant delay or further analyzed to provide optimized
route options. ATIS is used by transport agencies to broadcast information regarding link
arrival time and journey times to commuters through web platforms, mobile applications
or sophisticated devices [6]. In particular, commuters are interested in the information
relayed by ATIS as they want to know the actual travel times of buses and also the arrival
time of the next bus at a particular stop while transport agencies are interested in the
information relayed back by the AVLS to provide better service to commuters.

Although ATIS is capable of providing near-accurate trip information in real time,
the demand of commuters has changed from getting accurate real-time trip information
to been able to get near-accurate information about future trips. That is, given a future
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date and a particular trip between two or more stops, the system should be able to
give near-accurate trip information while taking it consideration different patterns that
might occur. In its actual sense, these values are often difficult to predict as it cannot be
measured directly but if achieved, it will be a massive boost to the acceptance of public
bus transportation in larger cities.

This research area is a popular research field in ITS because researchers are trying
to come up with different scientific methods that can be used to improve accuracy of
previous research. However, results have shown that more work still needs to be done in
order to meet commuters’ accuracy demand. Past researches have focused on predicting
arrival times of public bus at different stops while some focused on predicting traveling
time between stops. In this thesis, the focus is on developing a model for predicting
near-accurate link travel time information using an Origin Destination matrix (OD)
generated from historical GPS dataset obtained from public buses in the city of Dublin,
Ireland. The OD matrix allows us to represent travel time distribution between different
combinations of stops.

1.2 Objectives
The main objective of the research described in this master’s thesis is to develop and test
a model that is capable of providing accurate prediction of link travel times distributed
across a given trip in the future. To achieve the main objective, the following objectives
had to be met:

• Understand different state-of-the-art methods applied to travel time prediction. The
goal here is to identify the most suitable model to use for predicting travel times
based on historical GPS data.

• Identify popular data sources that currently exist and determine their usefulness to
the research based on factors like ground truth etc.

• Understand and analyze the obtained data to identify values that affect travel times
under normal traffic conditions and abnormal conditions. Also, to identify values
that could affect the reliability of predicted result.

Finally, the result of the tested model is summarized and presented in a compre-
hensive format.

1.3 Scope
Travel time prediction problem is a broad research topic in the field of Intelligent
Transportation System. A wide variety of prediction methods have been proposed in
literature in order to provide accurate travel time predictions in public transportation
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system. The proposed methods have been applied to data obtained from public bus, taxis,
trains or trams. In this thesis, the research is limited to the following:

First, the work done is applied to a selected bus line of an urban route. That is
the scope is limited to a particular transportation type and route in an urban network.
However, the concept can be easily extended to different public transport mode like taxi
or train.

Secondly, it has been mentioned that there are a lot of factors that leads to the variation
of bus travel time like weather, bus dwelling time and traffic signals. In this thesis, the
focus is limited to bus scheduled departure time at the origin stop with focus on both the
hour and the minute, the distance between stops, speed, and lastly, the day of the week.
This is mainly because of the limitation of available dataset.

Finally, the prediction is done on a historical database of sampled GPS dataset offline.

1.4 Contribution
The methodologies discussed in this thesis are mainly built on Neural network and
Data analysis. The use of O-D matrix alongside Neural network for link travel time
distribution and prediction was investigated. The use of O-D matrix for travel time
prediction might be an interesting concept since it presents a new approach towards
travel time prediction for public transportation system. With O-D matrix, we can present
the travel time distribution across all links in a given trip by considering all possible
combinations of links throughout the trip. We believe that the approach discussed can be
adopted by transport agencies and also a good starting point for further research.

1.5 Road Map
This thesis is arranged as follows:

Chapter 2 covers state-of-the-art methods that have been used in solving travel time
prediction problem with focus on data collected from GPS installed in transit bus in
major cities. For each reviewed literature, the test data, method and travel time factors
considered are discussed.

Chapter 3 describes the methodology and the neural network model used in solving
the travel time prediction problem.

Chapter 4 describes the dataset and how it was collected. Since the dataset is a
GPS dataset, the filtering algorithms used in removing outliers in the dataset was also
discussed. The chapter also describes the result obtained after analyzing the filtered
dataset.

Chapter 5 presents the result of the proposed method after being applied on a test
GPS dataset.

Finally, in chapter 6, the recommendations for future works and conclusions of the
study is presented.
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2 State of the Art
Over the years, different state-of-the-art prediction methods have been introduced and
applied to travel time prediction problem. The most popular type of methods have been
based on Kalman filter algorithms, artificial neural networks (ANN) and historical data
analysis. Some proposed methods have also combined two models together either two
artificial neural networks or an ANN model with Kalman filter algorithm. The focus of
each proposed model is to increase the accuracy of travel time prediction while putting
into consideration factors that often affect travel time. In this chapter several prediction
methodologies from previous research studies that were applied to GPS type bus dataset
will be reviewed. The prediction method, type of data and the criterion used to achieve
prediction accuracy will be discussed for each reviewed literature. The summary of all
reviewed literature is shown in table 3. It contains information about the type of method,
the description of the dataset used and lastly, the factors considered.

2.1 Historical Database model
In this class of prediction model, prediction is made by studying the pattern of historical
travel time of past journeys within the same period. This model assumes that the traffic
condition at the selected route is always stable at any given time period. In this section,
studies based on historical database are reviewed.

Weiping et al in [7] introduced a novel travel time prediction model referred to as
Historical Trajectory based Travel/Arrival Time Prediction (HTTP). The framework is
capable of making real-time travel time prediction of next segments of an active bus
journey based on large collection of historical trajectories. It was divided into three
modules: Bus Status Monitoring module (BSM), Travel Time Prediction (TTP) module
and Similar Trajectory Search (STS) module [7]. The prediction made by TTP module
is based on similarities that exist in the trajectories collected by the BSM module. The
study took advantage of traffic patterns that exist in road segments which when observed
and analyzed can be used in making future prediction.

The framework combines two prediction schemes called Passed Segment Scheme and
Temporal Feature Scheme to form a single prediction scheme called hybrid prediction
scheme that was further divided into two. The passed segment scheme makes prediction
by identifying pattern similarities in trajectories observed on previous segments while
temporal feature is based on temporal journey features like hour of the day and day of
the week. These temporal features are used in order to find similarities in trajectories for
travel time prediction.

The proposed framework was applied on a trajectory dataset collected from Taipei
City in Taiwan to evaluate the prediction accuracy and efficiency. The result showed that
the framework significantly made better prediction than state-of-the-art techniques like
TransDB scheme and average travel time scheme.
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In [8], Vanajakshi et al predicted travel time by studying the historical travel time
and computing the average. This method was compared with the actual proposed model
which was based on Kalman Filter algorithm. Travel time based on historical average
is often used for comparison purposes when a novel model is introduced. Travel time
prediction based on historical average was also used in [7], [9].

2.2 Kalman Filter
Kalman Filter (KF) technique have been used in some studies to solve travel time
prediction problem. It is a recursive method that consist of set of mathematical equations
which implement an optimal predictor-corrector type estimator, that is, it tries to minimize
the estimated error after some predefined conditions have been met [10]. With its
recursive ability, KF makes an estimate of the current state based on previous estimates
referred to as the posteriori. KF ability to make near-accurate estimate from sequence of
observed data has made the method popular in different literature relating to travel time
prediction and estimation.

In [11], Yang et al applied kilman filter and estimation algorithm to travel time
prediction. In the study, the focus was on solving travel time prediction problem during
peak periods like traffic congestion caused due to special events (e.g concerts, graduation
ceremonies and conventions) at a specific route. The traffic flow at Duluth Entertainment
and Convention Center (DECC) during a graduation ceremony on April 25 and May 22,
2004, was used as case study.

The prediction model was modeled as follows,

xk+1 = Φkxk + wk

Where:

xk is the travel time to be predicted at k

Φk is the state transition variable relating xk to xk+1. The value is obtained through
historical data.

wk is a zero mean Gaussian noise sequence with a covariance value denoted as Qk.

The travel time prediction was done every three minute interval and the data is
obtained every ten seconds through GPS device installed on three test vehicles running
the specified routes back and forth till the traffic congestion elapsed (45 Minutes in this
case). That is, the KF model was applied recursively every three minutes on the observed
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data to predict the next travel time.
The observation equation associated to the value of xk is given as:

zk = xk + vk

Where:

zk is the average travel times reported by the three test vehicles

vk is the measurement noise represented as a zero mean Gaussian sequence with a
co-variance value Rk.

The performance of the model was analyzed and it was reported that the prediction
accuracy depends on how long the traffic congestion lasted, that is if the traffic congestion
duration is short then average error will be large. Also, if there is a sudden change in the
actual travel time, there will be a huge difference between the predicted travel time and
the observed travel time.
The model prediction error in MARE was initially reported as 17.61% but after applying
a two-point data interpolation technique, it was observed that the MARE can be reduced
to 4.40%. The two-point data interpolation approach involves introducing two artificial
data points by calculating the average of any two consecutive data points. This makes
the prediction less likely to be affected by fluctuation in observed travel time [11].

The author also studied the effect of prediction time interval and noise variance on
the prediction error. The study showed that increasing the prediction time interval will
increase the prediction error while increasing Rk and decreasing Qk will reduce the value
of MARE. However, the best MARE value(4.40%) was obtained after applying the data
interpolation technique.

Although the prediction error of the model is said to be acceptable by the Minnesota
traffic engineer, the model is still affected by the limitation of KF techniques. Since KF
estimation at each time step is a linear combination of previous measurements, therefore,
it can only be used in linear system and most real world systems are non-linear [12].
In addition, only travel time parameter were considered in the study, that is factors that
might affect travel time such as weather, speed and time of the day were not considered.

In [8], Vanajakshi et al used a Kalman Filter algorithm to predict travel time under
heterogeneous traffic condition on an urban route in the city of Chennai, India. The
approach involves dividing the entire route into subsections and predicting the travel
time of each subsection.
Three buses were used in this research:probe vehicle 1 (PV1), probe vehicle 2 (PV2) and
test vehicle (TV). The probe vehicles were used to gather data fed into the KF algorithm
used in predicting the travel time of the test vehicle as it travels along the subsections in
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the route. That is, when the test vehicle is at k subsection, the travel time for the next
subsection represented as k+1 is predicted. The predicted TT is then compared to the
actual travel time observed by TV at k+1.

The travel time distribution across the different segment is given as:

x(k + 1) = a(k)x(k) + w(k)

where,

x(k) is the observed travel time while travel subsection k.

a(k) value that relates travel time observed at k and k+1. Obtained using PV1.

w(k) zero mean Gaussian sequence.

We can see that the equation is similar to the prediction model used in [11]. In
addition, the same measurement model used by Yang et al [11] was also used in the
study.

The algorithm prediction accuracy was computed using absolute prediction error
(APE). The result showed that for the two subsections considered while making prediction
for a single day, the APE was 13.75% and 17.09% respectively. The prediction of the
KF algorithm was also compared against the TT average observed by both PV1 and PV2.
The result of the comparison showed the proposed KF algorithm performed better than
the TT average.

Although, the algorithm discussed in [8] can be used in APTS applications built
specifically for heterogeneous traffic conditions, the model still suffers from the limita-
tions of KF models.

Huifeng et. al in [13] used Kalman Filter to solve dynamic travel time prediction
problem. Dynamic travel time prediction involves updating the travel time predicted
at segment k+1 using both observed and predicted travel time at segment k. With this
approach, changes that might have occurred while on the route like varying speed,
accidents etc. would be considered in the prediction. In this study, the selected route was
divided into 13 segments and data was collected for different time periods (considering
both peak and non-peak hours). The prediction of the model was compared to the
observed travel time and the result showed that the model made near accurate predictions
that is sufficient enough.
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2.3 Artificial Neural Networks
Neural Network is a concept that was inspired by the operation of the brain and it as been
successful in solving problems related to pattern recognition. A detailed description on
how neural network works is presented in chapter 4 of this thesis.

NN models used in solving travel time prediction problem often differ by the architec-
ture, input-output combination and the training algorithm used. In this section, different
studies that focused on using NN solve travel time prediction are reviewed.

Zegeye et al in [9] developed a Multi-Layer Perceptron (MLP) neural network model
which is capable of predicting accurate travel time information. The study was motivated
by the need to provide travel time information to public bus users using only travel time
data collected through GPS. The model is based on studying both the historical and real
time arrival and departure time patterns at different stops in the selected route. Unlike KF
methods discussed in [11], [8] and [13], NN model used in the study is able to capture
non-linear relationship between travel times. The NN model has one hidden layer with
15 neurons and was trained using Levenberg-Marquardt algorithm.

The prediction algorithm was given as:

TT kcj = TT kij − TT kic

Where:

TT kcj is the predicted travel time from stop c to stop j.

TT kic is the observed travel time from stop i to a point c.

TT kij is the neural network predicted travel time from a stop i to j.

After analysis of the dataset used in the study, it was observed that the time of the day
and the day type often contribute to travel time variability. Due to these factors, the study
considered 4 variables which are, the time of the day, the id of the origin and destination
stops and the travel time as input to the proposed model.

The performance of the proposed model in [9] was analyzed and it showed the Mean
Absolute Percentage Error(MAPE) increases when the number of stops between the
origin and destination stop is too large or too small. That is the model performs poorly
when the travel time is less than 5 minutes or greater than 50 minutes. However, if the
number of stop between the two stops is up to 5 stops where the travel time is between
20 and 50 minutes, then the model makes better prediction. The prediction accuracy and
the robustness of the model was compared to an historical average model which involved
finding the average of historical observed travel times. The result showed that 70% of
the time, the model makes better prediction.
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Yangie et al in [1] applied a different NN architecture called Long Short-Term Mem-
ory (LSTM) to solving travel time prediction problem. The problem was transformed
into a time series and the LSTM model was used in making the travel time prediction.
The approach is first of its kind and the reason for using LSTM is because the model is
able to automatically store historical sequence that are useful for making accurate travel
time prediction. LSTM architecture is regarded as a specific type of recurrent neural
network, where hidden layer of the NN in different time sequence are connected to each
other. Each hidden layer has an LSTM cell with different gate type, namely: input gate,
forget gate and output gate. Figure 1 shows the different gates of an LSTM architecture.
The main purpose the gates is to control the flow of information within the LSTM cell
and NN.

Figure 1. LSTM gates [1]

The dimension of the input layer and output layer of the LSTM model was 1, which
means that factors causing variation in travel times were not considered. The number of
hidden layer used in the study varies with different links. However, for any given number
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of links, the highest number of hidden layers that can be used is 5. The performance of
the proposed model was tested by making predictions over 4 time periods in the future
labeled as 1-step ahead, 2-step, 3-step and 4-step. The study showed that as the number
of steps increase the prediction error also increases. However, the median of the MRE
was reported as 7.0% when the model was applied on the test data.

Furthermore, in [14], Johar et al applied neural network model to solve travel time
prediction problem on a selected route in the city of Delhi and achieved a sufficient level
of accuracy. In the study, travel times were observed for both peak and none peak periods.
The observed data showed that the number of passengers boarding and dropping off a
bus, the number of stops observed by a bus during a given trip and the dwelling times at
each stop all contribute to the variation of bus travel times. These three parameters were
used as input to the NN model proposed. The NN architecture is a simple MLP structure
with 1 hidden layer having 9 neurons, 1 input layer with 3 neurons and an output layer
with 1 neuron.Johar et al made use of Levenberg-Marquardt algorithm with Bayesian
regularization as the training function.

The accuracy of the proposed model was computed by comparing the predicted travel
time and the actual travel time using Chi-test. The result of the comparison showed that
the proposed model is capable of making predictions with sufficient accuracy.

In [15], Wichai et al took a different approach by using deep neural network model
on travel time prediction problem. The study was motivated by the need to improve the
prediction accuracy when predicting travel times of trips with varying long distance. The
architecture is able to capture more complex relationship and features that could not have
been captured with models discussed in [9], [1] and [14] . Seven parameters that affect
travel times were identified in the study, namely: origin and destination location, the
distance between the two points, the instantaneous speed, average speed, hour of the day
and lastly, the day of the week.

The NN architecture used in the study has 11 neurons at the input layer, 4 hidden
layers with 7 neurons each and a single output layer. The model was trained using
adaptive gradient optimizer (adaGrad).

The prediction model proposed was compared with an existing solution which is
referred to as Ordinary Least Square (OLS) method. Analysis of the prediction result
showed that the model makes more accurate prediction and is more feasible than the
existing solution.

2.4 Hybrid Methods
Hybrid method involves combining two or more methods from historical database
model, Kalman filter or machine learning to solving travel time prediction problem. The
motivation of such combination is to improve the accuracy achieved when using a single
method by employing the advantages of the combined methods.
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Jianying et al in [16] proposed a hybrid type method which is the combination of
Kalman Filter and Elman Neural Network which is a type of Recurrent Neural Network
model to solving travel times prediction problems. The model was applied on a dataset
collected over five days period on a link from Wenhui Bridge to Mingguang Bridge,
Beijing China.

The model proposed in [16] made use of two type of data, the historical dataset
and the real time dataset. Historical dataset is fed to the Elman Neural Network and the
predicted output plus the observed real time data is fed to the Kalman filter model. The
neural network consist of four layers namely, input layer, hidden layer, context layer and
output layer. The Kalman filter model applied at the later stage outputs the predicted
result of the hybrid model. The prediction accuracy of the model was compared to the
prediction accuracy observed when each method are applied separately. The result of
the comparison showed that the proposed hybrid model makes better prediction than the
separate methods.

Furthermore, in [17], Zhihao et al developed a hybrid neural network model for
travel time prediction. The model was created by fusing a 2-dimensional convolution
neural network (CNN) and long-short term memory (LSTM) together. The idea was
motivated by the dominant performance of both CNN and LSTM [17]. In the study,
CNN is responsible for identifying the spatial features of traffic conditions from an image
input with spatiotemporal characteristics while LSTM identifies the correlation of the
travel time series problem. The features identified by CNN is then used as input to the
linear regression layer. The proposed model was trained using RMSprop optimizer.

The proposed model was used to predict the travel time on a 35km urban express-
way in Beijing, China. The prediction accuracy was then compared to other classical
prediction algorithms like instantaneous travel time, historical average and naive K-
Nearest-Neighbor (KNN). The result showed that the model outperformed the classical
algorithms during peak and none-peak periods. However, the model made most-accurate
predictions when making short-term travel time prediction. Although the dataset used in
this study was obtained through probe data, it will be interesting to analyze the result of
the model when applied on a GPS data.

Avigdor et al in [18], introduced a novel hybrid model which involved combining
Machine Learning algorithm with methods from Queuing Theory. Given a scheduled
route, the proposed model is capable of predicting the travel time between an origin and
destination pair. In the proposed model, journey segments are represented as network
queues, while buses are interpreted as clients that go through the queue. Snapshot
principle from Queuing theory is then applied on the modeled data to make predictions.

In the study, the snapshot principle follows the logic that a bus passing through a
particular segment will observe same travel time observed by another bus that just passed
through that same segment. The prediction accuracy of the snapshot principle was tested
and the result showed that it is able to capture any delay in the system. However, it was
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also reported to suffer from outliers and in order to fix the outliers, machine learning
technique called regression tree which learns from example observed from an historical
and real time dataset is applied. The method acted like a boost to the non-learning
snapshot principle [18]. The prediction accuracy of the two combined model is report to
be sufficient enough in making accurate travel time prediction.

2.5 Summary
In this chapter, state-of-the-art travel time prediction models were reviewed with focus
on models applied on GPS dataset obtained from public transit vehicles. The literature
reviewed have shown that most travel time prediction model often rely on historical
travel time patterns by taking into consideration factors that can lead to variation in
travel time such as number of people boarding and leaving the bus at a given stop, the
distance between the origin and destination stop, dwelling time at stop, speed, time of
the day, accidents and lastly, weather condition. Although most of the review models
tried to consider some of the highlighted factors, unfortunately, the type of data available
often limits factors that can be considered when making travel time prediction. Table 3
shows the different factors considered by each model reviewed in this chapter with the
description of the dataset used as test bed.
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Author Approach Variables Data

Weiping et
al [7]

Historical and Real time
trajectories analysis

Day of the week,
time of the day, speed

and travel time

1 year bus GPS
dataset,

Tapei town

Vanajakshi
et al [8]

Historical average travel time
One month

dataset,
Chennai city

Yang et al
[11]

Kalman filter travel time
45 minutes
peak hour

dataset

Vanajakshi
et al [8]

Kalman filter travel time
One month

dataset,
Chennai city

Heifang et
al [13]

Kalman filter travel time and varying speed

One day
GPS dataset,

Beijing,
China

Zegeye et al
[9]

NN, MLP
Levenberg-Marquardt

Origin and
destination stop,
time of the day
and travel time

6 months
GPS dataset,

Macae,
Brazil

Yangie et al
[1]

NN, LSTM travel time

One year
GPS dataset,
high M25,

London

Johar et al
[14]

NN, DNN
Levenberg-Marquardt

Number of
passengers leaving

and boarding,
dwelling time and
average non stop

trip time

6 months
GPS dataset,

Macae,
Brazil

Wichai et al
[15]

NN, MLP
adaGrad

Origin and
destination stop,
time of the day,

distance,
average speed

instantaneous speed
and day of the week

1 month
GPS dataset,

BMTA-8,
Bangkok
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Jainying et
al [16]

Kalman filter and
Elman NN

travel time

5 days
GPS dataset,

Beijing,
China

Zhihao et al
[17]

CNN and LSTM
travel time
and speed

45 days
GPS dataset,
Route Ring 2,

Beijing,
China

Avigdor et
al [18]

Queueing theory and
Regression tree

travel time

1 month
GPS dataset,
Route 46A,

Dublin

Table 3. Literature Review Summary
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3 Methodology
In this thesis, a neural network model is developed to predict link travel times based on
an OD matrix generated through GPS data obtained from a public bus transit system of
the city of Dublin. The method is divided into two parts:

1. OD matrix Extraction : This part involves transforming the GPS dataset obtained
into an Origin Destination matrix. An OD matrix is a matrix which has origin stops
represented as rows and destination stops represented as columns. In previous
research like in [19], OD matrix was used to present people’s trip in a given
location and also, in [20] the concept of OD matrix was applied to a ferry dataset to
understand the passenger trip distribution. However, in this research, the approach
is different. The matrix is used to present the distribution of travel time across
links in a given journey. That is, the values in the cells will represent the travel
time between any two stops.

2. Neural Network model : This part involves identifying independent variables
that affect travel time values and building a model that is capable of making near
accurate travel time predictions based on the independent variables. The input of
the developed model is the OD matrix generated from the GPS dataset and the
values of all identified independent variables.

Figure 2 and Figure 7 gives a step by step break down of the prediction approach
used in this research. The GPS dataset is first analyzed, then transformed into
an OD matrix and fed into the developed NN model for training. After training,
prediction is made using the test dataset. Finally, the result of the prediction is
analyzed by comparing the value predicted with the ground truth travel time.
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Figure 2. Methodology
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Figure 3. System Flowchart
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3.1 OD Matrix Extraction
In public transportation system, an O-D matrix is used to present trip distribution in a
given geographical area for effective transportation planning. The concept is adopted in
this research to present the travel time for all possible origin and destination pairs along
the same route for a specific bus line, in this case bus line 46A.

With this approach, it is easier to understand the travel time distribution for any origin
and destination pair along a given link.

The values in the OD cell are estimated travel time between a given origin stop and a
destination stop pair. This is computed using:

TT Jo,d = T JDo − T JAd (1)

Where:

TT Jo,d is the travel time in minute between any origin stop and destination stop pair.

T JDo is the departure time at any given origin stop.

T JAd is the arrival time at any given destination stop.

Table 4. Origin Destination Matrix

Destination A B C . . Z
Origin
A 0 TTa,b TTa,c . . TTa,z
B 0 0 TTb,c . . TTb,z
C 0 0 0 . TTc,z
. . . . . . .
. . . . . . .
Z 0 0 0 . . 0

Table 4 describes the OD matrix table and how it was constructed for each journey.
From Table 4, we can see that the O-D matrix is an n x n matrix that is used to represent
a trip graph where n represents the vertices, in this case, all observed stops along the
trip. The weights of edges between two vertices is the travel time between the two stops
computed using equation 1. That is, if a stop is reachable from another stop, then the
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travel time between the stops is placed at the ith row and jth column, if it is not, then
0 is placed. The label of the vertices are labeled in the order in which the stops are
transversed. The diagonal of the matrix from the first vertice represent the distributed
link travel time as we transverse from the origin to the final destination. The trip total
travel time can then be calculated by finding the summation of the distributed link travel
times.

Along the route 46a, there are 60 stops from Dun Laoghaire To Phoenix Park, with
OD matrix we are able to create 1770 combinations of stop pairs. However, in its real
sense, not all stops will be observed because the bus did not make a stop at that bus stop.

3.2 Neural Network
Neural Network is a concept that was inspired by the operation of the brain and so far,
it has been successful in solving prediction and estimation problems. The interest in
NN as grown over the years due to its ability to find complex non-linear relationships in
any given input. It has been successfully applied to different problem domain in diverse
areas, ranging from finance, medicine, engineering, geology and physics [21].

3.2.1 Neural Network Architecture

There exist different architectures of neural network, and they are differentiated from
each other by how the neuron are arranged in relation to other neurons in the network. A
typical neural network is divided into three layers and each layer performs specific task:

• Input Layer: The input layer interacts with an external source, accepts data in
form of signal or features. These features are then normalized to achieve better
numerical precision when a mathematical model is applied at the hidden layer [22].
The number of neurons at the input layer is equivalent to the number of features to
be considered in the input dataset, in this case, the number of independent variables
that affect travel time.

• Hidden Layer: This layer consist of neurons that accept input from previous layer,
and pass the output to the next layer in the network. These layer performs most of
the processing in the network by extracting correlating patterns from the features
passed in by the input layer [22]. The number of neurons at the hidden layer and
number of hidden layers corresponds to the complexity of the problem.

• Output Layer: The output layer consist of neurons that are responsible for pre-
senting the final result of the network from the methods applied in the previous
layer. The number of neurons in the output layer corresponds to the output values
of the problem that is being analyzed.
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The simplest neural network architecture is referred to as perceptron which can be
seen in Figure 4. It has two layers, the input layer with n input neurons and the output
layer with one neuron. The input neurons read in the features into the network and the
neuron in the output layer applies an activation function on the inputs. The output neuron
c performs the simplest output function on the inputs by multiplying the values with
randomly chosen weights and adds a bias.

Figure 4. Perceptron

Mathematically:

After the dataset is read into the perceptron network in the form (x1, y1) where y1
is the expected output relating to input x1. Node C performs a simple computation using
equation 2 and equation 3.

Z = W Tx+ θ (2)

Where,

W is the weight represented as a 1 by 2 matrix [w1, w2] in this case and W T it transpose.

x is the input features read into the perceptron represented as a vector
[
a
b

]
θ is the bias for each nodes in the output layer which is also a vector

[
θ
]
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The final computation done by output node c involves applying an activation function
on output Z to get the prediction y.

y = σ(Z) (3)

Perceptrons are very limited in what they can represent thus they are often used for
representing linearly separable functions. When the relationship between the input data
and the output becomes complex, other neural network architectures with more layers
are used. Example of such architectures are Multi Layer Perceptron (MLP), Recurrent
Neural Network (RNN), Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) neural network. These types of architectures are best at identifying
patterns and trends in data for example in pattern recognition problems and time series
problems.
Figure 5 is an example of an MLP Neural network, and it has n neurons at the input
layer, h neurons at the hidden layer and lastly, two neurons at the output layer.

In MLP, the weight for each input is initialized and the bias is added as discussed
above. The result of the computation at each layer is passed forward to the corresponding
layer till its get to the output layer. The result at the output layer is compared with the
target and if the result differs from the target with a huge margin, the error is propagated
back to previous layers in the network to adjust the previously used weights and bias. The
backward propagation algorithm used in MLP tries to find the minimum and maximum
of a function by iterating over the direction of the negative of the slope of the function to
be minimized or maximized [21]. The error can be computed using different methods
like Root Mean Square Error (RMSE), Mean Square Error (MSE) or Mean Absolute
Error (MAE) or Mean Absolute Percentage Error (MAPE).

Using Figure 5 as case study, the mathematical computation at each layer becomes:

Z [1] = W [1]Tx+ b =


w1,1 w2,1 w3,1

w1,2 w2,2 w3,2

w1,3 w2,3 w3,3

w1,4 w2,4 w3,4

w1,5 w2,5 w3,5

 ∗
 x1
x2
x3

+


b1
b2
b3
b4
b5

 (4)

30



Figure 5. Multi Layer Perceptron

Applying the activation function which can be Relu, Sigmoid or TanH. In this case, a
Sigmoid function is used as example:

a[1] = σ(Z [1]) = σ(


z1
z2
z3
z4
z5

) (5)

Where σ used to introduce non-linearity and output boundaries are (0,1)

σ =
1

1 + e−x
(6)

The result is passed as input to the next layer and the same computation is applied
has shown in equation 4.
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Z [2] = W [2]Ta+ b =
[
w1 w2 w3 w4 w5

]
∗


a1
a2
a3
a4
a5

+
[
b[2]

]
(7)

Again the activation function is applied to obtain the prediction:

y = σ(Z [2]) (8)

The backward propagation algorithm computes the loss function which defines the
error between the target and the predicted output of the neural network for all sets of
input-output pairs.

E = 1/N
N∑
i=1

(yi − yi)2 MSE (9)

Where y is the predicted result and y is the target.

and the algorithm tries to minimize error with respect to the weights of the neural
network:

∂E

∂W k
ij

(10)

Using the gradient descent strategy, the result of the loss function is backward propagated
to the NN for the purpose of adjusting the weights and bias using chain and product rule
of differential calculus:

∂E(n)

∂Wij(n)
=
∂E(n)

∂zkj (n)

∂zkj (n)

∂wkij
(11)

Where akj is the result before the activation function is added to generate the predicted
output.

The partial derivative of the weight is defined as the product of the error at a node
in layer k and a node in layer k − 1 [23]. Represented mathematically as [23]
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∂E(n)

∂Wij(n)
= ∂kj ∗ ok−1

j (12)

The derivatives of the activation function as we backward propagate into the network
is also derived. However, the computation of the derivation depends on the type of
activation function that is used.

In summary, the backward propagation is broken down into the following four steps:

1. Read in values and targets

2. Feed forward computation into the network

3. Get prediction y and compute error y − y1

4. Backward propagates the error into the network to update weight and bias accord-
ing to input output deviation.

3.2.2 Model

MLP neural network architecture was chosen as the model to use in this study. This was
done because it is the most popular architecture and also, it is capable of approximating
any function given that there are enough neurons in the hidden layer [24]. The MLP
network used is made of three layers; input layer, hidden layer and output layer. In order
to achieve better prediction result, the number of hidden layers used was increased to
two.

Although there have been different research that has adopted the use of Neural
Network for predicting travel time, their input-output combination differs. In this thesis,
a unique input-output combination was also used based on the result of the data analysis
and state-of-the-art models reviewed in previous section. Six input variables were used
in combination with one output variable which is the predicted travel time. The first
two input variables X1 and X2 is the hour and minute the bus is scheduled to start from
the origin bus stop. These two variables were selected to maintain schedule adherence
because scheduled departure time also affects the total travel time observed. In addition,
non-peak hours with minutes closer to peak-hours always behave exactly like trips started
during peak hours.

The third (X3) and fourth (X4) variables are the origin and destination stop that the
travel time needs to be predicted. The distance between the origin and destination stop is
the fifth input variable tagged X5. The distance between two stops affects travel time
because for short distance, it is expected that the travel time observed will be different
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from that of long distance. X6 is the average speed and as discussed in chapter 1, changes
in average speed often reflects on the travel time observed.

Other variables that affect travel time like weather, traffic light and bus dwelling
times at bus stops are not considered because of the limitation of the dataset. However, it
is expected that the model will capture the effect of dwelling times at different stops on
the total travel time.

The dataset used in this study was divided into two sets namely: the training dataset
and test dataset. In order to avoid data over-fitting, the training dataset was further
divided into two sets namely: training set and validation set. The training set is used
during the training process for model development to capture the relationship between
the input and output by adjusting the weight and bias values [25]. In contrast, the test
set is used to test the ability of the model that is to know for sure if the model is making
accurate predictions and to also compute the difference between the predicted and actual
value. The test set is used only after the model is already trained. The validation set is
used to fine tune the parameters of the model during the training process.

Figure 6. Neural Network Model

Reviewed literature have shown that there is no general procedure used to divide the
dataset into training, test and validation sets. In this thesis, seventy percent of the dataset
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(70%) was used as the training set while the remaining thirty percent (30%) of dataset
was used as the test set. This corresponds to using first three weeks of the dataset for the
training set and the last week as the test set. Twenty percent (20%) of the training set
was used as the validation set.

An NN model needs to be trained with a training algorithm in order to attain the
desired output according to the training patterns [26]. This algorithm is repeatedly
applied to update the network and only stopped when a predefined criterion is met. The
choice of criterion always lie between the maximum number of epochs and the minimum
error gradient. The type of training function chosen often depends on the type of problem
been solved either a classification or prediction problem, the size of the dataset i.e the
number of available data points and the number of weights and biases in the neural
network. With prediction problems, some of the most popular training algorithms that
have been used are Levenberg-Marquardt algorithm, Bayesian Regularization , Steepest
Descent algorithm and adaGrad algorithm.

In this research, the selected training algorithm is adaGrad. The algorithm is referred
to as an adaptive learning rate algorithm that tries to improve the learning rate of features
in the dataset by performing large updates for infrequent parameters and smaller update
for frequent parameters [27]. Adagrad modifies the general learning rate n at every
unique time step t for every parameter θi based on the past gradients that have been
computed for θi [28]. The update is given as:

θt+1,i = θt,i −
n√

Gt,ii + ε
∗ gt,i (13)

Where:

θt+1,i = parameter at the next time step.

n = learning rate

θt,i = parameter at a previous time step

Gt,ii = is a diagonal matrix where each diagonal value ii is the sum of the squares
of the gradients

gt,i = previous gradient , given as:

gt,i = 5θt(θt,i) (14)

Duchi et al showed in [29] that adaGrad performs best with sparse dataset, thus
making making it well-suited for the neural network model used in this research.
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3.3 Summary
In this chapter, the neural network model used for this research was introduced and
extensively explained. Although neural network has been described as a black box over
the years, implementing it is not that difficult as one might have thought. The availability
of different NN libraries has made the construction of NN easier for researchers and
thus, has allowed researchers to focus more on data collection and analysis in order to
find the correlation between dependent and independent variables. However, it is still
important for one to fully grasp the concept so as to avoid issues related to over-fitting
and under-fitting.
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4 Data
The dataset used in this study is an open dataset made available by Dublin City Council
[30]. It consists of GPS data collected by Dublin City Traffic Control System from
different buses plying different routes in the city. It corresponds to approximately one
month of data from November 6, 2012, to November 30, 2012. The dataset is popular
among researchers who have worked with problems related to estimation or prediction
of either bus arrival time or bus travel time.

4.1 Data Description
To build the dataset, each active bus sends data to the traffic control system every twenty
seconds (20 secs) throughout the lifetime of a specific journey. Figure 7 describes the data
collection scheme in a nutshell. It shows that each bus has a GPS installed inside it and
it is interfaced to Internet. The GPS tracks the location of the bus in latitude-longitude
pairs, the current time and date. The GPS data and some other relevant information are
then relayed through the interfaced Internet connection to the Traffic Control System.
The data sent are :

1. The time-stamp of event, that is the time the data was observed.

2. Current location of the bus in Latitude and Longitude.

3. An identifier for the bus, termed as the vehicle id.

4. An identifier for the journey, termed as the journey id. The journey id specifies the
direction of the journey, either it is south bound or north bound.

5. The vehicle journey id. This identifier is used to differentiate between journeys of
the same bus.

6. The journey pattern. This specifies the sequence of bus stop for journey.

7. Bus stop id. This identifier defines the bus stop closest to a bus. That is, every data
sent to the traffic control system will have a bus stop id even though the bus is not
at the stop.

8. A binary identifier which specifies if a bus is at a particular stop or not. This
identifier is called at_stop and it can only have a value of either 0 or 1.
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Figure 7. Data Collection Scheme

After careful analysis, bus line 46A was chosen for the research described in this
thesis. The route was chosen because it has more lengthy journey pattern when compared
to other routes in the dataset. Furthermore, the route passes through Dublin city center
which means it is vulnerable to peak hour traffic and travel time variation. Figure 8
shows the route of bus line 46A, where the blue markers correspond to bus stops that can
be observed along the route.

4.2 Data Reduction
Since it is a GPS dataset, it means the data is susceptible to errors and noise. To prepare
the data for the model, all errors and noise had to be cleared. During data cleaning, each
vehicle journey was considered separately and some filters were applied to prune out bad
journeys. The following filters were applied to the dataset.

1. The dataset for line 46A comes with four journey patterns 046A0001, 046A1001,
401001 and 400001. While analyzing the dataset , only 046A0001 and 046A1001
were frequently visited, and they were also lengthy (covers up to 19km) . Based on
this, journeys belonging to 401001 and 400001 were eliminated from the dataset.
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Table 5. Route 46A details

Details Value

Length 19km
Bus stops 59
Journey Time (Excluding Peak Time) 60 minutes
Journey Id 2

Figure 8. Route for bus line 46A [2]

2. All journeys that had their data points inside a 100m by 100m square were tagged
bad journey.

39



3. Journeys that had data points with large time jumps in it were tagged bad journeys.
That is if the time difference between the last data point and the next data point is
above two minutes, the journey is tagged bad journey. This was done because, the
expected time difference is twenty seconds, and we understand that it is possible
for tall buildings and trees to cause delays in transmission. However, Anything
above 2 minutes is tagged bad journey and deleted from the dataset.

4. Lastly, for each journey in the dataset, journeys with less than fifteen stops through-
out the lifetime of the journey were tagged bad journey.

The dataset also lacked some values that are important to the research being carried
out, for example, the average speed was missing, the journey time between each stop and
also the distance between each stop. All three values were computed as follows:

• Estimated Travel Time: Two types of estimated travel time were computed, the
estimated travel time between individual stops that is the time it took a bus to
move from stop Si to Si+1 and the estimated total travel time for any given journey
referred to as the journey travel time. Therefore, the travel time between any two
given stops a and b for a given journey J is defined as the difference between arrival
time at stop b and arrival time at stop a. Defined mathematically as:

TT Ja,b = T JAb − T JAa (15)

The total Travel Time for a particular journey J is defined as the difference be-
tween departure time at origin a and arrival time at final destination b. Defined
mathematically as:

JT Ji,j = T JAb − T JDa (16)

• Distance: The distance between any two given stops a and b was calculated
using Open Source Routing Machine (OSRM) platform. OSRM is a platform
equipped with high performance engine designed for calculating paths in road
network. Its distance calculation accuracy was the reason OSRM was adopted.
The distance was calculated by using the latitude and longitude of both arrival
stops and destination stops as query for the OSRM server and the result is the
distance between both stops while considering the public transit route only. The
total distance is then computed by adding the values together. This is done to avoid
measuring distance using the crow fly method.
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• Speed: The average speed in kilometer per hour between any two stops a and b
was calculated using:

ASJa,b =
Da,b

TT Ja,b
∗ 3.6 (17)

Where:

TT Ja,b is the travel time between any stop a and b for journey J

JT Ji,j is the total travel time for journey J.

Da,b is the distance between any two stops a and b.

ASJa,b is the average speed between any two stops a and b for journey J.

Ti is the time stamp observed at any stop i.

4.3 Data Analysis
To determine the correlation between the journey times and other variables in the dataset,
it was necessary to analyze the filtered dataset. The distribution of the travel time across
different hours of the day for different days of the week was first analyzed for both the
south and north bound journey. Figure 9 shows that the peak hours are always different
for weekdays and weekends. For weekends (Saturday and Sunday), the peak times are
between 10:00 am to 12:00 pm and 14:00 pm to 16:00 pm. This is quite understandable
because people only tend to move towards the city center around noon or afternoon to
relax or have some fun.

For weekdays (Monday to Friday), the peak hours observed for days starting the
week (Monday) and ending the week (Friday) can be seen to be slightly different for days
within the week. The peak hours for Friday and Monday share some kind of similarities
as seen in Figure 9. The peak hours for these days are between 07:00 am to 10:00 am,
12:00 pm to 14:00 pm and 16:00 pm to 18:00 pm. While the peaks hours for days within
the week are 07:00 am to 08:am and 16:00 pm to 18:00 pm.
Peak hour observed between 07:00 am to 08:00 am on weekdays shows that people are
moving to their work place while peak hour observed between 16:00 pm to 18:00 pm
shows that people are moving to go home. The different peak hour observed on Monday
and Friday is quite understandable because commuters often want to start the week on a

41



brighter note and are also in a rush to start the weekend early on Fridays, thus leading to
high traffic rate on Mondays and Fridays.

The same analysis was carried out for the south bound journey and Figure 10 shows
that the peak hours are slightly different from the north bound journey. For weekends
(Saturday and Sunday), no major peak hours were recorded while for weekdays, peak
hours were between 07:00 am to 08:00 am and 16:00 pm to 18:00 pm and it remained
the same for all weekdays.

From the analysis shown Figure 9 and Figure 10, a conclusion can be drawn that if a
journey J is just before peak hour period, it is likely that journey J+1 plying the same
route and direction will likely have a higher Journey Travel Time.

Figure 9. Heat Map for North Bound Journey

Furthermore, the travel time distribution for the south bound journey from Dun
Laoghaire (Stop 2039) to Phoenix part (Stop 807) on weekdays was analyzed. Figure 11
shows the distribution and from the plot it can be seen that the travel times in the
dataset follow a normal distribution curve. The left half of the plot represents the non-
peak periods while the right half of the plot represents the travel time distribution at
peak-periods.

From Figure 11, we can deduce that the average travel time in the dataset is 80 minute
and with any particular trip starting at Stop 2039 to destination Stop 807, there is a 68%
probability that it will be within 10 minutes from the average travel time.
In addition, the average number of stops per schedule from Dun Laoghaire To Phoenix

42



Figure 10. Heat Map for South Bound Journey

Figure 11. Travel Time distribution

Park was analyzed. The plot in Figure 12 is the result of the analysis and it shows
that during the morning peak periods and evening peak periods between 07:00 to 08:00
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and 16:00 - 18:00 respectively, the number of stops observed is high. Based on what
was explained in chapter 1, this factor also contributes to the travel time variability
experienced during this period. Also, has the hour approaches a peak hour, it can be seen
that the average number of stops tends to increase. For example, the average number of
stops observed tends to start increasing from 06:45 as we approach 07:00 which is a peak
hour.

Figure 12. Average stop per schedule

Figure 12 also shows that on the average, only 60% of the total number of scheduled
stop is always observed. This is quite understandable because a bus is only expected to
stop when there is a passenger who wants to alight or board the bus.

4.4 Summary
In this chapter, the GPS dataset collected to be used as test bed in this study was
introduced. The dataset collection method and columns in the dataset were all described.
Also, the filtering algorithms that was used in removing outliers were described in detail.
Finally, the preprocessed dataset was analyzed in order to understand the dataset and to
easily identify independent variables that lead to travel time variation in route 46A.
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5 Result and Analysis

5.1 Model Evaluation
As discussed in the previous chapter, a neural network was modeled and adaGrad is the
learning algorithm of choice. The number of input neurons used is 6 which is same as
the number of independent variables in the dataset while the number of neurons used in
output layer is 1 which is the dimension of travel time T to be predicted. To determine the
number of hidden layers to use and the number of neurons in each layer, we conducted
an experiment to obtain the best combinations of values to use and these values are
presented in Table 6.

Table 6. NN configuration for short jumps

Details Value

Input Layer 6 neuron
First hidden Layer 12 neuron
Second hidden Layer 50 neuron
Output Layer 1 neuron
Epoch 1000
Training Algorithm adaGrad

Furthermore, in order to improve the prediction accuracy of the model, the dataset
was divided into two classes according to their estimated travel time before being used as
an input to the neural network. Each class of the dataset is passed into a different neural
network with different configurations at the hidden layers. Figure 13 gives a pictorial
description of how this division was done.

For short jumps the NN configuration in Table 6 was used while for long jumps, the
NN configuration in Table 7 was used. When prediction is done, the result of the two
network is then combined.

Table 7. NN configuration for long jumps

Details Value

Input Layer 6 neuron
First hidden Layer 9 neuron
Second hidden Layer 25 neuron
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Figure 13. Dataset class division

The performance of the model was evaluated in terms of accuracy by using Root
Mean Square Error (RMSE). That is the predicted travel time (TT) was tested against the
ground truth value which is the estimated travel time discussed in section 4.

RMSE =

√∑
(ttja,b − TT

j
a,b)

2

z
(18)

Where:

ttja,b = the observed travel time from stop a to stop b for a journey j in testing data.

TT ja,b = the ground truth travel time from stop a to stop b for a journey j in testing
data.

z = the total number of links in the journey.
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5.2 Result
The first part of the prediction involves querying a specific day of the week over the one
month dataset and predicting all journeys of the last occurrence of the selected day in the
dataset. For example, the journeys for last Tuesday of the month was predicted by using
the first 3 Tuesdays of the month as input into the NN model.

Figure 14 presents the behavior of the model when used to predict a single journey
outside peak hours. It can be seen that the difference between the estimated travel time
between two links is approximately equal to two minutes. That is, the model either
accurately predicts the travel time or is off by approximately two minutes.

Figure 14. Predicted link travel time for a journey outside peak hour

In Figure 15, the result of using the model to predict a journey inside a peak hour
(16:00 is an example of peak period as shown in the analysis done in chapter 3) is shown.
It can be seen that the model is not affected by peak hour as it also gives the same output
has the non-peak period.

In Figure 16, the graph for RMSE observed for both peak hours and non peak hours
for predictions made for the last weekdays of the month by querying each of the days is
presented. The figure shows that the model performed better for peak hours compared to
normal hours while on Sunday the error between the peak and non-peak periods is high.
This is because the peak hour on Sunday is short, thus making it difficult for the model
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Figure 15. Predicted link travel time for a journey inside peak hour

Figure 16. RMSE error observed by day for Non peak and peak periods

to learn the peak periods during short trips.

From the result obtained for the short jumps, we can conclude that the model does
not predict accurately enough for short trips. This often occur for stops where the travel
time is between 1 minute and 3 minutes. The inaccurate predictions are mostly due to
travel time variability caused by stops made at traffic lights during short trips. The time
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spent at traffic lights are often unpredictable and thus, increases the level of uncertainty
for this type of trips in the dataset.

For long jumps, Figure 17 presents the RMSE observed per day. As expected,
the RMSE for long jumps are larger than that of short jumps, however, the prediction
accuracy at 88% accuracy is still better than short jumps. The difference between the
predicted and the ground truth is often between 3 and 4 minutes, which is acceptable
given the type of data used and the factors considered. The model is also able to capture
but non-peak and peak periods as shown from the plot. The error margin between peak
hour and non-peak hours on Sunday for long trips is very low compared to that of short
trips.

Figure 17. RMSE error observed per day for long jumps during peak and non-peak
periods

To understand the behavior of the model when used with a bigger dataset, we feed
the NN model with all the dataset except the last five days which equate to the last 5
working days of the month. To achieve good performance, another input variable X7

called day of the week had to be introduced. The new NN model is shown in Figure 18
below.
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Figure 18. Neural Network Model with Day of the Week as input variable

The prediction error computed using RMSE is presented for each day for both long
and short jumps for different time periods (peak and non-peak periods). It can be seen in
Table 8 that there is little difference between the prediction error for the two different
time periods. This means that the model captured both peak and non-peak periods and
was also better than the previous model for both periods. However, the model still had
difficulties in predicting accurately short trips with travel time between 1 and 3 minutes.

Table 8. RMSE for short jumps

Days Nonpeak Peak

Monday 1.17 1.18
Tuesday 1.18 1.19
Wednesday 1.20 1.16
Thursday 1.17 1.20
Friday 1.17 1.15
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In Table 9, the prediction error for long jumps during non-peak and peak hours is
presented. Again, the table shows that the model is able to predict long trips with low
error margin. The prediction made by the model are accurate to within 3 minutes of the
ground truth for trips exceeding 60 minutes. For the type of route considered in this
research, this margin is acceptable and can be improved if more data are available.

Table 9. RMSE for long jumps

Days Nonpeak Peak

Monday 2.48 2.56
Tuesday 2.53 2.58
Wednesday 2.53 2.60
Thursday 2.60 2.61
Friday 2.48 2.52

Finally, the performance of the model when predicting the total travel time of trips
in the future is analyzed. In Table 10 the RMSE for both peak and non-peak periods
are presented and from the table, it can be seen that the RMSE for non-peak is in most
cases lower than peak periods. However, the differences are not much, which makes us
conclude that the model is able to capture both peak and non-peak periods sufficiently.

Table 10. RMSE for predicted trip travel time

Days Non-Peak Peak

Monday 2.50 2.76
Tuesday 2.55 2.72
Wednesday 2.75 3.12
Thursday 2.44 3.24
Friday 3.01 2.66

In Figure 19, the plot for the predicted travel time against the ground truth travel
time per schedule is presented for all week days. From the plot, we can deduce that the
NN model is able to predict the total travel time efficiently with low error margin. The
model was also able to identify peak and non-peak periods without using input variables
to differentiate between both periods. Lastly, the missing schedules in some of the days
are due to the filter applied on the dataset discussed in previous chapter.

51



(a) Monday

(b) Tuesday

Figure 19. Predicted travel time vs Ground truth per Schedule
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(c) Wednesday

(d) Thursday

Figure 19. Predicted travel time vs Ground truth per Schedule
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(e) Friday

Figure 19. Predicted travel time vs Ground truth per Schedule

5.3 Summary
In this chapter, the prediction accuracy of the model measured using RMSE was analyzed
and presented in tables and graph plots. From the result analyzed and discussed in this
chapter, we can conclude that the model performs best with long trips for both non-peak
and peak periods. The result showed that the NN model is capable of making near
accurate predictions when the number of stops between the origin and destination is at
least 4 stops. However, if the travel time between two or three stops is between 1 and 3
minutes, the model gives poor prediction with prediction accuracy close to 70%. This is
because the variability for short trips are often caused by time spent at traffic lights at
intersections which are often unpredictable. Although, given a bigger dataset of two to
three months, the NN model might be capable of learning variability caused by traffic
light on very short trips. Additional analysis also showed that when the travel time is
between 40 − 100 minutes, the average difference between the predicted and ground
truth is between 3− 5 minutes for both peak and non-peak periods.

The result analyzed in this chapter showed that the model is sufficient enough for
making travel time prediction on bus routes in cities like route 46a.
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6 Conclusion and Future Works
This chapter marks the conclusion of the thesis, presents the limitation of the thesis and
lastly, presents what extra work needs to be done to achieve better prediction result.

6.1 Conclusion
In this thesis, we discussed the factors affecting travel time variability in public bus
transit system and also reviewed different methods that have been applied to solve travel
time prediction problem based on data obtained through GPS. The use of NN and OD
matrix for travel time prediction was explored in this research and the choice of route
was route 46A in the city of Dublin. The route is popularly known for its lack of lane
discipline and travel time variability.

Although this is not the first time NN has been applied to travel time prediction
problem, however, for each NN model used in the past, a unique input-output combination
is used.

The travel time predicted by the model was compared with the ground truth value
and the result of the comparison was analyzed using RMSE to determine the model’s
prediction accuracy. The result of the analysis presented in chapter 5 showed that the
model is promising and can be used by public transport agencies to build a prediction
system that is capable of providing travel time information of trips based on schedules in
the future. We are confident that the NN model implemented in this research is sufficient
enough to improve the reliability of public transit system if applied.

6.2 Limitations and Future perspectives
Unfortunately, the prediction accuracy of the model was affected by the size of the dataset
and type of variable available. The dataset used in this research was approximately equal
to a month dataset and we believe that using a bigger dataset of 5-7 months would have
helped achieve better accuracy in prediction. Also, factors like weather conditions, driver
swap periods, traffic light and accident time periods were not captured in this research
due to the structure of the dataset used, thus contributed to the prediction error of the
model.

The research done in this thesis and the prediction accuracy achieved by the NN
model is a good starting point for future works. A future work based on the application of
Bayesian methods can be inspired by the work done by Jianying et al in [16]. Jianying et
al in [16] applied Kalman filter to the predicted output of their proposed neural network
to achieve better result. Likewise, Bayesian methods like Monte carlo and Markov chain
can be applied on the travel time predicted by the NN model used in this research to
reduce the prediction errors in the absence of large dataset.
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Bradford et al in [31], applied Markov chain Monte Carlo method to estimate the
travel time of ambulances and the estimation accuracy showed that Bayesian methods
are good tool for travel time prediction. Although, the case study used in the study is
not related to public bus transit system, we believe that exploring the use of Bayesian
methods alongside the NN model used in this research will be worth it.
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Appendix

Figure 20. Od matrix showing travel time in Seconds

(a) Monday. (b) Tuesday.

Figure 21. Average Travel Time vs Hour of the day.

60



(c) Wednesday. (d) Thursday.

(e) Friday

Figure 21. Average Travel Time vs Hour of the day.
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